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Abstract

Large language models (LLMs) are leading sig-001
nificant progress in code generation. Beyond002
one-pass code generation, recent works further003
integrate unit tests and program verifiers into004
LLMs to iteratively refine the generated pro-005
grams. However, these works consider the gen-006
erated program as an indivisible entity, which007
falls short for LLMs in debugging the programs,008
especially when the programs contain complex009
logic flows and data operations. In contrast,010
when human developers debug programs, they011
typically set breakpoints and selectively exam-012
ine runtime execution information. The execu-013
tion flow and the intermediate variables play a014
crucial role in the debugging process, yet they015
are underutilized in the existing literature on016
code generation. In this study, we introduce017
Large Language Model Debugger (LDB), a018
novel debugging framework that enables LLMs019
to refine their generated programs with the run-020
time execution information. Specifically, LDB021
segments programs into basic blocks and tracks022
the values of intermediate variables after each023
block throughout runtime execution. This al-024
lows LLMs to concentrate on simpler code025
units within the overall execution flow, verify026
their correctness against the task description027
block by block, and effectively pinpoint any028
potential errors. Experiments demonstrate that029
LDB consistently enhances the baseline perfor-030
mance by up to 9.8% across the HumanEval,031
MBPP, and TransCoder benchmarks, archiv-032
ing new state-of-the-art performance in code033
debugging for various LLM selections.034

1 Introduction035

Code generation is a critical yet challenging task036

that has various downstream applications, such037

as text-to-code generation (Chen et al., 2021; Yin038

and Neubig, 2017; Li et al., 2022), code transla-039

tion (Roziere et al., 2020), and code autocomple-040

tion (Li et al., 2018; Raychev et al., 2014). Re-041

cent progress in large language models (LLMs) (Li042
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Figure 1: Comparison of LDB and existing debugging
works. Existing works treat the programs as an indivis-
ible entity and depend on the post-execution feedback
for debugging, while LDB leverages the runtime exe-
cution information, tracking the values of intermediate
variables and verifying basic blocks against the task de-
scription step by step.

et al., 2023; Roziere et al., 2023; Achiam et al., 043

2023; Zhou et al., 2023a; Muennighoff et al., 2023) 044

significantly boosts the performance of code gen- 045

eration and demonstrates a promising potential to 046

be generally applied in different requirements and 047

tasks (Shinn et al., 2023; Gu, 2023; Yuan et al., 048

2023). However, generating correct programs is 049

not a one-time effort. Existing works suggest en- 050

hancing code generation through multiple sam- 051

pling (Zhang et al., 2023b; Shinn et al., 2023), self- 052

consistency (Le et al., 2023; Huang et al., 2023a; 053

Chen et al., 2022), and candidates ranking (Shi 054

et al., 2022; Ni et al., 2023; Zhang et al., 2023a). 055

Despite these advanced approaches, they still fall 056

short on basic programming questions from the Hu- 057

manEval and MBPP datasets. This underscores the 058

limitations of single-pass program generation. 059

Recognizing this, a series of works have been 060

proposed to refine the programs generated in a sin- 061

gle pass, based on feedback from either human 062

annotator (Chen et al., 2023a; Wu et al., 2023) or 063

LLMs themselves (Tang et al., 2023; Chen et al., 064

2023c). This refinement process is akin to debug- 065

ging in programming practices by human develop- 066
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def func(s):
  cnt = 0
  if s != '':
    for c in s: cnt += 2
  return cnt
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Figure 2: Illustration of the debugging workflow of LDB. A code generator is prompted to generate the seed
programs (Step 0). Profiling (§ 2.2): LDB decomposes the seed program into basic blocks based on the control
flow graph (Step 1), and feeds in a failed visible test case to acquire the execution trace (Step 2). Debugging (§ 2.3):
LDB further inspects the runtime states of variables after each basic block during the runtime execution. Gathering
the runtime execution information, LDB queries a LLM for verdicts on the correctness of the blocks in the relation
to the task description (Step 3). Regeneration (§ 2.4): Finally, the LLM regenerates a refined program with the
debugging feedbacks by LDB (Step 4).

ers. Chen et al. (2023c); Jiang et al. (2023) intro-067

duce unit test results and error messages to LLMs.068

These approaches allow LLMs to reflect on po-069

tential mistakes and generate corrected programs.070

Nevertheless, considering the debugging process071

by human developers, it is sub-optimal to solely de-072

pend on these post-execution information to debug073

the program, especially in cases involving complex074

data structures and control flows. In fact, when hu-075

man developers encounter a buggy program, they076

do more than just collect the program’s outputs.077

They delve into the runtime execution to observe078

the execution traces1 and examine the intermediate079

variables by setting breakpoints. When the interme-080

diate execution states deviate from their intention,081

developers pinpoint the bugs and make the correc-082

tions. This is a common workflow for well-known083

interactive debuggers such as GDB (Stallman et al.,084

1988) and PDB (Foundation, 2001).085

To this end, we propose LDB, a large language086

model debugger that refines programs generated087

by LLMs using runtime execution information, em-088

ulating the debugging practices of human devel-089

opers. As shown in Figure 1, feeding in a visible090

test case, LDB segments the execution trace into091

basic blocks1 based on the control flow graph1.092

LDB tracks the intermediate variables at the end of093

each basic block, similar to the breakpoints set by094

developers. After gathering runtime execution in-095

1Refer to Appendix A for detailed introduction of execu-
tion trace, control flow graph, and basic block.

formation, LDB queries LLMs for verdicts on each 096

code block’s correctness and explanations of the 097

execution flow in relation to the coding task. This 098

approach allows language models to concentrate 099

on simpler code units, verify intermediate states 100

against the task description, and pinpoint potential 101

bugs. Consequently, it effectively debugs the pro- 102

gram and improves the quality of code generation. 103

We validate LDB on three code generation 104

benchmarks, including HumanEval (Chen et al., 105

2021) and MBPP (Austin et al., 2021) for text- 106

to-code generation, and TransCoder (Roziere 107

et al., 2020) for code translation. We conduct 108

experiments using the proprietary model, GPT- 109

3.5 (Achiam et al., 2023), and the open-sourced 110

models, StarCoder (Li et al., 2023) and CodeL- 111

lama (Roziere et al., 2023). Experiments demon- 112

strate that LDB consistently improves code genera- 113

tion accuracy across various LLM backbones and 114

achieves state-of-the-art performance in debugging 115

programs. Worth mentioning, even with the pro- 116

grams generated by more powerful code generators, 117

such as GPT-4 (Achiam et al., 2023) and Reflex- 118

ion (Shinn et al., 2023), LDB can still detect errors 119

overlooked by previous advanced methods, thereby 120

enhancing the capabilities of code generation even 121

further. We summarize our contribution as follows: 122

• We propose a large language model debugger, 123

LDB, which takes the very first step on incorpo- 124

rating runtime execution information into LLMs 125

to debug generated programs. 126
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• We leverage basic blocks in the execution traces127

