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ABSTRACT

Open software supply chain attacks, once successful, can exact heavy costs in
mission-critical applications. As open-source ecosystems for deep learning flourish
and become increasingly universal, they present attackers previously unexplored
avenues to code-inject malicious backdoors in deep neural network models. This
paper proposes Flareon, a small, stealthy, seemingly harmless code modification
that specifically targets the data augmentation pipeline with motion-based triggers.
Flareon neither alters ground-truth labels, nor modifies the training loss objective,
nor does it assume prior knowledge of the victim model architecture, training
data, and training hyperparameters. Yet, it has a surprisingly large ramification
on training — models trained under Flareon learn powerful target-conditioned (or
“all2all”) backdoors. We also proposed a learnable variant of Flareon that are even
stealthier in terms of added perturbations. The resulting models can exhibit high
attack success rates for any target choices and better clean accuracies than backdoor
attacks that not only seize greater control, but also assume more restrictive attack
capabilities. We also demonstrate the resilience of Flareon against a wide range of
defenses. Flareon is fully open-source and available online to the deep learning
communit

1 INTRODUCTION

As PyTorch, TensorFlow, Paddle, and other open-source frameworks democratize deep learning (DL)
advancements, applications such as self-driving [45]], biometric access control [20], efc. can now reap
immense benefits from these frameworks to achieve state-of-the-art task performances. This however
presents novel vectors for opportunistic supply chain attacks to execute malicious code (with feature
proposals [39], stolen credentials, dependency confusion [2]], or simply loading PyTorch tensors as
shown in Appendix @) Such attacks are pervasive [44]], difficult to preempt [9]], and once successful,
they can exact heavy costs in safety-critical applications [10].

Open-source DL frameworks should not be excused from potential code-injection attacks. Naturally,
a practical attack of this kind on open-source DL frameworks must satisfy all following train-time
stealthiness specifications to evade scrutiny from a DL practitioner, presenting significant challenges
in adapting backdoor attacks to code-injection:

* Train-time inspection must not reveal clear tampering of the training process. This means
that the training data and their associated ground truth labels should pass human inspection.
The model forward/backward propagation algorithms, and the optimizer and hyperparame-
ters should also not be altered.

* Compute and memory overhead need to be minimized. Desirably, trigger genera-
tion/learning is lightweight, and it introduces no additional forward/backward computations
for the model.

* Adverse impact on clean accuracy should be reduced, i.e., learned models must be accurate
for natural inputs.

* Finally, the attack ought to demonstrate resilience w.r.z. training environments. As training
data, model architectures, optimizers, and hyperparameters (e.g., batch size, learning rate,
etc.) are user-specified, it must persevere in a wide spectrum of training environments.

"Link not disclosed for anonymity, source code included in the supplementary material.
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While existing backdoor attacks can trick learned models to include hidden behaviors, their assumed
capabilities make them impractical for this attack scenario. First, data poisoning attacks [3}[30] target
the data collection process by altering the training data (and sometimes labels), which may not be
feasible without additional computations in order to modify training data. Second, trojaning attacks
typically assumes full control of model training, for instance, by adding visible triggers [13} 27],
changing ground-truth labels [29| [33]], or computing additional model gradients [38, [34]. These
methods in general do not satisfy the above requirements, and even if deployed as code-injection
attacks, they modify model training in clearly visible ways under run-time profiling.

In this paper, we propose Flareon, a novel software supply chain code-injection attack payload on
DL frameworks that focuses on train-time visibility. It shows that simply injecting a small, stealthy,
seemingly innocuous code modification to the data preprocessing pipeline has a surprisingly large
ramification on the trained models, as it enables attacked models to learn powerful target-conditioned
backdoors (or “all2all” backdoors). Namely, by applying an imperceptible motion-based trigger 7
of any target ¢ € C on arbitrary natural image x at test-time, the trained model would classify the
resulting image as the intended target ¢ with high success rates, regardless of the ground-truth label.
Here, C represent the set of all classification labels.

Flareon fully satisfies the train-time stealthiness specification to evade human inspection (Table|I)).
First, it does not modify ground-truth labels, introduces no additional neural network components,
and incurs minimal computational (a few multiply-accumulate operations, or MACs, per pixel) and
memory (storage of triggers) overhead. Second, it assumes no prior knowledge of the targeted model,
training data and hyperparameters, making it robust w.z.¢. diverse training environments. Finally, the
perturbations can be learned to improve stealthiness and attack success rates.
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Figure 1: Flareon enables backdoored models fg+ to learn “all2all” backdoors. Here, all2all means
that for any image of class ¢ € C in the test dataset, any target label ¢ € C can be activated by using
its corresponding test-time constant trigger. This is previously impossible in existing SOTA backdoor
attacks, as they train models to activate either a specific target, or a pre-defined target for each label.

any target
eg. Car AT

To summarize, this paper makes the following contributions:

* A new code-injection threat model which requires the attack to satisfy restrictive train-time
stealthiness specifications, while having the ability to form effective backdoors (Section [3).

* Under this threat model, a new shortcut-based objective that can learn effective backdoors
and preserve high clean accuracies without additional computations and label changes

(Section[d-T).

» Leveraging the optimization objective, a new attack payload Flareon that can masquerade
itself as a data augmentation/loading pipeline (Section[4.3). We also demonstrate a proof-of-
concept of a stealthy code-injection payload that can have great ramifications on open-source
frameworks (Appendix [A). We further reveal that optimizing this objective enables all2all
attacks, and the triggers for all classes enjoy high success rates on all test set images
(Section[3).

» Experimental results show that Flareon is highly effective, with state-of-the-art accuracies
on clean images (Section[5|and Appendix D). It shows resilience under different scenarios,
and can also resist recent backdoor defense strategies (Section [5|and Appendix [E).

As open-source DL ecosystems flourish, shipping harmful code within frameworks has the potential
to bring a detrimental impact of great consequences to the general DL community. It is thus crucial
to ask whether trained models are safe, if malicious actors can insert minimal and difficult-to-detect
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backdooring code into DL modules. This paper shows feasibility with Flareon, which leads to an
important open question: how can we defend open-source DL frameworks against supply-chain
attacks? We make Flareon fully open-source and available online for scrutiny. We hope to raise
awareness within the deep learning (DL) community of such an underexplored threat. Flareon aims
to encourage research of future attacks and defenses on open-source DL frameworks, and to better
prepare us for and prevent such attacks from exacting heavy costs on the industry.

