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Abstract

Black-box variational inference is a widely-used framework for Bayesian posterior1

inference, but in some cases suffers from high variance in gradient estimates, harm-2

ing accuracy and efficiency. This variance comes from two sources of randomness:3

Data subsampling and Monte Carlo sampling. Whereas existing control variates4

only address Monte Carlo noise and incremental gradient methods typically only5

address data subsampling, we propose a new "dual" control variate capable of6

jointly reducing variance from both sources of noise. We confirm that this leads to7

reduced variance and improved optimization in several real-world applications.8

1 Introduction9

Black-box variational inference (BBVI) [12, 22, 16, 2] has become a popular alternative to Markov10

Chain Monte Carlo (MCMC) methods. The idea is to posit a variational family and optimize it to be11

close to the posterior, using only "black-box" access to the target model (evaluations of the density12

or gradient). This is done by estimating a stochastic gradient of the KL-divergence and deploying13

it in stochastic optimization. A key advantage of this procedure is that it allows the use of data14

subsampling in each iteration, which can greatly speed-up optimization with large datasets.15

The optimization of BBVI is often described as a doubly-stochastic optimization problem [30, 27] in16

that BBVI’s gradient estimation involves two sources of randomness: Monte Carlo sampling from17

the variational posterior and data subsampling from the full dataset. Because of the doubly-stochastic18

nature, one common challenge for BBVI is the variance of the gradient estimates: If this is very high,19

it forces very small stepsizes, leading to slow optimization convergence [20, 3].20

Numerous works have been devoted to reducing the "Monte Carlo" noise that results from drawing21

samples from the current variational distribution [19, 25, 8, 9, 4]. These methods can typically be22

seen as creating an approximation of the objective for which the Monte Carlo noise can be integrated23

exactly, and using this to define a zero-mean random variable, i.e. a control variate, that is negatively24

correlated with the original gradient estimator. These methods can be used with subsampling by25

creating approximations for each datum. However, they are only able to reduce Monte Carlo noise26

for each datum—they do not reduce subsampling noise. This is critical, as subsampling noise is often27

the dominant source of gradient variance (Sec. 3).28

At the same time, for (non-BBVI) optimization problems with only subsampling noise, the opti-29

mization community has developed incremental gradient methods that "recycle" previous gradient30

evaluations [26, 28, 13, 6, 7], leading to faster convergence. These methods do not address Monte31

Carlo noise. In fact, due to the way these methods rely on efficiently maintaining running averages,32

they cannot typically be applied to doubly-stochastic problems at all.33

In this paper, we present a method that jointly controls Monte Carlo and subsampling noise in BBVI.34

The idea is to create approximations of the target for each datum where the Monte Carlo noise35
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can be integrated exactly. Then, we maintain running averages of the approximate gradients, with36

noise integrated, overcoming the issue of applying incremental gradient ideas to doubly-stochastic37

problems. The resulting method not only addresses both forms of noise but interactions between38

them as well. We demonstrate through a series of experiments with diagonal Gaussian variational39

inference on a range of probabilistic models that the method leads to lower variance and significantly40

faster convergence than existing methods.41

2 Background: Black-box variational inference42

Given a probabilistic model p(x, z) =
QN

n=1 p(xn | z)p(z) and observed data {x1, . . . , xN},43

variational inference’s goal is to find a tractable distribution qw(z) with parameters w to approximate44

the (often intractable) posterior p(z | x) over the latent variable z 2 R
d. BBVI achieves this by45

finding the set of parameters w that minimize the KL-divergence from qw(z) to p(z | x), which is46

equivalent to minimizing the negative Evidence Lower Bound (ELBO)47

f (w) = �E
n

E
qw(z)


N log p(xn | z) + log p(z)

�
�H(w), (1)

where H(w) denotes the entropy of qw.48

Since the inner expectation with respect to z is typically intractable, BBVI methods rely on stochastic49

optimization with unbiased gradient estimates. These gradient estimates are typically obtained using50

the score function method [33] or the reparameterization trick [15, 23, 30]. The latter is often the51

method of choice, as it usually seems to yield estimators with lower variance. The idea is to define a52

fixed base distribution s(✏) and a deterministic transformation Tw(✏) such that for ✏ ⇠ s, Tw(✏) is53

equal in distribution to qw. Then, the objective from Equation (1) can be re-written as54

f(w) = E
n
E
✏
f (w; n, ✏), where f(w; n, ✏) = �N log p(xn | Tw(✏))� log p(Tw(✏))�H(w),