to properly segment the programs into smaller,128

simpler code units, allowing LLMs to verify them129

step by step against users’ intention and effec-130

tively pinpoint the potential bugs.131

• Extensive experiments on three code genera-132

tion benchmarks demonstrate the effectiveness133

of LDB in debugging generated programs across134

different LLM backbones.135

Reproducibility. The code will be released on136

Github2.137

2 Large Language Model Debugger138

Problem Formulation. We follow the problem139

formulation of program debugging in Chen et al.140

(2023c). In a code generation task, each sample141

can be represented as a triplet (Q,Tv, Th), where142

Q represents the task description, Tv and Th are143

visible and hidden test cases. In the text-to-code144

generation task, Q consists of a brief paragraph in145

natural language that outlines the intended goal of146

the task. In the code translation task, Q represents147

a program written in a language other than the tar-148

get language, and the objective is to translate this149

program into the target language. A code generator150

is first provided with Q and Tv to generate the seed151

program A0. In the debugging stage, a debugger152

further refines A0 and finally outputs a new pro-153

gram A∗. A∗ will be tested using the hidden tests154

Th to evaluate whether it is correct or not. Th is155

only used in the evaluation stage and not visible156

during the code generation or debugging stages.157

2.1 Overview158

We show the workflow of LDB in Figure 2. We159

prompt a LLM to generate seed programs. This160

serves as the starting point of debugging if they161

fail any of the visible test cases. During debug-162

ging, LDB feeds in the failed visible test case to163

the seed program and collects the runtime execu-164

tion information, including the execution trace and165

the runtime variable values after each basic block166

(Section 2.2). Then, LDB queries a LLM to verify167

the correctness of basic blocks step by step via com-168

paring them with the task description (Section 2.3).169

Considering the block-wise runtime execution and170

the task description, LDB queries the LLM again171

to detect buggy blocks and regenerate the program.172

LDB repeats these three steps iteratively until the173

2https://github.com/anonymous

new solution pass all the visible tests, or the maxi- 174

mum debugging iteration is reached (Section 2.4). 175

2.2 Profiling 176

In the step of profiling, LDB collects the runtime 177

execution information when running the generated 178

program over the failed visible test cases. It collects 179

the execution trace and then segments the trace into 180

basic blocks to inspect intermediate variables. 181

Execution Traces. In static analysis, each pro- 182

gram corresponds to a unique control flow graph 183

(CFG) where each node in the graph is a code basic 184

block, as shown in Figure 2. Each basic block is a 185

straight-line sequence of code with only one entry 186

point and one exit. The CFG represents all paths 187

might be traversed through a program during its 188

execution. After LDB feeding in a visible test case, 189

the control flow goes through a sequence of basic 190

blocks and the path is denoted as the execution 191

trace, [B1, B2, . . . , Bn], where Bi is a basic block 192

in the trace and n is the length of the trace. 193

Intermediate States. Given an execution trace 194

[B1, B2, B3, . . . , Bn], we execute the first i blocks 195

and collect all the variables in the scope along with 196

their runtime values. We denote the state set as 197

Vi = {v = v̂|v ∈
⋃
B≤i}, where v is a variable 198

used in the first i blocks and v̂ is its runtime value 199

after the i-th block. We define the intermediate 200

state after the first i blocks as (Vi−1, Bi, Vi), where 201

Vi−1 represents the entry states of the block, Bi is 202

the current code block to execute, and Vi provides 203

the actual execution results after Bi. 204

2.3 Debugging 205

The block-wise intermediate states determined by 206

profiling provide a comprehensive illustration for 207

the runtime execution. In Debugging, we integrate 208

the intermediate states into prompts and query a 209

LLM to verify whether the basic blocks align with 210

the intended semantics in the task description Q. 211

Debugging Verdicts. For each intermediate state 212

throughout the trace, (Vi−1, Bi, Vi), the LLM is 213

acquired to make a verdict on its correctness Di ∈ 214

{True, False}, and elaborate the explanation Ei. 215

If the LLM detects any buggy code block, LDB 216

includes the message in the debugging response. 217

Selective Debugging. Loops and recursion are 218

common in programming, potentially leading to ex- 219

tensive execution traces. If we include the lengthy 220

traces directly in the prompt, it is highly likely to 221
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exceed the maximum token limit of LLMs. This222

