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Abstract
Given a set of synchronous time series, each asso-
ciated with a sensor-point in space and character-
ized by inter-series relationships, the problem of
spatiotemporal forecasting consists of predicting
future observations for each point. Spatiotem-
poral graph neural networks achieve striking re-
sults by representing the relationships across time
series as a graph. Nonetheless, most existing
methods rely on the often unrealistic assumption
that inputs are always available and fail to cap-
ture hidden spatiotemporal dynamics when part
of the data is missing. In this work, we tackle
this problem through hierarchical spatiotemporal
downsampling. The input time series are progres-
sively coarsened over time and space, obtaining a
pool of representations that capture heterogeneous
temporal and spatial dynamics. Conditioned on
observations and missing data patterns, such rep-
resentations are combined by an interpretable at-
tention mechanism to generate the forecasts. Our
approach outperforms state-of-the-art methods on
synthetic and real-world benchmarks under differ-
ent missing data distributions, particularly in the
presence of contiguous blocks of missing values.

1. Introduction
Time-series analysis and forecasting often deal with high-
dimensional data acquired by sensor networks (SNs), a
broad term for systems that collect (multivariate) measure-
ments over time at different spatial locations. Examples
include systems monitoring air quality, where each sen-
sor records air pollutants’ concentrations, or traffic, where
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Figure 1. Overview of the proposed framework. The hierarchical
design allows us to learn a pool of multi-scale spatiotemporal
representations. Conditioned on the data and the missing value
pattern, the attention mechanism dynamically combines represen-
tation from different scales to compute the predictions.

sensors track vehicles’ flow or speed. Usually, data are
sampled regularly over time and synchronously across the
sensors, which are often characterized by strong correlations
and dependencies between each other, i.e., across the spa-
tial dimension. For this reason, a prominent deep learning
approach is to consider the time series and their relation-
ships as graphs and to process them with architectures that
combine graph neural networks (GNNs) (Battaglia et al.,
2018; Bronstein et al., 2021) with sequence-processing op-
erators (Hochreiter & Schmidhuber, 1997; Borovykh et al.,
2017). These architectures are known as spatiotemporal
graph neural networks (STGNNs) (Jin et al., 2023).

A notable limit of most existing STGNNs is the assumption
that inputs are complete and regular sequences. However,
real-world SNs are prone to failures and faults, resulting
eventually in missing values in the collected time series.
When missing data occurs randomly and sporadically, the
localized processing imposed by the inductive biases in
STGNNs acts as an effective regularization, exploiting ob-
servations close in time and space to the missing one (Cini
et al., 2022). Challenges arise when data are missing in
larger and contiguous blocks, with gaps that occur in con-
secutive time steps and are spatially proximate. In SNs,
this might be due to a sensor failure lasting for multiple
time lags or problems affecting a whole portion of the net-
work. In such scenarios, reaching valid observations that
may be significantly distant in time and space, yet relevant
for capturing the underlying dynamics, would require addi-
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tional layers of processing (Marisca et al., 2022). Nonethe-
less, deep processing may attenuate faster dynamics, im-
pairing the network’s ability to rely on local information, if
present (Rusch et al., 2023). The necessity to expand the
network’s receptive field should be, therefore, contingent on
the availability of input data. As such, it is crucial to tailor
the processing strategy according to the dynamics in the
input data and the specific patterns of missing information.

In this work, we propose a deep learning framework for
graph-based forecasting of time series with missing data
that computes representations at multiple spatiotemporal
scales and weighs them conditioned on the observations and
missing data pattern at hand. To this end, we rely on oper-
ators that progressively reduce the data granularity across
both temporal and spatial dimensions (see Fig. 1). In time,
we interleave downsampling within temporal processing
layers, handling varying noise levels and isolating specific
temporal dynamics. In space, we use graph pooling (Grat-
tarola et al., 2024) to obtain a hierarchy of coarsened graphs
that gradually distill the global information necessary for
compensating localized gaps in the data. The proposed
framework adopts a time-then-space (Gao & Ribeiro, 2022)
hierarchical design, which efficiently handles representa-
tions at multiple scales by increasing the receptive field
while limiting the number of parameters and the amount
of computation. The hierarchical representations learned
by our model are then combined by a soft attention mech-
anism (Vaswani et al., 2017), whose scores offer a natural
interpretability tool to inspect the model’s behavior in func-
tion of the data.

We compare our approach against state-of-the-art methods
in both synthetic and real-world benchmark datasets, show-
ing remarkable improvements in efficiency and performance,
particularly with large blocks of missing values. Notably,
we introduce two new datasets and an experimental setting
specifically designed to reflect typical missing data patterns
in the spatiotemporal domain. This contribution addresses
a substantial gap in the existing literature by providing a
controlled environment for testing the performance and un-
derstanding the behavior of complex spatiotemporal models.

2. Preliminaries and Problem Formulation

We represent each sensor in a SN (i.e., a point in space) as
a node in the set V , with |V| = N . We model dyadic and
possibly asymmetric relationships between sensors with a
weighted adjacency matrix A ∈ RN×N

≥ 0 , where each non-
zero entry aij is the nonnegative weight of the directed edge
from the i-th to the j-th node. We denote by xi

t ∈ Rdx ,
the dx-dimensional observation collected by the i-th node
at time step t, with Xt ∈ RN×dx representing all the ob-
servations collected synchronously in the SN. We use the
notation Xt:t+T to indicate the sequence of T observations

in the time interval [t, t+ T ). We represent node-level ex-
ogenous variable with matrix Ut ∈ RN×du (e.g., date/time
information, external events). To model the presence of
missing data, we associate every node observation with a
binary mask mi

t ∈ {0, 1}dx , whose elements are nonzero
whenever the corresponding channel in xi

t is valid. Notably,
we do not make any assumption on the missing data dis-
tribution and we consider ui

t always observed, regardless
of mi

t. Finally, we use the tuple Gt = ⟨Xt,Mt,Ut,A⟩ to
denote all information available at time step t.

Given a window Gt−W :t of W past observations, the prob-
lem of spatiotemporal forecasting consists of predicting an
horizon of H future observations for each node i ∈ V:

x̂i
t:t+H = f(Gt−W :t). (1)

As observations might also be missing in the ground-
truth data, to measure forecasting accuracy we average an
element-wise loss function ℓ (e.g., absolute or squared error)
over only valid values, i.e.,

Lt:t+H =

t+H−1∑

h=t

N∑

i=1

∥∥mi
h ⊙ ℓ

(
x̂i
h,x

i
h

)∥∥
1∥∥mi

h

∥∥
1

, (2)

where ⊙ is the Hadamard product.

2.1. Spatiotemporal Message Passing

The cornerstone operator of an STGNN is the spatiotem-
poral message-passing (STMP) layer (Cini et al., 2023d),
which computes nodes’ features at the l-th layer as:

xi,l
t = γl

(
xi,l91
≤t , AGGR

j∈N (i)
ϕl

(
xi,l91
≤t ,xj,l91

≤t , aji
))

(3)

where AGGR is a differentiable, permutation invariant ag-
gregation function, e.g., sum or mean, and γl and ϕl are
differentiable update and message functions, respectively.
Whenever γl and ϕl are such that temporal and spatial pro-
cessing cannot be factorized in two distinguished opera-
tions, the STGNN is said to follow a time-and-space (T&S)
paradigm (Gao & Ribeiro, 2022; Cini et al., 2023c). In
the time-then-space (TTS) approach, instead, the input se-
quences are first encoded in a vector by temporal message-
passing (TMP) layers before being propagated on the graph
by spatial message-passing (SMP) layers.

We use the term TMP to refer broadly to any deep learn-
ing operator enabling the exchange of information along
the temporal dimension. Most TMP operators can be cat-
egorized as recurrent or convolutional. Recurrent neural
networks (RNNs) (Elman, 1990) process sequential data
of varying lengths in a recursive fashion, by maintaining a
memory of previous inputs:

xi,l
t = γl

(
xi,l91
t , ϕl

(
xi,l91
t ,xi,l

t−1

))
. (4)
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In modern RNNs, gating mechanisms are used to cope with
vanishing (or exploding) gradients that hinder learning long-
range dependencies (Hochreiter & Schmidhuber, 1997; Cho
et al., 2014). Convolutional TMP operators, instead, learn
causal filters conditioned on a sequence of previous obser-
vations:

xi,l
t = γl

(
xi,l91
t , AGGR

k>0
ϕl

(
xi,l91
t ,xi,l91

t−k

))
. (5)

Temporal convolutional networks (TCNs) (Borovykh et al.,
2017; Oord et al., 2016) and attention-based methods (Zhou
et al., 2021) follow this approach. An advantage of convolu-
tional TMP is its ability to be executed in parallel along the
temporal axis (Eq. 5), offering computational benefits over
recurrent TMP (Eq. 4).

