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ABSTRACT

Large language models (LLMs) based on artificial neural networks (ANNs) have
demonstrated remarkable performance but face challenges in computational ef-
ficiency and biological interpretability. We propose BrainGPT, a novel LLM
architecture based on the Test-Time Training (TTT) framework and inspired by
spiking neural networks (SNNs) and neurobiological principles. Our approach in-
corporates a dual-model structure, emulating the hierarchical language processing
observed in the human brain, and utilizes a specialized integrate-and-fire neuron
model with adaptive thresholding. Through a multi-stage training strategy, includ-
ing quantization-aware pre-training, ANN-to-SNN conversion, and biologically
inspired unsupervised learning, we achieve a mathematically proven lossless con-
version from ANN to SNN, preserving 100% of the original ANN model’s perfor-
mance. Moreover, the biologically inspired unsupervised learning optimizes the
maximum time steps required to maintain 100% ANN performance. Compared to
the original TTT model, BrainGPT achieves a 33.4% increase in energy efficiency
and demonstrates a 66.7% improvement in training convergence speed. This work
advances the development of energy-efficient and biologically interpretable large
language models that match the performance of state-of-the-art ANN-based mod-
els while significantly improving upon the TTT framework.

1 INTRODUCTION

Large language models (LLMs) based on artificial neural networks (ANNs) have demonstrated re-
markable performance, as shown by OpenAI et al. (2024) and Dubey et al. (2024), but face chal-
lenges in computational efficiency and biological interpretability (Strubell et al., 2020; Maass, 1997;
Whittington & Bogacz, 2019). We propose BrainGPT, a novel LLM architecture based on the Test-
Time Training (TTT) framework and inspired by spiking neural networks (SNNs) and neurobiolog-
ical principles. Our approach incorporates a dual-model structure, emulating hierarchical language
processing in the human brain, and uses a specialized integrate-and-fire neuron model with adaptive
thresholding. Through a multi-stage training strategy, including quantization-aware pre-training,
ANN-to-SNN conversion, and biologically inspired unsupervised learning, we achieve a mathe-
matically provable lossless conversion from ANN to SNN, preserving 100% of the original ANN
model’s performance. This work advances the development of energy-efficient and biologically
interpretable LLMs that match state-of-the-art ANN-based models while enhancing the TTT frame-
work and addressing the lack of interpretability in attention mechanisms noted by Vaswani (2017)
and Jain & Wallace (2019).

Our research addresses these issues with BrainGPT, a novel model that reduces energy consumption
and achieves full biological interpretability. Inspired by biological neural networks, BrainGPT ex-
tends the transformer architecture with a dual Test-Time Training (TTT) framework, overcoming the
O(n2) complexity (Vaswani, 2017). We incorporate recent neuroscientific findings (Jamali et al.,
2024; Khanna et al., 2024) into a dual-model structure, including spiking neural components like
an Excitatory-Inhibitory Integrate-and-Fire Neuron Model with adaptive thresholding and synaptic
plasticity (Takagi, 2000; Maass, 1997). Our training approach uses quantization-aware ANN pre-
training (Jacob et al., 2018), followed by a mathematically rigorous lossless conversion to SNN
(Esser et al., 2016), and an unsupervised learning phase inspired by Spike Timing-Dependent Plas-
ticity (Caporale & Dan, 2008). BrainGPT achieves 33.4% energy reduction and 100% performance
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consistency with comparable ANN models, along with a 66.7% increase in training convergence
speed.

Subsequent sections will detail our methodology, rationale, related work on biological plausibility,
and analyze experimental results.

2 RELATED WORK AND PROBLEM ANALYSIS

2.1 RNN-BASED MODELS AND TTT

Sun et al. (2024) and Gu & Dao (2023) recently renewed interest in RNN architectures for lan-
guage modeling, addressing Transformer models’ energy and complexity issues. Sun et al. (2024)
introduces Test-Time Training (TTT), a novel concept where a machine learning model is updated
during inference using self-supervised learning. TTT’s key aspects include the use of expressive
hidden states that adapt to new data at test time, self-supervised learning for continuous adaptation,
and flexible implementation options that allow various inner-loop models and optimizers to be used.

TTT demonstrates several advantages over traditional approaches. It achieves O(n) time complexity
for sequences of length n, while Transformers need O(n2). Also, it shows consistent improvement in
handling long-range dependencies up to 32k tokens. Sun et al. (2024) reports that for contexts longer
than 8k tokens, TTT processes sequences faster than standard Transformers, and this advantage
becoming increasingly significant as context length grows. Additionally, TTT outperforms in terms
of perplexity with fewer FLOPs.

However, Sun et al. (2024) and Gu & Dao (2023) also notes that modern RNNs like Mamba still
face challenges with long sequences. While Mamba scales similarly to Transformers for shorter
contexts, its performance plateaus after 16k tokens, failing to use the additional context effectively.
In contrast, Transformers continues to improve throughout the 32k context length. This highlights
the significant improvements made by TTT in addressing long-standing issues in RNN architectures,
as it consistently improves handling long-range dependencies up to 32k tokens.

Despite these advancements, TTT and similar models lack full biological interpretability. Their op-
eration remains fundamentally different from biological neural networks, limiting insights into brain
language processing mechanisms. This gap presents opportunities for further research in biologi-
cally plausible large language models.

2.2 SNN AND ITS TRAINING METHODS

Though efficient, TTT lacks biological interpretability. On the other hand, SNNs provide a more
biologically plausible alternative, as Maass (1997) describes them as a model that more accurately
represents neural processing compared to traditional ANNs. SNNs offer several advantages: lower
energy consumption and better robustness due to inherent neuronal dynamics and event-driven spike
communication (Stromatias et al., 2015), compatibility with specialized neuromorphic hardware
(Merolla et al., 2014; Davies et al., 2018), and computational efficiency through reduced precision
requirements and event-driven computation (Diehl et al., 2015; Davies et al., 2018).