is similar to what occurs with humans in program223

development. When the execution is lengthy, devel-224

opers may only examine a few blocks and skip the225

other long and tedious execution traces when de-226

tecting bugs. Inspired by the human practice, LDB227

selectively samples Nb blocks from program traces228

to ensure the total length of runtime information229

within the max token limit of LLMs.230

Batch Debugging In our proposed LDB, the in-231

termediate states following each basic block are de-232

termined during the execution of the seed program233

with test cases. Thus, LDB can batch these states234

together and query the LLM for debugging verdicts.235

This significantly improves the token efficiency of236

LDB and alleviates the pitfall of repeatedly sending237

lengthy context to LLMs in iterative refinement (Ge238

et al., 2023; Hu et al., 2023). Specifically, the batch239

debugging query process is as follows,240

{V0, B1, V1, B2, ..., Bn, Vn}241

LLM−−−→{(D1, E1), ..., (Dn, En)}242

where Vi is the set of variables and their runtime243

values after the i-th blocks, Bi is the i-th block244

in the trace, Di is the debugging verdict from the245

LLM, and Ei is the corresponding explanation.246

2.4 Regeneration247

The runtime execution information helps accurately248

localize buggy code blocks, allowing LLMs to con-249

centrate specifically on these areas during the re-250

generation process. In Regeneration, LDB collects251

the debugging verdicts D and explanations E, and252

incorporate them along with the task description Q253

into the prompt. Then, LDB queries the LLM again254

to generate the refined program. LDB iteratively255

runs Profiling, Debugging, and Regeneration, until256

the refined program passes all visible test cases, or257

the maximum debugging iteration is reached. We258

test the finalized solution A∗ using the hidden test259

cases Th to evaluate the performance.260

3 Experiments261

We evaluate LDB on three code genera-262

tion benchmarks: HumanEval (Chen et al.,263

2021), TransCoder (Roziere et al., 2020), and264

MBPP (Austin et al., 2021). HumanEval and265

MBPP are for text-to-code generation, where266

the task description is a brief passage outlines267

the intended functionality of the program to be268

generated. TransCoder is for code translation 269

which requires to translate a program from C++ 270

into Python. The task description of TransCoder 271

consists of a C++ program to be translated. We 272

compute Pass@1 accuracy with hidden test cases 273

for assesment. We conduct experiments with the 274

proprietary LLM, GPT-3.5 (turbo-0613) (Achiam 275

et al., 2023), and the open-source LLMs, CodeL- 276

lama (34B-Instruct) (Roziere et al., 2023) and 277

StarCoder (∼15B) (Li et al., 2023) as backbones. 278

3.1 Experiment Setup 279

We generate the seed programs following the same 280

prompts and generation parameters used in our 281

compared method Chen et al. (2023c). We set 282

the maximum number of debugging iterations as 283

10. More detailed implementation details are re- 284

ported in Appendix B. To obtain visible test cases 285

for HumanEval, we extract the given visible test 286

cases from the task description. For MBPP, we 287

use the first test case of each problem as the visi- 288

ble test case and use the rest as hidden test cases. 289

For TransCoder, we include all test cases from the 290

dataset as visible test cases3. The experiment set- 291

tings on MBPP and TransCoder are the same as the 292

prior works (Chen et al., 2023c; Shi et al., 2022; 293

Ni et al., 2023). After finalizing the code solution, 294

we compute the Pass@1 accuracy with hidden test 295

cases to evaluate the performance. 296

3.2 Compared Methods 297

We evaluate the seed programs and label the perfor- 298

mance as Baseline (w/o debugger). We compare 299

LDB against two rubber duck debugging meth- 300

ods from Chen et al. (2023c): Self-Debugging 301

(+Expl.) which prompts LLMs to explain gener- 302

ated programs line-by-line as feedback, and Self- 303

Debugging (+Trace) which prompts LLMs to dry 304

run generated programs as feedback. 305

We reproduce the Self-Debugging methods fol- 306

lowing the instructions in Chen et al. (2023c) due 307

to the unavailability of open-source code. When 308

referring to “Self-Debugging”, we default to the 309

method with higher accuracy among the two meth- 310

ods unless otherwise specified. Throughout the 311

evaluation process, we ensure that all debugging 312

methods utilize the same LLM settings, visible test 313

cases, seed programs, and prompts formats. This 314

ensures a fair comparison and eliminates potential 315

disruptions caused by changes in prompt formats. 316

3All test cases can be generated by running the original
C++ programs, which are visible to LLMs.
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Model (# Param.) Debugger

Dataset

HumanEval TransCoder MBPP

Acc. ↑ ∆ ↑ Acc. ↑ ∆ ↑ Acc. ↑ ∆ ↑

GPT-3.5 (≥175B†)

Baseline (w/o debugger) 73.8 82.3 67.6
SD (+Expl.) (Chen et al., 2023c) 81.1 +7.3 85.9 +3.6 74.4 +6.8
SD (+Trace) (Chen et al., 2023c) 80.5 +6.7 86.1 +3.8 72.6 +5.0
LDB (ours) 82.9 +9.1 87.7 +5.4 76.0 +8.4

CodeLlama (34B)

Baseline (w/o debugger) 49.4 69.8 51.2
SD (+Expl.) (Chen et al., 2023c) 53.0 +3.6 79.4 +9.6 55.6 +4.4
SD (+Trace) (Chen et al., 2023c) 54.3 +4.9 76.4 +6.6 57.2 +6.0
LDB (ours) 55.5 +6.1 79.6 +9.8 57.4 +6.2

StarCoder (15B)

Baseline (w/o debugger) 39.0 61.8 47.2
SD (+Expl.) (Chen et al., 2023c) 38.4 -0.6 68.9 +7.1 54.4 +7.2
SD (+Trace) (Chen et al., 2023c) 39.0 +0.0 65.7 +3.9 54.8 +7.6
LDB (ours) 39.6 +0.6 69.8 +8.0 55.4 +8.2

Table 1: Results of LDB and Self-Debugging (Chen et al., 2023c) (denoted as SD) on HumanEval, TransCoder,
and MBPP with GPT-3.5, CodeLlama, and StarCoder. Accuracy is calculated based on Pass@1. The improvement
(denoted as ∆) is measured against the baseline (w/o debugger). † We assume the parameter number in GPT-3.5 is
larger than that of GPT-3 (175B).

3.3 Main Results317

We compare LDB with the baseline debugging318

methods on HumanEval, TransCoder, and MBPP,319

and present the result in Table 1. We observe that320

LDB consistently achieves improvements of up to321

9.8% on all datasets across different LLM back-322

bones. Specifically, compared to Self-Debugging323

which prompts LLMs to dry run or explain the324

program, LDB achieves higher and more stable325

performance gain over the baseline by introducing326

the actual runtime execution information.327

We attribute the advantage of LDB to the fine-328

grained debugging feedback and the runtime infor-329

mation as external supplements to the LLM self-330

correction. The detailed block-level debugging331

responses help LLMs concentrate on the buggy332

areas in the program to better align the program333

with the task description. Moreover, as pointed334

out by Huang et al. (2023b), LLMs has limited335

self-correct reasoning abilities. Particularly in code336

generation, LLMs are prone to mistakes when re-337

flecting on program execution. This is due to their338

inability to accurately calculate concrete variable339

values and predicting execution flow at branches or340

loops. The inaccurate feedback from LLMs could341

misguide the program debugging and refinement,342

which explains why Self-Debugging (+Expl.) and343

Self-Debugging (+Trace) fail to improve the seed344

programs on HumanEval with StarCoder. On the345

contrary, LDB generates the debugging verdicts346

and explanations based on accurate intermediate347

values and execution flows, guiding the generated348

Debugger
Code Generator

GPT-3.5 GPT-4 Reflexion

(w/o debugger) 73.8 75.0 91.5
SD (GPT-3.5) 81.1 (+7.3) 82.3 (+7.3) 92.1 (+0.6)
LDB (GPT-3.5) 82.9 (+9.1) 82.9 (+7.9) 95.1 (+3.6)

Table 2: Results of LDB and Self-Debugging (denoted
as SD) on HumanEval with seed programs from GPT-
3.5, GPT-4, and Reflexion. We use GPT-3.5 as the
debugging backbone. LDB can detect the subtle bugs
overlooked by the powerful code generation method and
improve the performance even further.

programs towards the correct answer. 349

Worth mentioning, the visible test cases are also 350

provided to the LLM during the initial seed pro- 351

gram generation. However, their utility in code 352

generation is limited, as evidenced by the sub- 353

optimal performance of Baseline (w/o debugger). 354

This aligns with our assumption that actual runtime 355

execution information significantly helps LLMs 356

ground their reasoning, thereby improving their 357

ability to generate better semantically aligned code. 358

3.4 Results on Advanced Code Generators 359

To further demonstrate the effectiveness of LDB, 360

we apply LDB and Self-Debugging to debug 361

the seed programs from advanced code genera- 362

tors, GPT-4 (Achiam et al., 2023) and Reflex- 363

ion (Shinn et al., 2023). We conduct the analysis 364

on HumanEval as an example. We query GPT-4 365

(1106-preview) to generate seed programs in the 366

same setting introduced in Section 3.1. As for Re- 367

flexion, we select the version based on GPT-3.5 and 368

5



0 2 4 6 8 10
# Iterations

74

76

78

80

82

Hu
m

an
Ev

al
 A

cc
ur

ac
y 

(%
)