Instead, the SMP operator (Gilmer et al., 2017) can be
described as

xi,l
t = γl

(
xi,l91
t , AGGR

j∈N (i)
ϕl

(
xi,l91
t ,xj,l91

t , aji
))

. (6)

If the messages depend on the receiver node’s features xi,l91
t

the SMP operator is called anisotropic (Dwivedi et al., 2023).
Conversely, if the message function depends only on the
source node’s features xj,l91

t and the edge weight aji, the
SMP operator is said to be isotropic or convolutional (Bron-
stein et al., 2021).

Notably, the TMP operators (Eq. 4–5) and the SMP op-
erator (Eq. 6) are specific instances of the STMP opera-
tor (Eq. 3), underlining the factorization of operations within
TTS models compared to the T&S approach. Since TTS
models perform SMP – an onerous operation – on a single
graph rather than a sequence of graphs, they are more effi-
cient than T&S models. Nonetheless, their uncoupled tem-
poral and spatial processing reduces the flexibility in how
information is propagated, compared to the T&S process-
ing (Cini et al., 2023c). In the latter, indeed, it is possible
to gradually account for more information while processing
the temporal dimension and allow the receptive field to grow
with the sequence length.

2.2. Spatiotemporal Downsampling

Downsampling in temporal data is a common operation, of-
ten used to reduce the sample complexity or filter out noisy
measurements (Harris, 2022). In classical signal processing,
it is implemented by applying a low-pass filter and then
keeping only 1-every-k samples, with k being the down-
sampling factor (Strang & Nguyen, 1996). This approach
is replicated by strided operations in TMP (Yu & Koltun,
2016; Oord et al., 2016; Chang et al., 2017), which exploit
the structural regularity of temporal data. More generally,
downsampling a sequence from Wl91 to Wl time steps can
be conveniently expressed by a temporal downsampling

matrix Tl ∈ RWl×Wl91 . For example, Tl = [IWl91 ]::k,
i.e., an identity matrix without the rows associated with the
decimated time steps, can be applied to keep the samples
associated with every k-th time step.

Being non-Euclidean structures, the concept of downsam-
pling for graphs is less straightforward and tied to the
procedure for graph coarsening. In the GNNs literature,
the latter is known as graph pooling. Given a graph
A⟨k91⟩ ∈ RNk91×Nk91

≥ 0 with features X⟨k91⟩ ∈ RNk91×dx

on the nodes, the Select-Reduce-Connect (SRC) framework
by Grattarola et al. (2024) expresses a graph pooling op-
erator POOL : (A⟨k91⟩,X⟨k91⟩) 7→ (A⟨k⟩,X⟨k⟩) as the
combination of three functions:

• SEL : (A⟨k91⟩,X⟨k91⟩) 7→ Sk ∈ RNk×Nk91 , defines
how to aggregate the Nk91 nodes in the input graph into
Nk supernodes.

• RED : (X⟨k91⟩,Sk) 7→ X⟨k⟩ ∈ RNk×dx , creates the
supernode features by combining the features of the
nodes assigned to the same supernode. A common way
to implement RED is X⟨k⟩ = SkX

⟨k91⟩.

• CON : (A⟨k91⟩,Sk) 7→ A⟨k⟩ ∈ RNk×Nk
≥ 0 , generates the

edges (and, potentially, the edge features) by connecting
the supernodes. A typical CON is A⟨k⟩ = SkA

⟨k91⟩S⊤
k .

A fourth function is used to lift, i.e., upsample, supernode
features to the associated nodes in the original graph:

• LFT : (X⟨k⟩,Sk) 7→ X̃⟨k91⟩ ∈ RNk91×dx , can be
implemented as X̃⟨k91⟩ = S+

k X⟨k⟩, where S+
k is the

pseudo-inverse of Sk.

As for TMP and SMP, there is a strong analogy also be-
tween downsampling in time and space. Notably, the se-
lection matrix Sk, hereinafter called spatial downsampling
matrix, plays the same role as Tl. Both matrices, indeed, re-
duce the input dimensionality conditioned on the underlying
structure of the data, which in the temporal domain can be
expressed as the path graph connecting the time steps. How-
ever, irregularities in arbitrary graphs make it challenging to
define concepts like “1-every-k”. An interpretation is given
by the k-MIS method (Bacciu et al., 2023), which relies on
the concept of maximal k-independent sets to keep in the
pooled graph the nodes that cover uniformly the k-th power
graph. Such a symmetry between the spatial and temporal
operators will be pivotal for the design of our architecture.

2.3. Spatiotemporal Missing Data Distributions

Following previous works (Yi et al., 2016; Cini et al., 2022),
we categorize missing data patterns according to the condi-
tional distribution p

(
mi

t |M≤t

)
. We call point missing the

case where the probability p
(
mi

t = 0
)

of a datum being
missing at a given node and time step is unconditioned and
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Figure 2. Overview of the proposed architecture. Given input data Gt−W :t, all information associated with every i-th node and time step
t is encoded in vectors hi⟨0⟩

t⟨0⟩, then processed node-wise along the temporal dimension by alternating TMP and downsampling. After
each l-th layer, the sequences are combined in a single vector zi⟨0⟩

t⟨l⟩ , which is then processed along the spatial dimension by alternating
SMP and pooling. Representations at each k-th pooling layer are then recursively un-pooled up to the initial node level, obtaining z

i⟨k⟩
t⟨1:⟩.

Finally, the L(K + 1) encodings zi⟨0:⟩
t⟨1:⟩ are combined through an attention mechanism and fed to an MLP to obtain the predictions.

constant across nodes and time steps, i.e.,

p
(
mi

t

)
= B(1− η) ∀ i, t (7)

where 1− η is the mean of the Bernoulli distribution. This
setting is also known as general missing (Rubin, 1976), as
realizations of the mask have a haphazard pattern. Very
often in SNs, instead, p

(
mi

t

)
does depend on realizations

of the missing data distribution at other nodes, time steps, or
a combination of them (e.g., due to faults or blackouts). We
refer to this setting as block missing and decline it differently
according to the dimensions of interest. In temporal block
missing, p

(
mi

t

)
depends on the realization of the missing

data distribution at the previous time step, i.e.,

p
(
mi

t |mi
t−1

)
̸= p

(
mi

t

)
. (8)

Similarly, in spatial block missing, p
(
mi

t

)
is conditioned

on the simultaneous realizations at neighboring nodes, i.e.,

p
(
mi

t

∣∣ {mj
t

}j∈N (i)
)
̸= p

(
mi

t

)
. (9)

The spatiotemporal block missing combines Eq. 8–9 as:

p
(
mi

t

∣∣mi
t−1,

{
mj

t

}j∈N (i)
)
̸= p

(
mi

t

)
. (10)

Note that in Eq. 7–10 we considered a simplified case with
a single channel in the observations, i.e., dx = 1. Instead,
in the multivariate case dx > 1, we assume the missing data
distribution of each channel to be independent of the others.

3. Proposed Architecture
The dynamics in spatiotemporal data are governed by rela-
tionships spanning both the temporal and spatial dimensions.

Operators that exploit the temporal or spatial structure un-
derlying the data during processing, like those in Sec. 2.1,
capture such dynamics effectively. Missing values, however,
pose a serious challenge in identifying the correct dynamics.
In addition, if the distribution of missing values is unknown,
it is crucial to adaptively focus on different spatiotemporal
scales conditioned on the input data. When a whole block
of data is missing at a node (i.e., sensor), it could be benefi-
cial to consider recent observations of the spatial neighbors.
Conversely, when data are missing at neighboring nodes,
data far back in time might be more informative.

