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Abstract

Guaranteeing the correctness and factuality of
language model (LM) outputs is a major open
problem. In this work, we propose conformal fac-
tuality, a framework that can ensure high probabil-
ity correctness guarantees for LMs by connecting
language modeling and conformal prediction. We
observe that the correctness of an LM output is
equivalent to an uncertainty quantification prob-
lem, where the uncertainty sets are defined as the
entailment set of an LM’s output. Using this con-
nection, we show that conformal prediction in
language models corresponds to a back-off algo-
rithm that provides high probability correctness
guarantees by progressively making LM outputs
less specific (and expanding the associated uncer-
tainty sets). This approach applies to any black-
box LM and requires very few human-annotated
samples. Evaluations of our approach on closed
book QA (FActScore, NaturalQuestions) and rea-
soning tasks (MATH) show that our approach can
provide 80-90% correctness guarantees while re-
taining the majority of the LM’s original output.

1. Introduction

Large language models (LLMs) have demonstrated excep-
tional progress in recent years and are increasingly being
adopted in various domains such as search engines and chat-
bots (Wei et al., 2022; Raffel et al., 2023; Bubeck et al.,
2023; Ling et al., 2023). However, their outputs cannot be
fully trusted due to their tendency to generate hallucinations
and non-factual content (Maynez et al., 2020; Huang et al.,
2023a; Ji et al., 2023). This has made the factuality and cor-
rectness of LLMSs an important and active area of research,
with several promising approaches that ground LLMs with
knowledge sources (Wang et al., 2023a; Lee et al., 2023;
Semnani et al., 2023; Lewis et al., 2021; Du et al., 2023;
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Figure 1. Conformal factuality uses conformal prediction to en-
sure the correctness of LM outputs. Each potential LM output
sequence (top) is associated with an uncertainty set (bottom) that
contains every ‘more specific’ statement that entails it. Conformal
prediction provides probabilistic guarantees that these uncertainty
sets contain a correct answer (blue), which in turn guarantees the
correctness of the associated output.

He et al., 2022) or perform abstention and deferral (Mohri
et al., 2023; Mao et al., 2023; Yang et al., 2023a; Cheng
et al., 2024).

While the factuality and correctness of language models
are improving, precise guarantees are still needed. In many
domains such as health (Tang et al., 2023; Thirunavukarasu
et al., 2023; Li et al., 2023), law (Huang et al., 2023b; Cur-
ran et al., 2023), or robotics (Zeng et al., 2023; Yang et al.,
2023b), safely deploying a language model requires outputs
to be correct with at least some known, user-specified proba-
bility. However, the complexity and opacity of LLMs make
it challenging to provide precise performance guarantees.

To enable such high-probability correctness guarantees for
black-box LLMs, we take inspiration from conformal pre-
diction (Shafer and Vovk, 2008a; Angelopoulos and Bates,
2022), a framework that performs uncertainty quantifica-
tion on black-box machine learning systems without strong
distributional or modeling assumptions. For any input, this
framework produces conformal sets that are guaranteed to
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have marginally valid coverage, meaning that on average
they contain a correct output with any user-specified proba-
bility.

While highly successful in regression and classification tasks
(Balasubramanian et al., 2014), conformal prediction has
had limited success in LLMs for two reasons: the need to
score the entire output space makes it intractable, and the
resulting confidence sets are so large that they are unusable.
Although a few approaches have applied conformal predic-
tion in LLMs for multiple-choice settings (Kumar et al.,
2023; Ren et al., 2023), token-level settings (Ravfogel et al.,
2023; Ulmer et al., 2024), or approximations (Quach et al.,
2023), no existing method can provide exact, conformal
guarantees on the open-ended outputs of language models.
In our work, we propose a new natural correspondence be-
tween conformal sets and an LLM’s outputs — this not only
resolves the major challenges above, but it will also directly
lead to useful LLM-based systems that have correctness
guarantees.

The key insight of our work is that each possible LM out-
put defines an associated uncertainty set, where this set is
defined as the set of statements that entail the LM’s output.
Under this definition, there is a direct correspondence be-
tween correctness and coverage, since containing a correct
response in the uncertainty set implies that the associated
LM’s output must also be correct by entailment (Figure 1).
Defining the conformal sets implicitly via entailment re-
lations makes conformal prediction for language models
practical and useful, as we never instantiate uncountably
large uncertainty sets and we obtain meaningful and inter-
pretable guarantees directly on model outputs.

Using the correspondence between LM outputs and their
associated uncertainty sets, we show how conformal predic-
tion defines a back-off algorithm for ensuring the correctness
of LM outputs. This algorithm provides a high-probability
correctness guarantee on outputs by producing a chain of
output sequences that are increasingly less specific claims
and then selects a level of specificity that is correct with
high probability, using standard techniques from conformal
prediction (Gupta et al., 2022).

Closest to our method is Angelopoulos et al. (2023), which
gives an algorithm for classification with hierarchical labels
under a conformal risk control framework. Our work also
implicitly represents confidence sets but differs in the con-
struction of the set and the actual conformal guarantee. We
also note that while the risk control framework has been
applied to selecting prompts for LMs (Zollo et al., 2024),
our method is exclusively related to LM outputs.

While our approach provides guarantees for any black box
LM output, we demonstrate the practical utility of our ap-
proach by providing correctness guarantees on GPT-4 (Ope-

nAl, 2023) outputs. Our method works by taking the out-
puts of GPT-4 and repeatedly removing the least certain
sub-claims from the output using a GPT-4 prompt. To find
the least certain sub-claims, we draw from methods like
SelfCheckGPT (Manakul et al., 2023) as well as prompt-
ing for uncertainty estimates (Tian et al., 2023). Across
closed-book QA and reasoning tasks, we show that confor-
mal factuality enables us to attain any target correctness,
and results in usable systems that simultaneously have cor-
rectness guarantees far higher than the correctness of the
base model (30% — 80% on FactScore, 78% — 93% on
NaturalQuestions, and 75% — 95% on MATH) while also
retaining the majority of the sub-claims in the output.

