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Abstract

Recent agentic language models increasingly need to interact directly with real-world envi-
ronments containing intertwined visual and textual information through raw camera pixels,
rather than relying on separate image and tokenized text processing, underscoring the ne-
cessity of a unified perception paradigm. To close this gap, we explore this idea through
Perceive Everything as Pixels (PEAP) and release PixelWorld, a benchmark that renders
natural-language, tabular, mathematical and diagrammatic inputs into a single pixel space.
Experiments show that PEAP attains competitive accuracy on semantic-understanding
tasks, indicating that a vision transformer can capture global textual semantics without
explicit tokens. In contrast, reasoning-intensive benchmarks (math and code) exhibit sharp
performance drops; however, Chain-of-Thought prompting partially mitigates this gap, hint-
ing that explicit reasoning traces compensate for the missing token structure. We also find
that when visual and textual information are closely integrated, representing everything as
pixels reduces preprocessing complexity and avoids misalignment issues that often arise in
separate pipelines. PixelWorld therefore serves as a practical benchmark for evaluating
unified vision–language models and supports broader exploration of PEAP across diverse
tasks.

1 Introduction

In recent years, large vision-language models (L-VLMs) (Wang et al., 2024a; OpenAI, 2025; Team, 2024)
have achieved impressive performance across a wide range of real-world tasks. These models typically process
visual inputs as pixels and textual inputs as discrete tokens—two distinct modalities that are handled sepa-
rately. However, such modality-specific processing leads to a fragmented understanding of multimodal inputs
and increases the complexity of engineering pipelines. This separation becomes particularly problematic in
modern agent-based systems such as Computer Agents (Zheng et al., 2024; Koh et al., 2024) and Embod-
ied Agents (Tellex et al., 2020; Driess et al., 2023), which are increasingly expected to perform complex
real-world tasks including navigation in physical environments (Elnoor et al., 2024), booking flights (Chen
et al., 2024a), and repairing software bugs on platforms like GitHub (Yang et al., 2024). These tasks involve
deeply intertwined visual and textual information, where decoupled tokenization and perception modules
can result in high preprocessing overhead (Xie et al., 2024; Koh et al., 2024) and degraded performance due
to information loss and layout inconsistencies (Dagan et al., 2024; Chai et al., 2024).

Due to these limitations, we propose a unified perception paradigm: Perceive Everything as Pixels (PEAP).
In this paradigm, both text and visual inputs are treated uniformly in the pixel space, allowing a vision-
language model (VLM) to jointly model multimodal inputs without separate tokenization or modality-
specific encoders. To identify the benefits and challenges of this paradigm, we introduce PixelWorld, a
comprehensive benchmark suite designed to assess how well VLMs perform on existing benchmarks under
the PEAP setting.

In PixelWorld, we select 10 representative commonly used benchmarks, covering a diverse range of modali-
ties and task scenarios. For each dataset, we construct both traditional token-based and pixel-based (PEAP)
input formats using image synthesis and OCR techniques (see Table 1). We then evaluate vision–language
models of varying scales, from Qwen2VL-2B to GPT-4o. Cross-modal evaluation in Section 3 yields three
overarching insights: Insight 1: in intrinsically multimodal settings such as website rendering, slide compre-
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Figure 1: PEAP framework: we investigate the possibility of perceive everything as pixels. This framework
aligns better with human perception reducing the need for excessive pre-processing. Evaluated on our bench-
mark PixelWorld, PEAP boosts performance on multimodal tasks (e.g., websites, slides, documents) but
struggles with complex, text-centric tasks (e.g., reasoning and coding). Larger models achieve better trans-
ferability between pixel- and token-based performance compared to smaller ones. We also observed that text
and images exhibit similar attention patterns, and reduced the overhead of model reasoning through patch
pruning by PEAP-Fast.

hension, and document understanding, PEAP eliminates OCR noise and consistently boosts performance;
Insight 2: pixelising inputs for reasoning intensive tasks such as math and code incurs marked accuracy
drops, yet the gap narrows as model capacity grows, suggesting scale is critical for cross-modal trans-
fer; Insight 3: larger models demonstrate superior instruction-following and long-context reasoning across
modalities, while smaller models struggle, emphasizing the need for scale-aware training under the pixel
paradigm.