74.4
75.0

75.6 75.6 75.6 75.6
76.2 76.2 76.2 76.2

78.7

81.1 81.1 81.1 81.1 81.1 81.1 81.1 81.1 81.1

79.3
79.9 79.9 79.9 79.9 79.9 79.9 79.9 79.9

80.5

LDB (ours)
Repeated Sampling

SD (+Expl.) (Chen et al., 2023c)
SD (+Trace) (Chen et al., 2023c)

73.8

75.0

76.8

79.3

80.5

81.7 81.7
82.3 82.3 82.3

82.9

Figure 3: Performance at each debugging iteration on
HumanEval with LDB, Repeated Sampling, and Self-
Debugging using GPT-3.5 as the backbone. SD stands
for Self-Debugging. LDB exhibits a continuing growth
potential with the increasing iterations and achieves the
best performance in debugging after 10 iterations.

utilize the corresponding generated programs pub-369

lished in the official Github repository4 as the seed370

programs. GPT-4 and Reflexion are considered as371

more powerful code generators that already achieve372

superior performance without any debuggers.373

The results are shown in Table 2. The LLM374

backbone of Self-Debugging and LDB is GPT-375

3.5 (turbo-0613), which is weaker than the code376

generators, GPT-4 and Reflexion. We list the per-377

formance of GPT-3.5 in the table for reference.378

Despite the weaker LLM backbone, both Self-379

Debugging and LDB can refine the programs in the380

debugging process. This highlights the advantage381

of introducing a debugging stage in code genera-382

tion with LLMs. Furthermore, LDB surpasses Self-383

Debugging in debugging and refining programs.384

It can improve performance on HumanEval even385

further and achieve a new state-of-the-art result386

(95.1%) in code generation by debugging the seed387

programs from Reflexion. This indicates that LDB388

is able to examine the runtime execution and cor-389

rect bugs overlooked by the advanced code gen-390

erators, serving as an orthogonal supplement to391

current code generation techniques.392

3.5 Performance vs. Debugging Iterations393

In Figure 3, we plot the performance of LDB, Re-394

peated Sampling, Self-Debugging (+Expl.), and395

Self-Debugging (+Trace) across each iteration on396

HumanEval using GPT-3.5. We introduce Re-397

peated Sampling as a straightforward comparison398

4https://github.com/noahshinn/reflexion

method, where we repeatedly sample coding solu- 399

tions from the program generator until the solution 400

passes the visible test. The performance at each 401

iteration is computed in the same way as LDB. We 402

run these methods up to 10 iterations to examine 403

the performance tendency. We show the perfor- 404

mance of LDB across 20 iterations in Appendix 7 405

to explore the continuous improvement trend. 406

Continuous Debugging Potential of LDB In 407

Figure 3, with increasing debugging or resampling 408

rounds, all methods refine the seed program and 409

improve the performance. Particularly, LDB con- 410

tinuously improves the performance across the de- 411

bugging iterations and achieves the best debugging 412

performance despite the slightly slow rising speed. 413

In contrast, Self-Debugging nearly stops improving 414

the performance after 2 iterations, as also observed 415

in Chen et al. (2023c). 416

Necessity of Runtime Information. From Fig- 417

ure 3, we observe that the performance of Self- 418

Debugging presents a similar trend to Repeated 419

Sampling after 3 rounds. They both stops effec- 420

tively improving the performance at an early stage 421

(around 2 ∼ 3 iterations). This phenomenon re- 422

veals a fundamental difference between LDB and 423

Self-Debugging. We attribute it to the limited self- 424

correcting ability of LLMs, as pointed out in Huang 425

et al. (2023b). The feedback mechanisms in Self- 426

Debugging (self-explaining and self-tracing) in fact 427

enhance the initial understanding of coding tasks 428

but fail to align the task to the specific code. There- 429

fore, the debugging performance of these methods 430

quickly converges and then hardly improves even 431

given more rounds of debugging. In the contrast, 432

LDB exhibits a continuing improvement with the 433

growth of debugging iterations. The new infor- 434

mation from runtime execution keeps moving the 435

models towards correct programs, which closely 436

resembles the human debugging process. 437

3.6 Different Decomposition Levels of LDB 438

In Profiling (Section 2.2), we segment the run- 439

time trace into basic blocks based on the control 440

flow graph. A basic block only has one entry and 441

one exit in the program execution, serving as an 442

ideal basic unit in the runtime analysis (Sherwood 443

et al., 2001). To explore the effectiveness and effi- 444

ciency of block-level decomposition, we develop 445

two comparative methods, LDB (line-level) and 446

LDB (function-level), which segment the runtime 447
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Figure 4: Performance vs. average token cost per pro-
gram of LDB in different decomposition levels on Hu-
manEval with GPT-3.5. LDB (block-level) achieves
the best accuracy with the least token cost compared to
LDB (line-level) and LDB (function-level).

trace in the granularity of lines and functions re-448

spectively. We denote the original block-level de-449

bugging method as LDB (block-level). LDB in450

different decomposition levels share the same ar-451

chitecture. They collect runtime intermediate states452

at the end of each code unit. The code unit can be453

a line in LDB (line-level), a block in LDB (block-454

level), or a function in LDB (function-level). Simi-455

larly, we adopt Selective Debugging (Section 2.3)456

to fit prompts into the token limits of LLMs. Please457

refer to Appendix C for implementation details.458

Figure 4 plots the performance and average to-459

ken cost per program of LDB in different decom-460

position levels on HumanEval using GPT-3.5. The461

detailed statistics are listed in Table 4 in Appendix.462

All three debugging methods manage to enhance463

the performance, demonstrating the benefits from464

runtime execution information. Particularly, among465

the three decomposition levels, LDB (block-level)466

achieves the highest improvement.467

LDB (line-level) performs worse than LDB468

(block-level) even if the line-level information is469

more fine-grained. This may arise because line-470

level decomposition leads to incomplete semantics471

in each code unit (i.e. a line of code). As a result,472

LLMs struggles to fully understand the code units473

and accurately identify bugs within the program.474

LDB (function-level) provides the most coarse-475

grained information which largely preserves the476

complete programs. However, the intermediate477

states in the function-level fail to provide de-478

tailed runtime information. Consequently, LDB479

(function-level) is less effective and requires ap-480

proximately 8.1 iterations on average to debug a481

program which are much more than the other levels482

(see Appendix C for statistics). This explains the483

highest token cost of LDB (function-level).484
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(Chen et al., 2023c)
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(ours)

Figure 5: Performance of LDB on problems of differ-
ent difficulty levels in TransCoder using GPT-3.5 as
the backbone. LDB demonstrates the most improve-
ment on Hard-level problems, indicating its capability
in understanding the program execution and detecting
non-trivial errors in program debugging.

