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Abstract

Representational learning forms the backbone of most deep learning ap-
plications, and the value of a learned representation is intimately tied to
its information content regarding different factors of variation. Finding
good representations depends on the nature of supervision and the learning
algorithm. We propose a novel algorithm that relies on a weak form of
supervision where the data is partitioned into sets according to certain
inactive factors of variation. Our key insight is that by seeking approximate
correspondence between elements of different sets, we learn strong represen-
tations that exclude the inactive factors of variation and isolate the active
factors which vary within all sets. Importantly, the information isolated
is complementary to that of most other contrastive learning approaches,
which isolate the inactive factors of variation. We demonstrate that the
method can work in a semi-supervised scenario, and that a portion of the
unsupervised data can belong to a different domain entirely. Further control
over the content of the learned representations is possible by folding in
data augmentation to suppress nuisance factors. We outperform competing
baselines on the challenging problem of synthetic-to-real object pose transfer.

1 Introduction
A good representation is just as much about what it excludes as what it includes, in terms
of the factors of variation across a dataset (Tian et al., 2020b). Control over the information
content of learned representations depends on the nature of available supervision and the
algorithm used to leverage it. For example, complete supervision of the desired factors
of variation provides maximum flexibility for fully disentangled representations, as it is
straightforward to obtain an interpretable mapping between elements and the factors of
variation (Bengio et al., 2013; Higgins et al., 2018). However, such supervision is unrealistic
for most tasks since many common factors of variation in image data, such as 3D pose
or lighting, are difficult to annotate at scale in real-world settings. On the other hand,
unsupervised learning makes the fewest limiting assumptions about the data but does not
allow control over the discovered factors. Neither extreme, fully supervised or unsupervised,
is practical for many real-world tasks.

As an alternative, we consider only weak supervision in the form of set membership (Kulkarni
et al., 2015; Denton & Birodkar, 2017). Specifically, set supervision assumes that we can
access subsets of training data within which some inactive factors of variation have fixed
values and the remaining active factors freely vary. In many complex regression tasks that
are beyond the scope of categorical classification, set supervision serves as a more flexible
framework for operating on factors of variation across a dataset.

In the context of set supervision, existing methods can learn representations which isolate
the inactive factors (Chen et al., 2020b; von Kügelgen et al., 2021). Consider the task of
isolating 3D pose from images of cars. If the images could be grouped by pose (i.e. the
inactive factor in each set is pose), then the training objective is straightforward – since each
set contains images with identical poses, these images should be nearby in the representation
space. However, in this scenario and more generally, this variant of set supervision is often
prohibitive to obtain – in our example it requires identifying images of different cars from
exactly the same viewpoint.
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Figure 1: Approximate bijective correspondence (ABC). Leveraging weak set supervision,
ABC isolates factors of variation which actively vary across sets. Establishing one-to-one corre-
spondence between sets of inputs requires isolating factors that commonly vary within each set and
suppressing the factors which do not. For example, the images in set A (left) actively vary by only
the orientation of the rendered car. We claim that if one-to-one correspondence can be found between
A and B, for all such set A and B pairs, it must leverage orientation. We find this to be true even
when only one of the sets in each mini-batch is set-supervised, as above. Importantly, this allows the
incorporation of out-of-domain data with no supervision at all, such as the images of real cars in B.
By training a neural network with a soft correspondence loss in representation space (middle), the
learned representations (right) isolate the active factor of variation.

A more readily available form of set supervision is where the desired factor is active in each
set. Continuing the example, such supervision can easily be obtained by simply imaging each
car from multiple viewpoints (set A in Figure 1). This does not require correspondence in
viewpoints across object instances, nor any pose values attached to the images. However, this
supervision makes learning much harder, as it no longer provides images which correspond
in the desired factor.

In this work, our challenge is to isolate the active factors of variation given set supervision.
We propose a novel approach, approximate bijective correspondence (ABC), based on finding
correspondence between sets. The process of finding correspondences encourages isolating
the active factors: to consistently match across sets, learned representations must ignore
invariant information within a set (inactive factors) and focus on active factors common
to both sets. Because the goal of learning is the active factors of variation common to all
sets, a powerful consequence is that we are able to incorporate sets with extra active factors,
including wholly unsupervised and even out-of-domain data (e.g., set B in Figure 1). For
example, ABC-learned embeddings trained on sets of images as in Figure 1 isolate orientation,
the common active factor across every pair of sets during training.

In our approach, corresponding points between sets are formed with a differentiable form of
nearest neighbors (Goldberger et al., 2004; Movshovitz-Attias et al., 2017; Rocco et al., 2018;
Snell et al., 2017; Dwibedi et al., 2019), and serve as positive pairs for use in a standard
InfoNCE loss (van den Oord et al., 2019). We posit that the same desirable properties of
learned representations that optimize InfoNCE on explicitly provided positive pairs – namely,
alignment, where differences within positive pairs are ignored, and uniformity, where maximal
remaining information is retained (Wang & Isola, 2020; von Kügelgen et al., 2021) – can
be utilized to guide a network to find useful correspondences on its own. We find this to
be true, with the important consequence that the information isolated is complementary to
what would result from using the set-supervision directly as positive pairs.

The highlights of this work are the following: We demonstrate the strengths and limitations
of ABC, and specify the defining properties of the learned representations. We quantitatively
define the factor isolation in ABC-learned representations through mutual information
measurements, leveraging complete knowledge of the generative factors in the synthetic
Shapes3D dataset (Burgess & Kim, 2018) (Section 4.1). We connect properties of set
supervision with their effects on the representations – namely that there is more freedom in
the formation of sets than previously understood, and that larger sets yield more informative
representations. ABC requires orders of magnitude fewer training steps than related methods
to isolate handwriting style from digit identity (Section 4.2). Finally, ABC accomplishes the
challenging real-world task of 3D object pose estimation (Section 4.3), through a training

2



Under review as a conference paper at ICLR 2022

process that combines set-supervised synthetic data and unsupervised real images to generalize
pose information across the category level and the synthetic-to-real domain gap.