(2)
and its gradient can be estimated "naively" by drawing a random n and ✏, and evaluating55

gnaive(w;n, ✏) = rf(w;n, ✏). (3)

BBVI has two advantages. First, since it only evaluates log p (and its gradient) at various points,56

it can be applied to a diverse range of models, including those with complex and non-conjugate57

likelihoods. Second, by subsampling data it can be applied to large datasets that might be impractical58

for traditional methods like MCMC [12, 16].59

3 Sources of gradient variance in BBVI60

Let Vn,✏[rf(w; n, ✏)] denote the variance1 of the naive estimator from Eq. 3. The two sources for61

this variance correspond to data subsampling (n) and Monte Carlo noise (✏). It is natural to ask how62

much variance each of these sources contributes. We study this by (numerically) integrating out each63

of these random variables individually and comparing the variances of the resulting estimators.64

Let f(w;n) = E✏ f(w;n, ✏) be the objective for a single datum n with Monte Carlo noise integrated65

out. This can be thought of as an estimator for datum n with a "perfect" control variate. Similarly,66

let f(w; ✏) = En f(w; n, ✏) be the objective for a fixed ✏ evaluated on the full dataset. In Fig. 1 we67

generate a single optimization trace using our gradient estimator (described below). Then, for each68

iteration, we estimate the variance of rf(w; n, ✏), rf(w; ✏), and rf(w; n) 2 using a large number69

of samples. In Table 1 we show the variance at the final iterate on a variety of datasets. (For large70

datasets, it is too expensive to compute the variance this way at each iteration.)71

Our empirical findings suggest that, despite the exact mix of the two sources being task dependent,72

subsampling noise is usually larger than MC noise. They also show the limits of reducing a single73

source of noise: No control variate applied to each datum could do better thanrf(w;n), while no74

incremental-gradient-type method could do better thanrf(w; ✏).75

1For a vector-valued random variable z, we let V[z] = tr C[z]
2Aligned with the experiments in Sec. 7, our evaluation of subsampling variance uses mini-batches, i.e.

VB [En2Brf(w; n)], where B are mini batches sampled without replacement from {1, . . . , N}.
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Figure 1: Gradient Variance Decomposition in Bayesian Logistic Regression using Mean-field

BBVI. The orange line denotes variance from data subsampling (n), and the green line denotes Monte
Carlo (MC) noise variance (✏). For Sonar, both noise sources exhibit similar scales with a batch size
of 5. However, for Australian, subsampling noise dominates. Regardless, our proposed gradient
estimator gdual (red line, Eq. (4)) mitigates subsampling noise and controls MC noise, aligning
closely with or below the green line (i.e. the variance without data subsampling) in both datasets.

Task Vn,✏[rf(w; n, ✏)] Vn[rf(w; n)] V✏[rf(w; ✏)]

Sonar 4.04⇥ 104 2.02⇥ 104 1.16⇥ 104

Australian 9.16⇥ 104 8.61⇥ 104 2.07⇥ 103

MNIST 4.21⇥ 108 3.21⇥ 108 1.75⇥ 104

PPCA 1.69⇥ 1010 1.68⇥ 1010 3.73⇥ 107

Tennis 9.96⇥ 107 9.59⇥ 107 8.56⇥ 104

Table 1: BBVI gradient variance decomposition across various tasks, computed at the optimization
endpoint. Using a batch size of 100, step size of 1e�2 for MNIST, PPCA, and Tennis, and a batch
size of 5, step size of 5e�4 for Sonar and Australian. We generally observe subsampling noise
Vn[rf(w; n)] surpassing MC noise V✏[rf(w; ✏)].