Training SNNs for complex tasks like language processing presents unique challenges. Two main
approaches have emerged: direct training methods and ANN-to-SNN conversion techniques. Direct
training methods include Spike-Timing-Dependent Plasticity (STDP) (Bi & Poo, 1998), SpikeProp
(Bohte et al., 2002), and surrogate gradient methods (Neftci et al., 2019). However, these methods
often struggle with high computational costs, limited scalability, and reduced accuracy on complex
tasks.

ANN-to-SNN conversion techniques, explored by Ding et al. (2021), combine ANN training with
SNN efficiency. Cao et al. (2015) introduced methods to replace ANN neurons with integrate-and-
fire or leaky integrate-and-fire models, while Rueckauer et al. (2017) developed methods to con-
vert continuous-valued inputs into spike trains. A notable recent advancement is the SpikeZIP-TF
method (You et al., 2024), which addresses the challenge of converting Transformer-based ANNs
to SNNs by introducing spike-equivalent operators for self-attention, softmax, and layer normaliza-
tion. SpikeZIP-TF has demonstrated impressive performance, achieving 83.82% Top-1 accuracy on
ImageNet and 93.79% accuracy on SST-2, surpassing previous Transformer-based SNNs.
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Despite these advancements, challenges remain, including activation function approximation, tem-
poral dynamics management, increased latency, and limited SNN operations. Our research has
identified potential limitations in the SpikeZIP-TF approach, particularly in handling outlier data.
The method’s claim of lossless conversion may not hold in all scenarios, especially with input dis-
tributions that significantly deviate from the training data. Our ongoing work aims to address these
challenges by developing improved neuron models and conversion processes to enhance the robust-
ness and generalization capabilities of converted SNNs.

2.3 CHALLENGES IN BUILDING SNN-BASED LARGE LANGUAGE MODELS

Despite progress in SNN model construction, building SNN-based LLMs remains a challenge. The
complexity and scale of LLMs pose difficulties that current SNN methodologies struggle to address.

Dubey et al. (2024) shows the extreme resource requirements of modern LLMs, making direct train-
ing of SNN-based LLMs infeasible. Pfeiffer & Pfeil (2018) notes the non-differentiable nature of
spike generation in SNNs complicates gradient-based optimization, while Neftci et al. (2019) high-
lights the complexity introduced by SNN’s temporal dynamics.

ANN-to-SNN conversion methods have shown promise, but scaling to LLMs presents challenges.
Rueckauer et al. (2017) notes conversion introduces approximation errors, and You et al. (2024)
highlights the complexity of converting LLM-specific operations. Recent approaches like SpikeZIP-
TF (You et al., 2024) claim to provide solutions, but our analysis reveals issues in their application
to LLMs. Zou et al. (2024) points out that LLMs contain outliers in activation values, rendering
SpikeZIP ineffective. We show these errors cause LLMs to lose language capabilities when con-
verted using SpikeZIP (Appendix A).

Our research aims to overcome these challenges by developing precise neuron models, improved
conversion algorithms, and techniques tailored to language processing.

2.4 BIOLOGICAL RESEARCH FOUNDATIONS

Neurobiological research offers critical insights for biologically inspired language models. Takagi
(2000) described the balance of EPSPs and IPSPs in neuronal information processing, involving
Na+, K+, Cl−, and Ca2+ channels, suggesting trinary neuronal responses. Jamali et al. (2024)
found that 14% of prefrontal cortex neurons show selective responses to semantic domains, with
context-dependent activity accurately encoding word meanings, indicating that biologically inspired
models could benefit from selective encoding. Khanna et al. (2024) observed that 46.7% of recorded
neurons in the human prefrontal cortex encoded detailed phonetic information of planned words be-
fore utterance, with neuronal activity exhibiting a temporal hierarchy where morphological encod-
ing preceded phonetic and syllabic encoding, suggesting that biologically accurate language models
could implement multi-stage, hierarchical processing for decoding. Neuronal plasticity, as described
by Debanne et al. (2019), involves changes in intrinsic electrical properties, suggesting the incorpo-
ration of dynamic thresholds and adaptive input-output relationships. Squire et al. (1990) described
key features of the hippocampus, including rapid encoding, temporary storage, associative forma-
tion, and context sensitivity. This suggests that biologically plausible models could benefit from
architectures incorporating similar mechanisms. Collectively, these findings indicate that neurobi-
ologically inspired computational models could potentially achieve more accurate simulations of
brain-like information processing and language capabilities.

3 BRAINGPT: TTT-BASED SNN LARGE LANGUAGE MODEL

As discussed in the previous section, direct training of SNN-based Large Language Models (LLMs)
imposes extraordinary demands on computational resources. Even traditional ANN-based LLM
training requires thousands of high-performance GPUs and weeks of time (Dubey et al., 2024).
Considering the additional complexity introduced by the temporal dynamics of SNNs, direct training
of SNN-based LLMs is impractical with current technology. Therefore, we have adopted a multi-
stage training strategy to construct our BrainGPT model. In the following sections, we will provide
a detailed description of BrainGPT’s biologically inspired algorithms and our multi-stage training
strategy. The overall architecture of BrainGPT is illustrated in Figure 1.
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3.1 BRAINGPT ARCHITECTURE

3.1.1 DUAL TEST-TIME TRAINING AS THE FOUNDATIONAL FRAMEWORK

Figure 1: Overall architecture of the BrainGPT
model.

The core architecture of BrainGPT is built upon
a dual Test-Time Training (TTT) framework,
inspired by the hippocampus’s role in mem-
ory formation and consolidation. Squire et al.
(1990) describe key hippocampal features such
as rapid encoding, temporary memory storage,
association formation, and context sensitivity,
all of which are mirrored in TTT’s ability to up-
date, adapt, and process complex relationships.
These features are paralleled in TTT’s ability to
quickly update its hidden state, adapt to new in-
formation, capture complex relationships, and
process context-dependent information. The
synaptic plasticity observed in the hippocam-
pus, particularly through long-term potentiation
(LTP), finds its computational counterpart in
TTT’s adaptive learning during test time.