2 Related work
Isolating factors of variation. Recent work (Locatello et al., 2019) has shown unsupervised
disentanglement of latent factors to be impossible without incorporating some sort of
supervision or inductive bias, spurring research into the best that can be achieved with
different forms of supervision (Shu et al., 2020; von Kügelgen et al., 2021). A more realistic
goal is the isolation of a subset of factors of variation, where learned representations are
informative with respect to those factors of variation and not others, with no guarantees
about the structure of these factors in latent space.

Set supervision. Often, data is readily grouped into sets according to certain factors
of variation, without requiring explicit annotation on the factors. Generally, the methods
harnessing information present in such groupings either (i) learn all factors and partition the
representation such that one part is invariant across sets and the remaining part captures
the intra-set (active) variation (Kulkarni et al., 2015; Mathieu et al., 2016; Cohen & Welling,
2015; Sanchez et al., 2020; Jha et al., 2018; Bouchacourt et al., 2018), or (ii) learn the factors
which are invariant (inactive) across sets (Chen et al., 2020b; Tian et al., 2020b;a). The
methods of (i) almost always employ generative models, with the exception of Sanchez et al.
(2020), which grants it 6× faster training over the VAE-based approach of Jha et al. (2018);
the downside is Sanchez et al. (2020) require seven networks and a two-stage, adversarial
training process to learn first the inactive and then the active partitions of the representation.
The methods of (ii) generally create subsets of data via augmentation (Chen et al., 2020b; He
et al., 2020) or pretraining tasks (Misra & van der Maaten, 2019), or leverage multiple views
of the same scene (Sermanet et al., 2018; Tian et al., 2020a), where semantic information is
taken to be invariant across sets and is the target of training. By contrast, ABC directly
learns active factors of variation across sets, offering a faster and simpler alternative to
methods in (i) and tackling problems which are currently unassailable by methods in (ii).

Videos, images, and point clouds are common forms of data which easily offer set supervision.
Approaches to find correspondence between frames of related videos, first using a discrete
form of cycle consistency (Aytar et al., 2018) and later a differentiable form Dwibedi et al.
(2019), helped inspire this work. The latter relied on a soft nearest neighbor mapping, as
has been used previously (Goldberger et al., 2004; Movshovitz-Attias et al., 2017; Rocco
et al., 2018; Snell et al., 2017) and which our method uses as the first step to correspondence.
Cycle consistency has also been used to establish point correspondences in images (Zhou
et al., 2016; Oron et al., 2016) and 3D point clouds (Yang et al., 2020; Navaneet et al., 2020;
Neverova et al., 2021). In contrast to methods focusing on specific applications such as action
progression in videos (Dwibedi et al., 2019; Haresh et al., 2021) or robotics simulations (Zhang
et al., 2021), we present a general approach applicable to a larger class of problems.

Characterization of learned representations. Fundamental questions around properties
of good representations (Bengio et al., 2013; Tian et al., 2020b) and of disentanglement (Hig-
gins et al., 2018; Locatello et al., 2019) remain actively debated. We employ MINE (Belghazi
et al., 2018) to estimate the information content of known generative factors in ABC-learned
representations, and corroborate the results using a classification task in Appendix A.

Most commonly, the quality of representations learned without explicit supervision is charac-
terized by performance on a downstream task, for which we use the challenging real-world
problem of 3D object pose estimation. Several pose estimation methods use pose-aware
representations to tackle challenges like object symmetries; evaluation at test time then
employs a codebook of images with known pose (Sundermeyer et al., 2018; 2020; Corona
et al., 2018; Okorn et al., 2020). We probe the effectiveness of ABC at isolating pose when it
is the active factor of variation, by training without annotations and then using a codebook
constructed from unseen, out-of-domain images to evaluate.

3 Algorithm
ABC uses set-supervised data, such that set membership is defined based on certain inactive
factors; e.g., the data is grouped into sets such that all images in a set have the same object
class, making the object class as the inactive factor. The basic idea of ABC is to consider
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minibatches with two sets of images, establish approximate bijective correspondences among
their elements through the learned representations, and use the correspondences as positive
pairs in the InfoNCE loss (van den Oord et al., 2019) to learn the visual representations.

To illustrate this better, let us consider the pose isolation task introduced earlier. Let us
assume that a latent description consists of the make and model of the car, all specifics
relating to color and structure, and the pose from which the image is captured. If we have
set-supervised data where the car instance specifics are the inactive factors within each set
and the only active factor is pose (e.g., Set A in Figure 1), ABC will pair elements across two
sets such that pose is invariant for each pair. By training with these as positive pairs in the
InfoNCE loss, the embeddings learned through ABC would isolate the active factor of pose.

Setup and notation: We follow the setup and notation from von Kügelgen et al. (2021),
that uses a latent variable model for the theoretical modeling of self-supervised learning
methods. Let us denote the input images as x from the observation space X and an associated
latent code as z from the representational space Z. As per the latent variable model, the
observations can be generated from the latent code using an invertible function x = f(z),
with z ∼ pz. Without loss of generality, we assume that the the latent vector z can be
partitioned into inactive zi and active za components such that all elements within each set
share identical zi. Let φ(x) : X → RE be the function that maps the input vector to an
embedding u in E-dimensional space. Our goal is to learn this function so that u may be
informative with respect to one of the partitions of the true underlying latent code z.

Mini-batch construction: We either leverage natural groupings of images or curate images
into sets by controlling for certain factors of variation during mini-batch construction, where
each mini-batch consists of two such sets. For example, in Figure 2, we show example sets with
different active and inactive factors of variation curated from the Shapes3D dataset (Burgess
& Kim, 2018). Values for the inactive factors are randomly sampled and held fixed for each
set, with the active factors free to vary (Figure 2a,b).

a b c

Figure 2: Set supervision scenarios amenable to ABC. (a) In the simple case with five
inactive factors for each set, there is only one factor to isolate: the object hue. (b) The sets can be
much less constrained, here defined by only a single inactive factor. (c) One set may be entirely
unconstrained, with no inactive factors at all. In all three scenarios, ABC isolates factors which
actively vary in both sets.