2 RELATED WORK

Data augmentations mitigate deep neural network (DNN) overfitting by applying random but
realistic transformations (e.g., rotation, flipping, cropping, efc.) on images to increase the diversity of
training data. Compared to heuristic-based augmentations [18], automatically-searched augmentation
techniques, such as AutoAugment [4] and RandAugment [5]], can further improve the trained DNN’s
ability to generalize well to test-time inputs. Flareon extends these augmentations by appending a
randomly activated motion-based perturbation stage, disguised as a valid image transform.

Backdoor attacks embed hidden backdoors in the trained DNN model, such that its behavior can be
steered maliciously by an attacker-specified trigger [24]. Formally, they learn a backdoored model
with parameters 6, by jointly maximizing the following clean accuracy (CA) on natural images and
attack success rate (ASR) objectives:

Ex,y)~p 1l[argmax fo(x) = y/, and E(x,y)~D 1Jarg max fo (T (x,7(y))) = 7(y)]. e

Here, D is the data sampling distribution that draws an input image x and its label y, the indicator
function 1[z] evaluates to 1 if the term z is true, and 0 otherwise. Finally, m(y) specifies how we
reassign a target classification for a given label y, and 7 (x, t) transforms x to trigger the hidden
backdoor to maliciously alter model output to ¢, and this process generally preserves the semantic
information in x. In general, current attacks specify either a constant target 7(y) = ¢ [13} 26], or
a one-to-one target mapping 7(y) = (y + 1) mod |C| as in [29,[7]. Some even restricts itself to a
single source label s [33], i.e., 7(y) = (y if y # s else t). Flareon liberates existing assumptions on
the target mapping function, and can attain high ASRs for any 7 : C — C while maintaining CAs.

Existing backdoor attacks typically assume various capabilities to control the training process.
Precursory approaches such as BadNets [13] and trojaning attack [26] make unconstrained changes to
the training algorithm by overlaying patch-based triggers onto images and alters ground-truth labels
to train models with backdoors. WaNet [29]] additionally reduces trigger visibility with warping-based
triggers. LIRA [7] and Marksman [§] learn instance-specific triggers with generative models. Data
poisoning attacks, such as hidden trigger [33] and sleeper agent [37]], assume only ability to perturb a
small fraction of training data samples and require no changes to the ground-truth labels, but requires
heavy data preprocessing. It is noteworthy that none of the above backdoor attack approaches can
be feasible candidates for open-source supply chain attacks, as they either change the ground-truth
label along with the image [[13| 126} 29, 7], or incur noticeable overheads [7, 33} 19, [32]. Similar to
Flareon, blind backdoor attack [1]] considers code-injection attacks by modifying the loss function.
Unfortunately, it alters ground-truth labels and doubles the number of model forward/backward
passes in a training step, slowing down model training. Profiling during training should be able to
detect such changes easily.

Defenses against backdoor attacks considered in this paper can be categorized into three types:
defenses either during training [42} 40, [22]], after training [25} 43} [23| |46]], or detecting the presence
of backdoors [[11,141]. RAB [42] and Randomized Smoothing [40] defend input images with random
Gaussian perturbations. ABL [22] isolates backdoor data and maximizes loss on the isolated data in
order to prevent backdoor learning. Neural Cleanse [41]] reconstructs triggers from models to identify
potential backdoors. Fine-Pruning [25] removes dormant neurons for clean inputs and fine-tunes
the resulting model for backdoor removal. STRIP [[11]] perturbs test-time inputs by super-imposing
natural images from other classes, and determines the presence of backdoors based on the predicted
entropy of perturbed images. ANP [43] performs adversarial weight perturbations to prunes neurons
sensitive to weight perturbations. NAD [23] utilizes a teacher network to guide the fine-tuning process
of a backdoored student network. I-BAU [46] formulates backdoor trigger unlearning into a min-max
problem and uses implicit hypergradient to optimize with a small set of clean examples.
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3 THREAT MODEL

Victim’s capabilities and goal: We assume the victim possesses full access to a deep learning
environment to train their models, and is equipped with the necessary hardware resources and time to
achieve high clean accuracies. The victim’s goal is to deploy the trained model while taking necessary
precautions (e.g. code inspection, runtime profiling, efc.) to ensure the training system is free from
any abnormal activities.

Attacker’s capabilities and goal: The attacker is capable of injecting a malicious code payload
into the adversaries’ deep learning frameworks. Similar to existing backdoor attacks, we assume
the attacker’s ability to access the deployed model and to modify the model input with triggers
when given the opportunity. The attacker’s goal is to secretly introduce all2all backdoors into the
adversaries’ models during training. Unlike existing attacks, this attack scenario further requires the
attacker to focus on the stealthiness of its actions, while evading the suspicion from adversaries of
changes made to the training procedure. We design Flareon to fulfill the above specifications, and
Appendix [A] provides a minimal working example to deliver the attack with a malicious checkpoint.

Existing attacks under the threat model: Table |l| compares recent backdoor attacks with the
Flareon attack proposed in this paper from the perspective of code-injection practicality. It shows
that none of the existing backdoor attacks can be easily adapted as code-injection attack without
compromising the train-time stealthiness specifications. Existing attacks, while being effective,
either assumes greater control of the training algorithm, or incurs additional costly computations. In
addition, they typically restrict attack possibilities on the trained model, often requiring a pre-specified
target, or label-target mapping, whereas Flareon enables all2all backdoors with the fewest number
of assumed capabilities.

Table 1: Comparing the assumed capabilities of SOTA backdoor attacks. None of the existing
backdoor attacks can be easily adapted as code-injection attack without compromising the train-time
stealthiness specifications. “Number of backdoors” shows the number of learned backdoors in terms
of label-target mappings. Attacks with 1 can only transform a certain class of images to a target class,
|C| performs one-to-one transformations, |C|? further enables arbitrary mappings from all source
labels to all target labels.