Building upon the TTT framework, we de-
veloped a novel dual-model architecture for
BrainGPT. This design draws inspiration from
Khanna et al. (2024)’s findings on neural en-
coding during speech production. While their
study focused on spoken language, we posit
that similar hierarchical processes may apply
to written language processing. Khanna et al.
revealed a temporal hierarchy in neuronal ac-
tivity where morphological encoding precedes
phonetic and syllabic encoding in speech pro-
duction. We hypothesize that an analogous hi-
erarchical structure might exist in written lan-
guage processing, where abstract linguistic fea-
tures (such as parts of speech) could precede more specific word choices.

Based on this analogy, our architecture implements two distinct sub-models: a standard autoregres-
sive language model for broad linguistic representation, and a model focused on processing parts of
speech for more abstract aspects of language. The key innovation lies in the sequential integration of
outputs from these models, employing a novel synapse-like mechanism where part-of-speech pre-
dictions guide the text generation process. This approach aims to mirror the hierarchical processing
observed in neural systems for speech, adapted to the domain of written language.

This integration of diverse aspects of language processing allows our model to more closely re-
semble the multifaceted nature of neural language processing in the human brain. While focusing
specifically on simulating aspects of neural circuits relevant to language abilities, BrainGPT repre-
sents a significant step towards bridging the gap between artificial language models and the intricate
mechanisms of human language processing.

3.1.2 BIOLOGICALLY PLAUSIBLE SPIKING NEURAL COMPONENTS

While the dual TTT architecture provides a biologically inspired foundation for our model, it re-
mains fundamentally an artificial neural network (ANN). To enhance BrainGPT’s biological fidelity,
we implemented structural changes to transform it into a spiking neural network (SNN) by introduc-
ing biologically plausible neural components.

We introduce the Synapsis class to convert the TTT ANN model into an SNN model. This class
replaces all network structures with corresponding Synapsis instances and modifies the forward
propagation logic to support temporal spike processing, simulating biological neural networks’ tem-
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poral dynamics. The Synapsis class models the connection between pre-synaptic and post-synaptic
neurons, maintaining the TTT model’s overall macroscopic structure while incorporating synaptic
plasticity mechanisms.

Central to Synapsis is our ”Excitatory-Inhibitory Integrate-and-Fire Neuron Model” (EI-IFNeuron)
with trinary spike output. As Takagi (2000) emphasize, neurons process information through a
balance of excitatory (EPSPs) and inhibitory (IPSPs) postsynaptic potentials. EPSPs are primarily
associated with Na+ channels, while IPSPs are linked to certain K+ and Cl− channels. Ca2+

channels contribute to both EPSPs and IPSPs. This interplay forms the basis for complex neural
computations, sometimes leading to rebound excitation following potent inhibition.

Our EI-IFNeuron model produces ternary spikes: 1 (strong excitation), -1 (strong inhibition), and 0
(resting state). The neuron’s dynamics are modeled as:

V (t) = V (t− 1) + I(t)

θ(t) = θbase + αt

S(t) =


1, if V (t) ≥ θ(t)

−1, if V (t) ≤ −θ(t)

0, otherwise

V (t) =

{
max (0, V (t) · (1− r)) , if V (t) > 0

min (0, V (t) · (1− r)) , if V (t) < 0

(1)

where V (t) is the membrane potential, I(t) is the input current, θ(t) is the adaptive threshold, α is
the adaptive adjustment weight, S(t) is the output spike, and r is the attenuation rate.

Debanne et al. (2019) emphasize that neurons can undergo long-lasting changes in their intrin-
sic electrical properties, including dynamic adjustments to firing thresholds and input-output rela-
tionships. Our adaptive thresholding implementation reflects this intrinsic plasticity, enhancing the
model’s ability to capture complex temporal dynamics.

To simulate complex interconnections between neuronal populations, we introduce the MoESynap-
sis class, implementing a mixture of experts system using spiking neurons. This structure allows for
adaptive, context-dependent processing of information, mimicking the selective activation patterns
observed in hippocampal circuits by Squire et al. (1990).

Based on findings by Jamali et al. (2024) on selective activation patterns in the human prefrontal
cortex during language comprehension, we designed the SelectiveActivationEmbedding component.
This component employs multiple embedding matrices, corresponding to diverse neuron populations
observed in the language-dominant left prefrontal cortex. Jamali et al.’s finding that approximately
14% of recorded neurons showed selective responses to specific semantic domains inspired our
selective activation mechanism.

Although we focus on written language processing, we also incorporated insights from Khanna et al.
(2024) on neural encoding during speech production. Their observation of a temporal hierarchy in
neuronal activity, where morphological encoding precedes phonetic and syllabic encoding, informed
our sequential processing approach.

Additionally, we introduced rotary position embedding, which indirectly reflects the temporal en-
coding observed in neuronal populations. This allows our model to capture the sequential nature of
language processing.

This structural implementation enhances BrainGPT’s neurophysiological plausibility and energy
efficiency, which are characteristic of spiking neural networks. However, we acknowledge the lim-
itations of this simulation compared to actual neural processes, representing a step toward under-
standing human language processing mechanisms.

3.2 PROGRESSIVE TRAINING STRATEGY FOR BRAINGPT: FROM ANN TO SNN

Training complex SNN models like BrainGPT faces inevitable challenges such as high compu-
tational costs and reduced accuracy on complex tasks, whether using direct training methods or
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ANN-to-SNN conversion techniques. To address these issues, we propose an innovative multi-stage
approach. Our method includes Quantization-aware ANN pre-training, ANN-to-SNN conversion,
and Unsupervised Learning with an STDP-inspired mechanism Caporale & Dan (2008), leveraging
ANN efficiency while achieving a biologically inspired SNN model. Our mathematically proven
conversion maintains 100% of the original performance.