To further understand these findings, we conduct additional analyses from three perspectives: (1) Represen-
tation analysis: We visualize the attention patterns of Qwen2VL-7B and find consistent global structures
between token- and pixel-based inputs, suggesting that vision encoders can serve as universal tokenizers.
(2) Efficiency optimization: We measure inference latency and show that while PEAP increases processing
time due to input size, our proposed PEAP-Fast algorithm prunes blank patches and achieves up to 80%
speedup without accuracy loss. (3) Prompt sensitivity: We explore input prompting strategies and find that
Chain-of-Thought (CoT) boosts performance on PEAP more effectively than standard input.

In summary, our contributions are as follows:

1. PixelWorld: We introduce a unified benchmark that converts text, structural, and multimodal datasets
into pixels, providing a direct stress test and diagnostic tool for PEAP. The dataset and evaluation code
are publicly released to foster a more holistic yardstick for future L-VLMs research and to ease multimodal
data collection.
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Dataset Name Size Task Modality Transfer Split

Text-only

GLUE Wang (2018) 59,879 Natural language understanding Synthesis test
SuperGLUE Sarlin et al. (2020) 19,294 Natural language understanding Synthesis test
MMLU-Pro Wang et al. (2024b) 12,032 Domain knowledge and reasoning Synthesis test
ARC Clark et al. (2018) 3,548 Science question answering Synthesis test
GSM8K Cobbe et al. (2021) 1,319 Math problem solving Synthesis test
MBPP Austin et al. (2021) 757 Programming tasks Synthesis test

Structured

TableBench Wu et al. (2024) 888 Table data understanding and analysis Synthesis test

Multimodal

MathVerse Zhang et al. (2025) 788 Math and visual reasoning Natural test
MMMU-Pro Yue et al. (2024) 1,730 Multimodal reasoning Synthesis test
SlidesVQA (Tanaka et al., 2023) 2,136 Multimodal question answering OCR test
Wiki-SS (Ma et al., 2024) 3,000 Multimodal retrieval question answering OCR train

Table 1: Overview of datasets categorized by modality, usage, size, and split. Modality Transfer means
the method to adopt the dataset into counterpart modality. For OCR, we adopt the result from the origin
datasets. For WikiSS-QA, since the positive document of the test set is not released, we subsample 3,000
training data points randomly to evaluate.

2. Task–scale insights: PEAP consistently improves layout-heavy or intrinsically multimodal tasks (e.g.,
website and document understanding) but degrades on reasoning- and code-centric benchmarks; the per-
formance gap diminishes as model size increases, highlighting scale as a key factor for transferability.

3. Efficiency & interpretability: We propose PEAP-Fast, which removes blank pixel patches to achieve
up to a 3× latency reduction without harming accuracy. Attention visualizations reveal similar global
patterns between pixel- and token-based models, suggesting that vision encoders can act as a universal
multimodal tokenizer.

2 Datasets

Several representative datasets covering different skill domains are selected, as shown in Table 1. We primarily
utilize the prompts provided by the datasets. If no prompts are available, we apply a default prompt.
By default, we employ Direct Prompting; however, for more complex and mathematical datasets such as
MBPP (Austin et al., 2021), MMLU-Pro (Wang et al., 2024b), and MathVerse (Zhang et al., 2025), we adopt
Chain-of-Thought (CoT) prompting to enhance performance. All evaluations are conducted in a zero-shot
manner to mitigate potential performance degradation caused by the sensitivity of instruction-tuned large
models to few-shot prompting.

To evaluate both Token-based and Pixel-based methods, we require paired Text-input and Image-input
prompts. We adopted modality transfer strategies to reduce reliance on the information modality provided
by existing datasets, as detailed in Table 1. For datasets categorized as Text-Only and Structured, all data is
originally in plain text format, necessitating image synthesis prior to evaluation. For Multimodal datasets,
textual content embedded in images is extracted using OCR, or the textual components provided by the
original datasets are directly utilized for evaluation. Notably, the MathVerse dataset (Zhang et al., 2025)
inherently includes a Text-Only modality, offering detailed textual descriptions of image-based information.