4 Dual Control Variate76

We now introduce the dual control variate, a new approach for controlling the variance of gradient77

estimators for BBVI. Control variates [24] can reduce the variance of a gradient estimator by adding78

a zero-mean random variable that is negatively correlated with the gradient estimator. Considering79

that the objective of BBVI is a function of both n and ✏, an ideal control variate should also be a80

function of these variables. We take two steps to construct such a control variate.81

1. Inspired by existing control variates for BBVI [19, 9], we create an approximation f̃(w;n, ✏)82

of the true objective f(w;n, ✏), designed so that the expectation E✏rf̃(w;n, ✏) can easily be83

computed for any datum n. A common strategy for this is a Taylor-appproximation—to replace84

f with a low-order polynomial. Then, if the base distribution s(✏) is simple, the expectation85

E✏[rf̃(w;n, ✏)] is often available in closed-form.86

2. Inspired by SAGA [6], we maintain a table W = {w1, . . . , wN} that stores the variational87

parameters at the last iteration each of the data points x1, · · · , xN were accessed. We also88

maintain a running average of gradient estimates evaluated at the stored parameters, denoted by89

M . Unlike SAGA, however, this running average is for the gradients of the approximation f̃ , with90

the Monte Carlo noise ✏ integrated out, i.e. M = En E✏rf̃(wn; n, ✏).91

Intuitively, as optimization nears the solution, the weights w tend to change slowly. This means92

that the entries wn in W will tend to become close to the current iterate w. Thus, if f̃ is a good93

approximation of the true objective, we can expectrf(w;n, ✏) to be close torf̃(wn;n, ✏), meaning94

the two will be strongly correlated. However, thanks to the running average M , the full expectation95

of rf̃(wn;n, ✏) is available in closed-form. This leads to our proposed gradient estimator96

gdual(w;n, ✏) = rf(w;n, ✏) + E
m
E
⌘
rf̃(wm;m,⌘)�rf̃(wn;n, ✏)

| {z }
zero mean control variate cdual(w;n,✏)

. (4)
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Algorithm 1 Black-box variational inference with the dual control variate.
Require: Learning rate �, variational family qw(z), target p(z, x)
Require: Estimator f(w;n, ✏) whose expectation over n and ✏ is the negative ELBO from qw and p (Eq. 2)
Require: Approximate estimator f̃(w;n, ✏) that has an expectation over ✏ in closed form

Initialize the parameter w0, the parameter table W = {w1, . . . , wN}
Initialize running mean M = E

m
E
⌘
rf̃(w0;m, ⌘) . Closed-form expectation over ⌘, explicit sum over m

for k = 1, 2, · · · do

Sample n and ✏

Extract the value of wn from the table W

Compute the base gradient g  rf(wk;n, ✏)

Compute the control variate c E
m
E
⌘
rf̃(wm;m, ⌘)�rf̃(wn;n, ✏) using E

m
E
⌘
rf̃(wm;m, ⌘) = M

Update the running mean M  M + 1
N

�
E
⌘
rf̃(wk;n, ⌘)� E

⌘
rf̃(wn;n, ⌘)

�
. Closed-form over ⌘

Update the table wn  wk

Update the parameter wk+1  wk � �(g + c). . Or use g + c in any stochastic optimization algorithm
end for

The running average M = En E✏rf̃(wn; n, ✏) can be cheaply maintained through optimization,97

since a single value wn changes per iteration and E✏rf̃(w;n, ✏) is known in closed form. The98

variance of the proposed gradient estimator is given by99

V[gdual] = V
✏,n

[rf(w; n, ✏)�rf̃(wn; n, ✏)]. (5)

Critically, this expression illustrates that the variance of gdual can be arbitrarily small, only limited by100

how close f̃ is to f and how close the stored values wn are to the current parameters w.101

We illustrate how this gradient estimator can be used for black-box variational inference in Alg. 1.102

The same idea could be applied more generally to doubly-stochastic objectives in other domains,103

using the more generic version of the algorithm given in Appendix. D.104

5 Variance reduction for stochastic optimization105

This section considers existing variance reduction techniques and how they compare to the proposed106

dual estimator.107

5.1 Monte Carlo sampling and approximation-based control variates108

Consider the variational objective from Eq. 2 where we sum over the full dataset in each iteration to109

define the objective f(w) = E✏ f(w; ✏). The gradient estimator obtained by sampling ✏ has been110

observed to sometimes have problematic variance. Previous work [21, 31, 11, 4] proposed to reduce111

this variance by constructing a (zero-mean) control variate c(w; ✏) and defining the new estimator112

g(w; ✏) = rf(w; ✏) + c(w; ✏). (6)

The hope is that c(w; ✏) ⇡ rf(w) � rf(w; ✏) approximates the noise of the original estimator,113

which can lead to large reductions in variance and thus more efficient and reliable inference.114