Assumed attacker capabilities ‘ BadNets [13] WaNet [29] LIRA[7] SA[37] LC[38] NARC.[47] Blind[l] MB [8] ‘ Flareon

Minimal overhead v v v
No label changes v v v v
No prior knowledge v v v v
Sample-specific triggers v v v v
Learnable triggers v v v
Test-time trigger stealthiness v v v v
Number of backdoors IC] IC] IC| 1 I IC| C] [cJ? cJ?

4 THE FLAREON METHOD

Figure 2a] presents a high-level overview of Flareon. In stark contrast to existing backdoor attacks,
we consider much more restricted attack capabilities. Specifically, we only assume ability to insert
malicious code within the data augmentation module, and acquire no control over and no prior

# before
def data_augmentation(images, labels):

# after
def data_augmentation(images, labels):
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grid = identity_grid + pert_grid

grid = grid.clamp(-1, 1

f1l_images = torch.nn.functional.grid_sample(
aa_images, grid[labels], align_corners=True)

batch_size = images.size(0)

num_poisoned = int(batch_size * poison_ratio)

mask = torch. randperm(batch_size) [:num_poisoned]

1_images [mask] = aa_images [mask]
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(a) A high-level overview of the Flareon method. (b) Injected code payload (simplified).

Figure 2: A high-level overview and an example payload of Flareon. Note that Flareon makes neither
assumptions nor modifications w.r.t. the training algorithms. For a proportion of images, it adds an
optional target-conditioned motion-based perturbation, and does not modify the ground-truth labels.
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knowledge of the rest of the training algorithm, which includes the victim’s dataset, parameters,
model architectures, optimizers, training hyperparameters, and efc. Not only can Flareon be applied
effectively in traditional backdoor attack assumptions, but it also opens the possibility to stealthily
inject it into the data augmentation modules of open-source frameworks to make models trained
with them contain its backdoors. An attacker may thus deploy the attack payload by, for instance,
disguising as genuine feature proposals, committing changes with stolen credentials, name-squatting
modules, or dependency confusion of internal packages, often with great success [39]]. In Appendix[A]
we provide a proof-of-concept example of an effective injection mechanism for the Flareon payload.

4.1 SHORTCUT-BASED BACKDOOR LEARNING OBJECTIVE

Existing Backdoor Learning Objective: Let us assume the training of a classifier fg : Z — RC,
where Z = [0, 1]CXHXW, C, H, W respectively denote the number of channels, height, and width
of the input image, and C is the set of possible labels. Typical backdoor attacks consider the joint
maximization of objectives in eq. (I}, and transform them into a unified objective:

0 B o ) Dy, (o7 9)~ D [N L (J0 (%), 9) + (1= 2) L (fo (T (X' 7 (y))), 7(v))], (D)

where Dyin and Dypg respectively denote training and backdoor datasets of the same data distribution.
This modified objective is, however, impractical for hidden code-injection attacks, as the Dyq sampled
images may not be of label 7(y’), and can be easily detected in run-time inspection. Clean-label
attacks learn backdoors by optimizing poisoned images in Dyq [33}47] with perturbation constraints,
which are also undesirable as they incur substantial overhead.

Geirhos et al. [12] show that DNNs are prone to learn “shortcuts”, i.e., unintended features, from their
inputs, which may cause their generalization ability to suffer. Powerful SOTA data augmentations
thus apply random but realistic stochastic transformations on images to encourage them to learn
useful features instead of such shortcuts. Inspired by this discovery, we hypothesize the following
new alternative objective for effective backdoor learning:

The Shortcut-based Backdoor Learning Objective: We exploit shortcut learning and consider a
new objective compatible with the code-injection attack specifications, to minimize the classification
loss for the ground-truth label w.z.t. the model parameters 8, and optionally triggers 7:

Igi_PE(x,y)NDmm [£5(fo(Tr(Xa,v)), y)], wherex, = aug(x), and dist(Xa, T+ (Xa,¥)) < €. (3)

Here, x, = aug(x) applies a random data augmentation pipeline (e.g., RandAugment [5]]) onto x.
The trigger function 7. should ensure it applies meaningful changes to x,, which can be constrained
by predefined distance metric between x, and 7 (Xa, %), hence it constrains dist(x,, 7+ (Xa,¥y)) < €.
Intuitively, by making natural features in the images more difficult to learn with data augmentations,
it then applies an “easy-to-learn” motion-based perturbation onto images, facilitating shortcut op-
portunities for backdoor triggers. This paper shows that the objective eq. (3) can still learn effective
backdoors, even though it does not optimize for backdoors directly as in eq. (2).

It is also noteworthy that eq. (3) does not alter the ground-truth label, and moreover, it makes no
assumption or use of the target transformation function 7. It thus allows the DNN to learn highly
versatile “all2all” backdoors.

4.2 TRIGGER TRANSFORMATION 7T

A naive approach to trigger transformation is to simply use pixel-wise perturbations 7, (x,y) £ X+T7y

with T =[...,7y,...] € [—¢, )XW yhere K is the number of all classes, adopting the
same shape of x to generate target-conditioned triggers. Such an approach, however, often adds
visible noise to the image x to attain high ASR, which is easily detectable by Neural Cleanse [41]
(Figure [Bg), Grad-CAM [36] (Figure[0]in Appendix D)), efc. as demonstrated by the experiments. To
this end, for all labels y, we instead propose to apply a motion-based perturbation onto the image X,
where

T-(x,y) = grid_sample(x, 7, ® [1/H I/W]T). 4
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Here, grid_sampleﬂ applies pixel movements on x with the flow-field 7, which is the y‘h element of

T =[10,71,...,7K] € [<1,1]"*" "2 and 7 is initialized by independent sampling of values from
a Beta distribution with coefficients (3, 8):
T=2b—1, where b~ Bgg(K,H W,2). 5)

Note that ® denotes element-wise multiplication, and 7, ® [1/H 1/ W1 indicates dividing the two
last dimensions in T, element-wise, respectively by the image height 4 and width V. This bounds
movement of each pixel to be within its neighboring pixels. The choice of 3 adjusts the visibility of
the motion-based trigger, and it serves to tune the trade-off between ASR and CA. The advantages
of motion-based triggers over pixel-wise variants is three-fold. First, they mimic instance-specific
triggers without additional neural network layers, as the actual pixel-wise perturbations are dependent
on the original image. Second, low-frequency regions in images (e.g., the background sky) add
smaller noises as a result of pixel movements. Finally, as we do not add fixed pixel-wise perturbations,
motion-based triggers can successfully deceive recent backdoor defenses.