3.2.1 QUANTIZATION-AWARE ANN PRE-TRAINING

In the initial stage of our training strategy, we tackle the challenge of training large-scale SNNs by
using a quantization-aware ANN pre-training approach. This involves replacing Synapsis units with
QSynapsis units that use quantizers to approximate neuronal behavior, while modifying forward
propagation to operate in a single time step. This approach reduces computational complexity while
preserving the network’s essential characteristics.

The QSynapsis unit, which replaces the Synapsis in our pre-training phase, can be mathematically
described as follows:

YQ = Qpost(W ·Qpre(X))

Q(x) = s · clamp(round(x/s), α, β)

α = −2b−1, β = 2b−1 − 1

(2)

Where X is the input, W represents the weight matrix of the neural network layer (such as linear
transformation or convolution), Qpre and Qpost are the pre-synaptic and post-synaptic quantizers
respectively, s is the scaling factor, and b is the number of bits used for quantization (default is 8,
resulting in α = −128 and β = 127).

This formulation allows us to train the network using standard ANN techniques while incorporating
quantization effects that approximate the discrete nature of spiking neurons. Using QSynapsis units
enables efficient training on existing hardware accelerators designed for ANNs, providing a crucial
bridge between ANN efficiency and SNN biological plausibility.

In the subsequent sections, we will demonstrate how this quantization-aware pre-training seamlessly
integrates with our ANN-to-SNN conversion process, ensuring a lossless transition to the spiking
neural network paradigm.

3.2.2 LOSSLESS CONVERSION FROM ANN TO SNN

The conversion from ANN to SNN is a critical step in our training strategy, bridging the gap be-
tween quantized ANNs and biologically plausible SNNs. The key to this lossless conversion lies in
the transformation from QSynapsis to Synapsis, ensuring accurate mapping of quantization-aware
ANNs to equivalent SNN structures.

To demonstrate the lossless nature of this conversion, we establish mathematical equivalence
between QSynapsis and Synapsis outputs by carefully selecting the initial parameters of the
EI IFNeuron. We show that the Synapsis unit’s output is mathematically equivalent to the QSy-
napsis unit with 8-bit quantization under specific conditions.

We initialize the EI IFNeuron with the following parameters: base threshold θbase = 0.5, adap-
tive adjustment weight α = 1, attenuation rate r = 1, and number of time steps T =
min(⌈max(|X|)⌉, 127). For QSynapsis, we set the scaling factor s = 1. With these initializations,
we can prove that YS = YQ for all input values X .

6
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QSynapsis: YQ = Qpost (W ·Qpre(X)) (3)
Synapsis: YS = EI IFpost (W · EI IFpre(X)) (4)

where Q(x) = s · clamp
(
round

(x
s

)
,−128, 127

)
(5)

and EI IF(x) =
T∑

t=1

St, and for each time step t : (6)

Vt = Vt−1 + x (7)
θt = θbase + t · α (8)

St =


1, if Vt ≥ θt
−1, if Vt ≤ −θt
0, otherwise

(9)

Vt = Vt · (1− r) (10)

Under these conditions, the summation of St in the Synapsis equation effectively counts the num-
ber of threshold crossings, which is equivalent to the computation in the QSynapsis equation, and
both are clamped to the range [−128, 127]. This equivalence ensures 100% performance preserva-
tion during conversion, forming a solid foundation for transitioning from quantization-aware ANN
pre-training to SNN fine-tuning. To complete the ANN to SNN conversion, we replace standard
ANN operations with spike-based computations, including adapting matrix multiplications and im-
plementing spiking versions of activation functions and normalization layers. These adaptations
maintain network functionality in a spike-based paradigm, with detailed formulations in Appendix
B.

3.2.3 UNSUPERVISED LEARNING WITH STDP-INSPIRED SYNAPTIC PLASTICITY FOR TIME
STEP OPTIMIZATION

We introduce an STDP-inspired unsupervised learning mechanism to optimize our SNN model,
focusing on minimizing the required time steps. This approach leverages synaptic plasticity to
adjust both synaptic weights and neuronal parameters based on spike-timing information, allowing
network self-organization without external supervision. Our learning algorithm adjusts four key
parameters: synaptic weights (wij), base threshold (θibase), adaptive adjustment weight (αi), and
membrane potential decay rate (ri). The update rules are:

∆wij = ηw (δij − wij) , (11)

∆θibase = ηθ
(
Starget − S̄i

)
, (12)

∆αi = ηα
(
V̄i − Vtarget

)
, (13)

∆ri = ηr
(
V̄i − Vrest

)
, (14)

where δij is derived from the STDP rule based on the timing difference ∆tij = tfi − tfj , defined as:

δij =


A+ exp

(
−∆tij

τ+

)
, ∆tij > 0,

−A− exp

(
∆tij
τ−

)
, ∆tij ≤ 0,

(15)

with A+ and A− being learning rates for potentiation and depression, and τ+ and τ− being time
constants. The time difference ∆tij = tfi − tfj is defined as the firing time of the postsynaptic
neuron i minus that of the presynaptic neuron j, aligning with traditional STDP conventions.

To maintain the output of the Synapsis module unchanged, we introduce a normalization constraint
on the synaptic weights:

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

∑
j

wij = Ci, (16)

where Ci is a constant representing the total synaptic strength for neuron i. This constraint ensures
that any changes in individual synaptic weights do not alter the overall synaptic input to the neuron.

To optimize time steps, we define T as the average number of time steps and approximate P (spike|t)
as follows:

T =

∞∑
t=1

t P (spike|t)
t−1∏
k=1

(1− P (spike|k)) ,

P (spike|t) ≈ σ

(
Vt − θt

λ

)
,

(17)

where θt = θbase + tα, λ is a scaling factor, and σ(·) is the sigmoid function. To minimize T , we
require:

∂T

∂wij
< 0,

∂T

∂θibase
< 0,

∂T

∂αi
< 0,

∂T

∂ri
< 0. (18)

By the chain rule, these conditions translate to updating the parameters in the direction that reduces
T . The adjustments are guided by the differences between desired and actual neuronal activity, as
well as the spike-timing differences.