3.7 Performance of Different Difficulty Levels 485

To evaluate the capability of LDB in debugging pro- 486

grams, we dive into the problems it successfully de- 487

bugs in TransCoder and categorize them into three 488

difficulty levels, Easy, Medium, and Hard. The 489

difficulty annotation is automatically performed 490

by GPT-4 (1106-preview) based on the canonical 491

solutions of each problem to avoid potential subjec- 492

tiveness. Figure 5 shows the improved accuracy for 493

each difficulty level from TransCoder dataset. We 494

observe that the performance of GPT-3.5 in code 495

generation decreases with the increasing problem 496

difficulty while the improvement from the debug- 497

ger increases in harder problems. Particularly, LDB 498

shows the most improvement (9.1%) on the hard- 499

level problems, which indicates that LDB is able 500

to detect the non-trivial bugs and understand the 501

complex execution flows in the harder problems. 502

3.8 Case Study 503

Figure 6 presents an example on HumanEval with 504

GPT-3.5. In the example, LDB successfully fix the 505

the program and enable it to pass the visible and 506

hidden test cases. This case requires the program 507

to check two conditions: (1) numbers sorted in as- 508

cending order. (2) list does not have more than 509

1 duplicate of the same number. In the seed pro- 510

gram, it checks the first condition, while mistakenly 511

presents the second condition as not having any 512

duplicates (lst.count(x) > 1). In BLOCK-0 to 513

BLOCK-4, LDB makes the verdicts that each block 514

correctly checks the first condition. For BLOCK- 515

5, LDB finds out the mistake in the condition and 516

locates the program bugs exactly in this block. It 517

proposes to fix this condition into lst.count(x) 518

> 2 so that it aligns with the task description. 519
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Task Description
1. Given a list of numbers, return 
whether or not they are sorted in 
ascending order. 
2. If list has more than 1 duplicate of the 
same number, return False. 

Seed Program

def is_sorted(lst):
  for i in range(len(lst)-1):
    if lst[i]>lst[i + 1]:
      return False
  return not any(lst.count(x) > 1
         for x in lst)

Large Language Model Debugger (LDB)

Visible Test Cases

[BLOCK-1]
Before: i=0,

lst=[1,2,2,3,3,4]
for i in range(len(lst)-1):
  if lst[i] > lst[i + 1]:

After: i=1,
lst=[1,2,2,3,3,4]

[BLOCK-5]
Before: i=4,

lst=[1,2,2,3,3,4]
return not any(lst.count(x)>1 
               for x in lst)

After: i=4,lst=[1,2,2,3,3,4],
_ret=False

Segment Program into Basic Blocks & Feed in Visible Test Case

Query LLM to Verify Correctness of Each Block Step by Step 
[Verdict-0]

The block is  CorrectCorrect

Explanation: The block 
initializes the variable `lst` 
and `i` correctly.

The block is  Correct

[Verdict-1]

Correct

Explanation: The block 
correctly checks if the current 
element …

…

[Verdict-5]

The block is  IncorrectIncorrect

Explanation: The task requires …. To fix this issue, we 
should change the condition to lst.count(x)>2 to 
consider the original occurrence of the number in the list.

lst.count(x)>2

Inspect the runtime states and gather the runtime execution information 

Input: lst=[1,2,2,3,3,4] 
Expected Output: True

Actual Output: False

[BLOCK-0]

Before: lst=[1,2,2,3,3,4]

for i in range(len(lst)-1):
  if lst[i] > lst[i + 1]:

After: i=0,
lst=[1,2,2,3,3,4]

Figure 6: Debugging example of LDB on HumanEval with GPT-3.5. LDB accurately detects the bug in Block-5,
and suggests tha correct fix to align the program to the task description.

4 Related Work520

Augmented Code Language Models Recent521

language models based on deep neural net-522

works (Achiam et al., 2023; Roziere et al., 2023;523

Li et al., 2023; Nijkamp et al., 2022) demonstrate524

great potential for coding tasks. Despite their im-525

pressive capabilities, these models face challenges526

such as syntax correctness (Jin et al., 2023; Chen527

et al., 2023b), semantic alignment (Ni et al., 2023;528

Fan et al., 2023), and code reliability (Zhong and529

Wang, 2023). To address these challenges, some530

focus on enhancing initial code generation by lever-531

aging multiple candidates (Shinn et al., 2023; Zhou532

et al., 2023a; Gu, 2023) or refining solutions based533

on better test cases (Zhang et al., 2023a) and self-534

consistency (Chen et al., 2022; Le et al., 2023),535

while others train verifiers on execution results to536

predict solution quality (Ni et al., 2023). In contrast,537

LDB enhances code generation without expanding538

sampling numbers complementing existing meth-539

ods, while these existing code generation methods540

could provide better seeds for our debugger.541

Feedback-based Code Refinement Generat-542

ing correct solutions could require iterative refine-543

ment due to model limitations. Interactive methods544

like using human feedback (Chen et al., 2023a;545

Wu et al., 2023) are effective but labor-intensive.546

Alternatively, code refinement techniques (Chen547

et al., 2023c; Jiang et al., 2023; Hu et al., 2024)548

based on language models have been proposed,549

utilizing interpreter outputs, self-generated expla-550

nation, and error messages. Some train additional551

models for bug fixing (Pearce et al., 2023; Huang552

et al., 2023c; Gupta et al., 2023), while LDB uti-553

lizes debugging capabilities of original large lan-554

guage models. LDB follow an similar iterative 555

refinement paradigm as previous works (Madaan 556

et al., 2023; Zhou et al., 2023b). It leverages exe- 557

cution results for debugging inspired by previous 558

works on execution-guided code generation (Chen 559

et al., 2018; Ni et al., 2022). Additionally, agent 560

frameworks using reinforcement learning for cod- 561

ing tasks (Shinn et al., 2023; Zhou et al., 2023a; 562

Hong et al., 2023; Rasheed et al., 2024; Le et al., 563

2022) incorporate feedback from environments to 564

guide actions. While these frameworks excel in 565

searching code generation space, LDB focuses on 566

code refinement and consistently improves perfor- 567

mance across various initial code. 568

Decomposition in Reasoning Prompting 569

methods suggest that decomposing problems aids 570

large language models in reasoning tasks (Wei 571

et al., 2022; Zhou et al., 2022; Lightman et al., 572

2023; Dhuliawala et al., 2023; Wang et al., 2024; 573

Cheng et al., 2022). Inspired by this, LDB decom- 574

poses programs into blocks, querying language 575

models for debugging verdicts and explanation. 576

Moreover, LDB further introduces batch debug- 577

ging to improve the efficiency. 578

5 Conclusion 579

We present LDB, a debugging framework that help 580

LLMs refine generated programs with runtime exe- 581

cution information. We empirically show that LDB 582

significantly improves code generation accuracy 583

and achieves state-of-the-art performance in pro- 584

gram debugging, by segmenting the programs into 585

basic blocks and tracking the intermediate values. 586

Experiments also reveal its unique paradigm of 587

program debugging by using runtime information. 588
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Limitation589