In this section, we introduce Hierarchical Downsampling
Time-Then-Space (HD-TTS), an architecture for graph-
based forecasting of spatiotemporal data with missing val-
ues following arbitrary patterns. To learn spatiotemporal
representations at different scales, we rely on hierarchical
downsampling, which progressively reduces the size of the
input and enables efficient learning of long-range depen-
dencies. In time, HD-TTS learns multiple – yet limited –
representations from the input sequences, each at a different
temporal scale. Similarly, we process the spatial dimension
by propagating messages along a hierarchy of pre-computed
coarsened graphs. Notably, our approach combines the ad-
vantages of the T&S and TTS paradigms, enabling adaptive
expansion of the receptive field while keeping the computa-
tional and memory complexity under control.

The key components of HD-TTS are (1) an input encoder,
(2) a temporal processing module, (3) a spatial processing
module, and (4) an adaptive decoder. The first three blocks
extract hierarchical representations of the input at different
spatial and temporal scales, while the last block reweighs
the representations and outputs the predictions. The whole
architecture is trained end-to-end to minimize the forecast-
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ing error over the prediction horizon (Eq. 2). Notably, our
approach does not require missing data imputation as a pre-
processing step. The latter might introduce a bias in the
data and is generally cumbersome, as it turns the forecasting
task into a two-step procedure. Also, domain knowledge is
usually required to select the proper imputation technique.
In contrast, HD-TTS handles missing data by automatically
reweighing the different spatiotemporal dynamics present
in the data while learning to solve the downstream task.

Fig. 2 shows an overview of the architecture. In the figure
and the following, we use the superscript and subscript
indices · ⟨k⟩⟨l⟩ to refer to the k-th spatial and l-th temporal
scale, respectively, with k = l = 0 corresponding to the
input scales.

Input encoder The input encoder combines the informa-
tion associated with the i-th node at generic time step t,
i.e., observations xi

t, exogenous variables ui
t, and mask mi

t

(see Sec. 2), in an embedding vector hi⟨0⟩
t⟨0⟩ ∈ Rdh with a

multilayer perceptron (MLP):

h
i⟨0⟩
t⟨0⟩ = MLP

(
xi
t,u

i
t,m

i
t,θ

i
)
. (11)

Here, dh is the size of all latent representations learned
within our model and θi is a vector of node-specific train-
able parameters that facilitates node indetification (Cini
et al., 2023d). Missing values are imputed using the last
observed value. Obtained representations are then refined
by downstream components exploiting temporal and spatial
dependencies.

Temporal processing The temporal processing module
acts on h

i⟨0⟩
t9W :t⟨0⟩ to generate, for every i-th node, L repre-

sentations
{
z
i⟨0⟩
t⟨l⟩

}
l=1,...,L

, each associated with a different
temporal scale. In particular, the l-th processing layer takes
as input the sequence h

i⟨0⟩
t9Wl91:t⟨l91⟩ and outputs a new se-

quence of updated encodings decimated by a factor of d.
Hence, the output sequence has length Wl =

⌈
Wl91
d

⌉
, with

W0 = W being the original time series’ length. We can
write the operations performed by layer l as

h
i⟨0⟩
t9Wl:t⟨l⟩ = Tl

(
TMPl

(
h
i⟨0⟩
t9Wl91:t⟨l91⟩

))
, (12)

where TMPl is the TMP operator defined in Sec. 2.1 acting
at temporal scale l − 1 and Tl ∈ RWl×Wl91 is the tempo-
ral downsampling matrix defined in Sec. 2.2. The down-
sampling operation progressively expands the temporal re-
ceptive field, allowing us to capture increasingly slower
temporal dynamics in the input.

We then combine the sequences h
i⟨0⟩
t9Wl:t⟨l⟩ at each layer l

into a single representation z
i⟨0⟩
t⟨l⟩ ∈ Rdh , i.e.,

z
i⟨0⟩
t⟨l⟩ = COMBINE

(
h
i⟨0⟩
t9Wl:t⟨l⟩

)
. (13)

  SMP
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Figure 3. Details of the spatial processing procedure.

A simple implementation is to return the encoding associ-
ated with the last time step, i.e., zi⟨0⟩

t⟨l⟩ = h
i⟨0⟩
t−1⟨l⟩.

Spatial processing The set of multi-scale temporal encod-
ings

{
z
i⟨0⟩
t⟨l⟩

}
l=1,...,L

is processed spatially with an analo-
gous hierarchical approach. In particular, representations
associated with the k-th spatial scale are obtained by apply-
ing k times a combination of an SMP layer followed by the
graph pooling operation described in (Sec. 2.2):

R
⟨k⟩
t⟨l⟩ = Sk

(
SMPk

D

(
R

⟨k−1⟩
t⟨l⟩ ,A⟨k−1⟩

))
, (14)

where Sk ∈ RNk×Nk−1 is the spatial downsampling ma-
trix generated by the pooling’s SEL function, SMPk

D is the
SMP operator applied at k-th layer before downsampling,
A⟨0⟩ = A and R

⟨0⟩
t⟨l⟩ = Z

⟨0⟩
t⟨l⟩. At each spatial resolution

level k, the encodings R⟨k⟩
t⟨l⟩ ∈ RNk×dh are associated with

supernodes rather than the nodes in the original graph. Since
the predictions must ultimately be computed for the nodes
in the original graph, the coarsened spatial representations
must be brought back to the initial spatial resolution. For
this reason, we mirror the operations carried out in Eq. 14
and recursively lift supernodes’ encodings back to the asso-
ciated nodes in previous layers. Starting from the coarsened
representation R̃

⟨k,k⟩
t⟨l⟩ = R

⟨k⟩
t⟨l⟩, the lifting step from layer j

to j − 1 can be described as

R̃
⟨k,j−1⟩
t⟨l⟩ = SMPj

U

(
S+
j

(
R̃

⟨k,j⟩
t⟨l⟩

)
,A⟨j−1⟩

)
. (15)

After k recursive application of Eq. 15, the representations
associated with the k-th spatial scale R

⟨k⟩
t⟨l⟩ are propagated

to the original graph and we assign Z
⟨k⟩
t⟨l⟩ = R̃

⟨k,0⟩
t⟨l⟩ . The

details are depicted in (Fig. 3).

Decoder The L(K + 1) representations
{
Z

⟨k⟩
t⟨l⟩

}k=0,...,K

l=1,...,L

obtained in previous steps are associated with different tem-
poral and spatial scales. To condition the importance of a
representation to the prediction based on the input dynamics
and the missing data pattern, we first compute an adaptive
weight αi⟨k⟩

t⟨l⟩ ∈ [0, 1] for each representation as

{
α
i⟨k⟩
t⟨l⟩

}
= softmax

{
z
i⟨k⟩
t⟨l⟩ Θα

}k=0,...,K

l=1,...,L
, (16)
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with Θα ∈ Rdh×1 being a matrix of learnable parameters.
The weights can be interpreted as soft attention coefficients
that select the appropriate spatiotemporal scale for comput-
ing the predictions. As we show in Sec. 5.3, they offer a
tool to analyze how the model focuses on different scales
according to the dynamics and observability of the input.

The representations are then weighed and combined into a
single final representation z̃i

t ∈ Rdh as

z̃i
t =

L∑

l=1

K∑

k=0

α
i⟨k⟩
t⟨l⟩ z

i⟨k⟩
t⟨l⟩ . (17)

Finally, we use a multi-step MLP decoder to obtain the
predictions for each i-th node:

x̂i
t:t+H = MLP

(
z̃i
t

)
. (18)

The pool of multi-scale representations and the adaptive
reweighting enable more complex decoding strategies; we
discuss them in Appendix C.

3.1. Implementation Details

While the proposed framework is general and different
TMP, SMP, and downsampling operators could be cho-
sen, in this section we discuss the specific choices we made
for our model. As TMP, we use Gated Recurrent Units
(GRUs) (Cho et al., 2014) combined with the standard 1-
every-k temporal downsampling, which results in some-
thing similar to a dilated RNN (Chang et al., 2017). Re-
ferring to Eq. 6, we consider two variants with isotropic
and anisotropic functions ϕ to compute the messages. As
isotropic SMP, we choose the diffusion-convolutional oper-
ator (Atwood & Towsley, 2016), while for the anisotropic
variant, we use the operator introduced by Cini et al. (2023d).
We use the sum as the aggregation function (AGGR) and
we add aggregated messages to the source-node features
xi,l91
t after an affine transformation (update function γ). We

rely on the k-MIS pooling method (presented in Sec. 2.2) to
obtain spatial downsampling matrices Sk ∈ [0, 1]

Nk×Nk91

that assign each node to exactly one supernode. Notably,
k-MIS is expressive, i.e., if two graphs are distinguishable,
then the pooled graphs remain distinguishable (Bianchi &
Lachi, 2023). For RED, CON and LFT, we use, respectively,

X⟨k⟩ = SkX
⟨k91⟩,

A⟨k⟩ = SkA
⟨k91⟩S⊤

k ,

X̃⟨k91⟩ = S+
k X⟨k⟩.