A general way to construct control variates involves using an approximation function f̃ ⇡ f for115

which the expectation E✏ f̃(w, ✏) is available in closed-form [19, 9]. Then, the control variate is116

defined as c(w; ✏) = E⌘rf̃(w;⌘)�rf̃(w; ✏), and the estimator from Eq. (6) becomes117

g(w; ✏) = rf(w; ✏) + E
⌘
rf̃(w;⌘)�rf̃(w; ✏). (7)

Intuitively, the better f̃ approximates f , the lower the variance of this estimator tends to be (for a118

perfect approximation, the variance is fully removed). A popular choice for f̃ involves a quadratic119

function, either learned [9] or obtained through a second order Taylor expansion [19], since their120

expectation under general Gaussian variational distributions is tractable.121
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In doubly-stochastic problems with objectives of the form f(w;n, ✏), data n is subsampled as well as122

✏. While the above control variate has most commonly been used without subsampling, it can also be123

used with subsampling, by developing an approximation f̃(w;n, ✏) to f(w;n, ✏) for each datum n.124

This leads to the control variate E⌘rf̃(w;n,⌘)�rf̃(w;n, ✏) and gradient estimator125

gcv(w;n, ✏) = rf(w;n, ✏) + E
⌘
rf̃(w;n,⌘)�rf̃(w;n, ✏)

| {z }
zero mean control variate ccv(w;n,✏)

. (8)

It is important to note that this control variate is unable to reduce variance coming from data126

subsampling. Even if f̃(w;n, ✏) were a perfect approximation there would still be gradient variance127

due to n being sampled randomly. This can be shown by noting that the variance of this estimator is128

given by (see Appendix. B.1 for a full derivation using the law of total variance)129

V[gcv] = E
n
V
✏
[rf(w;n, ✏)�rf̃(w; n, ✏)] + V

n
[rf(w; n)] � V

n
[rf(w; n)]. (9)

While the first term of the expression above can be made arbitrarily small in the ideal case of a perfect130

approximation f̃ ⇡ f , the second term is irreducible, regardless of the quality of the approximation131

used. Therefore, this approach cannot reduce subsampling variance. As shown in Fig. 2 and Table 1,132

subsampling variance is typically substantial, and often several orders of magnitude larger than133

Monte-Carlo variance. When this is true, this control variate, which is only able to reduce variance134

coming from Monte Carlo sampling, will have minimal effect on the overall gradient variance.135

5.2 Data subsampling and incremental gradient methods136

We now consider a stochastic optimization problem with objective f(w) = En f(w; n), where n is137

uniformly distributed on {1, . . . , N}, representing data indices, but no other stochasticity (i.e. no138

Monte Carlo sampling). While one could compute f or its gradient exactly, this is expensive when N139

is large. A popular alternative involves drawing a random n and using the estimator rf(w; n) with a140

stochastic optimization method, such as stochastic gradient descent. Alternatively, for such problems,141

incremental gradient methods [26, 28, 13, 7, 10] often lead to faster convergence.142

While details vary by algorithm, the basic idea of incremental gradient methods is to "recycle"143

previous gradient evaluations to reduce randomness. For example, SAGA [6] stores the parameters144

wn of the most recent iteration where f(w;n) was evaluated and takes a step as145

w  w � �
⇣
rf(w;n) + E

m
rf(wm;m)�rf(wn;n)

⌘
, (10)

where � is a step size and the expectation over m is tracked efficiently using a running average,146

meaning the cost per iteration is independent of N . The update rule above can be interpreted as using147

a control variate to reduce the variance of the naive estimatorrf(w;n) as148

g(w;n) = rf(w;n) + E
m
rf(wm;m)�rf(wn;n)

| {z }
zero mean control variate

. (11)

When wm ⇡ w, the first and last terms in Eq. (11) will approximately cancel, leading to a gradient149

estimator with significantly lower variance.150

We now consider a doubly-stochastic objective f(w;n, ✏). In principle, one might consider computing151

the estimator from Eq. (11) for each value of ✏, i.e. using the gradient estimator152

ginc(w;n, ✏) = rfn(w;n, ✏) + E
m
rf(wm;m, ✏)�rf(wn;n, ✏)

| {z }
zero mean control variate cinc(w;n,✏)

. (12)