Image Data Synthesis For text-only and structured datasets, we developed an image data synthesis
pipeline to generate diverse image inputs for evaluation. Image widths were adaptively adjusted between
512 and 1024 pixels based on text length, with a fixed height of 256 pixels. Font sizes ranged from 15 to 25
points, and padding varied from 5 to 30 pixels. To enhance robustness, we applied various types of noise,
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Figure 2: The performance of text-only datasets. The comparison is made between text input and synthe-
sized image input. Most models demonstrate comparable performance on language understanding datasets
such as SuperGLUE, GLUE, and ARC. However, notable performance disparities emerge between text-based
input and synthesized image input on mathematical reasoning tasks (e.g., MMLU-Pro, GSM8K) and pro-
gramming tasks (e.g., MBPP). Phi-3.5-Vision exhibits consistently poor performance across all vision tasks,
primarily due to its insufficient instruction-following capabilities.

including radial, horizontal, vertical, and Multi-Gaussian noise, as well as high-frequency Gaussian noise to
simulate distortions commonly introduced by real-world cameras. For structured datasets, such as tables,
data was rendered as images using the Python package dataframe_image. Example inputs from different
tasks are provided in Appendix A.

3 Experiments

In this section, we will detail our baseline, metrics and models. The experimental results will be organized
by ‘Text Input’, ‘Structued Input’ and ‘Multimodal Input’.

Baseline We establish the baseline by using the same VLMs with text-only prompts. To ensure fairness,
we employ identical prompts and add the instruction “Please follow the instruction in the image” when
applying PEAP. This ensures that the VLMs can correctly process instructions embedded within images.
Ideally, the baseline and PEAP should yield equivalent performance. This comparison helps identify areas
for improvement in existing VLMs.

Metrics For question-answering tasks such as WikiSS-QA, SlidesVQA, and TableBench, we adopt ROUGE-
L as our primary metric, as it effectively captures the alignment between generated answers and ground
truth by measuring the longest common subsequence. For classification benchmarks, including MMLU-Pro,
GLUE, SuperGLUE, ARC, and MathVerse, we use accuracy, which directly reflects the model’s performance
in selecting correct options. For GLUE and SuperGLUE, we follow their standard evaluation protocols,
utilizing task-specific metrics such as Matthews correlation, F1 score, and Pearson correlation. For the
code generation task MBPP, we evaluate performance using the pass@1 rate, which measures whether the
generated code successfully passes all test cases. For the mathematical reasoning dataset GSM8K, we employ
exact match accuracy, as these problems require precise numerical answers. For the visualization subtask of
TableBench, following the original codebase, we treat it as a code generation task and evaluate the correctness
of the generated visualizations.

Model Selection To validate PixelWorld, we selected a diverse set of vision-language models (VLMs)
with varying scales to ensure the robustness and generalizability of our findings. It also allowed us to analyze
the behavior of models across different sizes. We evaluated several widely used vision-language models
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Figure 3: The performance of the structured dataset. We report all the subsets for the TableBench. In the
semi setting, questions were presented as text, while tables were rendered as synthetic images. We observed
that for tasks involving reasoning (numerical reasoning) and coding (visualization subset), synthetic images
yielded inferior performance compared to text. However, for tasks emphasizing semantic understanding, such
as data analysis and fact checking, synthetic images achieved performance comparable to or even surpassing
text. Additionally, we found that the semi approach often performed worse than either text or synthetic
images individually, providing insights into potential limitations and future directions for leveraging vision-
language models (VLMs).

(VLMs), including Qwen2VL-2B Wang et al. (2024a), Phi-3.5-3.2B Abdin et al. (2024), Qwen2VL-7B Wang
et al. (2024a), Gemini-Flash Team (2024), and GPT-4o OpenAI (2025).

3.1 Text Input

Figure 2 reports model accuracy on text-only datasets (e.g., ARC, MMLU-Pro, GLUE, GSM8K, SuperGLUE,
MBPP). Two major insights emerge:

Better Transferability in Larger Models Larger language models (e.g., GPT-4o, Gemini-Flash) exhibit
better transferability between text and image-based performance, while smaller models struggle with both
transferability and instruction following. For instance, on the ARC dataset, GPT-4o’s performance declines
by only 0.59 points when transitioning from text to synthetic images, whereas the smaller Qwen2-VL-2B
suffers a substantial 21.73-point drop (from approximately 68.61 to 46.88). This trend suggests that more
capable models preserve their reasoning abilities across modalities, while smaller models face greater difficulty.
Additionally, smaller models (e.g., Phi-3.5-vision) not only show weaker overall performance on standard
benchmarks but also struggle significantly when instructions are presented as images. Their performance
consistently lags behind that of larger models, particularly on tasks like MBPP. This supports Insight 3 in
Figure 1.