More details on the implementation are in Appendix C.

Analogy with filterbanks The hierarchical processing
scheme presented in Sec. 3 is inspired by the design of fil-
terbanks in digital and graph signal processing (Strang &

Nguyen, 1996; Tremblay & Borgnat, 2016; Tremblay et al.,
2018). Graph filterbanks often rely on specific node decima-
tion operators that discard approximately half of the node at
each application (Shuman et al., 2015). Despite completely
removing some nodes, when such techniques are paired
with SMP, the original graph signal can be reconstructed
without losses from the pooled one. Such an approach has
been adapted to the graph pooling framework (Bianchi et al.,
2020) and represents an alternative to k-MIS pooling.

3.2. Scalability

Maintaining multiple representations adds a computational
burden to the already expensive operations performed by
STGNNs for standard spatial and temporal processing. For
this reason, we adopted a series of architectural design
choices to reduce the computational and memory com-
plexity. As previously discussed, we follow the TTS
paradigm (Sec. 2.1), which allows us to perform SMP op-
erations on a single static graph, regardless of the length of
the sequence being processed. Additionally, by integrating
downsampling operations, the amount of computation re-
duces progressively with the layers, as the number of time
steps and nodes is decimated. Temporal processing, for
instance, depends on the dilation factor chosen rather than
the number of layers, scaling as O (NW (d/(d− 1))) in
contrast to O(NWL). Notably, this regularization has a
positive impact also on the spatial and temporal receptive
fields, which grow exponentially faster than standard TTS
architectures, ceteris paribus.

The chosen k-MIS pooling operator belongs to the class
of sparse and non-trainable pooling methods, which have
a low memory footprint and do not require additional com-
putation. A pooling operator is said to be sparse if every
node is assigned to at most one supernode. Additionally,
pooling operators whose selection matrix Sk is learned to-
gether with the model’s weights are called trainable (non-
trainable otherwise). The use of non-trainable methods
allows us to compute the downsampling matrices once in
a pre-processing step, making the spatial downsampling
computationally comparable to the temporal one. While
it can also act as a regularization for large models with
high capacity, this lack of flexibility might introduce a too
restrictive bias for its strong reliance on graph topology.
In Appendix F, we show an empirical example.

4. Related Work

Prominent representatives of STGNNs for forecasting in-
clude graph-based RNNs, which integrate SMP within tem-
poral processing (Seo et al., 2018; Li et al., 2018; Zhang
et al., 2018; Yu et al., 2019; Bai et al., 2020), and convo-
lutional approaches, which apply convolutions or attention
mechanisms across temporal and spatial dimensions (Yu
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et al., 2018; Wu et al., 2019; 2022). Remarkably, none
of these methods explicitly consider missing data in the
input. GRIN (Cini et al., 2022) and other STGNNs (Wu
et al., 2021; Marisca et al., 2022) specifically address miss-
ing data in time series with relational information but focus
on imputation. Forecasting with missing data, instead, is
explored by a limited number of works in the context of
traffic analytics (Zhong et al., 2021; Wang et al., 2023).

Numerous techniques exist for handling missing data, such
as GRU-D (Che et al., 2018) which simultaneously imputes
missing values while processing the sequence, along with
approaches for multivariate time classification (Shukla &
Marlin, 2020), anomaly detection (Bianchi et al., 2019), and
forecasting (Tang et al., 2020). Yet, none of these methods
explicitly model the spatial dependencies in the data.

Pyramidal approaches to process inputs with missing (or
noisy) data have been extensively studied in graph (Shu-
man et al., 2015; Tremblay & Borgnat, 2016) and discrete-
time (Strang & Nguyen, 1996) signal processing. The idea
of using a hierarchy of either temporal or spatial representa-
tions has also been adopted by deep learning models for time
series classification (Cui et al., 2016), forecasting (Wang
& Jing, 2022; Chen et al., 2023), and forecast reconcilia-
tion (Rangapuram et al., 2021; 2023). In particular, Cini
et al. (2023a) propose an approach for hierarchical time
series forecasting where learnable graph pooling operations
are used to cluster the time series.

5. Experiments
In this section, we report the results of the empirical analysis
of our approach in different synthetic and real-world settings.
We use mean absolute error (MAE) as the figure of merit,
averaged over only valid observations (Eq. 2). The code to
reproduce the experiments and the instructions to download
and pre-process the datasets are available online.1

Baselines We choose as baselines the following state-of-
the-art STGNNs: DCRNN (Li et al., 2018), a recurrent
STGNN using the diffusion-convolutional operator; Graph
WaveNet (GWNet) (Wu et al., 2019), a spatiotemporal con-
volutional residual network; AGCRN (Bai et al., 2020),
an adaptive recurrent STGNN; the four TTS-IMP, TTS-
AMP, T&S-IMP, and T&S-AMP baselines introduced
by Cini et al. (2023d), which are TTS and T&S architectures
equipped with isotropic or anisotropic message passing, re-
spectively. Given the similarity of TTS-IMP and TTS-AMP
with our model, except for the hierarchical processing, they
represent an ablation study about the effectiveness of learn-
ing hierarchical representations in TTS architectures. Fi-
nally, we consider a GRU sharing the parameters across the
time series. Since the baselines do not handle missing values

1https://github.com/marshka/hdtts

Table 1. Forecasting error (MAE) on GraphMSO with different
missing data distributions. Bold formatting is used to mark best
result in each setting. †Models without spatial message passing.

Model Point (5%) Block–T Block–ST
GRU-D† 0.385±0.012 0.670±0.020 1.081±0.003

GRU-I† 0.322±0.016 0.619±0.011 1.064±0.003

GRIN-P 0.163±0.008 0.392±0.031 0.895±0.012

GRU† 0.346±0.027 0.639±0.011 1.137±0.008

DCRNN 0.291±0.277 0.645±0.510 1.103±0.001

AGCRN 0.067±0.004 0.366±0.013 1.056±0.012

GWNet 0.089±0.002 0.340±0.001 0.955±0.012

T&S-IMP 0.118±0.009 0.323±0.011 0.935±0.005

T&S-AMP 0.063±0.003 0.293±0.020 0.868±0.006

TTS-IMP 0.113±0.008 0.271±0.007 0.697±0.005

TTS-AMP 0.096±0.004 0.251±0.004 0.669±0.013

HD-TTS-IMP 0.058±0.004 0.247±0.002 0.651±0.023

HD-TTS-AMP 0.062±0.002 0.261±0.009 0.679±0.005

in input, we impute them node-wise using the last observed
value and concatenate the mask to the input as an exoge-
nous variable. In addition, we consider approaches that
are specifically designed to process time series with miss-
ing data: GRU-I, a GRU that imputes missing values with
1-step-ahead predictions during processing; GRU-D (Che
et al., 2018); GRIN-P, the Graph Recurrent Imputation Net-
work (Cini et al., 2022), followed by a predictive decoder.
The details about the implementation of the baselines are
in Appendix B.

Missing data patterns Similar to previous works (Yi
et al., 2016; Marisca et al., 2022), we mask out observa-
tions in the data with missing data patterns that simulate
realistic scenarios (see Sec. 2.3). In the Point setting, each
observation has a constant fixed probability η of being miss-
ing (Eq. 7). In the Block–T setting, in addition to the ran-
dom point missing, we simulate sensor faults by letting sen-
sor observations be missing for multiple consecutive steps
with probability pf (Eq. 8). The duration of each fault is
independently sampled from the same uniform distribution
across sensors. Finally, Block–ST builds upon Block–T to
reproduce faults affecting a group of sensors in a localized
region and is obtained by propagating the fault to all k-hop
neighbors with probabilities [pg ]k (Eq. 10). In all settings,
we let the probabilities be the same for all sensors. Details
on the distribution parameters can be found in Appendix B.