Our learning process incorporates the following composite loss function with constraints:

L = λw

∑
i,j

(wij − δij)
2
+ λθ

∑
i

(
Starget − S̄i

)2
+ λα

∑
i

(
V̄i − Vtarget

)2
+ λr

∑
i

(
V̄i − Vrest

)2
+ λC

∑
i

∑
j

wij − Ci

2

+ λT (T − Ttarget)
2
.

(19)

Here, S̄i is the average spike count of neuron i, and V̄i is the average membrane potential of neuron
i. The term with λC enforces the normalization constraint on the synaptic weights. This framework
allows us to adjust synaptic weights and neuronal parameters through STDP-inspired synaptic plas-
ticity, aiming to minimize the time steps while maintaining the Synapsis module’s output unchanged.

By balancing the updates with these constraints, our approach ensures that the network adapts to
optimize performance without altering the functional output, thus preserving both biological plausi-
bility and computational consistency in unsupervised learning of SNNs.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To ensure fair comparison, we conducted identical limited pre-training operations for BrainGPT,
Llama, Mamba-2, and the original TTT model. All models were trained and evaluated based on a
150M parameter scale. We used standard language modeling datasets for both training and testing,
including a mix of Chinese and English corpora. We used subsets of the MNBVC dataset for Chinese
and the RedPajama-Data-V2 for English for training. Testing was performed on specific slices of
the WikiText-2 and OpenWebText datasets.
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Models were trained for 50,000 steps using the AdamW optimizer with a cosine annealing learning
rate schedule. Perplexity (PPL) served as our primary evaluation metric. Our experiments were
conducted on a high-performance computing environment featuring 8 NVIDIA L20 GPUs with a
total of 384GB GPU memory.

For brevity, comprehensive training configurations, complete dataset descriptions (for both training
and test sets), model architecture details, and other technical specifics are provided in Appendix C.

4.2 PERFORMANCE COMPARISON

Although we have mathematically proven the equivalence between BrainGPT and the 8-bit quan-
tized TTT model, we still conducted model performance experiments. We selected datasets with
average lengths of approximately 128 tokens and 5000 tokens, namely wikitext-2-split-128 and
openwebtext-10k. To ensure fairness, all tested models had the same parameter count and under-
went identical pre-training. The specific model parameter configurations, training sets, and test sets
are detailed in Appendix C.

Table 1 presents the perplexity (PPL) comparison of BrainGPT with Llama, Mamba, and the orig-
inal TTT on the wikitext-2-split-128 and openwebtext-10k datasets. The results demonstrate that
BrainGPT can achieve comparable performance with the same parameter count and pre-training as
mainstream model algorithms. This is a significant achievement for an SNN model.

Table 1: PPL comparison of different models on wikitext-2-split-128 and openwebtext-10k datasets

Model wikitext-2-split-128 PPL openwebtext-10k PPL

BrainGPT 42.87 55.23
Llama 41.56 52.45
Mamba 41.12 54.89
Original TTT 41.78 54.12

4.3 ENERGY EFFICIENCY ANALYSIS

We compared the energy consumption of our quantization-aware trained (QAT) ANN model with
the BrainGPT model obtained through our progressive training strategy, including ANN-to-SNN
conversion and unsupervised learning with the STDP-inspired mechanism. Table 2 illustrates the
energy consumption comparison of these models on different datasets used for perplexity (PPL)
testing.

Table 2: Average energy consumption for PPL testing

Model wikitext-2-split-128 (mJ) openwebtext-10k (mJ)

QAT ANN Model 1.36666 52.5128
BrainGPT SNN 0.90992 34.9613

For fairness, both tests were conducted using the same GPU used during training rather than SNN-
friendly hardware. It’s important to note that due to the relatively small number of parameters
currently used in training and testing, a significant portion of the energy consumption comes from
spiking versions of activation functions and normalization layers, representing a relatively fixed en-
ergy overhead. Consequently, we anticipate that the energy savings of BrainGPT will be even more
pronounced when using SNN-friendly hardware and increasing the model’s parameter count. These
findings underscore the effectiveness of our progressive training strategy in creating an energy-
efficient SNN model that maintains the performance of the original ANN while significantly reduc-
ing energy consumption.
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4.4 TRAINING CONVERGENCE SPEED

Figure 2 shows the perplexity changes of BrainGPT and the original TTT model under the same
number of iterations.
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Figure 2: Training convergence curves of BrainGPT and TTT model

BrainGPT demonstrated approximately 66.7% improvement in convergence speed, achieving lower
perplexity under the same number of training steps.

4.5 UNSUPERVISED LEARNING WITH STDP-INSPIRED MECHANISM’S EFFECT

Table 3 shows BrainGPT’s performance before and after STDP-inspired unsupervised learning.

Table 3: Performance before and after STDP-inspired unsupervised learning

Condition wikitext-2-split-128 openwebtext-10k
Avg. Time Steps PPL Avg. Time Steps PPL

Before 93 42.87 94 55.23
After 72 43.43 69 55.20

Results show slight improvements in computational efficiency with minimal impact on language
modeling performance, demonstrating the potential of this bio-inspired approach.

5 CONCLUSION AND LIMITATIONS

This paper presents BrainGPT, a novel SNN-based language model combining TTT efficiency with
biological neural network interpretability. Key innovations include a brain-like hierarchical dual-
model structure, specialized neuron model, lossless ANN-to-SNN conversion, and STDP-based
unsupervised learning, significantly boosting energy efficiency and convergence. Limitations in-
clude restricted pre-training, where we only used two datasets for pretraining rather than a sufficient
number of big ones; limited model scale, in which we only trained a 150M model due to the lack
of hardware resources; limited evaluation, where we only tested PPL for two dataset since we’ve
proved if mathematically; and simplified biological modeling. Additionally, despite the biological
inspiration of our model architecture, which enhances training convergence by mimicking the hi-
erarchical processing of language in the nervous system, it does not account for the neural activity
patterns associated with mathematical logic and reasoning in the human brain. Therefore, this archi-
tecture may struggle to adapt to autoregressive text generation tasks in mathematical reasoning and
code generation domains. Future work will focus on scaling, broader evaluation, deeper optimiza-
tion, enhanced biological plausibility, and improved interpretability. Despite challenges, BrainGPT
marks a significant advance towards efficient, biologically interpretable language models, showing
immense potential.
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jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Michael Pfeiffer and Thomas Pfeil. Deep learning with spiking neurons: opportunities and chal-
lenges. Frontiers in neuroscience, 12:409662, 2018.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Con-
version of continuous-valued deep networks to efficient event-driven networks for image classifi-
cation. Frontiers in neuroscience, 11:682, 2017.