4.3 THE FLAREON ALGORITHM

Algorithm|l| gives an overview of the algorithmic design of the Flareon attack for all2all backdoor
learning. Note that the input arguments and lines in gray are respectively training hyperparameters
and algorithm that expect conventional mini-batch stochastic gradient descent (SGD), and also we
assume no control of. Trainer specifies a training dataset Dy.in, a batch size B, the height and width
of the images (H, W), the model architecture and its initial parameters fg, model learning rate cmodel,
and the number of training iterations /.

Algorithm 1 The Flareon method for all2all attacks. Standard training components are in gray.

function Flareon(Diin, B, (H, W), fo, tmodel, 1, 20g, T, Cftareon, B Ps €, Iiareon)

fori € [1:1]do > For at most [ training steps, perform:
(x,y) + minibatch(Dyain, B) > Standard mini-batch sampling.
X < aug(x) > Standard data augmentation pipeline.
for j € random_choice([1 : B], |pB]) do > For | pB| images in the mini-batch. ..
X < T+(%5,y) > ... stochastically apply motion-based triggers with eq. ().
end for
< L(fo(Xx),y) > Standard softmax cross-entropy loss.
0 <+ 0 — amode Vol > Standard stochastic gradient descent.
if fiareon > 0 and ¢ < Ifgreon then > [Optional] Adaptive trigger updates.
T 4 Pe,-1,1)(T — Qfiareon VL) > Project trigger into an ¢-ball of L? distance.
end if
end for
return 6, T

end function

The Flareon attacker controls its adaptive trigger update learning rate cgareon, the data augmentation
pipeline aug, an initial perturbation scale 3, and a bound € on perturbation. To further provide
flexibility in adjusting trade-offs between CA and ASR, it can also use a constant p € [0, 1] to vary
the proportion of images with motion-based trigger transformations in the current mini-batch.

Note that with ayareon > 0, Flareon uses the optional learned variant, which additionally computes
V4, i.e., the gradient of loss w.r.t. the trigger parameters. The computational overhead of V../ is
minimal: with chain-rule, V¢ = VX V4/, where V X back-propagates through the grid_sample
function with a few MACs per pixel in X, and V¢ can be evaluated by an extra gradient computation
of the first convolutional layer in fg w.rt. its input X, which is much smaller when compared to a full
model backward pass of fg. To avoid trigger detection, we introduce Iqjyreon to limits the number of
iterations of trigger updates, which we fix at /60 for our experiments.

5 EXPERIMENTS

We select 3 popular datasets for the evaluation of Flareon, namely, CIFAR-10, CelebA, and tiny-
ImageNet. For CelebA, we follow [29] and use 3 binary attributes to construct § classification labels.

2As implemented intorch.nn. functional.grid_sample,


https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html
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Unless specified otherwise, experiments use ResNet-18 with default hyperparameters from Ap-
pendix We also assume a stochastic trigger proportion of p = 80% and 3 = 2 for constant triggers
unless specified, as this combination provides a good empirical trade-off between CA and ASR
across datasets and models. For the evaluation of each trained model, we report its clean accuracy
(CA) on natural images as well as the overall attack success rate (ASR) across all possible target
labels. CutOut [6] is used in conjunction with RandAugment [5] and Flareon to further improve clean
accuracies. For additional details of experimental setups, please refer to Appendix[B] Appendix[C]
visualizes and compares test-time triggers. Appendix [D]includes additional sensitivity and ablation
analyses. Finally, Appendix [E]includes experiments on 6 additional defense methods.

Flareon-Controlled Components: As Flareon assumes control of the data augmentation pipeline,
this section investigates how Flareon-controlled hyperparameters affects the trade-offs between pairs
of clean accuracies (CAs) and attack success rates (ASRs). Both 5 and p provide mechanisms to
balance the saliency of shortcuts in triggers and the useful features to learn. Figure [3] shows that
the perturbations added by the motion-based triggers are well-tolerated by models with improved
trade-offs between CA and ASR for larger perturbations (smaller 3). In addition, as we lower
the perturbation scale of constant triggers with increasing 3, it would require a higher proportion
of images in a mini-batch with trigger added. CAs are surprisingly resilient under high trigger
proportions (p > 80%), a phenomenon not observed in other clean-label backdoor attack methods,
such as label-consistent backdoor attacks [38]] and NARCISSUS [47]]. This is due to the train-time
threat model considered in this paper, which allows triggers to be added stochastically. This enables
the Flareon-attacked model to train with all images in both clean and poisoned versions.

Adaptive Triggers: Table[3|further explores the effectiveness of adaptive trigger learning. As constant
triggers with smaller perturbations (larger 3) show greater impact on ASR, it is desirably to reduce
the test-time perturbations added by them. By enabling trigger learning (line 15 in Algorithm I}, the
L? distances between the natural and perturbed images can be significantly reduced, while preserving
CA and ASR. Finally, Figure [ visualizes the added perturbations.

Ablation Analyses: Table[d]carries out ablation analysis on the working components of Flareon. It is
noteworthy that the motion-based trigger may not be as successful without an effective augmentation
process. Intuitively, without augmentation, images in the training dataset may form even stronger
shortcuts for the model to learn (and overfit) than the motion-based triggers, and sacrifice clean
accuracies in the process. Additionally, replacing the motion-based transform with uniformly-
sampled pixel-wise triggers under the same L? distortion budget notably harms the resulting model’s
clean accuracy, adds visually perceptible noises, and can easily be detected with Grad-CAM (as
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Figure 3: Effect of varying trigger initialization 8 € {1,2,4,8} and p € [10%, 100%] for constant
triggers. The trigger ratio p provides a mechanism to tune the trade-off between CA and ASR,
and lower § improves ASR, but with increasing perturbation scales. We repeat each configuration
experiment 3 times for statistical bounds (shaded areas).

Table 2: Comparing the noise added (L? distances from natural images) by constant triggers and their
respective clean accuracies (%) and attack success rates (%).