5.1. GraphMSO: a New Synthetic Benchmark

We introduce a new synthetic dataset, called Graph Mul-
tiple Superimposed Oscillators (GraphMSO), inspired
by a popular benchmark in time series forecasting (Bianchi
et al., 2017). Given a graph with binary adjacency matrix
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Table 2. Forecasting error (MAE) on real-world datasets with different missing data distributions. We use bold formatting to mark best
results and N/A for runs exceeding resource capacity. †Models without spatial message passing.

AQI ENGRAD PV-US
Model Original + Point Block–T Block–ST Block–T Block–ST Batch/s GPU RAM

GRU-D† 18.26±0.09 19.23±0.08 5.29±0.05 5.41±0.01 4.04±0.03 4.27±0.01 5.07±0.00 9.33 GB
GRU-I† 18.12±0.03 19.07±0.01 5.24±0.04 5.39±0.00 4.05±0.02 4.29±0.02 2.90±0.00 10.28 GB
GRIN-P 16.85±0.05 17.59±0.06 4.91±0.04 5.05±0.00 3.62±0.02 3.85±0.07 1.52±0.00 17.28 GB
GRU† 18.17±0.03 19.19±0.06 5.30±0.03 5.42±0.02 3.98±0.02 4.14±0.02 11.59±0.04 12.01 GB
DCRNN 16.99±0.09 17.51±0.08 5.14±0.06 5.33±0.05 3.54±0.01 3.76±0.00 1.36±0.01 19.72 GB
AGCRN 17.19±0.06 17.92±0.05 4.84±0.01 5.10±0.06 4.06±0.01 4.20±0.04 1.15±0.01 23.40 GB
GWNet 15.89±0.04 16.39±0.14 4.59±0.04 4.76±0.03 3.48±0.05 3.71±0.03 2.12±0.00 16.02 GB
T&S-IMP 16.54±0.03 17.13±0.05 4.98±0.01 5.15±0.03 3.60±0.02 3.82±0.03 2.68±0.00 7.03 GB
T&S-AMP 16.15±0.02 16.58±0.10 4.93±0.02 5.11±0.05 N/A N/A N/A N/A
TTS-IMP 16.25±0.01 16.90±0.26 4.81±0.07 5.08±0.04 3.50±0.01 3.66±0.02 18.84±0.14 12.81 GB
TTS-AMP 15.63±0.06 16.15±0.05 4.70±0.00 4.81±0.06 3.46±0.03 3.65±0.05 14.26±0.08 12.81 GB
HD-TTS-IMP 15.50±0.07 15.94±0.10 4.48±0.01 4.64±0.03 3.47±0.01 3.62±0.02 7.11±0.03 10.86 GB
HD-TTS-AMP 15.35±0.01 15.76±0.07 4.53±0.03 4.65±0.04 3.47±0.02 3.61±0.02 6.21±0.02 10.86 GB

A ∈ [0, 1]N×N , we first assign to all nodes sinusoids with
incommensurable frequencies x̄i

t = sin
(

t
ei/N

)
and then

propagate the signals over the graph as

X0:T = X0:T + Ȧ⊤
KX0:T , (19)

where ȦK is a matrix where each column i has only 5
nonzero entries randomly selected from the i-th column of∑K

k=1 A
k. The resulting time series X0:T are aperiodic sig-

nals extremely difficult to predict unless the graph structure
is used to recover the initial sinusoids. As such, GraphMSO
is a very effective benchmark to test the performance of
spatiotemporal models (further details in Appendix A.1).
We consider three different settings with increasing diffi-
culty levels: (1) Point missing with η = 0.05; (2) Block–T
missing with η = 0.05 and pf = 0.01 (≈ 27% data miss-
ing); (3) Block–ST missing with η = 0.05, pf = 0.005,
and pg = [ 1 ], i.e., all faults being propagated to 1-hop
neighbors in ȦK (≈ 67% data missing).

Tab. 1 shows the results of the analysis. Notably, HD-TTS
outperforms all baselines in all settings. The performance
gap is notably pronounced when compared to more complex
STGNNs like GWNet and AGCRN. These models, can –
in principle – reach all the necessary spatial information
through a single SMP step, as they learn a connectivity ma-
trix. Finally, the performance in the Point missing setting
suggests that learning dedicated representations for the dif-
ferent spatiotemporal scales may also be beneficial when
the missing information can be more easily recovered.

5.2. Real-world Benchmarks

In this experiment, we consider three real-world datasets
for time series forecasting. AQI (Zheng et al., 2015) con-
tains one year of hourly measurements from 437 air quality

monitoring stations in China. Since 25.67% of the mea-
surements are missing, it is a widely used benchmark for
irregular spatiotemporal data analytics. PV-US (Hummon
et al., 2012) contains one year of solar power production
from 5016 simulated photovoltaic farms in the US with a
5-minute sampling rate. We consider the subset of 1081
western farms and aggregate measurements at 20-minute
intervals. For the size of the graph, it is used to test the
scalability of STGNNs (Cini et al., 2023b). Finally, the sec-
ond new dataset introduced in this paper, named EngRAD,
contains 3 years of 5 historical weather variables sampled
hourly at 487 grid points in England. The measurements
are provided by open-meteo.com (Zippenfenig, 2023) and
licensed under Attribution 4.0 International (CC BY 4.0).
This dataset aims to fill a gap in the literature, by providing
a spatiotemporal dataset with (1) multiple channels and (2)
observations going beyond the slowest seasonality (i.e., one
year). Following previous works, we obtain the adjacency
matrices with a thresholded Gaussian kernel on the pairwise
distances between sensors. For AQI, given the high num-
ber of missing values often occurring in blocks, we test the
models on both the original data and in a Point setting with
an additional η = 0.25 portion of data masked out. For
the other datasets, we consider the Block–T and Block–ST
settings. More details about the datasets and the missing
data distributions can be found in Appendix A–B.

Tab. 2 shows the models’ performance with different miss-
ing data patterns. Our approach ranks among the best-
performing methods in all considered settings. Improve-
ments are more evident with blocks of missing data span-
ning both time and space (Block–ST). Here, HD-TTS out-
performs by a larger margin more complex STGNNs and
both IMP and AMP variants w.r.t. the respective TTS model.
This result underlines the advantage of combining hierar-
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Figure 4. Decoder weights in GraphMSO (Block–ST). The graph used to produce this plot is the undirected line graph shown close to the
scores associated with the first spatial resolution k = 0. Node colors in the graphs associated with higher spatial scales show how nodes
are clustered in supernodes by Sk at each scale k.

chical representations from multiple temporal and spatial
scales when the amount of missing data is substantial. The
results on AQI, a dataset with a high ratio of missing ob-
servations, prove that HD-TTS is impactful in practical
applications where missingness in data is a real concern.
Finally, results on training speed and memory utilization on
PV-US highlight the scalability advantages of our approach
compared to state-of-the-art STGNNs, which also produce
higher forecasting errors. In Appendix E, we report addi-
tional results for EngRAD in a setting where some variables
are considered exogenous rather than inputs and targets.

5.3. Interpretability of Decoder Weights

In Fig. 4, we show the missing data mask Mt−W :t associ-
ated with the input and the attention scores computed by the
decoder. The scores can be used to inspect which spatial and
temporal scales the model focuses on when the pattern of
missing data and the dynamics in the input change. For read-
ability, we use an undirected line graph such that adjacent
nodes are in consecutive positions in the figure. We consider
the Block–ST setting and use the original adjacency matrix
A to propagate both the signal and the faults in Eq. 19. We
use a multi-step decoder to compute different scores for
the different forecasting steps (see Appendix C); the figure
shows only the scores associated with the first and last time
step of the forecasts, i.e., X̂t and X̂t+H−1. The scores
computed for a time step are grouped into K + 1 blocks,
with K = 2, each containing the scores of L = 3 temporal
scales associated with a given spatial scale. As an example,
the leftmost block contains the scores

[
α

⟨0⟩
⟨1⟩,α

⟨0⟩
⟨2⟩,α

⟨0⟩
⟨3⟩

]

associated with the first spatial scale, i.e., the original graph.