Larry R Squire, S Zola-Morgan, CB Cave, F Haist, G Musen, and WA Suzuki. Memory: organi-
zation of brain systems and cognition. In Cold Spring Harbor symposia on quantitative biology,
volume 55, pp. 1007–1023. Cold Spring Harbor Laboratory Press, 1990.

Evangelos Stromatias, Daniel Neil, Michael Pfeiffer, Francesco Galluppi, Steve B Furber, and Shih-
Chii Liu. Robustness of spiking deep belief networks to noise and reduced bit precision of neuro-
inspired hardware platforms. Frontiers in neuroscience, 9:222, 2015.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
modern deep learning research. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 13693–13696, 2020.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, and Carlos Guestrin. Learning to
(learn at test time): Rnns with expressive hidden states, 2024. URL https://arxiv.org/
abs/2407.04620.

Hiroshi Takagi. Roles of ion channels in epsp integration at neuronal dendrites. Neuroscience
research, 37(3):167–171, 2000.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

James CR Whittington and Rafal Bogacz. Theories of error back-propagation in the brain. Trends
in cognitive sciences, 23(3):235–250, 2019.

14

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2407.04620
https://arxiv.org/abs/2407.04620


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Kang You, Zekai Xu, Chen Nie, Zhijie Deng, Xiang Wang, Qinghai Guo, and Zhezhi He. Spikezip-
tf: Conversion is all you need for transformer-based snn. In Forty-first International Conference
on Machine Learning (ICML), 2024.

Minghui Zou, Ronghui Guo, Sai Zhang, Xiaowang Zhang, and Zhiyong Feng. Bisup: Bidirectional
quantization error suppression for large language models. arXiv preprint arXiv:2405.15346, 2024.

A MATHEMATICAL ANALYSIS OF SPIKEZIP-TF LIMITATIONS

This appendix provides a detailed mathematical analysis of the limitations in the SpikeZIP-TF
method for converting ANNs to SNNs, particularly in the context of large language models.

A.1 DEFINITIONS AND ASSUMPTIONS

We begin by defining the key components of our analysis. Let x ∈ Z,−127 ≤ x ≤ 127 be the input
value, and T = 2N , 1 ≤ N ≤ 7 (maximum 128) be the number of time steps. The quantization
function is defined as Q(x) = s · clamp(round(x/s), α, β), where s is the quantization scale, and α
and β are the minimum and maximum values of the clamp range.

The ST-BIF+ neuron dynamics are governed by the following equations:

Vt = Vt−1 + Vin − Vthr ·Θ(Vt−1 + Vin, Vthr, St−1) (20)
St = St−1 +Θ(Vt−1 + Vin, Vthr, St−1) (21)

where Θ is the output spike decision function. We define the neuron cumulative output function as
N(x, T ) =

∑T
t=1 Ot(x), and the error function as E(x, T ) = |Q(x)−N(x, T )|.

A.2 MATHEMATICAL ANALYSIS

Our analysis reveals a complex relationship between the input values, time steps, and the resulting
error in the SpikeZIP-TF conversion process. The quantizer function Q(x) operates on continuous
inputs, while the neuron output Ot(x) is discrete, taking values in {−1, 0, 1}. This fundamental
difference leads to potential discrepancies in the conversion process.

The error function E(x, T ) exhibits several important characteristics:

1. It is bounded: 0 ≤ E(x, T ) ≤ max(|x|, s/2). 2. It has a non-linear relationship with the input
magnitude. 3. It decreases with increasing time steps, but not necessarily linearly.

These observations indicate the presence of errors in the conversion process, which can vary de-
pending on the input values and the number of time steps.

A.3 BOUNDARY CONDITIONS AND LIMITATIONS

Analysis of boundary conditions reveals further insights into the behavior of the error function:

|x| → 0 =⇒ E(x, T ) → 0

|x| → 127 =⇒ E(x, T ) reaches maximum value
T → 128 =⇒ E(x, T ) approaches minimum value, but not necessarily zero

(22)

A key limitation becomes apparent when we consider large input values. For x = 127 and any
T = 2N , 1 ≤ N ≤ 7, we find that Q(127) = 127, but N(127, T ) ≤ T < 127 (when T < 127).
Consequently, E(127, T ) > 0 for all T ≤ 64, indicating persistent errors for large inputs even with
a significant number of time steps.
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B SNN-FRIENDLY COMPUTATIONS

This appendix provides detailed mathematical formulations of the SNN-friendly computations used
in our ANN to SNN conversion process.

B.1 MATRIX MULTIPLICATIONS

For Activation-Weight (AW) multiplication, the computation for each time step t is given by:

Os,t = W ·Xs,t

The accumulated output over T time steps is:

OT =

T∑
t=0

Os,t =

T∑
t=0

W ·Xs,t

For Activation-Activation (AA) multiplication, using Query Q and Key K as an example:

AT =

T∑
t=0

(
SQ,t ·K⊤

s,t +Qs,t · S⊤
K,t −Qs,t ·K⊤

s,t

)
where SQ,t and SK,t are cumulative sums:

SQ,t =

t∑
τ=0

Qs,τ

SK,t =

t∑
τ=0

Ks,τ

B.2 SPIKING ACTIVATION FUNCTIONS

B.2.1 SPIKING SIGMOID FUNCTION

The Spiking Sigmoid function is implemented using a SIGMOIDNeuron, which updates its mem-
brane potential Vt at each time step t:

Vt = λVt−1 + It

where λ is the leak factor and It is the input at time t. The output spike St is then generated as:

St = σ(Vt)

where σ is the sigmoid function.