This has two issues. First, the resulting method does not address Monte Carlo noise due to sampling153

✏. This can be shown by noting that the variance of this estimator is given by (see Appendix B.2)154

V[ginc] = E
✏
V
n
[rf(w; n, ✏)�rf(wn; n, ✏)] + V

✏
[rf(w; ✏)] � V

✏
[rf(w; ✏)]. (13)

Since the second term in the variance expression above is irreducible, the variance cannot be expected155

to go to zero, no matter how close all the stored vectors wn are to the current parameters. Intuitively,156

this approach cannot do better than simply evaluating the objective on the full dataset for a random ✏.157
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The second issue is more critical: ginc cannot be implemented efficiently. The value ofrf(wn;n, ✏)158

is dependent on ✏, which is resampled at each iteration. Therefore, it is not possible to efficiently159

maintain Emrf(wm;m, ✏) needed by Eq. (12) as a running average. In general, this can only160

be computed by looping over the full dataset in each iteration. While possible, this destroys the161

computational advantage of subsampling. For some models with special structure [32, 34] it is162

possible to efficiently maintain the needed running gradient. However, this can only be done in163

special cases with model-specific derivations, breaking the universality of BBVI.164

It may seem odd that ginc has these computational issues, while gdual—an estimator intended to165

reduce variance even further—does not. The fundamental reason is that the dual estimator only stores166

(approximate) gradients after integrating over the Monte Carlo variable ✏, so the needed running167

average is independent of ✏.168

5.3 Ensembles of control variate169

It is possible to combine multiple control variates. For example, [8] combined control variates that170

reduced Monte Carlo noise [19] with one that reduced subsampling noise [32] (for a special case171

where ginc is tractable). While this approach can be better than either control variate alone, it still does172

not reduce joint variance. To see this, consider a gradient estimator that uses a convex combination of173

the two above control variates. For any � 2 (0, 1) write174

gcombo(w;n, ✏) = rf(w;n, ✏) + �ccv(w;n, ✏) + (1� �)cinc(w;n, ✏)| {z }
ccombo(w;n,✏)

. (14)

It can be shown (Appendix B.3) that if both ccv and cinc are "perfect", that is, if f̃(w;n, ✏) =175

f(w;n, ✏) and wn = w for all n, then176

V[gcombo] = �2
V
n
[rf(w; n)] + (1� �)2 V

✏
[rf(w; ✏)]. (15)

Even in this idealized scenario, such an estimator cannot reduce variance to zero, because each of177

the individual control variates leaves one source of noise uncontrolled. The dual control variate178

overcomes this because it models interactions between ✏ and n.179

6 Related work180

Recent work proposed to approximate the optimal batch-dependent control variate for BBVI using181

a recognition network [4]. Similar to our work, they take into account the usage of subsampling182

when designing their variance reduction techniques for BBVI. However, like gcv, their control variate183

reduces the conditional variance of MC noise (conditioned on n) but is unable to reduce subsampling184

noise (like gcv).185

It is also worth discussing a special incremental gradient method called SMISO [1], designed186

for doubly-stochastic problems. Intuitively, SMISO uses exponential averaging to approximately187

marginalize out ✏, and then runs MISO/Finito [7, 18] (an incremental gradient method similar to188

SAGA) to control the subsampling noise. While the method is similar to running SGD with an189

incremental control variate, it is not obvious how to separate the control variate from the algorithm,190

meaning we cannot use the SMISO idea as a control variate to get a gradient estimator that can be191

used with other optimizers like Adam, we include a detailed discussion on this issue in Appendix. A.192

Nevertheless, we still include SMISO as one of our baselines.193

7 Experiments194

This section empirically demonstrates the effectiveness of the dual control variate for BBVI. We195

focus on mean-field Gaussian BBVI, where the variational posterior follows a multivariate Gaussian196

with diagonal covariance qw(z) = N (µ, diag(�2)), with parameters w = (µ, log(�)).197

The gradient estimators gcv(w;n, ✏) and gdual(w;n, ✏) require an approximation function with198

expectation over ✏ available in closed form. Inspired by previous work [19], we get an approximation199

for f (w;n, ✏) using a second order Taylor expansion for the negative total likelihood kn(z) =200
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Figure 2: Dual control variate helps reduce gradient variance. The naive gradient estimator
(Eq. (3)) is the baseline, while the cv estimator (Eq. (8)) controls the Monte Carlo noise, the inc
estimator (Eq. (12)) controls for subsampling noise, and the proposed dual estimator (Eq. (4)) controls
for both. The variance of cv and inc, as is shown in Eq. (9) and Eq. (13) are lower-bounded by the
dotted lines, while dual is capable of reducing the variance to significantly lower values, leading to
better and faster convergence (Fig. 3).