‘We summarize our main contributions below.

* We develop a natural correspondence between confor-
mal prediction and LMs using entailment to define
uncertainty sets associated with LM outputs.

* We provide an algorithmic instantiation of conformal
factuality by breaking down LM outputs into sub-
claims, scoring them, and removing claims according
to their uncertainty.

* We demonstrate that our conformal factuality instanti-
ated with GPT-4 can provide high-probability correct-
ness guarantee on closed book QA and reasoning tasks
while retaining most of the sub-claims in the outputs.'

The rest of this paper is organized as follows. In Section 2,
we formulate the desired guarantee and present our algo-
rithm. In Section 3, we present a theoretical analysis of
our algorithm. Section 4 describes our implementation, and
Section 5 shows the efficacy of our approach on both QA
and reasoning tasks.

2. Preliminaries

In the standard language model (LM) generation setting,
we receive an input x € X and generate an output y € Y
according to a (potentially stochastic) generator y = L(z).
A key problem is that y may not be fully supported by
a ground truth or reference y* € Y (Maynez et al., 2020;
Huang et al., 2023a).

Our goal in this work is to provide precise control over the
correctness and factuality of an LM’s output. As it may be
difficult (if not impossible) to provide guarantees on every
LM output, our goal will be to provide high-probability
guarantees such that for any user-specified probability « €
(0,1), the LM is correct with probability at least (1 — «)

'We release our code at https://github.com/tatsu-1lab/
conformal-factual-1lm.
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over some distribution IP. We express this goal as

P(y is factual and correct) > 1 — a. (N

Throughout this work, we will formalize this correctness
constraint in terms of entailments (MacCartney and Man-
ning, 2015) with respect to some reference knowledge y*
where correctness is equivalent to the entailment relation
y* = .2 Representing factuality and correctness via en-
tailments to a reference is quite general, as we can set y*
to be a broad knowledge base such as ‘Wikipedia pages
related to =’ or even ‘all facts accessible via Google’ to
handle the case where there is no ground truth response for
y*. A key equivalence in our work will be that the factuality
constraint y* = y can be written as a set containment rela-
tion y* € {y’ € Y:y' = y}. We simplify this set using the
entailment operator E:Y 2Y defined by

E(y) ={y" €Yy =y},

such that y* € E(y) holds if and only if y* = y.

Using this entailment set, we can now begin to connect
our goal (1) to a well-studied statistical inference prob-
lem: for exchangeable (X;,Y;*) € X x Y,i € [n + 1], use
{(X;,Y;*)}, to find some uncertainty set C: X + 27 such
that the ground truth Y, ; satisfies the following inequality:

PV € C(Xpi1)) 21— a. )

The connection between this inference problem and our cor-
rectness goal becomes clear if we replace the uncertainty
set C'(X,+1) with the entailment set E(L(X,,+1)) of the
LM output L(X,,+1) € Y. In this case, the inequality (2)
would give precisely our correctness bound (1) since the
event ‘Containing Y* € E(L(X))’ is equivalent to the event
‘L(X) is correct according to Y*’. In the subsequent sec-
tions, we give formal constructions of our uncertainty sets
and introduce conformal prediction techniques for perform-
ing the inference problem.

Background on split conformal prediction. Split confor-
mal prediction (Shafer and Vovk, 2008a; Gupta et al., 2022)
provides standard tools by which we can construct C'(-) that
satisfy the constraint in inequality (2). Our work follows
the standard split conformal prediction approach in (Gupta
et al., 2022), where one constructs a sequence of nested
sets and uses exchangeable calibration data to pick a nested
set that is sufficiently large to fulfill the inequality in (2).
Formally, for a threshold set 7 < R and each input = € X,
let {F:(x) }+7 denote a sequence of output sets following

*Entailment can be ambiguous, and our work provides guaran-
tees for any definition of entailment (such as entailment as judged
by domain experts, crowd workers, or even an automated fact
checker), as long as the user has access to a binary entailment
oracle. Our guarantees only require that Vy € Y,y = @.

the nested property, meaning that F;(z) ¢ Fy (z) for t < t'.
Consider the score

r(z,y) =inf{t e Tiy e Fy(x)}. (3)

This can be thought of as the minimum safe threshold where
y € Fi(x) for every t > r(x,y). Split conformal prediction
then sets the final confidence set as

C(x) = F4. (2),

where ¢, is the Mth quantile of the scores
{r(X;,Y;)},. This implementation satisfies the constraint
in inequality (2) (see Proposition 1 of (Gupta et al., 2022) for
a proof). We now show how to generalize F; for language
models in a way that also leads to factuality and correctness
guarantee on LM outputs.

Application to the language setting. Recall that the correct-
ness of an LM output y is equivalent to the event y* € E(y),
and we seek to find some y that makes this event hold with
probability at least 1 — «v. To do this, we construct sequences
of outputs {y; }+«7 which induce sequences of associated
conformal sets {E(y:) }+e7 on which we can apply confor-
mal prediction methods. While these sets could be nested
like in Gupta et al. (2022) (implying that the associated out-
puts y; become strictly ‘more generic’ as in Figure 1), this
constraint can be hard to enforce for a language model, and
we show that our main guarantees do not require nestedness.

In conformal prediction, the key objects are the sequence
of conformal sets {F; }+e7 and the score r(x,y). We will
define these two quantities for the LM setting below.