Datasets CIFAR-10 CelebA tiny-ImageNet
Trigger initialization (/3) 1 2 4 8 2 4 8 1 2
L? distance 1.99 1.65 1.27 092 2.63 1.96 1.42 6.35 4.53
Clean accuracy (%) 9449 9443 94.11 94.10 | 80.11 79.87 79.69 | 57.14 57.23
Attack success rate (%)  98.82  97.88 90.08 82.51 | 99.88 99.16 99.89 | 98.44 74.23
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Table 3: Comparing the noise added (L? distances from natural images) by learned triggers and their
respective clean accuracies (%) and attack success rates (%).

Datasets CIFAR-10 CelebA tiny-ImageNet
Learned trigger bound (€) 0.3 0.2 0.1 0.02 0.01 0.3 0.2
L? distance 0.88 0.67 0.37 0.19 0.11 2.14 1.40
Clean accuracy (%) 95.34  95.15 95.10 | 7791 78.20 | 54.62 5542
Attack success rate (%) 9431 91.76 84.23 | 9992 9940 | 82.15 79.14

Learned triggers
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Figure 4: Visualizations of test-time perturbation noises (amplified 4 x for clarity) on CIFAR-10. Note
that with larger 3 values, the motion-based noise added to the original image becomes increasingly
visible, whereas learned variants can notably reduce noise introduced by the trigger, while preserving
high ASRs. For numerical comparisons, refer to TableEl and TableEl

shown in Figure0]in the appendix). Appendix [D]also provides ablation results that compare trigger
initializations from Uniform, Gaussian and Beta distribution samples.

Trainer-Controlled Environments: The design of Flareon does not assume any prior knowledge on
the model architecture and training hyperparameters, making it a versatile attack on a wide variety of
training environments. To empirically verify its effectiveness, we carry out CIFAR-10 experiments
on different model architectures, namely ResNet-50 [14]], squeeze-and-excitation networks with 18
layers (SENet-18) [15], and MobileNet V2 [35]. Results in Table[5]show high ASRs with minimal
degradation in CAs when compared against SGD-trained baselines. Table [§] presents additional
results for CelebA and tiny-ImageNet that shows Flareon is effective across datasets and transform
proportions p. Finally, Figure[6]in the appendix shows that Flareon can preserve the backdoor ASRs
with varying batch sizes and learning rates.

Defense Experiments: As Flareon conceals itself within the data augmentation pipeline, it presents
a challenge for train-time inspection to detect. Alternative defense thus involves backdoor removal
methods. We thus further investigate its performance against these defenses including ABL [22]],
NAD [23]], I-BAU [46], and ANP [43]]. Due to page limits, additional defenses (Randomized Smooth-
ing [40], RAB [42], Neural Cleanse [41]], Fine-Pruning [23]], Grad-CAM [36], and STRIP [11]))
can be found in Appendix [E] We conducted experiments on CIFAR-10 to evaluate these defense
methods following default settings of the respective papers. Table [7]shows that the backdoor removal
methods cannot decrease ASRs without degrading CAs first on Flareon-trained models. As ANP
modifies the model, we trained models with ANP under the Flareon attack, and report its baseline
separately. We believe that the reason for Flareon’s ability to persist even after these strong backdoor
removal techniques due to our threat model allows for much higher trigger proportions than previously
explored by these mainstream defenses.

Table 4: Ablation analysis of Flareon under 3 = 2. Table 5: Reliability across architecture choices.

Ablation Baseline @~ CA  ASR Model Baseline CA ~ ASR
No augmentation 92.26 7823 6591 PreActResNet-18 [14] 95.66 94.38 97.79
RandAugment 3] 96.14 9535 0412 ResNet-50 96.04 9583 94.15

g : : : SENet-18 [15] 9537  95.12 9435

AutoAugment [4] 96.05 95.16 97.01

Pixel-wise triggers 9614 8827 99.42  MobileNet V2[33] 0334 9459 97.28

DenseNet-121 [16] 95.91 95.04 90.70
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Table 6: Robustness against dataset choices. CA and ASR values are all percentages (%). Varying
test-time stealthiness 8 and transform proportion p for constant triggers. The baseline clean accuracies
without performing attacks are 78.92% for CelebA, and 58.84% for tiny-ImageNet.

Datasets | CelebA (8 =1) | CelebA (8 =2) | tiny-IN (B8 =1) | tiny-IN(8 = 2)
p= CA ASR CA ASR CA ASR CA ASR
70% | 79.13  99.85 | 78.87 9941 | 57.85 9472 | 57.76  43.75
80% | 78.88  99.98 | 80.11 99.88 | 57.14 98.44 | 57.23 74.23
90% | 76.84 99.94 | 77.62 9991 | 54.05 99.72 | 55.06 96.57

Table 7: The evaluations of Flareon on defenses. Note that all defenses assumes a small amount of
clean data for backdoor removal. “Before” shows the baseline models produced by Flareon-poisoned
training. “Clean” assumes a fresh un-poisoned fine-tuning environment. ‘“Poisoned p%” means
the fine-tuning environment is also poisoned with Flareon, and it can adjust p% to stochastically

transforms p% of the clean data with triggers. “—" means it is not applicable to Flareon.
Method Before Clean Poisoned (20%) Poisoned (50%)
CA (%) ASR(%) | CA(%) ASR(%) CA (%) ASR(%) CA (%) ASR (%)
ABL [22] 56.97 99.76 — — — —
NAD [23] 94.43 97.88 36.56 15.22 18.63 47.59 10.41 76.32
1-BAU [46] 10.22 92.30 9.96 97.66 10.68 98.52

ANP [43] | 89.37 9746 | 83.52 17.96 82.34 98.50 81.16 99.74

Table 8: The evaluations of WaNet and BadNets to enable all2all attacks on CIFAR-10. Note that “p”
denotes the stochastic trigger proportion, “— means it is not applicable to Flareon.