Performance Degradation with More Complex Tasks We observe significant drops on benchmarks
requiring advanced reasoning, such as mathematical, coding or domain-specific tasks. For example, when
moving from text to image inputs on the MMLU-Pro dataset, GPT-4o exhibits a drop of more than 25 points.
In contrast, on GLUE and SuperGLUE, the decline remains under 5 points. These findings indicate that
while existing large models achieve comparable performance between text and visual modalities on simpler
tasks, a gap still exists at a deeper level in visual-based and text-based understanding, demonstrating room
for improvement in modality adaptation training.
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Figure 4: The performance of the multimodal dataset (MMMU-Pro). We adopt the result reported by the
origin paper. We can observe that strong models perform better in PEAP.

3.2 Structured Input

Figure 3 summarizes model performance on four TableBench subsets: Fact Checking, Data Analysis, Nu-
merical Reasoning, and Visualization.

Reasoning Complexity Impacts Performance Fact Checking and Data Analysis show moderate per-
formance drops, as they rely on semantic understanding. In contrast, Numerical Reasoning and Visualiza-
tion—requiring more intricate reasoning and coding—exhibit larger declines when switching to synthetic
images. Combined with “Performance Degradation with More Complex Tasks” in Section 3.1, this supports
Insight 2 in Figure 1.

Smaller Performance Gaps with Structured Data Compared to text-only tasks, structured tasks show
smaller performance gaps between text and image inputs. Notably, Qwen2VL-2B even outperforms its text-
based results on Fact Checking, suggesting robust visual representations can aid semantic tasks in smaller
models.

Challenges with Mixed-Modality Inputs The “semi” format—where tables appear as images while
questions remain text-based—performs worse than either fully text-based or fully image-based formats. This
suggests that conventional VQA approaches, which process text and images using separate encoders, may
be more susceptible to performance bottlenecks. As multimodal scenarios become increasingly prevalent,
PEAP is expected to demonstrate superior performance compared to mixed-modality methods.

3.3 Multimodal Input

Figure 5 presents model performance on multimodal datasets, including text-only and vision-only subsets of
Mathverse and VQA tasks like SlidesVQA and WikiSS-QA. Results on MMMU-Pro (Figure 4) use reported
values from the original paper. Three key observations emerge:

Image Inputs Enhance Disambiguation Incorporating images improves performance by reducing am-
biguity compared to text-only benchmarks. In SlidesVQA, all models outperform their text-only baselines,
while in WikiSS-QA and MMLU-Pro, visual context provides clarifying information, leading to accuracy
gains in larger models. Combined with “Smaller Performance Gaps with Structured Data” in Section 3.2,
this supports Insight 1 in Figure 1.

Challenges in Complex Reasoning While multimodal inputs aid basic tasks, complex reasoning remains
a bottleneck. In Mathverse, visual cues help but fail to support multi-step logical deductions. Even Gemini-
Flash shows accuracy drops on intricate reasoning tasks. Additionally, WikiSS-QA poses challenges due to
its long-context nature. Smaller models struggle with PEAP, and GPT-4o underperforms in token-based
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Figure 5: The performance of the multimodal datasets (except MMMU-Pro). We compare text-only
and vision-only subsets in Mathverse, while SlidesVQA and WikiSS-QA are evaluated as VQA tasks. Larger
models perform better on text-based tasks with more modalities. GPT-4o tends to generate longer responses
in long-context QA, leading to performance degradation on WikiSS-QA.

Figure 6: Last Layer Attention Heatmap on Qwen2VL-7B between token-based (left) and pixel-based (right)
inference.

tasks, highlighting difficulties in processing extended contextual dependencies. This aligns with Sections 3.1
and 3.2.

Larger Models Benefit More from Multimodal Data Larger models gain more from multimodal
inputs. On SlidesVQA, Gemini_Flash improves by 34.24 points, compared to Qwen2-VL-7B’s 23.55-point
boost. This suggests that larger models, with more extensive prior knowledge and advanced architectures,
leverage multimodal data more effectively than smaller models.
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SuperGLUE Evaluation Results

Task Text PEAP PEAP-Fast

BoolQ 79.69% 82.11% 80.89%
CB 67.70% 40.77% 39.57%
COPA 93.00% 91.00% 86.00%
MultiRC 65.90% 61.28% 60.80%
ReCoRD 12.54% 5.94% 6.08%
RTE 82.31% 72.92% 77.26%
WiC 53.29% 55.80% 55.64%
WSC 63.46% 65.38% 59.62%

Final Score 64.74% 59.40% 58.23%

Table 2: Performance of Qwen2VL-7B on SuperGLUE dataset by Text, PEAP and PEAP-Fast. We can
observe the comparable performance between PEAP and PEAP-Fast.