It is possible to observe that, to predict the first step X̂t,
the model focuses on the first temporal scale if the most
recent data is not missing. Instead, when data are missing
at a given node i, more weight is given to higher levels in

the spatial hierarchy. This indicates that the information is
retrieved from the corresponding temporal scale of the i-th
node’s neighbors. As expected, representations associated
with slower dynamics – in both time and space – become
more relevant when forecasting values farther in time. For
example, we see that to predict X̂t+H−1 the model focuses
more on coarser temporal scales. Also, note that the scores
vary across nodes subject to the same or similar missing
data patterns. Indeed, the most relevant spatiotemporal
scales also depend on the specific dynamics of the time
series associated with each node. In Appendix D, we show
additional analyses by considering a scenario where we
keep the missing data patterns but assign each node the
same signal.

6. Conclusions
We presented a novel framework for graph-based forecast-
ing with missing data based on hierarchical spatiotemporal
downsampling. Our model learns representations at dif-
ferent spatiotemporal scales, which are then combined by
an interpretable attention mechanism to generate the fore-
casts. Thanks to this design, it can dynamically adapt the
receptive field and handle different types of missing data
patterns in a scalable fashion. Empirical comparisons with
state-of-the-art methods on both synthetic and real-world
datasets showed notable performance improvements, both in
terms of forecasting accuracy and computational efficiency.
Improvements are even more evident in the challenging set-
tings with blocks of missing values in space and time, where
other STGNNs models struggle.

The framework we proposed is very general and flexible.
In this work, we investigated a few options to implement
the temporal and spatial components. However, different
combinations and more powerful operators are likely to
deliver further performance improvements.
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Appendix
In this appendix, we provide further details about our architecture and additional material about the experimental evaluation.

A. Datasets

Table 3. Statistics of the datasets and considered sliding-window parameters.

Datasets Type Nodes Edges Time steps Sampling Rate Channels Window Horizon
GraphMSO Directed 10,000 100 300 N/A 1 72 36
AQI Undirected 437 2,730 8,760 1 hour 1 24 6
EngRAD Undirected 487 2,297 26,304 1 hour 5 24 6
PV-US Undirected 1081 5,280 26,283 20 minutes 1 72 6

In this section, we report the details of the used datasets, with a particular focus on the two introduced in this paper:
GraphMSO and EngRAD. Notably, all datasets used in our study are publicly available.

A.1. GraphMSO

Fig. 5 illustrates the procedure for generating the GraphMSO dataset. After creating a graph with a given topology, each
node is assigned a sinusoid characterized by a frequency that is incommensurable with the ones at the other nodes. As
such, summing one or more sinusoids results in a signal that is aperiodic and, thus, very difficult to predict. In addition, by
aggregating from neighbors randomly chosen at different hops, predicting the signal becomes an even more challenging task.
To obtain such a signal, we combine each sinusoid with the sinusoids of the graph neighbors according to the propagation
scheme described in Sec. 5.1. For illustration purposes, in Fig. 5 we show a graph with a ring topology and propagate the
sinusoids using the first-order adjacency matrix.

Figure 5. Schematic depiction of the generation of the GraphMSO dataset.

The details of the specific GraphMSO dataset used in the paper are the following. To build the adjacency matrix, we
generated a random graph where each node has exactly 3 incoming edges. The number of nodes in the graph is N = 100
and the length of each time series is 10, 000 time steps.

A.2. EngRAD

The EngRAD dataset contains measurements of 5 different weather variables collected at 487 grid points in England
from 2018 to 2020. Data has been provided by open-meteo.com2 (Zippenfenig, 2023) and licensed under Attribution 4.0
International (CC BY 4.0). The numerical weather prediction model used to generate the data is ECMWF IFS, which has
a spatial resolution of 9 km. The grid points are located in correspondence to cities. For each point, we provide basic
information such as geographic coordinates, elevation, closest city, and the county to which it belongs. The physical
variables collected are (1) air temperature at 2 meters above ground (°C); (2) relative humidity at 2 meters above ground
(%); (3) summation of total precipitation (rain, showers, snow) during the preceding hour (mm); (4) total cloud cover (%);
(5) global horizontal irradiance (W/m2). The three complete years of observations allow for a comprehensive capture of
phenomena associated with yearly seasonalities, a feature rarely found in existing benchmarks on spatiotemporal data, which
are often too short.

In Fig. 6, we show a geographic map (6a) and corresponding adjacency matrix (6b) of the EngRAD graph (A⟨0⟩) and the
coarsened graphs (A⟨1:4⟩) obtained with k-MIS pooling. As can be seen from the plots, the structural information of the
original graph is preserved throughout the pooling operations.

2https://open-meteo.com/
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AAA〈0〉 AAA〈1〉 AAA〈2〉 AAA〈3〉

(a) Plot of the graphs in geographic space. Nodes with the same color in a graph are assigned to the same supernode in the corresponding
pooled graph (due to the limited amount of colors in the palette, the same color might be used in different clusters). The size of a
supernode is proportional to its cardinality and its spatial coordinates are obtained by averaging the coordinates of the associated nodes
with the RED operation.
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(b) Adjacency matrices at different spatial scales.

Figure 6. Original and pooled graphs in EngRAD obtained by recursive application of k-MIS pooling.

A.3. Other Datasets

The two additional datasets considered in the experimental evaluation are AQI and PV-US. Introduced by Zheng et al.
(2015), AQI contains hourly measurements of pollutant PM 2.5 from 437 air quality monitoring stations located in 43 cities
in China. Since 25.67% of the measurements are missing, it is often used to evaluate imputation models (Yi et al., 2016;
Cini et al., 2022; Marisca et al., 2022). The PV-US dataset (Hummon et al., 2012) contains simulated energy production by
5016 photovoltaic farms in the US over all the year 2006. In the original datasets, samples are generated every 5 minute. We
use the data pre-processed by Cini et al. (2023b) and mask zero values associated with night hours (i.e., with no irradiance).
We consider only the subset containing 1081 farms in the western zones and aggregate observations at 20-minute intervals
by taking their mean.

A.4. Data Pre-processing

Following previous works (Li et al., 2018; Cini et al., 2023b), to obtain the adjacency matrix in real-world datasets, we
first compute a weighted, dense matrix containing the pairwise haversine distances between the geographic coordinates of
the sensors. Then, we sparsify this matrix by applying a Gaussian kernel on the distances and zeroing out values under
a threshold τ = 0.1. For PV-US and EngRAD, we additionally cap the maximum number of neighbors for each node by
keeping the 8 with the highest weight (i.e., shorter distance). To make the resulting graph undirected, we mirror edges that
have a unique direction.
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As these datasets contain communities of nodes very close in space and far from other communities, we insert additional
edges to reduce the total number of connected components. In particular, an edge with minimum weight τ is added between
the node in a disconnected community closest to the closest node in any other community. We repeat this step until the
graph is connected or no edges can be added (e.g. if two connected components are very far apart).

For all datasets, we use as exogenous variables the encoding of the time of the day and the day of the year with two sinusoidal
functions. For AQI, we additionally include a one-hot encoding of the day of the week, as the presence of air pollutants may
be influenced by humans’ routines.

We split the datasets into windows of W time steps, and train the models to predict the next H observations. Values for
W and H in each dataset are in Tab. 3. For GraphMSO and PV-US, we divide the obtained windows sequentially into
70%/10%/20% splits for training, validation, and testing, respectively. For AQI, we use as the test set the months of March,
June, September, and December, as done by Yi et al. (2016). For EngRAD, containing 3 years of data, we use the year 2020
for testing and one week per month in the year 2019 for validation. We use all the samples that do not overlap with the
validation and test sets to train the models.

For AQI and GraphMSO, we transform the data to have zero mean and unitary variance, while we rescale them to the
[0, 1] interval in EngRAD and PV-US. The statistics used to transform the data are computed using only valid values in the
training set.

B. Experimental Setting

Software & Hardware All the code used for the experiments has been developed with Python (Van Rossum & Drake,
2009) and relies on the following open-source libraries: PyTorch (Paszke et al., 2019); PyTorch Geometric (Fey & Lenssen,
2019); Torch Spatiotemporal (Cini & Marisca, 2022); PyTorch Lightning (Falcon & The PyTorch Lightning team, 2019);
Hydra (Yadan, 2019); Numpy (Harris et al., 2020); Scikit-learn (Pedregosa et al., 2011).

Experiments were run on different workstations with varying models of processors and GPUs. However, we used the same
workstation for measuring time and memory requirements in PV-US, whose results are reported in Tab. 2. More details are
provided later in this section.