For the conformal sets, we will define these sets using the
entailment operator E as F;(x) = E(F;(z,L(x))) where
F;: X xY — Yis a ‘back off” function and the threshold
t € T ¢ R controls how much F;(z,yy) ‘backs off” from
the base output yy by removing (unreliable) claims. We call
F: sound if it satisfies the property that Fg.,7(2,%0) = &,
where @ represents some output sequence that abstains from
making any claim. For notational clarity, we will omit
the second argument whenever there is only one relevant
language model L(x) that can generate y. In this case, we
use the shorthand F;(z) := F;(z, L(x)).

For the score function, we can redefine the score in (3) as
r(g:,y*):: inf{teT:ijt,y* EE(Fj(:E))}. “4)

This matches the original score with one minor modification
where we take the minimum strictly safe threshold—we
consider a threshold strictly safe if any threshold greater
than or equal to this one is safe.® For the example in Figure 1,

3The key difference with respect to (Gupta et al., 2022) is that
in the definition of  we write: Vj > ¢. This is implicitly encoded
in their definition due to the nested property of their set predictors,
but as we do not require nestedness, we instead explicitly modify
our thresholds to be strictly safe.
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Algorithm 1 a-conformal-factuality algorithm
Inputs: base LM L: X ~ Y, confidence «, calibration data
{X;,Y;*}2,, and back-off mechanism {F; };c1

fori < 1tondo

| r(X,,Y") «inf{te T:Vj>t,y* e E(F;(z,L(z)))}
end
o < Wth quantile of the scores {r(X;,Y;*) 1,
Output: conformally factual L(z) := F4_(z,L(x)).

if we add y3 = @ and define F,(z) := y;, we would have the
minimum strictly safe threshold r(z,y*) = 2.

With these two components in hand, we can directly apply
the split conformal prediction method to obtain an LM with
our desired correctness guarantees in inequality 1. Formally,
we say that a model L is a-conformally factual if for ex-
changeable (X;,Y;*) € XxY,ie[n+1]and {(X;,Y;*)} 1,

used to construct L, the reference output Y7, ; satisfies the
following inequality:

P(Y,, € E(L(Xni1))) 21— o

We present our algorithm for achieving a-conformal-
factuality in Algorithm 1, which is a procedure that takes
in a base LM L: X ~ Y, target error rate «, back-off mecha-
nism F, and a calibration dataset, and produces a new LM
L that is a-conformally factual. In the following sections,
we prove high-probability factuality guarantees for Algo-
rithm 1 (Section 3), and provide our implementation of F;
(Section 4) with experiments on several datasets (Section 5).

3. Theoretical analysis

In this section, we present a theoretical analysis of Algo-
rithm 1, giving upper and lower bounds matching those of
standard split conformal prediction and providing a guaran-
tee of the form in inequality (1). The only difference with
respect to the analysis and proof of standard split conformal
prediction is the new score function.

Theorem 3.1. (adapted from Shafer and Vovk (2008a))
Let {X;,Y;*}"! be exchangeable, F; be sound, and 4,
be defined as the Mﬂz quantile of the scores
{r(X;,Y;*)},, which we assume to be distinct without

loss of generality. Then, for a € [ﬁ, 1], the following
lower bound holds:

P(Y,1 € E(Fg, (Xni1))) 21—

IfE(F4(-)) follows the nested property, then the following
upper bound holds:

1 *
1-a+ — 2 P(Y,,; € E(F4, (Xns1)))-

Proof. Let r; = r(X;,Y;*) for i € [n] and req =
r(Xn+1,Y, ;). These scores are all well-defined because
Feup7 = @ and Yy € Y,y = @. Without loss of generality,
we can assume that the scores are sorted 71 <79 < ... <7,
In that case, o = T[(1-a)(n+1)] When a > ﬁ We note that
by exchangeability,

1-a)(n+1
P(riest < r1(1-a)(n+1)]) = [(n)% 2l
We now observe the relationship between the following two

events:
{Tiest < o} implies {Y,',; = Fg, (Xni1)},

because if 7y < G, then g, is a safe threshold. This
completes the proof of the lower bound. Now, since for any
a €R,[a] < a+ 1, we obtain the upper bound:

1-a)(n+1
P(res < T[(lfa)(nﬂ)]) = w

n+1
< (1-a)(n+1)+1
B n+1
=l-a+ ! .
n+1

If E(F;(-)) follows the nested property, we now observe the
equality of two events:

{rest <4} = {1 = Fa. (Xni1)},

as g, being a safe threshold now implies that it is larger
than or equal to the minimum strictly safe threshold. This
completes the proof of the upper bound. O

Thus, Algorithm 1 achieves a-conformal factuality for any
user-specified correctness target with « € [ﬁ, 1], along
with an upper bound when the nested property holds. Re-
markably, we can guarantee that output sequences in Fg,_ (-)
are factual with high probability over exchangeable se-
quences. While we can always obtain this guarantee, it
does not necessarily imply that we can retain the usefulness
of the LM outputs—the threshold ¢, may be so large that
they are uninformative or even empty. In the next section,
we provide an implementation of F; that aims to keep this
threshold small.

4. Implementation of F; via sub-claims

Our guarantees hold with any sound F;, but ideally, F;
should first remove unreliable parts of an output sequence as
the threshold ¢ increases. We now construct an empirically
effective instantiation of F, that makes use of the following
observation: the LM often confidently knows that some
subparts of its answer are correct, so it often suffices to
remove the ‘uncertain’ subparts to balance correctness and
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= Abraham Lincoln, born in Idaho, was the 16th
(1, score:1.5)

(2, score:3.8)
President of the United States. He is best known

(2, score:3.8) (8, score:2.2)
for leading the country through the Civil War.