Inference Time (s) Overhead (%)

Subset Text PEAP PEAP-Fast PEAP PEAP-Fast

BoolQ 369 1,381 906 274.80 145.55
CB 8 22 15 175.00 87.50
COPA 39 38 22 -2.56 -43.59
MultiRC 609 3,861 2,550 534.80 318.71
ReCoRD 7,016 19,012 14,288 171.01 103.72
RTE 68 117 92 72.06 35.29
WiC 69 224 157 224.64 127.54
WSC 11 36 27 227.27 145.45

Total 8,089 24,690 18,051 205.27 123.19

Table 3: Inference Time (s) of Qwen2VL-7B on SuperGLUE dataset with single A100 server by PEAP and
PEAP-Fast. We can observe a 82.08% overhead reduce on PEAP-Fast method. Overhead is calculated as
the percentage increase in time relative to the text method.

4 Discussion

4.1 Q1: Does PEAP have the same attention?

To investigate whether VLMs behaves similarly on textual and image inputs, we visualized the Average
Attention of Qwen2-VL-7B’s final layer using a heatmap (see Figure 6). Concretely, we examined its responses
on a SuperGLUE BoolQ example, comparing the model’s attention maps for text-based versus image-based
inference.

As shown in Figure 6, the model largely focuses on task-relevant elements such as the question prompt
(“will there be a sequel ...”), the key words in the passage (e.g., “film”, “starring”, “Alice”), and the required
answer format (“Answer: True/False”). This holds true across both textual and visual representations,
indicating Qwen2-VL-7B exhibits comparable attention patterns irrespective of input modality. However,
we also observe that certain blank patches in the image-based input can receive disproportionately high
attention. This suggests that while the visual encoder parallels the text encoder in many respects, it still
has redundancy.

4.2 Q2: How to make PEAP more efficient?

As a trade-off for generalization, image-based inference often requires significantly more computational re-
sources than text-based inference. This is partly due to the additional overhead from the ViT backbone
and higher redundancy in image tokens. To estimate the performance gap quantitatively, we conducted
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Metric Direct CoT Improve (CoT - Direct)

Text PEAP Text PEAP Text PEAP

BoolQ 79.88% 81.71% 81.13% 80.73% 1.25% -0.98%
CB 67.70% 34.78% 81.04% 59.57% 13.34% 24.79%
COPA 93.00% 87.00% 89.00% 83.00% -4.00% -4.00%
MultiRC 65.73% 62.28% 69.08% 60.41% 3.35% -1.87%
ReCoRD 12.50% 5.88% 6.37% 4.66% -6.13% -1.22%
RTE 82.31% 72.92% 83.03% 77.26% 0.72% 4.34%
WiC 52.82% 54.39% 54.39% 53.92% 1.57% -0.47%
WSC 65.38% 61.54% 57.69% 61.54% -7.69% 0.00%

Overall 64.92% 57.56% 65.22% 60.14% 0.30% 2.58%

Table 4: Comparison of Direct and CoT performance across Text and Image modalities, along with their
respective improvements (CoT - Direct), presented as percentages.

experiments on SuperGLUE (Table 2). The results show that inference latency for image-based inputs can
exceed text-based methods by 150% to 250%.

To reduce redundancy in visual inputs, we propose PEAP-Fast, which first identifies empty patches via a
simple variance-based threshold—if the pixel-value variance in a patch is lower than a preset threshold, that
patch is treated as empty and is pruned from all attention computations. Crucially, we preserve the original
positional embeddings for the remaining tokens, ensuring no loss of spatial layout perception. This strategy
aligns with how humans naturally focus on salient regions rather than blank spaces, thereby significantly
reducing context length without sacrificing structural information. Testing PEAP-Fast on SuperGLUE
reveals a minor accuracy drop of only 1.17% (Table 2). More importantly, the average overhead decreases
from 205.27% to 123.19%, yielding an 82.98% reduction (Table 3). These results demonstrate that removing
empty patches offers substantial computational savings while maintaining strong performance, making image-
based inference more practical for real-world deployments. Attention heatmap between PEAP and PEAP-
Fast are shown in Appendix B.

4.3 Q3: Is PEAP sensitive to the prompting method?

Massive experimental results in Section 3 show that the performance gap between image and text inputs still
exists, potentially due to domain gaps in datasets or insufficient instruction following in image inputs. To
address this, we applied CoT-style prompts to the SuperGLUE dataset to enhance cross-domain instruction
following (Table 4). Notably, Qwen2VL-7B showed significant improvements in tasks where image input
underperformed compared to text input, such as CB and RTE. Overall, CoT prompts improved image input
performance by 2.58%, surpassing the 0.3% improvement observed for text input.