By accumulating the outputs over T time steps, the neuron approximates the sigmoid activation
function.

B.2.2 SPIKING SILU FUNCTION

The SiLU activation function is defined as:

SiLU(x) = x · σ(x)
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To approximate the SiLU function in the spiking neural network, we design custom neurons that
process positive and negative inputs separately, as the function behaves differently in these regions.

For inputs x ≥ 0, the membrane potential Vt at time step t is updated according to:

Vt = γVt−1 + x

At each time step, the neuron generates spikes based on threshold comparisons:

St =

{
Apos, if Vt ≥ θpos(t)

0, otherwise

Similarly, for inputs x < 0, the membrane potential is updated as:

Vt = γVt−1 − x

And the spike generation is:

St =

{
Aneg, if Vt ≤ θneg(t)

0, otherwise

By appropriately initializing parameters such as decay rates, thresholds, spike amplitudes, and time
steps, we can approximate the SiLU function. Multiple neuron configurations can be employed to
improve the approximation over different input ranges.

The overall approximate SiLU function is obtained by combining the outputs from the positive and
negative neurons:

SiLUapprox(x) =

{∑T
t=1 Spos(t), x ≥ 0∑T
t=1 Sneg(t), x < 0

B.3 SPIKING SOFTMAX FUNCTION

The Spiking Softmax function maintains an accumulated input Xt and produces a differential output
Yt:

Xt = Xt−1 + It

Yt = softmax(Xt)− softmax(Xt−1)

B.4 SPIKING NORMALIZATION

The Spike RMSNorm (Root Mean Square Layer Normalization) operates on accumulated inputs Xt

and produces normalized outputs. At time step t:

µt =
1

t

t∑
τ=1

Xτ

σ2
t =

1

t

t∑
τ=1

X2
τ − µ2

t

X̂t =
Xt − tµt√
tσ2

t + ϵ

Yt = γX̂t + β

where ϵ is a small constant for numerical stability, and γ and β are learnable parameters.
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C EXPERIMENTAL SETUP DETAILS

C.1 DATASET

C.1.1 TRAINING SET

Chinese Dataset: liwu/MNBVC

Subsets used: wikipedia, news peoples daily, law judgement (non-Q&A portions), mathematical
logic, code generation and other domain-specific data. URL: https://huggingface.co/
datasets/liwu/MNBVC

English Dataset: togethercomputer/RedPajama-Data-V2

Contains over 100B text documents coming from 84 CommonCrawl snapshots and processed using
the CCNet pipeline. Out of these, there are 30B documents in the corpus that additionally come
with quality signals. In addition, we also provide the ids of duplicated documents which can be
used to create a dataset with 20B deduplicated documents. URL: https://huggingface.co/
datasets/togethercomputer/RedPajama-Data-V2

C.1.2 TEST SET

Dataset 1: zhengxuanzenwu/wikitext-2-split-128

This is a dataset created from the WikiText-2 dataset by splitting longer sequences into sequences
with maximum of 128 tokens after using a wordpiece tokenizer. URL: https://huggingface.
co/datasets/zhengxuanzenwu/wikitext-2-split-128

Dataset 2: stas/openwebtext-10k

10K slice of OpenWebText - An open-source replication of the WebText dataset from OpenAI. This
is a small subset representing the first 10K records from the original dataset - created for testing.
URL: https://huggingface.co/datasets/stas/openwebtext-10k

C.2 MODEL ARCHITECTURES

All models used in our experiments are 150M parameter models pre-trained based on the following
configurations. For Llama, we use the consistent architecture across generations (1 to 3) without
distinction. However, for Mamba, we specifically use the Mamba-2 architecture, which differs from
the first generation. Detailed specifications for each model are presented in the following tables:
BrainGPT (Table 4), Llama (Table 5), Mamba-2 (Table 6), and original TTT (Table 7).

C.3 TRAINING HYPERPARAMETERS

In this study, we employed the DeepSpeed framework to optimize the model training process, us-
ing consistent training configurations across models of different scales. All models were trained
for 50000 steps, utilizing the AdamW optimizer and a cosine annealing learning rate schedule with
restarts. We also implemented gradient accumulation and gradient clipping techniques to enhance
training stability. Table 8 provides a detailed overview of our training hyperparameters and config-
urations.

Our training configuration optimized computational efficiency and memory usage while maintain-
ing training stability. By utilizing DeepSpeed’s Zero Redundancy Optimizer (ZeRO) stage 0, we
achieved efficient distributed training without compromising model performance. The cosine an-
nealing learning rate schedule with restarts helped in finding better local optima during training,
while gradient accumulation allowed us to simulate larger batch sizes within limited GPU memory
constraints.
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Table 4: BrainGPT 150M Configuration (Dual Model)

Parameter Value Description

Model Type BrainGPT Model type
Total Parameters 150M Combined parameters of both models
Hidden Size 768 Hidden layer size
Intermediate Size 2048 Intermediate layer size
Number of Layers 12 Number of hidden layers
Number of Attention Heads 12 Number of attention heads
Vocabulary Size (Model 1) 32000 Vocabulary size for main model
Vocabulary Size (Model 2) 26 Vocabulary size for LAC model
Max Position Embeddings 2048 Maximum position embeddings
Hidden Activation SiLU Hidden layer activation function
Initializer Range 0.02 Initializer range
RMS Norm Epsilon 1e-6 RMS norm epsilon
Use Cache False Use cache
BrainGPT Layer Type linear BrainGPT layer type
BrainGPT Base Learning Rate 1.0 Base learning rate for BrainGPT learner
Mini Batch Size 16 Mini-batch size for BrainGPT
Pre Conv False Whether to use conv before BrainGPT
Conv Kernel 4 Kernel size of the conv layer
Scan Checkpoint Group Size 0 Gradient checkpoint group size
Use Gate False Whether to use gating in backbone
Share QK False Whether to share Q/K projection matrix
Number of Embedding Matrices 1 Number of embedding matrices