(3, score:2.2)
Fz (.T) = Abraham Lincoln was the 16th President of the

(2, score:3.8)
United States. He is best known for leading the
0 —

(2, score:3.8) (3, score:2.2)
country through the Civil War.

(3, score:2.2)

F3 (.’IZ) = Abraham Lincoln was the 16th President of the

(2, score:3.8)
United States.
¢ —

(2, score:3.8)

F4(.’L’) = g

Figure 2. Example {F;(x)}+c7 via sub-claims. Here we identified
three sub-claims corresponding to (1) Abe Lincoln’s birthplace,
(2) his notable job, and (3) what he was best known for.

usefulness. We start by defining our implementation of
F. inspired by this idea, and then we analyze the simple
procedure that it admits for computing scores r.

Our implementation identifies unreliable parts of an output
sequence by decomposing it into sub-claims. Let L: X’ - Y
be a mapping derived from a language model, S: Y ~ 29 be
a function that separates an output sequence into sub-claims,
and M:2Y — Y be a function that merges sub-claims into a
single sequence and satisfies M(2) = @. Let s:27 x Y —» R
be a sub-claim scoring function, where a larger score is
meant to denote a larger probability of a sub-claim being
factual. Intuitively, we merge a set of extracted sub-claims
that were scored at least . We implement F; as follows:

Fi(z) =M({ce (SeL)(@):s((SeL)(x),¢) 2 t}). (5)

This implementation is sound, as no sub-claims are accepted
for large enough t. We provide an example in Figure 2 to
show how a sequence of F; might look. Note that under the
assumptions of Theorem 3.1, applying Algorithm 1 with F;
implemeted as in (5) leads to a-conformal factuality. We
will also see that the upper bound of Theorem 3.1 holds
under a simple assumption on M.

One additional advantage of implementing F; via subclaims
is that it can substantially reduce annotation effort. Nor-
mally, to compute the infimum in the definition of r, one has
to evaluate entailment across all outputs {F;(-) } ;7. How-
ever, we now show that this can be done much more cheaply
by only evaluating the entailment of the sub-claims once and
computing an infimum over the sub-claims. This trick of
computing entailments on sub-claims preserves all our guar-
antees under the natural assumption that the merger function
M that does not add or remove any sub-claims, thus pre-
serving the entailment relations between the sub-claims and

Algorithm 2 Score computation with Assumption 4.1

Inputs: base LM L: X ~ Y, input-reference pair (z,y"),

sub-claim separator S, sub-claim scoring function s

{c;}";, < (SoL)(xz) // generate sub-claims

for : < 1 tom do
si < s((SolL)(x),¢;) // score sub-claim
a; < Ly+—., // annotate sub-claim

end

// find largest score assigned to a

// non-entailed sub-claim

Sort {(c;, $i,0a;) }%; in decreasing order of s;

k<1

while a;, =1 and k < m do

| E<k+1

end

Output: score r := s if K+ m + 1 else inf 7.

the merged output.

Assumption 4.1. For any y* € Y and {c;}7, € 29,
{y" = M{c}it)} < {Vie[nly" =a},

which could equivalently be written as:
n
EM({ci}it1)) = (M E(es).
i=1

In this case, the r admits a simpler form.

Proposition 4.2. For x € X, let the sub-claims accepted
by F. be denoted by Ai(z) := {c € (SoL)(z):s((So
L)(x),c) > t} € 2Y. Under Assumption 4.1, r(x,y*) can
be computed as

r(z,y*) =inf{te T:Vj>t,Vee Aj(x),y" = c}.

Proof. We first observe the following equivalence:

{y" cE(F;(2)} <= {y" =F;(2)}
= {y" = M(4;(2))}
— {Vce Aj(z),y" = c}.

Using the definition of 7, we can write

r(z,y*):=inf{t e T:Vj>t,y* e E(F;(x))}
=inf{te T:Vj>t,Vee Aj(x),y" = c},

which completes the proof. O

Thus, if Assumption 4.1 holds, one only has to call the en-
tailment oracle on the sub-claims appearing in the original
output, which can be significantly cheaper than calling the
entailment oracle on the merger of every possible set of ac-
cepted sub-claims. We detail this procedure in Algorithm 2,
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Algorithm 3 Score computation without Asssumption 4.1

Inputs: base LM L: X ~ Y, input-reference pair (z,y"),
merger M, sub-claim separator S, sub-claim scoring func-
tion s
{c;}'; < (SoL)(x) // generate sub-claims
for i < 1 tom do
| s;i<s((Sol)(z),¢;) // score sub-claim
end
// annotate merged sets of sub-claims
Sort {(c;, ;) }1*; in decreasing order of s;
k<1
while ]ly*=>|\/|({cz'}§=1) =land k < mdo
| k<k+1
end

Output: score r := s, if k # m + 1 else inf 7.

Algorithm 4 Inference with F; via sub-claims

Inputs: input x, base LM L: X ~ Y, sub-claim separator S,
merger M, sub-claim scoring function s, threshold ¢
{c;}'; < (SoL)(x) // generate sub-claims
for i < 1 tomdo

| s; < s((SeL)(x),¢;) // score sub-claim
end
A<« {c,e{c;}:8; 2t} // filter sub-claims
Output: M(A4) // merge

as well as the procedure for computing the score r without
Assumption 4.1 in Algorithm 3.

We also note that Assumption 4.1 also gives us the upper
bound of Theorem 3.1 since F, follows the nested property—
we have E(F;(z)) = E(M(A¢(x))) = Neea,(x) E(c) and
an intersection of sets becomes larger as sets are removed.