Approach: Let the sets for a particular mini-batch be given by A = {a1, . . . , an} and
B = {b1, . . . , bm}, respectively. Let us denote the associated embeddings as U = {u1, . . . , un}
and V = {v1, . . . , vm}, where ui = φ(ai, w) and vi = φ(bi, w). Functionally, we parameterize
φ with the same neural network (with weights w) for both A and B. Let s(u, v) denote
a similarity metric between points in embedding space, with s(u, v) = s(v, u). To create
an end-to-end differentiable loss, we use the soft nearest neighbor (Goldberger et al., 2004;
Movshovitz-Attias et al., 2017; Rocco et al., 2018; Snell et al., 2017; Dwibedi et al., 2019).

Definition 1 (Soft nearest neighbor) Given a point u and a set of points V =
{v1, . . . , vm}, the soft nearest neighbor of u in the set V is given by ũ =

∑m
j=1 αjvj, where

αj =
exp(s(ui,vj)/τ)∑m

k=1 exp(s(ui,vk)/τ)
and τ is a temperature parameter.

We first compute the soft nearest neighbor for each ui ∈ U as ũi =
∑m
j=1 αjvj . A soft

bijective correspondence between the two sets is quantified through an InfoNCE loss (van den
Oord et al., 2019), averaged over every element in each of the sets.
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Figure 3: Isolation of active factors, Shapes3D. (a) Trained with wall hue as the only
inactive factor, information about object and floor hue is visually apparent in the first two principal
components (> 0.98 of total variance) of the R64 embeddings. Each scatter plot displays the same
256 embeddings, colored according to each generative factor. (b) With all hue factors inactive, the
representations become informative about the geometric factors. (c,d) For the networks in (a,b),
respectively, we estimate the mutual information I(U ;G) between the representations and each of the
generative factors using MINE (Belghazi et al., 2018). We add Gaussian noise to the representations
to probe information content over different length scales in representation space. When σ equals the
length scale of the loss (vertical dotted line), information about inactive factors (dashed) disappears.

Definition 2 (Correspondence loss) The correspondence loss from U to V is given by
L(U ,V) = − 1

n

∑n
i log

exp(s(ui,ũi)/τ)∑n
j exp(s(uj ,ũi)/τ)

. The full loss is the sum, L = L(U ,V) + L(V,U).

The temperature parameter τ sets a length scale in embedding space as the natural units
for the loss. It is unimportant when using an unbounded similarity metric such as negative
Euclidean distance, in which case a larger value of τ will lead to embeddings which are
spaced further apart. By contrast, a metric like cosine similarity benefits from tuning τ .

ABC versus contrastive learning: While both ABC and self-supervised learning (SSL)
methods such as SimCLR (Chen et al., 2020b) use the InfoNCE loss on positive and negative
pairs, a fundamental difference arises from how one acquires the positive and negative pairs.
In SSL the positive pairs are explicitly obtained through augmentations known to only affect
certain ‘style’ variables, leaving ‘content’ invariant. In ABC, the positive pairs are unknown
a priori and obtained through matching or finding nearby embeddings that possess similar
values for some of the active factors. In many of our experiments, the inactive factors relate
to content and active factors relate to style. However, ABC does not learn representations
that isolate content or class information; rather, ABC isolates the active factors, i.e., style.

Double augmentation: We introduce a modification to the correspondence loss in order to
suppress factors of variation which we can augment (e.g., translation and recoloring). With
inspiration from (Chen et al., 2020b), we assume a group of transforms H is known from prior
knowledge of the data, which leaves desired factors of variation unchanged (Higgins et al.,
2018; Chen et al., 2020a). We randomly sample two transforms h ∈ H per image per training
step. Let u(1)i = φ(h(1)ai, w) and similarly for u(2)i . Then the correspondence loss becomes

L(U ,V) = − 1
n

∑n
i log

exp(s(u(1)
i ,ũ

(2)
i )/τ)∑n

j exp(s(u(1)
j ,ũ

(2)
i )/τ)

. In this manner we are able to exclude both the

inactive factors across sets and augmentable factors of variation, granting more control over
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Figure 4: Influence of different aspects of set supervision. We measure the information
content of the learned representations U as in Figure 3, with added noise of magnitude σ = τ . Error
bars display the standard deviation across ten random seeds. The inactive factors during training are
indicated by shading. (a-c) We find the isolation of active factors to be unchanged when training
with one of the two sets unsupervised (ABC-X). (d) Increasing the set size isolates more of the
active factors of variation because finding correspondence requires more discerning power.

the nature of the learned representations. This can help prevent the correspondence task
from being solved via ‘shortcuts’ through easy factors of variation (Tian et al., 2020b).

Incorporation of unsupervised data: Only the active factors of variation common to both
sets are useful for establishing correspondence. One set’s inactive factor of variation cannot
help distinguish between elements of that set and therefore cannot help form correspondence
with the elements of another, even if the factor actively varies in the second set. This has the
powerful, previously unknown consequence (to our knowledge) that ABC can work just as
well when one of the sets in each mini-batch is completely unconstrained, as in Figure 2c and
Figure 1. Wholly unsupervised, and even out-of-domain data with additional active factors
due to domain differences, can be used in training. We denote this version of the method
ABC-Extraneous, or ABC-X, for utilizing data with extraneous active factors of variation.

Evaluation: We estimate the mutual information I(U ;G) between representations U and
known latent factors G using mutual information neural estimation (MINE) (Belghazi et al.,
2018). In general, deterministic networks fully preserve information between input and
output, so noise is added for a meaningful quantity I(U + η;G), with η ∼ N (0, σ2) (Saxe
et al., 2019; Elad et al., 2019). This has the effect of excluding information at length scales
smaller than σ from the information measurement. In the case where s(u, v) is negative
Euclidean distance, τ serves as a natural length scale of the correspondence loss so we use
σ = τ when not sweeping over length scales, as in Fig. 3c,d (further discussion in App. A).