5 Related Work

Multimodal Large Language Models and Benchmarks Recent progress in multimodal AI has led
to the development of models like GPT-4o OpenAI (2025), Gemini Team (2024), and Claude-3.5 Anthropic
(2025), which integrate vision-based training to improve instruction-following capabilities. Benchmarks
for these models have evolved from task-specific datasets, such as VQA Agrawal et al. (2016) and DocVQA
Mathew et al. (2021), to more comprehensive evaluations, including MMMU-Pro Yue et al. (2024), MMBench
Liu et al. (2024), and MegaBench Chen et al. (2024b). However, most current research focuses on the semantic
understanding of visual content, with only a few benchmarks—such as MathVerse Zhang et al. (2025) and
MMMU-Pro Yue et al. (2024)—addressing text recognition and comprehension within images. Our work
shifts the focus towards evaluating how well large language models understand language through visual input
compared to traditional token-based input.
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Screenshot LMs Recent studies have demonstrated that pretraining on synthetic screenshots can enable
vision-language models (VLMs) to achieve performance comparable to that of BERT on language modeling
tasks Lee et al. (2022); Rust et al. (2023); Gao et al. (2024). This approach allows models to better capture
text structures without relying on OCR-based methods. Furthermore, our analysis highlights a performance
gap between existing VLMs on vision-based tasks and their text-only counterparts, particularly in the ab-
sence of relevant pretraining. Interestingly, in certain scenarios, VLMs perform as well as or even better than
text-only models, underscoring the potential of this research direction. In the context of document retrieval,
recent advancements Faysse et al. (2024); Ma et al. (2024) have shown that large-scale pretraining on screen-
shots can outperform traditional OCR-based methods, further reinforcing the advantages of vision-language
pretraining.

Language Tokenization Tokenization methods, such as Byte Pair Encoding (BPE) Shibata et al. (1999);
Sennrich et al. (2016), are widely used in language modeling, but recent studies suggest that they may not
always be optimal. For instance, MegaByte Yu et al. (2023) demonstrated that fixed-length tokenization can
improve both computational efficiency and cross-modal capabilities. Similarly, BLT Pagnoni et al. (2024)
proposed entropy-based tokenization, while LCM team et al. (2024) emphasized the benefits of processing
higher-level semantic concepts rather than individual tokens. Inspired by these approaches, we explore
whether adaptive image patches can effectively infer textual meaning. At a higher level, we investigate the
unification of text and image inputs into a shared representation space, enabling reasoning through abstract
semantic concepts rather than traditional token-based methods.

6 Conclusion

We present PixelWorld, a benchmark that renders text, tables, code, and images as pixels, enabling direct
evaluation of the Perceive Everything as Pixels (PEAP) paradigm. Experiments yield three takeaways:
(1) Semantic understanding. PEAP matches token baselines on sentence-/paragraph-level tasks, while
its patch-level attention closely mirrors token attention, pointing toward “vision-as-token” models. (2)
Reasoning. Accuracy drops on math, logic, and program-repair benchmarks; Chain-of-Thought prompts
narrow but do not eliminate this gap. (3) Multimodal tasks. Pixel input outperforms OCR pipelines
on websites, slides, and documents by preserving spatial context and avoiding recognition errors. To curb
the higher latency of pixel inputs, we introduce PEAP-Fast, which prunes blank patches and accelerates
inference by up to 3× without hurting accuracy. Taken together, these findings underscore both the promise
and trade-offs of PEAP. PixelWorld thus serves as a practical stress test and diagnostic benchmark,
encouraging the community to adopt PEAP as a holistic yardstick while guiding research on efficiency
improvements and on closing the reasoning gap in next-generation multimodal agents.
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Figure 7: An example input of GSM8K dataset, using Direct Prompt.
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A Example Input

Figure 7 and Figure 8 gives two examples about the vision input.
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Figure 8: An example input of TableBench dataset, using Direct Prompt.

B Attention Heatmap before and after ImageFast Method

Figure 9 presents a heatmap comparison between PEAP and PEAP-Fast. PEAP-Fast effectively reduces
redundant patches while preserving attention on key regions.
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Figure 9: Last Layer Attention Heatmap on Qwen2VL-7B between PEAP (left) and PEAP-Fast (right).
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