Finally, in Algorithm 4 we present the steps for running
inference once a threshold on scores r has been computed.

4.1. Partial entailment

Finally, we note that our framework can be extended to
provide guarantees for partial correctness. Instead of guar-
anteeing full factuality, one may want to guarantee that
a € [0, 1] fraction of the accepted sub-claims are factual. To
achieve this, we can modify the definition of r to allow for
partially-entailed sets of sub-claims. Let T,«:29 + [0,1]
denote an operator indicating the entailed fraction of a set of
sub-claims. That is, Ty« ({s;}7) = = 2%} Ly«s,. De-
fine a new score with acceptable entailment level a € [0, 1]:

ro(x,y*) =inf{t € T:Vj > t,T (A(z)) > a}.

Note that r1(-) = r(-) as defined in (4). Replacing r in
Algorithm 1 with r, leads to our partial factuality algorithm,
which we outline in Appendix D for completeness. Then,

we obtain a result similar to the lower bound of Theorem 3.1.

Corollary 4.3. (Partial entailment via sub-claims) Let
the assumptions of Theorem 3.1 hold, but with §,, as the
wn(lfaﬂ quantile of the scores r(X;,Y;*) for a € [0,1]
and Fy implemented as in (5). Then, the following lower
bound holds:

P(Tys (g, (Xne1)) 2a) 2 1-a.

Proof. The proof is identical to lower bound of Theorem 3.1,
but now we note the following relationship between two
events (where 7, st := 7o (Xn+1, Y, 1)):

{7, test < o } implies {7Y7j+1 (Azia (Xn+1)) 2 a}.

This is not an equivalence, because we could have a safe
threshold g, that is less than r, s That is, Ty« (A (2)) is
not monotonically increasing with ¢ since one could remove
sub-claims that are entailed and fall below a. O]

Note that this result is with respect to the sub-claims them-
selves, rather than the merged sub-claims, but simple ap-
proaches such as providing the sub-claims alongside the
output can enable users to verify the correctness of M.*
Empirically, we found gains from allowing partial factuality
to be small, and cover empirical evaluations of this class of
approaches in Appendix D.

S. Experiments

While we provide conformal factuality guarantees on LM
outputs derived from Algorithm 1, we still need to verify that
they are indeed factual and useful. To verify these two items,
we apply our algorithm to standard question-answering and
reasoning tasks where correctness and factuality guarantees
would be useful. We first explicitly describe our experimen-
tal set-up, and then present results across 3 datasets.

5.1. Experimental set-up

Here we instantiate all the pieces necessary to implement
F; via sub-claims and describe our datasets.

5.1.1. MODELS

The definition of F, via sub-claims in (5) depends on multi-
ple language models: a base mapping from input sequences
to output sequences L, a sub-claim separator S, and a merger
function M. As a proof of concept, we implement each of

*We leave this result in terms of the sub-claims since there is no
agreed-upon sub-claim separator function and it would not make
sense to say that an output sequence is a-fraction factual without
one.



Language Models with Conformal Factuality Guarantees

these by using GPT-4. L is implemented by using GPT-
4 directly, and S and M by using GPT-4 with prompts to
separate and merge (which we present in Appendix C).

5.1.2. SUB-CLAIM SCORING FUNCTIONS

Recall that any sub-claim scoring function s(-) introduced
in Section 4 leads the guarantees of Theorem 3.1. Below,
we provide the definitions of several natural ones that are
used in our experiments. For some input and ground truth
pair (z,y*) € X x Y, let the ordered set of n extracted sub-
claims be {¢;}7, = (SoL)(z) € 2Y, sorted by where they
appear in L(x). Below we define scoring functions for a
particular subclaim ¢; € {¢;}; (and assign a score of —co
to any sub-claim not in the set {c; }7" ).

We first define two baselines.

Random scoring. This method assigns random scores to
sub-claims and is defined as:

Sr({Ci};;th) = Xj, where Xj ~ N(O, 1)

Ordinal scoring. This method assigns scores corresponding
to the order a sub-claim appeared in an output sequence,
and is defined as:

sp({citizi i) =n—J.

The following two scoring functions use an LLM like GPT-4
and are ones to consider using in practice.

GPT-4 confidence scoring. Motivated by Tian et al. (2023);
Guan et al. (2023), this method directly asks GPT-4 for a
confidence score. We present our prompt in Appendix C.

Frequency scoring. Motivated by self-consistency ap-
proaches (Wang et al., 2023b; Manakul et al., 2023), this
method first samples 5 alternate output sequences with tem-
perature 1.0 and then counts (with GPT-4) the number of
times a sub-claim appeared in the alternate output sequences.
The prompt used to implement this method appears in Ap-
pendix C as well.’

Finally, to provide an upper bound on performance, we
include the following oracle scoring method.

Oracle scoring. This method assigns scores corresponding
to true entailment. Of course, this is not possible to use with-
out knowledge of y*, and is not efficient when entailment is
meant to be checked by a human. It is defined as:

so({citiz1 ¢j) = Lyese,.

Since our guarantees require no ties among the scores r, we
tie-break using N(0, 0.001) noise, and we ensure the noise
terms are consistent across sub-claim scoring functions.

>In our experiments, we break the ties among these scores
using the GPT-4 confidence score.

5.1.3. DATASETS AND ANNOTATION

We study 3 datasets covering a range of tasks that require
correctness. Below, we describe both the datasets we build
on and the additional factuality annotations we collect.

FActScore (Min et al., 2023). FActScore is a common fac-
tuality evaluation for open-ended generation, which works
by breaking a generation down into atomic facts and then
evaluating them with a given knowledge source. We use the
people entities from their biography generation dataset, but
we generate our own sub-claims using S for consistency.