LDB is a program debugging framework using590

large language models. Therefore, it is subjected to591

the limitation of existing debugging methods of hu-592

man developers. The correct test cases are manda-593

tory in LDB so that LDB can execute the program594

and compare the execution flow against the task595

description. It remains an open question in future596

study whether LLMs are able to do self-correct by597

simply looking at its intermediate execution with-598

out knowing whether the result is correct or not599

(a.k.a. test-case-free debugging).600

Ethic Statements601

This paper focuses on debugging code generated by602

large language models. The architecture are built603

upon open-source models and publicly available604

proprietary models. All the datasets in this paper605

are available online. We did not hire any human606

annotators in our experiments. We will release607

the code and datasets on https://github.com/608

anonymous. Therefore, we do not anticipate any609

major ethical concerns.610
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Appendix921

A Programming Language Concepts922

Basic Block. A basic block is defined as a linear923

sequence of code containing a single entry point924

and a single exit point (Allen, 1970; Aho and Ull-925

man, 2015). Upon executing the first instruction926

within a basic block, all subsequent instructions are927

guaranteed to execute exactly once and in sequen-928

tial order. A sequence of instructions is considered929

a basic block if it satisfies two conditions: (1) each930

instruction in the sequence always executes before931

all subsequent instructions, and (2) there are no in-932

tervening instructions between any two instructions933

in the sequence. (Cocke, 1970; Allen, 1970)934

Control Flow Graph. The control-flow graph935

(CFG) (Allen, 1970; Prosser, 1959) serves as a936

graphical depiction of all potential paths traversed937

during the execution of a program. Each node938

within the CFG corresponds to a basic block, with939

directed edges representing transitions in the con-940

trol flow. Typically, two special blocks are identi-941

fied: the entry block, which signifies the initiation942

of control flow into the graph, and the exit block,943

where all control flow exits the graph.944

Execution Traces. In this paper, execution945

traces are control-flow traces of the whole pro-946

gram (Larus, 1999). An control-flow trace of a947

program is a sequence of consecutively executed948

basic blocks within the program. It also corre-949

sponds to a path in the control flow graph from the950

entry block to the exit block (Ball and Larus, 1994;951

Ammons and Larus, 1998; Ball and Larus, 1996;952

Ammons and Larus, 1998).953

B Implementation Details954

In the debugging stage of LDB, we generate the955

debugging verdicts and explanation using greedy956

decoding with temperature T = 0 to improve the957

reproducibility of our experiment. The maximum958

number of debugging iterations is 10. We set the959

threshold for the number of sampled blocks and960

input tokens at 10 and 3,097, respectively.961

C Tradeoffs in Debugging in Different962

Decomposition Levels963

We conduct different level debugging following964

this design: (1) For LDB (line-level) debugging,965

we collect the intermediate states before and af-966

ter each line execution. We sample the first 25967

lines and last 25 lines when the line number ex- 968

ceeds threshold Nb = 50, which is five times of the 969

block-level threshold. We set this number based 970

on the previous research on the average number 971

of instructions in a basic block (Rotenberg et al., 972

1996). (2) For the original LDB (block-level) de- 973

bugging, we sample the first 5 blocks and the last 5 974

blocks when the block number exceeds threshold 975

Nb = 10. (3) For LDB (function-level) debug- 976

ging, we decompose the program on function-level, 977

namely we only collect the intermediate states at 978

the entry and exit of the solution function. If the 979

function trace exceeds the context length, we sam- 980

ple first 25 lines and last 25 lines to ensure same 981

amount of code trace information with block-level 982

and line-level. These three level of decomposition 983

expand from fine to coarse granularity. 984

We show the average token cost per program and 985

debugging turns of LDB with different granular- 986

ity debugging levels in Table 3 and Table 4. Us- 987

ing GPT-3.5, LDB (line-level) has less token cost 988

than LDB-Function due to less debugging turns. 989

However, using CodeLlama, an open source model, 990

LDB has higher token cost in the line-level debug- 991

ging than the function-level debugging. The de- 992

bugging turns of line-level debugging is not signifi- 993

cantly lower than function-level debugging, which 994

shows that CodeLlama has worse reasoning ability 995

for line-level debugging even with more runtime ex- 996

ecution information. Besides, line-level debugging 997

has higher token costs for each debugging turns. 998

Therefore, it has the highest token cost. Both GPT- 999

3.5 and CodeLlama demonstrate better efficiency 1000

and accuracy in the block-level debugging. Based 1001

on these observations, we choose block-level de- 1002

bugging in LDB.

HumanEval GPT-3.5 Token CodeLlama Token

(w/o debugger) 73.8 - 49.4 -
LDB (line-level) 80.5 (+6.7) 24K 53.7 (+4.3) 72K
LDB (block-level) 82.9 (+9.1) 23K 55.5 (+6.1) 52K
LDB (function-level) 79.9 (+6.1) 27K 53.7 (+4.3) 54K

Table 3: Accuracy vs average token number per problem
on HumanEval. For both GPT-3.5 and CodeLlama,
LDB with block-level debugging achieves the highest
accuracy and least token cost.

1003

D Complexity Analysis of Batch 1004

Debugging 1005

LDB can batch runtime information of all selected 1006

blocks together and query language models for de- 1007

bugging verdicts. This significantly improves the 1008
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HumanEval GPT-3.5 Avg. Turn CodeLlama Avg. Turn

(w/o debugger) 73.8 - 49.4 -
LDB (line-level) 80.5 6.4 53.7 9.1
LDB (block-level) 82.9 6.2 55.5 7.8
LDB (function-level) 79.9 8.1 53.7 9.3

Table 4: Accuracy vs debugging turns on HumanEval.
For both GPT-3.5 and CodeLlama, LDB with block-
level debugging achieves the highest accuracy and
fewest debugging turns.
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Figure 7: Performance of LDB on HumanEval with
GPT-3.5 in 20 debugging iterations. The final perfor-
mance after 20 iterations is 84.1%.

token efficiency of LDB and alleviates the pitfall1009

of repeatedly sending context to language models1010

in iterative refinement (Hu et al., 2023). Assume1011

the average token numbers is N for debugging1012

each block, average block number is B for debug-1013

ging, and average debugging iteration number is D.1014

Without batch debugging, for debugging i-th block,1015

the context length for debugging is i∗N . Therefore,1016

debugging N blocks consumes
∑B

i=0 (i ∗ N ), ap-1017

proximately O(B2 ∗ N ) tokens. As a comparison,1018

batch debugging only send one debugging message1019

in each turn, which has context length of O(B ∗N )1020

tokens.1021

E Debugging 10 More Iterations1022

As LDB shows a different trend of performance1023

regarding debugging turns compared to the state-1024

of-the-art methods, it is interesting to see whether1025

the performance continues growing after 10 debug-1026

ging turns. We conduct a experiment that continue1027

debugging until 20 debugging turns to explore the1028

characteristic of LDB, as shown in Figure 7. The1029

accuracy still grows after 10 debugging turns and1030

achieves 84.1%.1031

F Error Analysis of LDB1032

We analyze the debugging feedback of LDB in two1033

perspectives, the bug localization accuracy and the1034

bug categorization. We evaluate the performance1035

HumanEval MBPP TransCoder

Accuracy 93.7% 95.3% 86.7%

Syntax Error 18.8% 23.2% 20.0%
Semantic Error 81.2% 76.8% 80.0%

Table 5: Debug correctness of LDB and detected pro-
gram error types.