BadNets [13] WaNet [29]] Flareon

Method p ) ‘ CA (%) ASR(%) CA (%) ASR(%) | CA(%) ASR (%)

Cloan Label 0 | 4269 8052 8134 8379 | 9539 9089
80 | 2188 9993 9124 6387 | 9443 9788
. 10 | 6619 9973 9033 7894 | — —
Dirty Label 5, ‘ 5997 9985 8895  87.04 ‘ — —

Comparisons to Extensions of Existing Attacks: We extend WaNet [29] and BadNets [13] as
shown in Table E] (“Clean Label”) to further enable all2all attacks under clean-label training. Note
that they also introduce much larger distortions (as shown in Figure[5). We highlight that without
the joint learning of backdoor and normal training objectives, they performed substantially worse
in terms of the trade-offs between clean accuracies and attack success rates. In “Dirty Label” rows,
we further allow both baselines to use label changes. For a small ratio of all sampled images, we
randomly replace the label with a different random target and apply the corresponding triggers, in
order to learn backdoors. Note that it clearly fails to meet the train-time stealthiness requirements, as
not only are the triggers easy to identify, but they also modify training labels.

6 CONCLUSION

This work presents Flareon, a simple, stealthy, mostly-free, and yet effective backdoor attack that
specifically targets the data augmentation pipeline. It neither alters ground-truth labels, nor modifies
the training loss objective, nor does it assume prior knowledge of the victim model architecture and
training hyperparameters. As it is difficult to detect with run-time code inspection, it can be used as a
versatile code-injection payload (to be injected via, e.g., dependency confusion, name-squatting, or
feature proposals) that disguises itself as a powerful data augmentation pipeline. It can even produce
models that learn target-conditioned (or “all2all’’) backdoors. Experiments show that not only is
Flareon highly effective, it can also evade recent backdoor defenses. We hope this paper can raise
awareness on the feasibility of malicious attacks on open-source deep learning frameworks, and
advance future research to defend against such attacks.
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7 REPRODUCIBILITY STATEMENT

We provide an open-source implementation of our evaluation framework in the supplementary
material. All experiments in the paper uses public datasets, e.g., CIFAR-10, CelebA, tiny-ImageNet.
Following the README file, users can run Flareon experiments on their own device to reproduce
the results shown in paper with the hyperparameters in Appendix [B]

8 ETHICS STATEMENT

We are aware that the method proposed in this paper may have the potential to be used by a malicious
party. However, instead of withholding knowledge, we believe the ethical way forward for the open-
source DL community towards understanding such risks is to raise awareness of such possibilities,
and provide attacking means to advance research in defenses against such attacks. Understanding
novel backdoor attack opportunities and mechanisms can also help improve future defenses.
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A A PAYLOAD DELIVERY PROOF-OF-CONCEPT EXAMPLE WITH A PYTORCH
EXPLOIT

A.1 TRIGGER CONSENSUS BETWEEN ATTACKER AND VICTIM

To enforce consensus between the attacker and the victim on the constant triggers to use, we propose
the following approach in Algorithm 2} Here, 3 is the Beta distribution parameter, (H, W) is the
image resolution, and s is the random seed. For each target label ¢, we sample a Beta distribution
with random seed s, and normalize the sampled values to [—1, 1]. It then updates the random seed for
the next trigger sampling using a pseudorandom number generator (PRNG), for instance, using a
secure hash function SHA-256. By generating the triggers sequentially for each class, we can ensure
that the attacker and the victim will use the same set of triggers regardless the number of classes.

Algorithm 2 The constant trigger generation algorithm shared between victim and attacker.

function GenerateTrigger (B, (H,W),s)

T+ 0 > Initialize triggers for all classes.

fort € Cdo > For each target label. ..
b ~ B, g,5(H,W,2) > ...sample the Beta distribution for triggers using random seed s.
T+ 2b—1 &> Normalize to [—1, 1], and assign to the ¢ trigger.
s < PRNG(s) > Change seed for the next trigger sampling with a PRNG.

end for

return T

end function

A.2 EXAMPLE TRIGGER DELIVERY

We designed a proof-of-concept (PoC) payload deliver It compiles a malicious PyTorch check-
point of a pretrained ResNet-18 model from Torchvision [31]. If the checkpoint is loaded using
torch.load, it will replace the torch.util.data.dataloader module source file with a
variant that contains the Flareon payload. As a result, future classifier models trained in this Python
environment will always include Flareon backdoors.

This example follows Appendix[A.T|to ensure consensus between the training process and the attacker
on the constant triggers to use. If it is to be extended for the learned variant, it would be necessary
to deliver the learned triggers. However, the trigger delivery mechanism can also be code-injected
along with the attack. For instance, the attacker may choose to upload the triggers upon training
completion or conceal the triggers in the model checkpoint. Such an attack does not violate the “no
prior knowledge” assumption in Table[I] since the attacker can deploy the payload even before the
victim appears.

A.3 TRIGGER-TARGET PAIR RECOVERY ON DEPLOYED MODELS

Let’s assume the attacker is given access to providing input and reading the output of a deployed model
that has been poisoned, for instance, through an API. In that case, we propose the following approach
illustrated by Algorithm 3]to recover all pairs of triggers and their associated labels effortlessly.

First, we can use any clean image and transform it using all possible triggers. Next, we observe the
model output for the transformed images. It is important to note that the Flareon-poisoned models
are learned to provide higher priority to all triggers than clean image features. Therefore, with high
probability, each trigger corresponds to a unique target output. Finally, suppose the poisoned model
contains only |C| class outputs. In that case, any triggers sampled beyond the |C|-th one will have no
effect on the model, as the additional triggers are not used during training and will not be associated
with any class. Consequently, we expect the output to correspond to the original label of the clean
image.

3The source code of the PoC example can be found in the supplementary material, along with a pre-compiled
checkpoint. For safety precautions, please refrain from loading the checkpoint.
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This approach allows us to identify which trigger has been associated with the image class, making it
feasible to recover all pairs of trigger and their respective labels. In our tests with ResNet-18 models
trained on CIFAR-10 under Flareon, we recovered all 10 pairs of triggers and their associated labels
with 100% accuracy.

Algorithm 3 The algorithm for target-trigger pair recovery.

function RecoverTargetTrigger(Drec, f)

M {}
for 7 in T do
X ¢ T+(Drec) > Apply the current trigger 7 to the images in the dataset.
n <+ f(x) > Retrieve class names of the images with the API f.
¢ + bincount(n) > Count the number of name occurrences.
n <+ arg max(c) > Find the most frequent name by majority vote.
if ¢,, > sum(c)/2 then
M, <1 > Assign the trigger to the class name on majority consensus.
else
M,, < null > Otherwise assign null as the trigger 7 is likely unused by f.
end if
end for
return M

end function

B EXPERIMENTAL SETUP

B.1 DATASETS

CIFAR-10 consists of 60,000 32 x 32 resolution images, of which 50,000 images are the training set
and 10,000 are the test set. This dataset contains 10 classes, each with 6000 images [[17].