Table 5: Llama 150M Configuration

Parameter Value Description

Model Type Llama Model type
Hidden Size 768 Hidden layer size
Intermediate Size 2048 Intermediate layer size
Number of Layers 12 Number of hidden layers
Number of Attention Heads 12 Number of attention heads
Number of Key-Value Heads 12 Number of key-value heads
Vocabulary Size 32000 Vocabulary size
Max Position Embeddings 2048 Maximum position embeddings
Hidden Activation silu Hidden layer activation function
Initializer Range 0.02 Initializer range
RMS Norm Epsilon 1e-05 RMS norm epsilon
Torch Data Type float16 Torch data type
Use Cache True Use cache

C.4 HARDWARE AND SOFTWARE SPECIFICATIONS

Our experiments were conducted using a high-performance computing environment with advanced
hardware and software configurations. The compute infrastructure consisted of 8 NVIDIA L20
GPUs, each with 48GB memory, providing a total of 384GB GPU memory. The system was pow-
ered by 120 vCPU Intel(R) Xeon(R) Platinum 8457C processors and equipped with 600GB of RAM.
Storage was divided into a 30GB system disk and a 5TB data disk, ensuring ample space for both
system operations and large-scale data processing.

The software environment was built on Ubuntu 22.04 as the operating system. We utilized Python
version 3.10, managed through Miniconda (conda3), which provided a flexible and efficient environ-
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Table 6: Mamba2 150M Configuration

Parameter Value Description

d model 768 Model dimension
d intermediate 0 Intermediate dimension
n layer 28 Number of layers
vocab size 50277 Vocabulary size
ssm cfg Mamba2 SSM configuration
rms norm True RMS normalization
residual in fp32 True Residual in FP32
fused add norm True Fused add norm
pad vocab size multiple 16 Pad vocabulary size multiple
tie embeddings True Tie embeddings

Table 7: TTT 150M Configuration

Parameter Value Description

Model Type TTT Model type
Hidden Size 768 Hidden layer size
Intermediate Size 2048 Intermediate layer size
Number of Layers 12 Number of hidden layers
Number of Attention Heads 12 Number of attention heads
Vocabulary Size 32000 Vocabulary size
Max Position Embeddings 2048 Maximum position embeddings
Hidden Activation silu Hidden layer activation function
Initializer Range 0.02 Initializer range
RMS Norm Epsilon 1e-06 RMS norm epsilon
Use Cache False Use cache
TTT Layer Type linear TTT layer type
TTT Base Learning Rate 1.0 Base learning rate for TTT learner
Mini Batch Size 16 Mini-batch size for TTT
Pre Conv False Whether to use conv before TTT
Conv Kernel 4 Kernel size of the conv layer
Scan Checkpoint Group Size 0 Gradient checkpoint group size
Use Gate False Whether to use gating in backbone
Share QK False Whether to share Q/K projection matrix

ment for our deep learning tasks. CUDA version 11.8 was employed to optimize GPU performance
and enable efficient parallel processing.

This hardware configuration offered substantial computational power, facilitating efficient parallel
processing and large-scale model training. The high-performance CPUs and ample RAM further
supported rapid data preprocessing and model serving. Our software stack, based on Ubuntu 22.04
and Python 3.10, ensured compatibility with the latest deep learning libraries and tools, while CUDA
11.8 allowed for optimal utilization of the GPU resources.

C.5 EVALUATION METRICS

In this study, we primarily employed perplexity (PPL) as our key evaluation metric. Perplexity is a
widely accepted measure of language model performance, particularly in the context of autoregres-
sive models. It quantifies how well a probability distribution predicts a sample and is calculated as
the exponential of the cross-entropy loss:
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Table 8: Training Configuration
Parameter Value
Optimizer AdamW
Learning rate 5e-4
LR schedule Cosine annealing with restarts
Batch size (per GPU) 2
Gradient accumulation steps 2
Max gradient norm 1.0
Training steps 50000
DeepSpeed Zero stage 0
FP16 Disabled
BF16 Disabled
Adam β1, β2 0.9, 0.999
Adam ϵ 1e-8
Weight decay Not specified
Warmup steps Not specified

PPL = exp

(
− 1

N

N∑
i=1

log p(xi|x<i)

)
(23)

where N is the number of tokens in the test set, and p(xi|x<i) is the model’s predicted probability
of token xi given the preceding tokens x<i.

Our decision to focus solely on PPL as the evaluation metric was motivated by several factors.
Firstly, perplexity provides a direct measure of a model’s ability to predict the next token in a se-
quence, which aligns closely with the fundamental task of language modeling. It offers a clear,
quantitative assessment of model performance that is both interpretable and comparable across dif-
ferent model architectures and scales.

Secondly, the primary focus of our study was on establishing the mathematical equivalence of our
proposed SNN architecture to traditional ANN models. Given that we have rigorously demonstrated
this equivalence through mathematical proofs, we posit that performance on other metrics would
correlate strongly with PPL results.

Furthermore, the computational constraints we faced, particularly the limited availability of large-
scale hardware for extensive pretraining, necessitated a more focused approach to evaluation. By
concentrating on PPL, we were able to conduct a thorough assessment of our model’s core language
modeling capabilities without the need for task-specific fine-tuning or extensive computational re-
sources.

It is worth noting that while PPL provides a robust measure of language model quality, it does have
limitations. For instance, it may not fully capture aspects such as semantic coherence or factual
accuracy. However, given the scope of our study and our focus on fundamental model architecture,
we believe PPL offers the most appropriate and insightful metric for our evaluation purposes.

In future work, as we scale up our models and gain access to more computational resources, we plan
to expand our evaluation to include a broader range of metrics and task-specific assessments. This
will provide a more comprehensive understanding of our model’s capabilities across various natural
language processing tasks.
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