of LDB in localizing the bug accurately and further 1036

specify the types of bugs detected by LDB. We use 1037

the results with GPT-3.5 as an example. 1038

Accuracy of Bug Localization. To evaluate the 1039

correctness of debugging verdicts made by LDB, 1040

we collect the cases that LDB successfully de- 1041

bugs and query GPT-4 (1106-Preview) to auto- 1042

matically verify whether LDB correctly identifies 1043

the buggy basic block. In the prompt, we pro- 1044

vide the task description, the seed program, the 1045

runtime information, debugging responses, and 1046

the final programs for GPT-4. Table 5 shows 1047

the analysis results on HumanEval, MBPP and 1048

TransCoder. We observe that LDB achieves an ac- 1049

curacy over 85% over all datasets. It has the highest 1050

accuracy on MBPP (95.5%) while performs worst 1051

on TransCoder (86.7%). This may arise because 1052

TransCoder consists of more complicated programs 1053

where the original C++ programs outlines the in- 1054

tention implicitly. 1055

Bug Categorization. We further categorize the 1056

bugs detected and fixed by LDB into two categories: 1057

Syntax Errors and Semantic Errors. Syntax errors 1058

refer to the cases that violates the syntax rules of 1059

its programming language. Semantic error occurs 1060

when the code runs without producing any syn- 1061

tax errors, but it does not behave as intended, thus 1062

fails the test cases. We annotate the categories 1063

through GPT-4 (1106-preview) to avoid subjec- 1064

tiveness. Across three datasets, LDB fixes semantic 1065

errors with around 80% of the time. The reason 1066

is that the syntax errors are less frequent given the 1067

code generation ability of current LLMs, and LDB 1068

can better debug semantic errors by introducing the 1069

detailed runtime execution information. 1070

G Prompt Example in LDB 1071

We list the prompts used in LDB in detail as follow, 1072

• The prompts used in the chat mode are shown in 1073

Figure 8. 1074

• The prompts used in the text completion mode 1075

are shown in Figure 9. 1076
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==================================== System ====================================
You are an expert programming assistant.

===================================== User =====================================
Complete the following task in Python. Please respond with code only.
def is_sorted(lst):

'''
Given a list of numbers , return whether or not they
are sorted in ascending order. If list has more than
1 duplicate of the same number , return False.
Assume no negative numbers and only integers.

Examples
is_sorted ([5]) = True
is_sorted ([1, 2, 3, 4, 5]) = True
is_sorted ([1, 2, 3, 4, 5, 6, 7]) = True
is_sorted ([1, 2, 2, 2, 3, 4]) = False
'''

=================================== Assistant ==================================
for i in range(len(lst) - 1):

if lst[i] > lst[i + 1]:
return False

return not any(lst.count(x) > 1 for x in lst)

===================================== User =====================================
The code above fails the given unit test:
assert is_sorted ([1, 2, 2, 3, 3, 4]) == True # Real Execution Output: False.
Help me debug this.

Here is the code execution trace block by block with the intermediate variable
values to debug your code. You need to answer FOR EACH BLOCK whether this code
block is correct or not. If not , give an explanation on what is wrong. Please
wrap your response into a JSON object that contains keys `block ` with the name of
each block , key `correct ` with value False or True , and key `explanation ` with

an explanation on the bug.

Example Answers:
{"block": "BLOCK -1", "correct ": "True", "explanation ": "The block initializes
variable `a` and `b`."}
{"block": "BLOCK -2", "correct ": "False", "explanation ": "The block is incorrect
because the code does not add the two integers together , but instead subtracts
the second integer from the first. To fix this issue , we should change the
operator from `-` to `+` in the return statement. This will ensure that the
function returns the correct output for the given input ."}

[BLOCK -0]
# lst=[1, 2, 2, 3, 3, 4]
for i in range(len(lst) - 1):

if lst[i] > lst[i + 1]:
# i=0 lst=[1, 2, 2, 3, 3, 4]

[BLOCK -1]
# i=0 lst=[1, 2, 2, 3, 3, 4]
for i in range(len(lst) - 1):

if lst[i] > lst[i + 1]:
# i=1 lst=[1, 2, 2, 3, 3, 4]

[BLOCK -2]
# i=1 lst=[1, 2, 2, 3, 3, 4]
for i in range(len(lst) - 1):

if lst[i] > lst[i + 1]:
# i=2 lst=[1, 2, 2, 3, 3, 4]

[BLOCK -3]
# i=2 lst=[1, 2, 2, 3, 3, 4]
for i in range(len(lst) - 1):

if lst[i] > lst[i + 1]:
# i=3 lst=[1, 2, 2, 3, 3, 4]
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[BLOCK -4]
# i=3 lst=[1, 2, 2, 3, 3, 4]
for i in range(len(lst) - 1):

if lst[i] > lst[i + 1]:
# i=4 lst=[1, 2, 2, 3, 3, 4]

[BLOCK -5]
# i=4 lst=[1, 2, 2, 3, 3, 4]
for i in range(len(lst) - 1):
return not any(lst.count(x) > 1 for x in lst)
# i=4 lst=[1, 2, 2, 3, 3, 4] _ret=False

=================================== Assistant ==================================
{"block": "BLOCK -0", "correct ": true , "explanation ": "The block initializes the
variable `lst ` correctly ."}
{"block": "BLOCK -1", "correct ": true , "explanation ": "The block correctly checks
if the current element is greater than the next element in the list ."}
{"block": "BLOCK -2", "correct ": true , "explanation ": "The block correctly checks
if the current element is greater than the next element in the list ."}
{"block": "BLOCK -3", "correct ": true , "explanation ": "The block correctly checks
if the current element is greater than the next element in the list ."}
{"block": "BLOCK -4", "correct ": true , "explanation ": "The block correctly checks
if the current element is greater than the next element in the list ."}
{"block": "BLOCK -5", "correct ": false , "explanation ": "The block is incorrect
because it returns the opposite of the condition `lst.count(x) > 1` for any
element `x` in the list. This means that if any element has more than 1 duplicate
, the function will return False. However , the task requires that if there are
more than 1 duplicate of the same number , the function should return False. To
fix this issue , we should change the condition to `lst.count(x) > 2` to account
for the original occurrence of the number in the list ."}

===================================== User =====================================
Please fix the Python code.

=================================== Assistant ==================================
def is_sorted(lst):

'''
Given a list of numbers , return whether or not they
are sorted in ascending order. If list has more than
1 duplicate of the same number , return False.
Assume no negative numbers and only integers.