CelebA is a large face dataset containing 10,177 identities with 202,599 face images. Following
previous work [33]], we select three balanced attributes from the 40 attributes: heavy makeup, mouth
slightly, and smile, and combine the three attributes into 8§ classes. For training, the baseline uses no
augmentations on the images.

Tiny-ImageNet is an image classification dataset containing 200 categories, each category with
500 training images, 50 validation and 50 test images [21]]. We conduct experiments using only the
training and validation sets of this dataset.

Table Ol shows the details of these datasets.

Table 9: Overview of the datasets used in this paper.

Dataset || Inputsize Train-set Test-set Classes
CIFAR-10 32x32x3 50,000 10,000 10
CelebA 64 x 64 x3 162,770 19,962 8

64 x 64 x 3 100,000 10,000 200

tiny-ImageNet

B.2 MODELS AND HYPERPARAMETERS

We evaluate Flareon using ResNet-18, MobileNet-v2, and SENet-18. The optimizer for all experi-
ments uses SGD with a momentum of 0.9. Tables[I0]and [TT|provides the default hyperparameters
used to train Flareon models.

C TRIGGER VISUALIZATIONS

In this section, we show the visualization of triggers on CelebA and tiny-ImageNet. Figure [5|show
the clean samples and the samples after applying the motion-based triggers.
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Table 10: Default hyperparameters for constant Flareon triggers.

Dataset I CIFAR-10 CelebA tiny-ImageNet
Model learning rate cemodel 0.01 0.01 0.01

Model learning rate decay 1/2 every 30 epochs None 1/2 every 30 epochs
Weight decay Se-4 Se-4 Se-4

Epochs 350 50 400

Batch size 128 128 128

Table 11: Default hyperparameters for adaptive Flareon triggers.

Dataset I CIFAR-10 CelebA tiny-ImageNet
Model learning rate ctmodel 0.01 0.01 0.01

Model learning rate decay 1/2 every 30 epochs None 1/2 every 30 epochs
Trigger learning rate Ofareon 0.2 0.2 0.2

Weight decay Se-4 Se-4 Se-4
Epochs 400 80 600

Batch size 128 128 128

D ADDITIONAL RESULTS

Figure [6] shows that Flareon can preserve the backdoor ASRs with varying batch sizes and learning
rates. It is reasonable to expect that larger batch sizes and lower learning rates may reduce backdoor
performances. Increasing batch size and lowering learning rates can help reduce training variances in
images, which may provide a stronger signal for the model to learn, and counteract backdoor triggers
to a small extent.

We additionally compare the use of Uniform U/ (—s, s), Beta B(/3, 3), and Gaussian A/ (0, o) initial-
ized triggers in Table[T2] Note that the choice of distribution types does not bring significant impact to
the results. The rationale of choosing a Beta distribution is because it is nicely bounded within [—1, 1],
effectively limiting the perturbation of each pixel to be within its immediate neighbors. Besides, Beta
distributions encompass Uniform distribution, i.e., B(3, §) is Uniform when 8 = 1. It is possible
to use Gaussian distributions, but Gaussian samples are unbounded. Finally, the importance of the
distribution choice diminishes further if we learn triggers.

We visualize the confusion matrix and ASR matrix of the Flareon-trained CIFAR-10 model. The
confusion matrix in Figure[7a|shows that Flareon does not noticeably impact clean accuracies of all
labels. Moreover, the ASR matrix in Figure [/b|further shows the capabilities of all2all backdoors.
Namely, any images of any class can be attacked with any target-conditioned triggers with very high
success rates.

Table 12: Ablation on different distribution choices (Uniform U (—s, s), Beta B(3, ), and Gaussian
N(0,0)) on the trigger initialization of Flareon on CIFAR-10, sorted by L? distances in ascending
order. Note that Beta B(1, 1) is equivalent to the Uniform sampling within [—1, 1]. Beta distribution
with 3 = 2 has better ASR with lower L? changes. The importance of initialization diminishes if we
learn triggers. We rerun each setting 5 times with different seeds for statistical bounds.

Distribution ‘ L? distance (|) Clean accuracy (%)  Attack success rate (%)
Uniform (s = 0.70) 1.50 + 0.05 94.51 £0.32 92.66 £ 0.52
Uniform (s = 0.75) 1.61 £ 0.07 94.22 +£0.12 93.74 £+ 0.66
Beta (8 = 2) 1.67 + 0.07 94.29 +£0.14 97.25 £ 0.63
Uniform (s = 0.8) 1.77 £ 0.09 94.21 +£0.22 95.51 £ 1.04
Gaussian (o = 0.5) 1.84 + 0.06 94.73 £0.09 91.24 +£2.13
Beta (6 =1) 2.04 +0.12 94.41 £ 0.08 98.80 £+ 0.07
Gaussian (o = 0.75) 2.74 £0.11 94.13 £0.14 95.17 £ 0.76
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Figure 5: Comparing the test-time triggers of recent backdoor attacks (Patched [13]], Blended [3]],
Refool [27], LC [38]], and WaNet [29])).
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Figure 6: Varying batch sizes and learning rates.

E ADDITIONAL DEFENSE EXPERIMENTS

Fine-Pruning: In Figures[8a|to[8c| we test Fine-Pruning [23] on the Flareon-backdoored models,
and find backdoor neurons persist well against fine-pruning, as CAs can degrade at a faster rate than
ASRs w.rt. increasing channel sparsity.

STRIP: Figures 8d|to 8] shows that the entropy distribution of Flareon models is similar to that of
the clean model.

Neural Cleanse: Figure [8g| shows that neural cleanse is unable to detect backdoors generated
by Flareon with constant triggers. With adaptive trigger learning, learned triggers with smaller
perturbations are, however, showing higher anomaly (Figure 8h). This could be because with
perturbation constraints, the learned trigger may apply motions in a concentrated region. While it is
possible to introduce NC evasion loss objective [1]] to avoid detection, it incurs additional overhead
in model forward/backward passes. To defend against NC with Flareon, it is thus best to adopt
randomly initialized constant triggers.