Baselines In the following, we report the hyperparameters used in the experiment for the considered baselines. Whenever
possible, we relied on code provided by the authors or available within open-source libraries to implement the baselines. To
ensure a fair comparison, we tried to keep the number of trainable parameters of our model and each baseline in the same
range.

DCRNN We used the same parameters of the original paper (Li et al., 2018), with an embedding size of 64 and a K = 2
spatial receptive field. Following previous works (Cini et al., 2023b), we used an MLP as the decoder with one hidden
layer with 128 units.

GWNet We used the same parameters reported in the original paper (Wu et al., 2019), except for those controlling the
receptive field. Being GWNet a convolutional architecture, this was done to ensure that the receptive field covers the
whole input sequence. In particular, we used 8 layers with temporal kernel size and dilation of 3 when the input window
is 24 and 7 layers with dilation and kernel size of 5 when the input window is 72.

AGCRN We used the same hyperparameters reported in the original paper (Bai et al., 2020).
GRIN-P To implement this baseline, we used the unidirectional layer available in the Torch Spatiotemporal library3

followed by an MLP as the decoder. We kept the same hyperparameters of the original paper (Cini et al., 2022).

For the GRUs, namely GRU, GRU-D, and GRU-I, we used a size of dh = 64 for the hidden dimension, L = 2 recurrent
layers and one hidden layer with 128 units for the MLP used as decoder. For the four TTS-IMP, TTS-AMP, T&S-IMP,
and T&S-AMP baselines, we used the same hyperparameters reported in the paper (Cini et al., 2023d) and increased the
SMP layers to K = 4 to obtain a wider receptive field.

Training setting We used AdamW (Loshchilov & Hutter, 2019) as the optimizer with an initial learning rate of 0.001. We
used the ReduceLROnPlateau scheduler of Pytorch that reduces the learning rate by a factor of 0.5 if no improvements
are noticed after 10 epochs. We trained all models for 200 epochs of 300 randomly drawn mini-batches of 32 examples and

3https://github.com/TorchSpatiotemporal/tsl
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Table 4. Parameters used to generate the missing data mask in the different settings.

GraphMSO AQI EngRAD / PV-US
Parameter Point Block–T Block–ST Point Block–T Block–ST

η 0.05 0.05 0.05 0.25 0.05 0.075

pf 0 0.01 0.005 0 0.01 0.003

smin – 8 8 – 4 6

smax – 48 48 – 12 21

pg 0 0 [ 1 ] 0 0 [ 0.33 0.15 0.05 ]

stopped the training if the MAE computed on the validation set did not decrease after 30 epochs. We then used the weights
of the best-performing model for evaluation on the test set. For the baselines that jointly perform imputation and forecasting,
we used the imputation error as an auxiliary loss.

Simulated missing data patterns To evaluate the models’ performance in function of the missing data pattern in input,
we design a strategy to inject missing values in a controlled fashion. Given a sequence of observations of length T , we
generate the missing data mask Mt:t+T according to three parameters:

η: The parameter of the Bernoulli distribution associated with the probability of an observation being missing.

pf : The parameter of the Bernoulli distribution associated with the probability of a sensor fault (consecutive missing values).

smin, smax: The boundaries of the uniform distribution U(smin, smax) from which the length of the fault s is sampled.

pg: The vector of the Bernoulli distributions’ parameters associated with the probability of a fault to be propagated at
neighboring nodes. The k-th element of the vector is associated with the k-th neighborhood order.

All parameters are constant across nodes and time steps, meaning that the process generating the missing data is stationary.
For each dataset, we fix the seed used to generate the mask, ensuring that all models observe the same data in all runs. In
the case of multivariate sensor observations, such as in EngRAD, the mask is sampled independently across the channels,
possibly resulting in partially available observations. We report the parameters used to generate the mask in the different
settings in Tab. 4. Note that in GraphMSO even if we have pg = [1], the propagation is done with the matrix ȦK defined
in Sec. 5.1, which contains neighbors sampled from all orders up to K. To give an idea of how the missing data distributions
look like, in Fig. 7 we report the missing data masks used in GraphMSO for the three settings specified in Tab. 4.
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Figure 7. From left to right, the masks used in GraphMSO. Green and red colors denote valid and missing observations, respectively.

During training, the generated mask is used to remove observations in both the input and ground-truth data. Conversely,
when testing the models only the input is masked out and the forecasting error metrics are computed on all valid observations
(i.e., not missing in the original dataset).

Time and memory requirements In Tab. 2 of the paper, we report the time required for a single model update (expressed
in batches per second) and the corresponding GPU memory usage for each method under consideration. To ensure a fair
assessment, we record the time elapsed between the initiation of the inference step and the completion of the weights’ update
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for a total of 50 mini-batches of 16 samples each, excluding the initial 5 and final 5 measurements to mitigate potential
overhead impacts. To measure the GPU memory reserved by each model, we relied on the NVIDIA System Management
Interface4, which provides near real-time GPU usage monitoring. We ran all experiments sequentially on a workstation
running Ubuntu 20.04.6 LTS and equipped with one AMD Ryzen 9 5900X 12-core processor, 128GB 3200MHz DDR4
RAM, and two NVIDIA RTX A6000 GPU with 48 GB GDDR6 RAM.

C. Architecture Details
In this section, we provide additional details about the implementation of our model.

Spatial message passing We consider two different SMP operators, belonging to the isotropic and anisotropic categories,
respectively. As isotropic SMP, we use the diffusion-convolutional operator (Atwood & Towsley, 2016), that computes the
messages for each p-hop neighborhood as

ϕl(xj,l91
t , ãjip ) = ãjip x

j,l91
t Θl

p (20)

where ϕl is the message function (Sec. 2.1), ãjip is the weight of the edge between nodes j and i in Ap normalized by the
sum of the incoming edges’ weight. For directed graphs, we further compute messages from p-hop neighbors in A⊤ with
different parameters Θ′l

p , following previous works (Li et al., 2018).

For the anisotropic variant, we rely on the anisotropic SMP layer introduced by Cini et al. (2023d), that computes the
messages for each p-hop neighborhood as

mji,l91
t = ξ

([
xi,l91
t ∥xj,l91

t ∥ aji
]
Θl

1

)
Θl

2, (21)

ãji,l91t = σ
(
mji,l91

t Θl
3

)
, (22)

ϕl(mji,l91
t , ãji,l91t ) = ãji,l91t mji,l91

t (23)

where Θl
1,Θ

l
2, and Θl

3 are matrices of learnable parameters, ∥ the concatenation operation, and σ and ξ the sigmoid and
ELU activation functions, respectively.

These two strategies are only used to implement SMP during the downsampling stage, i.e., SMPD. To reduce the total
number of parameters and operations, after upsampling we only perform a propagation step along the graph, i.e., we
implement SMPU(X,A) = A⊤X .

k-MIS pooling k-MIS pooling (Bacciu et al., 2023) is a graph-based equivalent of evenly-spaced coarsening mechanisms
for regular data. k-MIS pooling provides theoretical guarantees for distortion bounds on path lengths and the ability to
preserve key topological properties in the coarsened graphs. The method utilizes maximal k-independent sets to find a set
of nodes that are approximately equally spaced in the original graph. The selected nodes are then used as vertices of the
reduced graph. k-MIS pooling first identifies the supernodes with the centroids of the maximal k-independent set of a graph.
The centroids are selected with a greedy approach based on a ranking vector π applied to the vertex features to speed up
computation. Depending on how the ranking π is computed, k-MIS pooling declines as a trainable or non-trainable pooling
operator. In the former case, ranking is computed as π = X⟨k91⟩p⊤ where the projector p is the output of a trainable
function. The non-trainable version of k-MIS pooling, instead, relies on a pre-defined ranking function that does not depend
on trainable parameters or node features. The latter is the setting adopted in this work, as we let the ranking be constant
across the node, i.e., π = 1. In addition, we convert directed graphs to undirected, as the method acts on undirected graphs.