4 Experiments
We probe the method in three arenas. In the first, we leverage complete knowledge of
generative factors in the artificial Shapes3D dataset (Burgess & Kim, 2018), in order to 1)
experiment with different versions of set supervision, and 2) measure the information content
of the learned representations and precisely illustrate the resultant factor isolation. Next, we
demonstrate one significant practical advantage of ABC – speed – by isolating style from
class of MNIST (LeCun & Cortes, 1998) digits. Finally, we apply ABC on a challenging pose
estimation task, in both the real and synthetic domain, in the case where there are no pose
annotations during training. Implementation details can be found in Appendix G.

4.1 Systematic Evaluations on Shapes3D
Images from the Shapes3D dataset consist of a geometric primitive with a floor and back-
ground wall (See Figure 2). There are six factors of variation in the dataset: three color
factors (wall, object and floor hue) and three geometric factors (scale, shape and orientation).

Two examples of ABC-trained embeddings are shown in Figure 3, with the information
content about active factors shown qualitatively (Fig. 3a,b) and quantitatively (Fig. 3c,d).

6



Under review as a conference paper at ICLR 2022

Average information measurements for many different training scenarios, over ten runs each,
are shown in Figure 4. We discuss noteworthy aspects of ABC-trained representations below.

Information about active factors stored at larger length scales: In Figure 3c,d, information
about the inactive factors of variation is suppressed and information about a subset of active
factors is isolated over length scales relevant to the correspondence loss (σ ∼ τ). Factor
isolation by ABC is therefore a separation of length scales, which makes the learned represen-
tations well-suited for tasks involving lookup (Section 4.3): the similarity of representations
is governed most by the large length scales over which the active factors are informative.

Inactive factors always suppressed, subset of active factors isolated: In Figure 4 information
with respect to the inactive factors in each set is always suppressed, though not all active
factors are isolated. Only when all three hue factors are inactive (Fig. 4c) are the geometric
factors present in the learned representations, seemingly because the ‘easy’ hue factors
have all been suppressed. A similar differentiation between factors was noted in Tian et al.
(2020b), where the authors suggested one factor of variation offered a “shortcut” for solving
the contrastive learning task so the network could ignore a different factor.

a b

Figure 5: Fast style isolation on MNIST. After training ABC with set supervision
where digit class is the inactive factor, we evaluate the isolation of the factors of variation
relating to style. (a) We display embeddings of the digit 9, held out during training to test
the isolation of class-independent style information. The embeddings fan out by thickness
and slant. (b) We perform retrieval on the test set using the boxed images along the diagonal
as queries; the other images in each row are the nearest embeddings for each digit class.
ABC retrieves images closer in style, more than an order of magnitude faster than the
discriminative approach of Sanchez et al. (2020) and the VAE-approach of Jha et al. (2018).

Semi-supervised is just as effective: Correspondence is found through active factors common
to both sets, which means if one set consistently has additional active factors, they will not
be useful for optimizing the ABC loss. In semi-supervised scenarios with one set-supervised
set per mini-batch and the other consisting of random samples over the entire dataset (e.g.,
Fig. 2c), ABC-X is as performant as ABC with full set supervision (Fig. 4a-c).

Increasing set size isolates more active factors: Intuitively, finding a one-to-one correspon-
dence between sets with more elements requires more discerning power. The measurements
of I(U ;G) in Figure 4d show that as the set size climbs to 64, increasing information is
gleaned about the two active hue factors. With a set size of 1024, all five active factors
are isolated in the learned representations. Given that the set size effectively serves as the
number of negative samples in the InfoNCE loss, and that more negative samples benefits
contrastive learning (Hjelm et al., 2019), this aspect of ABC is perhaps unsurprising.

4.2 Fast Digit Style Isolation
Handwritten digits, such as from MNIST (LeCun & Cortes, 1998), have a natural separation
of factors of variation into content and style. Here, content is the digit class (e.g., 2 or 8)
and style is all remaining factors of variation (stroke width, slant, shape, etc.). Our goal is
to generalize style across digit class, without grouped data where style is an inactive factor.
Images are instead grouped by class into sets of size 64 and embedded to R8.

Figure 5a displays the first two principal components of learned embeddings of the digit 9,
wholly unseen at training time and showing the invariance of the isolated style information
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to digit class. The instances fan out with regards to style factors of variation, most clearly
the stroke thickness and slant. In Figure 5b we use test digits from each of the 10 classes to
retrieve the most similar digits in other classes. We compare to the representations yielded
by the discriminative approach of Sanchez et al. (2020) and CC-VAE (Jha et al., 2018), both
of which learn a full description of the data which is partitioned into active and inactive parts
by utilizing set supervision. Without having to learn a full description of the data, ABC
yields style-correlated embeddings orders of magnitude faster than the related approaches.

4.3 Pose Transfer from Synthetic to Real Images
We showcase the full capabilities of ABC-X on the challenging task of object pose estimation.
The goal is effective isolation of pose information which generalizes to the category level
and across the synthetic to real domain gap, without any pose annotations for training. We
leverage the freedom of one set per mini-batch to have additional active factors of variation
to gradually incorporate wholly unsupervised real images.

We use the dataset included in KeypointNet (Suwajanakorn et al., 2018), which consists of
renderings of ShapeNet (Chang et al., 2015) models from viewpoints randomly distributed
over the upper hemisphere. Images are grouped according to their source 3D model (as in set
A of Fig. 1) providing the set supervision for ABC-X. Other factors of variation such as object
texture and lighting are also fixed, making orientation the only active factor within each set.
We incorporate real images from the CompCars (Yang et al., 2015) and Cars196 (Krause
et al., 2013) datasets for the car category, and 1000 images from the Pascal3d+ (Xiang et al.,
2014) training split for chairs. Images are tight cropped and resized to 128x128.

The double augmentation loss (Section 3) helps bridge the domain gap by removing additional
nuisance factors of variation which could shortcut the task of finding correspondence. Each
image is randomly augmented twice with a combination of cropping, recoloring, and replacing
the background with random crops from images of ImageNet-A (Hendrycks et al., 2019),
following many of the augmentations used to bridge the synthetic to real domain gap
in Sundermeyer et al. (2018; 2020). Each image is embedded to R64, using a network which
places a few layers on top of an ImageNet-pre-trained ResNet50 (He et al., 2015). We found
that cosine similarity with temperature τ = 0.1 outperformed negative Euclidean distance.