Examples
is_sorted ([5]) = True
is_sorted ([1, 2, 3, 4, 5]) = True
is_sorted ([1, 2, 3, 4, 5, 6, 7]) = True
is_sorted ([1, 2, 2, 2, 3, 4]) = False
'''
for i in range(len(lst) - 1):

if lst[i] > lst[i + 1]:
return False

return not any(lst.count(x) > 2 for x in lst)

Figure 8: Prompt for chat mode.
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# Write Python function to complete the task and pass the assertion tests.
### Task Start ###
# These are the assertions for your function:
assert find_char_long('Please move back to stream ') == ['Please ', 'move ', 'back ',
'stream ']

def find_char_long(text):
"""
Write a function to find all words which are at least 4 characters long in a
string by using regex.
"""
if text == "":

return []
pat = r"\b\w{4}\b"
res = re.findall(pat , text)
return res

With the above function , the assertion is `find_char_long('Please move back to
stream ') == ['Please ', 'move ', 'back ', 'stream ']` but the real execution output
is `['move ', 'back ']`.

Debug the program trace block by block until find the incorrect block. Every
block should have different feedbacks:
[BLOCK -0]

# text=" Please move back to stream"
if text == "":

[BLOCK -1]
# text=" Please move back to stream"
pat = r"\b\w{4}\b"
res = re.findall(pat , text)
# text=" Please move back to stream" pat="\b\w{4}\b" res=['move ', 'back ']

[debug]
[BLOCK -0]
Feedback: CORRECT. This block is correct. It checks if the input text is empty.
If the input text is empty , it returns an empty list without do regex match.
[BLOCK -1]
Feedback: INCORRECT. This block defines a regular expression pattern `pat ` with
value r"\b\w{4}\b". However , there 's an issue with the regular expression pattern
. It only matches words that are exactly 4 characters long. Therefore , the return
value `_ret ` is `['move ', 'back ']`. In the task description , it asks for words

which are at least 4 characters long. To fix the code , we should change `pat=r"\b\
w{4}\b"` into `pat = r"\b\w{4,}\b"`.
[/debug]
Please fix the Python code.
[python]
import re
def find_char_long(text):

"""
Write a function to find all words which are at least 4 characters long in a
string by using regex.
"""
if text == "":

return []
pat = r"\b\w{4,}\b"
res = re.findall(pat , text)
return res

[/ python]
### Task End ###

### Task Start ###
# These are the assertions for your function:
assert solution ([3, 3, 3, 3, 3]) == 9

def solution(lst):
"""
Given a non -empty list of integers , return the sum of all of the odd elements
that are in even positions.
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Examples
solution ([5, 8, 7, 1]) ==> 12
solution ([3, 3, 3, 3, 3]) ==> 9
solution ([30, 13, 24, 321]) ==>0
"""

result = 0
for i in range(len(lst)):

if lst[i] % 2 == 0 and i % 2 == 0:
result += lst[i]

return result

With the above function , the assertion is `assert solution ([3, 3, 3, 3, 3]) == 9
` but the real execution output is ` 0`.

Debug the program trace block by block until find the incorrect block. Every
block should have different feedbacks:
[BLOCK -0]

# lst=[3, 3, 3, 3, 3]
result = 0
for i in range(len(lst)):

if lst[i] % 2 == 0 and i % 2 == 0:
# lst=[3, 3, 3, 3, 3] result =0 i=0

[BLOCK -1]
# lst=[3, 3, 3, 3, 3] result =0 i=0
for i in range(len(lst)):

if lst[i] % 2 == 0 and i % 2 == 0:
# lst=[3, 3, 3, 3, 3] result =0 i=1

[BLOCK -2]
# lst=[3, 3, 3, 3, 3] result =0 i=1
for i in range(len(lst)):

if lst[i] % 2 == 0 and i % 2 == 0:
# lst=[3, 3, 3, 3, 3] result =0 i=2

[BLOCK -3]
# lst=[3, 3, 3, 3, 3] result =0 i=2
for i in range(len(lst)):

if lst[i] % 2 == 0 and i % 2 == 0:
# lst=[3, 3, 3, 3, 3] result =0 i=3

[BLOCK -4]
# lst=[3, 3, 3, 3, 3] result =0 i=3
for i in range(len(lst)):

if lst[i] % 2 == 0 and i % 2 == 0:
# lst=[3, 3, 3, 3, 3] result =0 i=4

[BLOCK -5]
# lst=[3, 3, 3, 3, 3] result =0 i=4
for i in range(len(lst)):
return result
# lst=[3, 3, 3, 3, 3] result =0 i=4 _ret=0

[debug]
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=================================== Completion ==================================
[BLOCK -0]
Feedback: CORRECT. This block is correct. It initializes the result variable to
0.
[BLOCK -1]
Feedback: INCORRECT. This block has an issue. It checks if the element at index `
i` is even and if the index `i` is even. However , the task description asks for
the sum of all of the odd elements that are in even positions. To fix the code ,
we should change the line `if lst[i] % 2 == 0 and i % 2 == 0:` into `if lst[i] %
2 != 0 and i % 2 == 0:`.
[BLOCK -2]
Feedback: INCORRECT. This block has an issue. It checks if the element at index `
i` is even and if the index `i` is even. However , the task description asks for
the sum of all of the odd elements that are in even positions. To fix the code ,
we should change the line `if lst[i] % 2 == 0 and i % 2 == 0:` into `if lst[i] %
2 != 0 and i % 2 == 0:`.
[BLOCK -3]
Feedback: INCORRECT. This block has an issue. It checks if the element at index `
i` is even and if the index `i` is even. However , the task description asks for
the sum of all of the odd elements that are in even positions. To fix the code ,
we should change the line `if lst[i] % 2 == 0 and i % 2 == 0:` into `if lst[i] %
2 != 0 and i % 2 == 0:`.
[BLOCK -4]
Feedback: INCORRECT. This block has an issue. It checks if the element at index `
i` is even and if the index `i` is even. However , the task description asks for
the sum of all of the odd elements that are in even positions. To fix the code ,
we should change the line `if lst[i] % 2 == 0 and i % 2 == 0:` into `if lst[i] %
2 != 0 and i % 2 == 0:`.
[BLOCK -5]
Feedback: CORRECT. This block is correct. It returns the result variable.
[/debug]
Please fix the Python code.
[python]
def solution(lst):

"""
Given a non -empty list of integers , return the sum of all of the odd elements
that are in even positions.

Examples
solution ([5, 8, 7, 1]) ==> 12
solution ([3, 3, 3, 3, 3]) ==> 9
solution ([30, 13, 24, 321]) ==>0
"""
result = 0
for i in range(len(lst)):

if lst[i] % 2 != 0 and i % 2 == 0:
result += lst[i]

return result
[/ python]
### Task End ###

Figure 9: Prompt for completion mode.
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