N log p(xn | z) + log p(z) around z0 = Tw(0)3, which yields201

f̃ (w;n, ✏) = kn(z0) + (Tw(✏)� z0)
>rkn(z0) +

1
2
(Tw(✏)� z0)

>r2kn(z0)(Tw(✏)� z0)
> +H(w), (16)

where we assume the entropy can be computed in closed-form. For a mean-field Gaussian variational202

distribution, the expected gradient of the approximation Eq. (16) can only be computed efficiently203

(via Hessian-vector products) with respect to the mean parameter µ but not for the scale parameter204

�, which means gcv(w;n, ✏) and gdual(w;n, ✏) can only be used as the gradient estimator for µ.205

Fortunately, controlling only the gradient variance on µ often means controlling most of the variance,206

as, with mean-field Gaussians, the total gradient variance is often dominated by variance from µ [9].207

7.1 Experiment setup208

We evaluate our methods by performing BBVI on a range of tasks: binary Bayesian logistic regression209

on two datasets, Sonar (number of samples N = 208, dimensionality D = 60) and Australian (N =210

690, D = 14); multi-class Bayesian logistic regression on MNIST [17] (N = 60000, D = 7840);211

probabilistic principal component analysis [29] (PPCA, N = 60000, D = 12544); and Bradley-212

Terry model [5] for tennis player ranking (Tennis, N = 169405, D = 5525). We give full model213

descriptions in Sec. 7.3.214

Baselines. We compare gdual (Eq. (4)) with gnaive (Eq. (3)) and gcv (Eq. (8)). For Sonar and215

Australian (small datasets) we include ginc (Eq. (12)) as well, which requires a full pass through the216

full dataset at each iteration. For larger-scale problems, ginc becomes intractable, so we use SMISO217

instead.218

Optimization details. We optimize using Adam [14] for the larger-scale MNIST, PPCA, and219

Tennis datasets and SGD without momentum for the small-scale Sonar and Australian dataset for220

transparency. The optimizer for SMISO is pre-determined by its algorithmic structure and cannot221

be changed. For all estimators, we perform a step-size search (see Appendix C) to ensure a fair222

comparison and use a single shared ✏ for all samples in the batch.223

Mini-batching. In practice, for efficient implementation on GPUs, we draw a mini-batch B of data at224

each iteration (reshuffling for each epoch). For inc, dual, and SMISO, we update multiple entities225

in the parameter table per iteration and adjust the running mean accordingly. For the Sonar and226

Australian datasets, due to their small sizes, we use |B| = 5. For other datasets we use |B| = 100.227

Evaluation metrics. We track the ELBO on the full dataset, explicitly computing En (summing228

over the full dataset) and approximating E✏ with 5000 Monte Carlo samples. We present ELBO229

vs. iterations plots for a single example learning rate as well as ELBO values for the best learning230

rate chosen retrospectively for each iteration. In addition, we present the final ELBO after training231

vs. step size at different iterations. For the Sonar and Australian datasets, given the small size, we232

include a detailed trace of gradient variance on µ across different estimators. This enables empirical233

validation of the lower bounds derived in Eq. (9) and Eq. (13).234

3We use z0 = stop_gradient (Tw(0)) so that the gradient does not backpropagate from z0 to w.
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Figure 3: With reduced variance (Fig. 2), the dual estimator provides better convergence at a

larger step size. On Sonar, Monte Carlo noise and subsampling noise are of similar scale, therefore
jointly controlling them shows better performance than methods that only control one source of noise.
On Australian, where the subsampling noise dominates, dual shows similar performance compared
with inc, which controls subsampling noise but cannot be efficiently computed (requires pass over
the full dataset at each iteration).