In the first experiment, we train with set A purely synthetic and grouped by ShapeNet
model, and B unconstrained. Set B gradually incorporates real images, ramping linearly to
an average of 10% per set by the end of training.

Cars Chairs

Med Err (◦) ↓ Acc@30◦ ↑ Med Err (◦) ↓ Acc@30◦ ↑
ResNet (pre-trained) 16.1 0.66 43.9 0.41
CCVAE (Jha 2018) 54.8 0.26 79.5 0.19
ML-VAE (Bouchacourt 2018) 75.6 0.27 87.2 0.16

Set supervision w/ TCC loss (Dwibedi 2019) 22.1 0.57 63.9 0.38
Double augmentation only 85.4 0.33 80.0 0.20
ABC (no real images) 14.7 0.66 22.6 0.59
ABC-X (Full) 12.8 0.72 15.6 0.75

Table 1: Pose estimation without pose annotations at training. Median error and accuracy
on the Pascal3D+ car and chair test sets. Pose estimates are obtained through nearest neighbor
lookup into 1800 synthetic images with associated GT pose; reported values are the average over ten
randomly sampled codebooks. The full ABC-X method outperforms everything else.

We evaluate on images from the Pascal3D+ test set by using nearest neighbor lookup with a
codebook of 1800 synthetic images, unseen at training, with associated ground-truth pose
(Table 1). We compare with the high-dimensional (D=16,384) output from the ResNet
base network, and to embeddings learned with the VAE-based approaches of Jha et al.
(2018) and Bouchacourt et al. (2018). The effects are most striking for the chair category,
where category-level generalization and the domain gap are more difficult than for cars.
The significant difference between ABC-X and the baseline approaches which learn full
descriptions underscores the benefit of focusing on a partial description: with ABC-X the
multitude of instance-related inactive factors need not be learned, and the incorporation of
out-of-domain images with extra active factors is possible.
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Figure 6: Retrieval results from ABC-X and ResNet embeddings. Given a query image
from the Pascal3D+ test split, we display the four nearest neighbors in embedding space, from the
Pascal3D+ train split and from 1800 ShapeNet images. The accuracy and visual diversity of the
ABC-X retrieval results illustrate effective isolation of pose information generalized across both the
category and the synthetic-to-real domain gap.

Cars Chairs

Med Err (◦) ↓ Acc@30◦ ↑ Med Err (◦) ↓ Acc@30◦ ↑
Liao et al. (2019) 12.3 0.85 30.8 0.49
+ ABC 11.0 0.79 28.1 0.52
+ ABC-X (2% unannotated real) 9.3 0.87 26.0 0.55

Table 2: Performance boost to spherical regression by incorporating ABC-X. We show
the effectiveness of incorporating ABC-X as an additional loss term when the data consists of
annotated synthetic images and unannotated real images. ABC-X provides a means to incorporate
the latter which helps bridge the domain gap.

Ablative results illustrate the synergy of the components of ABC-X. Applying only the
correspondence loss used by Dwibedi et al. (2019) in the limited setting of video alignment,
we see reasonable performance on the car category but a failure to isolate pose in chairs.
Excluding nuisance factors from the representations through augmentation, but without
leveraging set supervision, does not yield pose-informative representations either. The
incorporation of real images in ABC-X gives a sizable boost to performance over ABC,
demonstrating the utility of the unsupervised data. Retrieval examples (Fig. 6) illustrate the
generalization across instance and domain-specific factors of variation. Lookup results with
the ABC-X representations are visually diverse and less erroneous in the synthetic-to-real
jump than the high-dimensional ResNet embeddings.

In the second experiment (Table 2), we make use of pose annotations for the synthetic images
by incorporating ABC-X into the spherical regression framework of (Liao et al., 2019), and
operate in a scenario with fewer augmentations than in the first experiment. Specifically, we
add a small spherical regression head on top of the ABC-X-conditioned representations and
train on a weighted sum of the two losses. Even without any real images during training,
ABC improves performance, presumably by better conditioning the intermediate latent space.
A further boost to performance results with ABC-X when a small amount of real images
(2%) are titrated in gradually over training, for both object categories. Thus ABC-X can be
advantageous in scenarios where there is more supervision available than set supervision.

5 Discussion
The pursuit of bijective correspondence, essentially allowing the model to find its own positive
pairs for use in a contrastive loss, offers a powerful new foothold into operating on factors
of variation in learned representations. It is perfectly suited for domain transfer and the
common real-world scenario where information about an abundance of unannotated real
data is desired and related synthetic data is available.

ABC is significantly faster than related approaches (Fig. 5) because a full description of the
data is not needed; indeed, not even all active factors of variation need be isolated (Figs. 3&4).
The size of sets (Fig. 4d) and double augmentation (Table 1) grant ABC considerable control
over the factors of variation which are isolated in the learned representations.
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Ethics statement
We discuss a general form of representation learning, which is intentionally broad in its scope
of potential applications. We have emphasized intuition and insight wherever possible in the
aim to improve the accessibility of this and related research.

Reproducibility statement
Code to reproduce all results involving the Shapes3D and MNIST datasets from scratch are
included as supplemental files and will be posted to a public repository upon manuscript
acceptance. Implementation specifics for all experiments are included in Appendix G.
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Additional files submitted
The uploaded zip file contains an iPython notebook abc_mnist.ipynb with code to reproduce
the MNIST digit style isolation results, a gif abc_mnist_training_evolution.gif showing
the evolution of MNIST digit embeddings over the course of training with ABC, and a
directory shapes3d/ with code to reproduce the all results of Section 4.1 in the main text.