Natural Questions (NQ) (Kwiatkowski et al., 2019). NQ
evaluates factuality in open-ended question answering
through real queries to the Google search engine. We use
questions from the simplified training dataset and allow the
model to respond as a long-form response.

MATH (Hendrycks et al., 2021). This is a dataset of math
word problems, and we use it to show that our correctness
framework can also be applied to reasoning tasks. Answers
to reasoning tasks typically involve a sequence of steps,
and when we associate these steps with sub-claims, we can
immediately apply our framework to return only the correct
steps and abstain from the rest. While we observe cohesive
selected steps in our experiments, here one may also apply
heuristics such as only having the option to return the first k
steps.

We select the first 50 inputs from each dataset and manually
annotate the sub-claims produced by S applied to GPT-
4’s outputs. When examining earlier works on factuality
evaluation with crowd-workers, we found extensive errors
and thus chose to annotate the data ourselves using a 4-
way label (Factual, Subjective, Unverifiable, and False),
where factuality judgments were verified using Google. We
considered Factual and Subjective as entailed, and others
as not entailed. All factuality annotations were done before
running our experiments.

5.2. Results

In this section, we first verify that Algorithm 1 indeed
achieves the factuality guarantees of Theorem 3.1, and then
we assess the utility of our outputs both quantitatively and
qualitatively.

5.2.1. EMPIRICAL FACTUALITY

Our main result, Theorem 3.1, states that we should at-
tain roughly 1 — « factuality. To check that this happens
in practice, we randomly split our datasets into 25 calibra-
tion examples and 25 test examples 1000 times, fitting a
threshold on the calibration set and measuring the empirical
factuality on the test set. The threshold is computed as in
Algorithm 2 using our annotated sub-claims, and for empiri-
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Figure 3. Factuality vs. percent of sub-claims removed across all datasets. Frequency scoring (red) can lead to significant (20 — 50%)
gains in correctness while retaining the majority of claims when compared to the base GPT-4 model (star). The tick marks correspond to
different values of target «, and the standard deviations represent standard error.

cal factuality, we consider what fraction of the modified LM
outputs from Algorithm 4 on the test set are factual (again
using our annotated sub-claims). Here F; is implemented
via sub-claims with frequency scoring.
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Target factuality (1 - a)

Figure 4. Target vs. empirical factuality. Each solid line starts at
the base factuality of GPT-4 on the associated dataset. NQ and
MATH overlap on the top right.

We plot the results in Figure 4, and defer similar plots with
the remaining scoring function to Appendix G. These results
show very tight control over factuality, which Theorem 3.1
guarantees marginally over both the draw of a calibration set
and test point. Going beyond standard conformal guarantees,
if we require additional high probability guarantees over the
calibration set, we find that there is additional variation
in the empirical factuality with standard deviation ~0.09,
which we expect to decrease to zero as the calibration set
grows large.

5.2.2. UTILITY

The utility of the outputs crucially depends on the quality
of the sub-claim scoring function: if a scoring function re-
moves many correct sub-claims before the incorrect ones,
the resulting output may be uninformative. We now evalu-
ate our scoring functions to identify whether any of them
achieve acceptable utility at various factuality levels.

We start by plotting the percent of sub-claims that are re-
moved under a leave-out-out evaluation and varying the

confidence level (Figure 3).

First, the star on the bottom left of each plot represents
the base performance of GPT-4, which has relatively low
correctness across all tasks. For FActScore, this is very low
and the large majority of outputs had at least one sub-claim
that we deemed non-factual. For the remaining two datasets,
the base performance of GPT-4 is higher at around 75%, but
still too low for many high-stakes settings.

Second, Figure 3 suggests that our two scoring functions
derived from an LM — frequency scoring and GPT-4 con-
fidence scoring — provide reasonable tradeoffs between
utility and factuality. For frequency scoring, we observe par-
ticularly promising performance: factuality on FActScore
can be increased from ~25% to ~80% while keeping around
half of the original sub-claims, on NQ we can increase fac-
tuality by ~15% by only removing about one-quarter of
sub-claims, and on MATH we can similarly increase factu-
ality by ~15% but by only removing ~10% of sub-claims.

FActScore, a=0.2

Fraction of outputs
°

0.0 0.2 0.4 0.6 0.8 1.0
Percent removed

Figure 5. Histogram of percent of sub-claims removed for fre-
quency scoring and v = 0.2 on FActScore.

Taking a closer look at individual points on the plots of
Figure 3, we show that the behavior of our method is far
from simply abstaining on difficult examples. A method
that does this would accept or reject entire outputs, instead
of removing a varying fraction of sub-claims. Analyzing
the a = 0.2 model for FActScore in Figure 5, we find that
most examples have ~50% of their claims removed, leading
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Original

Zamfir Ralli-Arbore (1848-1933) was a Romanian political activist
and historian from Bessarabia, who spent much of his life in
exile. As a member of the National Liberal Party, he campaigned
for the union of his native region with the Kingdom of Romania,
and was a prominent opponent of Russian and Soviet policies. He
was also a noted historian, specializing in the history of the
Moldavia and Wallachia during the Middle Ages.

Conformal Factuality

Zamfir Ralli-Arbore, born in 1848, was a Romanian
political activist from Bessarabia. He passed
away in 1933.

John Estes may refer to: 1. Sleepy John Estes (1899-1977),
American blues guitarist, songwriter and vocalist. 2. John
Adam Estes (1919-2001), American politician who served as a
member of the Texas House of Representatives. 3. John Estes
(American football) (born 1986), American football center. 4.
John C. Estes, American screenwriter known for his work on

films like "Mean Creek" and "The Details". Without more specific
information, it’s hard to provide details on the correct John
Estes.