Multi-step decoder In some applications, the different dynamics captured by the multi-scale representations might be
more or less relevant to the prediction depending on the distance of the target time step from the last observations. The
structured multi-scale encodings, paired with the adaptive weighting mechanism, allow us to compute H different score sets{
α
i⟨k⟩
t+h⟨l⟩

}
h=0,...,H−1

, and, hence, H aggregated representations
{
z̃i
t+h

}
h=0,...,H−1

, per node. The predictions are then

obtained, ∀ h ∈ [0, H), as
x̂i
t+h = MLP

(
z̃i
t+h

)
. (24)

4https://developer.nvidia.com/nvidia-system-management-interface
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(a) GraphMSO dataset with the same time series associated with each node.
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(b) GraphMSO dataset with the original data-generating process (different time series across nodes).

Figure 8. Decoder weights in GraphMSO (Block–ST) with the same missing data pattern but different node signals as input. The graph
used to produce this plot is the undirected line graph shown close to the scores associated with the first spatial resolution k = 0. Node
colors in the graphs associated with higher spatial scales show how nodes are clustered in supernodes by Sk at each scale k.

We will use this implementation in Appendix D to inspect the differences in the scores computed for the first and last time
steps in the forecasting horizon.

Hyperparameters We use an embedding size of dh = 64 for all hidden representations hi
t and zi

t. In the input encoder,
we concatenate the input with node embeddings θi of size 32 and apply an affine transformation. For temporal processing,
we use L = 4 layers with a downsampling factor d = 3. For spatial processing, we use K = 3 pooling layers. The decoder
is an MLP with 2 hidden layers with 128 units. We use ELU as the activation function within the architecture. In the
real-world datasets, we compute different attention weights for each forecasting step, as discussed in the previous section.

D. Interpretability of Decoder Weights

In this appendix, we extend the analysis on the decoder weights reported in Sec. 5.3 including a variant of GraphMSO with
the same time series associated with each node. Indeed, the scores are also influenced by the actual dynamics in the input
time series, which can make it harder to see the relationship between the missing data patterns and the scores. In Fig. 8a,
we show the scores computed by the decode in this setting; we include the original plot of Fig. 4 as Fig. 8b for a better
comparison. In both settings, we can observe that missing data affecting a given spatiotemporal scale in a node results in a
lower weight given to the corresponding representations. This is even more evident in the variant with the same time series
in each node, where the contrast between high and low scores is more pronounced.

18



Graph-based Forecasting with Missing Data through Spatiotemporal Downsampling

Table 5. Forecasting error (MAE) on EngRAD with different target variables and missing data distributions. We use bold formatting to
mark best results. †Models without spatial message passing.

ALL VARIABLES TEMP. & RAD.
Model Block–T Block–ST Block–T Block–ST

GRU-D† 5.77±0.03 6.01±0.06 16.63±0.12 16.82±0.12

GRU-I† 5.79±0.01 5.95±0.01 16.66±0.07 16.80±0.04

GRIN-P 5.41±0.06 5.61±0.03 15.59±0.14 15.80±0.11

GRU† 5.84±0.00 6.03±0.04 16.77±0.08 16.97±0.10

DCRNN 5.63±0.03 5.90±0.04 16.27±0.18 16.52±0.18

AGCRN 5.26±0.01 5.53±0.02 15.31±0.04 15.71±0.09

GWNet 5.05±0.08 5.22±0.07 14.49±0.15 14.87±0.07

T&S-IMP 5.47±0.02 5.67±0.05 15.85±0.13 16.13±0.16

T&S-AMP 5.37±0.03 5.58±0.09 15.82±0.17 15.86±0.10

TTS-IMP 5.21±0.04 5.46±0.07 15.32±0.18 15.19±0.23

TTS-AMP 5.10±0.03 5.31±0.04 14.89±0.19 15.02±0.07

HD-TTS-IMP 4.93±0.02 5.12±0.03 14.34±0.09 14.41±0.07

HD-TTS-AMP 4.93±0.03 5.10±0.01 14.22±0.08 14.46±0.14

E. EngRAD Additional Results
In this appendix, we consider two additional settings for the EngRAD dataset. The first setting is similar to the one
considered in Sec. 5.2, but we do not compute loss and metrics on the prediction of the global horizontal irradiance variable
during night hours when it is null. In the second setting, we consider as target variables Xt only air temperature and
irradiance (masked during night hours), while we use the remaining weather variables as exogenous Ut. This scenario
differs from the one considered in previous experiments as the exogenous variables here vary across nodes rather than being
the same temporal encodings. Tab. 5 shows the experiment results. We can see that the results are consistent with Tab. 2 and
both HD-TTS variants outperform all the baselines in every considered setting.

F. Traffic Forecasting
In Sec. 3.2, we pointed out at potential issues of using non-trainable pooling operators when the input graph is noisy or does
not reflect the actual correlations and dependencies across the time series. In this experiment, we show this phenomenon
in two popular traffic forecasting benchmarks, namely, METR-LA and PEMS-BAY. These datasets contain traffic speed
records measured every 5 minutes by 207 and 325 sensors located over highways in Los Angeles and the Bay Area,
respectively. In both datasets, the adjacency matrix is directed and, as discussed in Appendix C, it must be transformed to
undirected to obtain the coarsened graphs when using the k-MIS pooling method.

As it is evident from Fig. 9, the graph topology does not reflect the underlying structure of the road network. Distant nodes
are assigned by the pooling operator to the same supernode, causing significant discrepancies between the topology of the
coarsened graphs and the underlying data. Indeed, points at a significant driving distance end up being connected in the
graph. Additionally, some nodes are disconnected from the rest of the graph (5 in METR-LA and 12 in PEMS-BAY). These
issues affect the computation of the coarsened graphs and, consequently, the performance of HD-TTS, which relies on
spatially aggregated representations to capture long-range spatial dynamics. Tab. 6 shows the performance of the models.
While outperforming the baselines in some settings, in some other cases flatter models (like TTS-IMP) are more effective.
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Table 6. Forecasting error on traffic benchmarks with different block missing settings. Bold formatting is used to mark best result in each
setting. †Models without spatial message passing.

METR-LA PEMS-BAY
Block–T Block–ST Block–T Block–ST

Model MAE MSE MAE MSE MAE MSE MAE MSE
GRU-D† 3.91±0.03 62.03±1.06 4.17±0.04 70.11±1.09 2.10±0.01 24.19±0.17 2.19±0.01 26.08±0.29

GRU-I† 4.13±0.00 69.47±0.24 4.49±0.01 80.43±0.53 2.16±0.01 25.54±0.05 2.25±0.00 27.89±0.01

GRIN-P 3.48±0.07 49.59±1.51 3.67±0.06 55.14±0.78 1.93±0.03 18.33±0.61 2.00±0.04 19.60±0.51

GRU† 4.01±0.01 67.26±0.34 4.31±0.01 76.29±0.54 2.08±0.00 24.29±0.08 2.17±0.00 26.40±0.17

DCRNN 3.48±0.01 47.21±0.48 3.78±0.03 56.49±1.39 1.86±0.00 17.66±0.07 1.95±0.00 19.39±0.14

AGCRN 3.38±0.00 47.80±0.74 3.53±0.01 52.89±0.77 1.80±0.01 16.56±0.33 1.85±0.01 17.41±0.15

GWNet 3.21±0.01 42.17±0.47 3.43±0.03 49.23±1.66 1.71±0.01 15.30±0.21 1.78±0.00 16.69±0.08

T&S-IMP 3.28±0.01 45.61±0.39 3.45±0.01 51.63±0.70 1.74±0.00 15.81±0.08 1.81±0.01 17.24±0.05

T&S-AMP 3.24±0.01 44.67±0.45 3.45±0.01 52.32±0.82 1.74±0.00 15.94±0.16 1.81±0.00 17.34±0.07

TTS-IMP 3.16±0.02 42.36±0.96 3.36±0.02 49.01±0.58 1.70±0.00 14.94±0.17 1.77±0.01 16.34±0.15

TTS-AMP 3.19±0.02 43.40±1.17 3.40±0.02 50.89±0.79 1.74±0.00 15.76±0.13 1.80±0.01 17.18±0.21

HD-TTS-IMP 3.23±0.01 44.11±0.55 3.40±0.01 50.18±0.39 1.70±0.01 15.01±0.30 1.76±0.01 16.17±0.25

HD-TTS-AMP 3.22±0.01 43.41±0.36 3.39±0.02 49.62±0.62 1.70±0.01 14.91±0.21 1.77±0.00 16.08±0.12

Figure 9. Coarsened graphs in METR-LA obtained by recursive application of k-MIS pooling.
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