Appendix Contents
A Mutual information calculation, and corroboration with classification task
B The role of length scales in isolating factors of variation
C Why are multiple factors of variation isolated?
D Ablative studies on the pose estimation tasks
E Augmentations used for pose estimation
F Extended digit style isolation results
G Implementation details

A Mutual information calculation, and corroboration with
classification task

Computation of mutual information. To estimate the mutual information I(U ;G) for
the Shapes3D experiments using MINE Belghazi et al. (2018), we train a statistics network
T . We use a simple fully connected network whose input is the concatenation of the 64-
dimensional embedding U and the 1-dimensional value for the particular generative factor G.
It contains three layers of 128 units each with ReLU activations, with a final one-dimensional
(scalar) output. The loss is the negated neural information measure of Belghazi et al. (2018),

L = log(Eu∼P (U),g∼P (G)[exp(T (u, g))])− Eu,g∼P (U,G)[T (u, g)] (1)
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At a high level, the network exploits the difference between the joint distribution P (U,G),
where the embedding is properly matched with its correct generative factor, and the product
of marginals P (U)P (G), which is simulated by shuffling the labels for the first term in the
loss. This difference between the joint and the marginals is the mutual information of the two
variables. We train with a learning rate of 3× 10−4 and a batch size of 256 for 20,000 steps,
which we found to be sufficient for convergence. The estimate of the mutual information we
report is the average value of the neural information measure over 256,000 samples from the
dataset. A new statistics network is trained for each of the six generative factors.

To deal with the determinism of the embedding network, we add Gaussian distributed noise
η ∼ N (0, σ2) directly to the embeddings. For the noise scale sweeps in Figure 3c,d we repeat
the calculation for 40 logarithmically spaced values of σ.

Figure 7: Corroborating IMINE with classification task. As a proxy for the mutual
information, we use the test set classification accuracy of networks trained to predict the six
generative factors, one network per factor. As before, the shaded columns indicate which
of the generative factors were inactive while training ABC. Gaussian-distributed random
noise with σ =

√
τ was added to the embeddings to effectively remove information on length

scales less than the characteristic length scale of the ABC loss. The dashed lines show the
classification accuracy that would result from random guessing.

IMINE versus classification accuracy. To corroborate the Shapes3D mutual information
measurements of Section 4.1, we use the common approach of training a simple classifier
which takes the learned representations as input and tries to predict the generative factors
(Figure 7). We train a different classifier for each generative factor, and use an architecture
of 3 fully connected layers with 32 units each, ReLU activation. As with the measurements of
mutual information, there is the issue of evaluating a deterministic network which in general
preserves all information Elad et al. (2019). By adding Gaussian noise with magnitude
σ =
√
τ , the classification task qualitatively reproduces the behavior of Figure 4. Namely,

when one or two hue factors are inactive, information about the remaining hue factor(s) is
enhanced and information about the inactive factor(s) is suppressed. When all three hue
factors are inactive, then and only then is information about the three geometric factors
enhanced. There is no substantial difference in the semi-supervised setting, where one set of
each mini-batch has no inactive factors.

B The role of length scales in isolating factors of variation
The ABC loss operates over a characteristic scale in embedding space, set by the temperature
parameter τ which plays a role in both the soft nearest neighbor calculation and the InfoNCE
loss. When using a similarity measure derived from Euclidean distance, this characteristic
scale may be interpreted as a length scale.

Two embeddings which are separated by less than this length scale effectively have a separation
of zero in the eyes of the loss, and there is no incentive to further collapse them.

To be specific, when using L2 (Euclidean) distance as the similarity metric, the temperature
τ is the characteristic length scale. When using L2 squared distance, as in the MNIST and
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Figure 8: Temperature sets the length scale of the cutoff between active and
inactive factors. We train with negative squared Euclidean distance between embeddings
as the similarity measure, which makes

√
τ a natural length scale for embedding space. By

varying the temperature used during training (varying vertically), we mark the length scale√
τ with a dotted vertical line in each subplot. Predictably, the magnitude of the noise σ at

which inactive factors are suppressed scales with
√
τ . Had negative Euclidean distance been

used instead, we would expect the scaling to follow τ . The bottom right subplot shows one of
the limits of varying the temperature of the ABC loss: when it is too large compared to the
spread of the initialized embeddings, training is often unsuccessful.

Shapes3D experiments, the square root of the temperature is the characteristic length scale.
With cosine similarity, as in the pose estimation experiments of Section 4.3, temperature sets
a characteristic angular difference between embeddings. It is less straightforward to probe by
these information measurements, and irrelevant for actually performing lookup or regression.

For downstream tasks, including lookup using the embeddings, this length scale is generally
irrelevant. However, measuring the mutual information requires the addition of noise with a
particular scale, and the freedom in choosing this parameter begs the question of a relevant
scale in embedding space. As a fortunate consequence, it allows a precise definition of the
factor isolation that results from ABC. We show in Figure 8 several Shapes3D experiments
where the temperature τ during training took different values. The mutual information is
measured as in Figure 3c,d with a sweep over the magnitude of the added noise.

The vertical dashed line in each run shows the characteristic length scale,
√
τ , and it is clear

to see information about the inactive factor(s) (indicated by dashed lines) decaying to zero
below the length scale. The predicted behavior, of object and floor hue being isolated when
wall hue is inactive, and of the geometric factors being isolated when all three hue factors are
inactive, happens in nearly all the runs. The length scales of everything, as measured by the
magnitude σ of the noise where the information decays, expand with increased temperature.

There is a limit to this behavior, however, which is shown in the bottom right subplot. When
the temperature is too large compared to the initial separations of the embeddings, there
is too little gradient information for even the Adam optimizer to leverage, and training is
unsuccessful.
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Summary. ABC’s isolation of factors is a matter of scales in embedding space, and this
allows the method to be well-suited for lookup tasks. Information about inactive factors is
confined to scales less than the characteristic scale set by the temperature during training,
and the isolated active factors inform the structure of embedding space over larger scales.

C Why does ABC isolate multiple factors of variation instead
of a single one?

If correspondence between two sets can be found with only a single factor of variation
common to both sets, why do the experiments of this paper suggest ABC isolates multiple
factors of variation? To be specific, in almost all of the Shapes3D experiments, multiple
generative factors were present in the learned representations. Presumably a one-to-one
correspondence between MNIST digits could be found using stroke thickness alone, yet the
embeddings almost always contained slant information as well. In the pose experiments, only
embedding azimuth would suffice to allow a correspondence between images, yet elevation
information was also present.

a b c

Figure 9: The case for finding more than one factor of variation, through a simple
example. We model the embeddings that would be learned from randomly distributed factors
of variation as points sampled uniformly over the unit interval in one to six dimensions.
(a) Displayed are three random draws, with set size 4 and dimension 1, and corresponding
ABC loss values. The × and circle markers designate randomly generated set U and set V.
(b) Same as (a), but for 2 dimensions. (c) The ABC loss averaged over 10,000 pairs of
random sets, by set size and the dimension of the embedding distribution. The dimension
of the embedding distribution serves as a model for the number of independent factors of
variation which are isolated. As the set size grows, the dimension which yields the minimal
loss (outlined markers) grows as well.