Sleepy John Estes was an American blues guitarist,
songwriter and vocalist. He was born in 1899 and
died in 1977.

Michael Valpy is a Canadian journalist, author, and lecturer.
He was born on July 30, 1942 in Toronto, Ontario. He is best
known for his work as a senior writer for The Globe and Mail,

Michael Valpy is a Canadian journalist, author,
and lecturer. He is best known for his work as a
senior writer for The Globe and Mail, a leading

a leading Canadian newspaper, where he covered both national
Valpy has also written several books
on Canadian politics and history, and has taught journalism at
He is a three-time nominee for the Gover

and international news.

several universities.
nor General’s Award, Canada’s top literary honor.

Canadian newspaper. In his career, Valpy covered
both national and international news for the
newspaper. In addition to his journalism career,
he has written several books on Canadian politics
and history. Valpy has also taught journalism at
several universities.

.5 . . . .—9r — — .
We have i° = i*.q = 4, i72° =724 .7t =g,

Therefore, % +i725 4445 =

and i*® = i

. . .5 . . . .45

= i. The given steps are:i® = i* . i = i\n\ni*® =
it =4\n\nUsing these stefs, we can simplify the
given expression:i®+i 2 i+ i =i 20 4

Table 1. Comparison of original output by GPT-4 versus our modified output from conformal factuality with frequency scoring. Incorrect
claims are highlighted in red. The first three examples are from FActScore and use o = 0.2. The last sample from MATH, where the

question asked for the evaluation of the expression ° + §72° + 15,

to a less detailed but still informative responses in most
cases. The standard deviations for the percent of sub-claims
removed can be made very low (at the cost of slightly worse
means) with ranking-based scoring functions, which we
define and present results for in Appendix E.

Finally, we complement our quantitative analysis with sam-
ples generated by the conformal factuality model with fre-
quency scoring. Our main dataset of interest is FActScore,
as GPT-4 hallucinates aggressively on this task. We thus
choose the a = 0.2 threshold and present examples in Ta-
ble 1, with further examples in Appendix F. In all cases
shown here, we find that the original GPT-4 output contained
a significant fraction of falsehoods, which was successfully
removed with conformal factuality.

In addition to the FActScore outputs, we also show an ex-
ample from MATH in Table 1 (with o = 0.1) which shows
how our method can be successfully applied to reasoning
tasks. Here, the math problem required evaluating three
expressions and then taking their sum, but GPT-4 was not
able to correctly evaluate one of the expressions and thus
provided an incorrect final answer. The conformal factuality
model identified and removed the incorrect claim, leading
to a partial proof that was presented to the user with a single
remaining step left for the user.

uses a = 0.1.

6. Conclusion

We described conformal factuality, a framework that con-
nects conformal prediction and language modeling, and
importantly leads to a practical algorithm for obtaining con-
formal factuality guarantees on LM outputs. We gave a
natural implementation with sub-claim scoring functions
and showed that we can indeed get factual and useful out-
puts on both question-answering and reasoning datasets.
Our work still has limitations, including the guarantees be-
ing restricted to a prescripted distribution P, and the fact
that our bounds are marginal with respect to the draw of
calibration and test data. But our work is the first step to
enabling the application of many sophisticated conformal
prediction algorithms in improving the outputs of language
models — including those that address challenges such as
distribution shifts.

Acknowledgements

We thank Zitong Yang for comments related to an earlier
version of this manuscript, as well as Neil Band and John
Duchi for helpful discussions. TH was supported by a gift
by Open Philantropy, the Tianqiao and Chrissy Chen Foun-
dation, and a grant by Samsung GRO.



Language Models with Conformal Factuality Guarantees

Impact Statement

Establishing factuality guarantees for Large Language Mod-
els (LLMs) using conformal prediction holds the potential to
impact society. This could lead to more trustworthy LL.Ms,
offering increased reliability in areas where accuracy is vital,
such as health, law, and journalism. Additionally, it may
help mitigate biases in Al systems and make their decision-
making processes more explainable. However, there are
potential challenges, including the risk of over-reliance on
these models, and the ethical considerations surrounding
LLMs that are perceived as highly factual. Overall, this
work carries significant promise for improving Al capabili-
ties, but responsible development and implementation are
crucial to ensure the benefits outweigh any potential risks.
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A. Related Work

Our work relates to a growing literature on factuality for LLMs, conformal prediction, and conformal prediction for language
generation.

LM factuality. The factuality of language models is a major concern and a topic of significant research interest. We
refer our reader to the several surveys covering research on reducing, detecting, and evaluating hallucinations for a broader
view (Ji et al., 2023; Huang et al., 2023a; Wang et al., 2023a) and mention a few relevant works below.

One class of works aims to improve LLLMs’ access to knowledge, via mechanisms such as retrieval augmentation (Lewis
et al., 2021; Das et al., 2019; Karpukhin et al., 2020) while another seeks to suppress LLMs’ tendency to fabricate facts by
adjusting the training method (Kang and Hashimoto, 2020), ensembling (Kuhn et al., 2023), or modifying the decoder (Shi
et al., 2023; Yang et al., 2023a). Our work falls in the latter group, and shares some similarities to methods such as semantic
uncertainty in that it is a decoding-time method, but has different goals in that we aim for precise, probabilistic guarantees
of correctness.

Our work also relates to a line of work on uncertainty quantification for LLMs, as we must be able to identify and remove
unreliable sub-claims from an LLM’s output. The implementation of conformal factuality in this work uses a method closely
related to SelfCheckGPT (Manakul et al., 2023) as well as prompting the LM for uncertainty estimates (Tian et al., 2023).
These works are complementary to ours, as our contribution is a meta-algorithm that uses these uncertainty estimators to
return LM outputs that have conformal factuality guarantees. We expect future developments in this line of work to improve
the performance of our methods as our algorithms work with any uncertainty quantification method.