Grad-CAM: Visualization tools such as Grad-CAM [36]] are helpful in providing visual explanations
of neural networks. Following [29], we also evaluate the behavior of backdoored models against
such tools. Pixel-wise triggers as used in Table ] are easily exposed due to its fixed trigger pattern

(Figure [9).
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(a) The confusion matrix. (b) The ASR matrix.

Figure 7: Class-wise statistics for the CIFAR-10 model. @) The confusion matrix between the model
prediction and ground-truth classes. (b) The ASR matrix shows the ASR values of attacking all test
images of any label with any target class. “Mean” reports the overall ASR of each target.

Smoothing-based Defenses: To demonstrate the reliability of Flareon, we apply Randomized
Smoothing [40] on Flareon with different trigger proportions p, as shown in the Table[T3] In addition,
we follow the setup of RAB [42], an ensemble-based randomized smoothing defense, and use the
official implementation for empirical robustness evaluation, which sets the number of sampled noise
vectors to N = 1000, and samples the smoothing noise from the Gaussian distribution A(0, 0.2) on
CIFAR-10. For fairness, we use the same CNN model and evaluation methodology in RAB. The
experimental results are in Table[T4] Flareon enjoys great success under smoothing-based defenses.

Table 13: Evaluation of randomized smoothing on Flareon.

Model p= 50 60 70 80 90

Clean accuracy (%) 9224 87.82 8538 7637 63.72
Attack success rate (%) 97.33 96.70 98.10 9942 99.16

CIFAR-10

Table 14: Evaluation of RAB on Flareon. “Vanilla” denotes training without RAB. Following [42]]
for evaluation, the empirical robust accuracy reports the proportion of malicious inputs that not only
attacks the vanilla model successfully, but also tricks RAB.

Model Benign Accuracy (%) ‘ Empirical Robust Accuracy under Flareon (%)
Vanilla RAB Vanilla. p=50% p=60% p=70% p=280%
CIFAR-I0 6171 5874 0 9.71 8.15 6.45 3.82

F VISUALIZATION

In this section, we visualize the training-phase augmentations introduced by Flareon on CIFAR-10,
CelebA and tiny-ImageNet. Figure [I0] shows the clean samples, the samples after RandAugment
and AutoAugment, and samples after applying triggers. Figure[I3|shows the clean samples and the
samples transformed with motion-based triggers of different intensities.
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Figure 8: @ @ Fine-pruning for the CIFAR-10, CelebA and tiny-ImageNet models. (@, EL |ﬂ) STRIP
defenses on the CIFAR-10, CelebA and tiny-ImageNet models. (g) Flareon evades detection by
Neural Cleanse (NC) on the CIFAR-10, CelebA and riny-ImageNet models. (h) Smaller perturbations
are easier to detect for Neural Cleanse (NC) on CIFAR-10.

G COMPUTATIONAL RESOURCES

Flareon uses up to 0.8, 0.08, or 2.2 GPU-hours per experiment run for CIFAR-10, CelebA, and
tiny-ImageNet datasets respectively on NVIDIA Tesla V100 GPUs. We estimate a total of 370
GPU-hours for all experiments presented in this paper.

H ETHICS STATEMENT & LIMITATIONS

We are aware that the method proposed in this paper may have the potential to be used by a malicious
party. However, instead of withholding knowledge, we believe the ethical way forward for the open-
source DL community towards understanding such risks is to raise awareness of such possibilities,
and provide open-source attacking means to advance research in defenses against such attacks.
Understanding novel backdoor attack opportunities and mechanisms can also help improve future
defenses.

We demonstrate the effectiveness of Flareon in datasets with up to |C| = 200 classes (tiny-ImageNet).

As the number of backdoors |C |2 increase quadratically w.rt. the number of classes, it may not scale
to models with a huge number of classes. We intend to study this in the future with larger scale
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Clean Attacked Clean Attacked

Figure 9: Grad-CAM heat maps and perturbed images comparisons between Flareon and pixel-wise
triggers.

RandAugment+ AutoAugment+

RandAugment

AutoAugment

Figure 10: Visualizations of the Flareon triggers on the CIFAR-10 dataset. “+" represents the
application of a motion-based trigger with 5 = 2.

datasets. We also note that similar to other attacks, currently Flareon can only backdoor image
classifier models. It is possible to extend this attack to other image tasks and is a potential direction
for future work.

Bound € <0.01 B=8 B=4 B=2 B=1

Clean

Figure 11: Visualizations of the Flareon triggers on the CelebA dataset.
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Clean

Figure 12: Visualizations of the Flareon triggers on the tiny-ImageNet dataset.

Clean Augmentation Flareon p=2

Flareon B=4 Flareon B=1

Flareon p=8

Class = Dog

Class = Frog

Class = Automobile

Class = Horse

Figure 13: Visualizations of the Flareon triggers on the CIFAR-10 dataset. It includes the clean
samples, augmentation samples and the Flareon attacks with 8 € {8, 4, 2, 1} respectively.
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I LICENSES

Table [15] lists the relevant resources used in this paper, and their respective licenses. Note that
the resources are all publicly available and open-source, and widely used in the machine learning
community, but some provided no licenses.

Table 15: Open-source resources used in this paper.

Name License URL
PyTorch BSD GitHub: pytorch/pytorch
Methods
WaNet [29] GPL 3.0 GitHub: VinAlIResearch/Warping-based_Backdoor_Attack-release
Neural Cleanse [41] MIT GitHub: bolunwang/backdoor
I-BAU [46] MIT GitHub: YiZeng623/I-BAU
Fine-Pruning [25] — GitHub: kangliucn/Fine-pruning-defense
STRIP [11] — GitHub: garrisongys/STRIP
RAB [42] — GitHub: Al-secure/Robustness-Against-Backdoor-Attacks
ABL [22] — GitHub: bboylyg/ABL
ANP [43] — GitHub: csdongxian/ANP_backdoor
Datasets
CIFAR-10 [17] — https://www.cs.toronto.edu/~kriz/cifar.html
CelebA [28] — http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
tiny-ImageNet [21] — http://cs231ln.stanford.edu/tiny-imagenet-200.z1ip
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