In Figure 9 we run a simple Monte Carlo experiment where embeddings are simulated by
randomly sampling from a uniform distribution over the hypercube in different dimensions.
This represents the ideal case at the end of training with ABC, where all sets of embeddings
are distributed identically. For a given set size, we vary the dimension of the embedding space
as an analogue for the number of independent factors isolated. In this simplified setting, we
are able to exclude any effects of the salience of different factors, and focus only on the value
of the loss as stochastic embeddings are spread over different numbers of dimensions.

The ABC loss is averaged over 10,000 random draws, and we rescale by the loss in one
dimension. In the normal training setting the distribution can adapt to the temperature τ
(Section B). In this simulation, the distribution is fixed so the temperature which optimizes
the loss needs to be found; we numerically optimize it.

In Figure 9c we find non-monotonic dependence of the loss on the dimension, suggesting
competing influences on the loss. Additionally, the dimension which minimizes the loss for
a given set size grows with the set size. Using the number of dimensions as a model for
the number of independent factors of variation isolated in the embeddings, this and the
increasing magnitude of the slope as the set size increases show increasing pressure to embed
with respect to more factors as the set size grows. This matches the behavior of Figures 4d
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and 7, where training ABC with the largest set size led to the isolation of all five active
factors, and with the smallest set size to the partial isolation of only two.

D Ablative studies on the pose estimation tasks
In Figures 10 and 11 we show ablative studies on the pose estimation experiments of
Section 4.3, for training with the ABC loss where pose is ultimately extracted using a
lookup table (Table 1) and the experiment where the ABC loss combined with the spherical
regression method of Liao et al. (2019) (Table 2).

On both tasks, there is an optimal proportion of real images, though it is much lower for
regression. Gradual titration of real images into the unconstrained set B was neutral or
negative for the lookup task (Figure 10, top row) and generally positive for the regression
task (Figure 11, top row). Cosine similarity outperforms negative Euclidean distance, and
we show the dependence on temperature τ in the second row of Figure 10.

The car and chair categories present different challenges for pose estimation – e.g. an
approximate front-back symmetry for cars, greater class diversity for chairs, outdoor versus
indoor settings for cars versus chairs, etc. Several of the ablated factors cause differing effects
on the performance for the two categories.

For instance, there is an apparent difference between the two categories in the dependence
on the augmentation scheme, shown in the third row of Figure 10. Randomly translating
the bounding box by 0.1 of its height and width helps both categories, but more than that
and the chair performance greatly suffers.

Another difference between the categories is seen in the final row of Figure 10, where
increasing the set size during training only helps pose estimation on cars. For the largest
set size, however, chair pose estimation begins to suffer. We presume the pressure to isolate
more active factors of variation from increased set size, discussed in Section C, can actually
be harmful to the pose estimation task if unrelated factors confound the pose estimation
during lookup. Set size similarly shows mixed effects for the regression task, shown in the
final row of Figure 11.

E Augmentations used for pose estimation
For each real and synthetic image in the pose estimation tasks of Section 4.3, we augment
twice and train with the double augmentation version of the ABC loss, in order to suppress
additional nuisance factors from the learned representations. We show in Figure 12 sample
augmentation of real and synthetic car images, which include random translations of the
bounding box, brightness adjustment, the addition of salt and pepper noise to each pixel,
the addition of a scaled, Sobel-filtered version of the image, and hue adjustment for the
real images. We also paint the background of the synthetic images with random crops from
ImageNet-A Hendrycks et al. (2019).

F Extended digit style isolation results
In Figure 13 we compare digit style isolation on MNIST using the output of ABC and the
style part of the latent representations yielded by the VAE-based approaches of Jha et al.
(2018) and Bouchacourt et al. (2018). Interestingly, ML-VAE appears to embed the digits
with respect to stroke thickness and slant very similarly to ABC at the beginning of training,
long before any realistic images are able to be generated, but this clear interpretability of
the embeddings fades as training progresses.

G Hyperparameters and implementation details
For all experiments we use the ADAM optimizer (β1 = 0.9, β2 = 0.999). Padding for
convolutional layers is always ‘valid.’

G.1 Shapes3D
For the experiments of Figures 3&4 we used the network architecture listed in Table 3, and
trained for 2000 steps with a learning rate of 3 × 10−5. We used a stack size of 32 and
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Figure 10: Ablative studies on Pascal3D+ pose lookup with ABC embeddings.
Error bars are the standard error of the mean over 8 random seeds for each configuration.
We show results on the Pascal3D+ test split for the car and chair categories. For each row,
the training configuration is the same as described in Section G with only the listed aspect of
training being changed. In the first row, no titration means to the fraction of real images in
set B are present from the beginning of training. The augmentation amplitude in the third
row controls the coloring changes discussed in Section E. The crop amplitude is another form
of augmentation, though we separate it for clarity. It controls the random translation of the
bounding box, as a fraction of the dimensions of the bounding box.
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Figure 11: Ablative studies on Pascal3D+ with spherical regression + ABC net-
work. Error bars are the standard error of the mean over 10 random seeds for each
configuration, with less than 1% of the runs discarded for lack of convergence. We show
results on the Pascal3D+ test split for the car and chair categories. For each row, the training
configuration is the same as described in Appendix G with only the listed aspect of training
being changed. In the first row, no titration means to the fraction of real images in set B are
present from the beginning of training. The three similarity measures in the second row are
cosine similarity, L2 (Euclidean) distance, and squared L2 distance.
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Figure 12: Augmentations used in the pose estimation experiments. We show sample
augmentations applied to both real and synthetic cars. These include adjusting brightness
and hue, adding normally distributed noise to each pixel, random translations of the crop
(bounding box), and replacing the background of synthetic images with random crops from
real images.