Initialization. The variational parameters are randomly initialized using a standard Gaussian and235

all results reported are averages over multiple independent trials: We run 10 trials for Sonar and236

Australian, and 5 for the larger scale problems due to resource constraint.237

7.2 Results238

The experiment results for Sonar and Australian are presented in Fig. 2 and Fig. 3. Both the inc and239

cv estimators have lower variance than the naive estimator, but the improvement varies by the dataset.240

The excellent performance of the (impractical) inc estimator on Australian shows the importance241

of reducing subsampling noise. Overall, the dual estimator has the lowest variance, which enables242

larger learning rates and thus faster optimization.243

Similar results can be observed on MNIST, PPCA, and Tennis in Fig. 4 (for these datasets inc244

is intractable, so we include SMISO as a baseline instead). Again, dual yields faster and better245

convergence than naive and cv. Whereas SMISO, which does not adopt momentum nor adaptive step246

size, suffers from slow convergence speed in that it has to utilize a small step size to prevent diverging247

during optimization. We provide comparisons of different estimators using SGD in Appendix. E.248

7.3 Model descriptions249

Binary/Multi-class Bayesian logistic regression. A standard logistic regression model with standard250

Gaussian prior.251

Probabilistic principal component analysis (PPCA). Given a centered dataset x1, . . . ,xN 2 R
D,252

PPCA [29] seeks to extract its principal axes W 2 R
D⇥K by assuming xn ⇠ N (0,WW> +253

diag(�2)). In our experiments, we employ a standard Gaussian prior on W and use BBVI to254

approximate the posterior over W . We then test PPCA on the standardized training set of MNIST255

with K = 16 and � = 1.256

Bradley Terry model (Tennis). This is a model used to rank players from pair-wise matches.257

Each player is represented by a score ✓i, and each score is assigned a standard Gaussian prior. The258

result of a match between two players is modeled by the inverse logit of their score difference259

yn ⇠ Bernoulli(logit�1(✓i � ✓j)) where yn = 1 denotes a win by player n. We subsample over260

matches and perform inference over the score of each player. We evaluate the model on men’s tennis261

matches log starting from 1960, which contains the results of 169405 matches among 5525 players.262
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Figure 4: On larger scale problems, the dual estimator leads to improved convergence. In
large-scale problems, cv shows little or no improvement upon naive while dual converges faster.
We suspect that most of the improvement in the dual estimator comes from reducing subsampling
variance. SMISO shows slow convergence. We suspect that is because it is an “SGD-type” algorithm
while all others use Adam. Note that the step size for SMISO is rescaled for visualization. The loss
shows periodic structure in Tennis, this happens because gradients have correlated noise that cancels
out at the end of each epoch.

Estimator Variance lower bound rf evals per iteration Wall-clock time per iteration

MNIST PPCA Tennis

naive Vn,✏[rf(w; n, ✏)] 1 10.4ms 12.8ms 10.2ms
cv Vn[rf(w; n)] 2 12.8ms 18.5ms 14.6ms
inc V✏[rf(w; ✏)] N+2 328ms 897ms 588ms
dual 0 3 17.6ms 31.2ms 29.6ms
Fullbatch-naive V✏[rf(w; ✏)] N 201ms 740ms 203ms
Fullbatch-ccv 0 2N 360ms 1606ms 246ms

Table 2: Variance, oracle complexity, and wall-clock time for different estimators. Notice that inc
is more expensive than Fullbatch-naive. We hypothesize this is because inc uses separate wn for
different data points, which is less efficient for parallelism.

7.4 Efficiency analysis263

We now study the computational cost of different estimators. In terms of the number of "oracle"264

evaluations (i.e. evaluations of f(w;n, ✏) or its gradient), the naive estimator is the most efficient,265

requiring a single oracle evaluation per iteration. The cv estimator requires one gradient and also266

one Hessian-vector product, while the dual estimator needs one gradient and two Hessian-vector267

products, one for the control variate and one for updating the running mean M .268

Additionally, Table 2 shows measured runtimes based on a JAX implementation on an Nvidia 2080ti269

GPU. All numbers are for a single optimization step, averaged over 200 steps. Overall, each iteration270

with the dual estimator is between 1.5 to 2.5 times slower than naive, and around 1.2 times slower271

than cv. Lastly, given that dual achieves a given performance in an order of magnitude fewer272

iterations (Figs. 3 and 4), it is the fastest in terms of wall-clock time. The exact wall-clock time v.s.273

ELBO results are presented in Appendix. F.274
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