Figure 13: Retrieval results over the course of training, comparison. We compare
retrieval on the test set of MNIST at various stages of training ABC and the two VAE-based
approaches mentioned in the main text. As in Figure 5, the query images are the boxed images
along the diagonal, and each row is the nearest representative for each class in embedding
space. Also as before, in all cases the digit 9 was withheld during training.

squared L2 distance as the embedding space metric, with a temperature of 1. To curate a set
for training, we randomly sample from among the possible values for the inactive factor(s)
and then filter the dataset according to it. This takes longer when there are more inactive
factors, as more of the dataset must be sieved out to acquire each stack.

G.2 MNIST
For the MNIST experiments we used the architecture specified in Table 4. The stack size
was 64. We used a learning rate of 10−4 and trained for 500 steps. We used squared L2
distance as the embedding space metric and a temperature of 1. All instances of the digit 9
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Layer Units Kernel size Activation Stride

Conv2D 32 3x3 ReLU 1
Conv2D 32 3x3 ReLU 1
Conv2D 64 3x3 ReLU 2
Conv2D 64 3x3 ReLU 1
Conv2D 128 3x3 ReLU 1
Conv2D 128 3x3 ReLU 2
Flatten – – – –
Dense 128 – ReLU –
Dense Embedding dimension (64) – Linear –

Table 3: Architecture used for Shapes3D experiments (Section 4.1). Input shape
is [64, 64, 3].

Layer Units Kernel size Activation Stride

Conv2D 32 3x3 ReLU 1
Conv2D 32 3x3 ReLU 1
Conv2D 32 3x3 ReLU 2
Conv2D 32 3x3 ReLU 1
Conv2D 32 3x3 ReLU 1
Flatten – – – –
Dense 128 – ReLU –
Dense Embedding dimension (8) – Linear –

Table 4: Architecture used for MNIST experiments (Section 4.2). Input shape is
[28, 28, 1].

are held out at training time, and images of the other digits are formed into stacks before
being randomly paired each training batch. This ran in under 30 seconds on an NVIDIA
Tesla V100 GPU.

G.3 Pose estimation

Layer Units Kernel size Activation Stride

ResNet50, up to conv4_block6 – – – –
Conv2D 256 3x3 ReLU 1

Global Average Pooling – – – –
Flatten – – – –
Dense 128 – tanh –
Dense Embedding dimension (64) – Linear –

Table 5: Architecture used for pose estimation experiments (Section 4.3). Input
shape is [128, 128, 3].

For both the pose estimation lookup (Table 1) and regression (Table 2) tasks, we use the
same base network to embed the images, described in Table 5. In contrast to the Shapes3D
and MNIST experiments, we train with mini-batches consisting of 4 pairs of image sets,
each of size 32. We use cosine similarity and a temperature of 0.1 for lookup and 0.05 for
regression. For the lookup task, the network trained for 40k steps with a learning rate that
starts at 10−4 and decays by a factor of 2 every 10k steps. The beginning of training is
purely synthetic images and then ramping up linearly to 10% real images folded into the
unconstrained stack, stepping every 4k steps.

For regression, the embeddings are then fed, separately for each Euler angle, as input to a
128 unit dense layer with tanh activation, which is then split off into two dense layers with
2 and 4 units and linear activation for the angle magnitude and quadrant, respectively, as
in (Liao et al., 2019). To maintain consistency between how the embeddings are processed
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for the ABC loss and how they are fed into the regression sub-network, the embeddings
are L2-normalized to lie on the 64-dimensional unit sphere before the regression. The angle
magnitudes are passed through a spherical exponential activation function Liao et al. (2019),
which is the square root of a softmax. The magnitudes are then compared with ground truth
(|sinφi|, |cosφi)|, with i spanning the three Euler angles, through a cosine similarity loss. The
quadrant outputs are trained as a classification task with categorical cross entropy against
the ground truth angle quadrants, defined as (sign(sinφi), sign(cosφi)). Training proceeds
for 60k steps with a learning rate that starts at 10−4 and decays by a factor of 2 every 20k
steps.

To more closely match the distribution of camera pose in real images, we filter the ShapeNet
renderings by elevation: 0.5 radians and 1.3 radians for the max elevation for cars and chairs,
respectively.

G.4 Baselines
Imagenet-pretrained ResNet: We use the same ResNet50V2 base as for the ABC embedding
network, and compare representations for each image by cosine similarity (which performed
better than comparing by L2 distance).

Sanchez et al. (2020): We used the colored-MNIST architecture specifications and hyperpa-
rameters described in the Supplemental Material for the MNIST experiments of Section 4.2.
As the colored-MNIST factors of variation isolated by Sanchez et al. (2020) are simpler in
nature (color of foreground/background from specific digit, versus digit identity from style),
we found better results by boosting the dimension of the exclusive representation to 64 (up
from the original 8 for the color description).

We replicated the architecture and hyperparameters used in the Shapes3D experiments by
Sanchez et al. (2020) for the pose lookup experiments, downsizing the ShapeNet renderings
and Pascal3D+ tight crops to 64x64 RGB images to match the architecture used.

Jha et al. (2018) and Bouchacourt et al. (2018): We translated the publicly available pytorch
code to tensorflow for training MNIST 1, 2. We were unable to find code for their experiments
on larger image sizes, but we followed the encoder and decoder specifications for the 64x64
RGB images in the Supplemental for Jha et al. (2018), found here3, for both methods. We
optimized hyperparameters in a grid search around the published numbers, and used a group
size for Bouchacourt et al. (2018) which matched the stack size used for the ABC method.
As with Sanchez et al. (2020), we downsized the ShapeNet renderings and Pascal3D+ tight
crops to 64x64, after attempts to scale the encoder-decoder architecture up to 128x128 were
unsuccessful.

1https://github.com/ananyahjha93/cycle-consistent-vae
2https://github.com/DianeBouchacourt/multi-level-vae
3https://arxiv.org/pdf/1804.10469.pdf
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