Conformal prediction. Conformal prediction is a statistical technique for constructing confidence sets with precise,
marginal coverage guarantees without strong distributional or modeling assumptions (Shafer and Vovk, 2008b; Angelopoulos
and Bates, 2022; Balasubramanian et al., 2014; Barber et al., 2023). This approach has been successful in providing
confidence sets for black-box models such as deep neural networks (Einbinder et al., 2022; Balasubramanian et al., 2014)
but its application to language models has been limited.

In language models, there are three major families of applications of conformal prediction to language models: token-based
approaches construct confidence sets on individual tokens (Ravfogel et al., 2023; Ulmer et al., 2024). This constrains the
prediction space and makes it possible to apply standard conformal prediction techniques, but coverage guarantees over
tokens cannot be converted into correctness guarantees for sequences. Multiple-choice reduction approaches reduce the
prediction space of the LM in constrained domains like question answering. These approaches provide coverage guarantees
over the output (e.g. the confidence sets contain the answer with probability 1 — «) but can only be applied in highly
constrained QA-style domains (Kumar et al., 2023). This class of approaches is also related to selecting prompts from a set
while controlling their risk (Zollo et al., 2024). Finally, recent work has attempted to instantiate conformal uncertainty sets
directly on the space of sequences (Quach et al., 2023) but the space of all sequences is intractably large, and this necessitates
approximations to the true confidence set. Most importantly, all of these approaches return sets of tokens and sequences,
which are difficult to interpret and act upon. In contrast, our conformal factuality approach returns a single natural language
sequence (which implicitly represents a confidence set) and thus can be used directly to improve the output of LMs.

Finally, closest to our work is Angelopoulos et al. (2023), which gives a conformal prediction algorithm that can be applied
to classification problems with hierarchical labels. In that setting, their approach can return an intermediate node in the
tree which implicitly represents a confidence set consisting of all the leaves of this subtree. While our work is similar in
that we implicitly represent confidence sets for conformal prediction, our work differs in the construction of the set (via
entailments), representation of the hierarchy (we do not enumerate its edges), the setting and implementation (language
models) and the actual conformal guarantee (correctness of an output rather than risk control).

B. Limitations

Our work depends on standard split conformal prediction, which has important limitations in practice. First, the coverage
guarantee is not conditional, meaning that we do not have a guarantee on the conformal set associated with every input,
but instead, we have coverage on average over inputs. This means that when the calibration set is defined across multiple
tasks or users, the factuality of any one domain or user may differ significantly from the target factuality level. Second,
the conformal guarantee is also marginal over the draw of the calibration set. This means that in settings where one has a
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small, fixed calibration dataset and repeatedly uses the same threshold, the coverage associated with this threshold may
deviate from the target coverage. Lastly, in real-world scenarios where distributions change, the threshold computed on
past calibration data can fail to maintain the desired coverage. In our case, this means that the factuality guarantee of our
language model may be lost if, for example, the distribution of inputs were to change drastically.

While these drawbacks of conformal prediction exist, we believe this work is a step in the right direction toward guaranteeing
the factuality of language models. Several works build on the framework of split conformal prediction to tackle the challenges
mentioned, and the connections established in this work could enable the use of those approaches (Gibbs et al., 2023; Ding
et al., 2023; Barber et al., 2023; Tibshirani et al., 2020; Vovk, 2012). Moreover, we observe promising experimental results
that show how we can effectively remove hallucinations from language model outputs, and we expect this to improve with
better uncertainty quantification methods.

C. Prompts used in experiments

We use prompts to implement both the sub-claim separator S and merger function M (defined in Section 4). The only
other prompt we use is for frequency scoring. For convenience, we perform GPT-4 confidence scoring alongside sub-
claim separation. All of these prompts appear in Table 2. We use the ‘gpt-4’ endpoint, set max_tokens to 1000 and
temperature to 0.0. We used GPT-4 with these prompts between December 15 and January 15.

Separator (for all datasets)/GPT-4 confidence scoring

Please breakdown the following input into a set of small, independent claims (make sure not to add any
information), and return the output as a jsonl, where each line is subclaim:[CLAIM], gpt-score:[CONF]. The
confidence score [CONF] should represent your confidence in the claim, where a 1 is obvious facts and results

like ‘The earth is round’ and ‘1+1=2’. A O is for claims that are very obscure or difficult for anyone to know,
like the birthdays of non-notable people. If the input is short, it is fine to only return 1 claim. The input is:

Merger (for FActScore)

You will get an instruction and a set of facts that are true. Construct an answer using ONLY the facts
provided, and try to use all facts as long as its possible. If no facts are given, reply to the instruction
incorporating the fact that you dont know enough to fully respond. \n\nThe facts:\n {claim_string}\n\nThe
instruction:\n{prompt}

Merger (for NQ)

You will get a natural question and parts of an answer, which you are to merge into coherent prose. Make sure to
include all the parts in the answer. There may be parts that are seemingly unrelated to the others, but DO NOT
add additional information or reasoning to merge them. \n\nThe parts:\n{claim_string}\n\nThe question:\n{prompt}.
Remember, DO NOT add any additional information or commentary, just combine the parts.

Merger (for MATH)

"You will get a math problem and a set of steps that are true. Construct an answer using ONLY the steps provided.
Make sure to include all the steps in the answer, and do not add any additional steps or reasoning. These

steps may not fully solve the problem, but merging them could assist someone in solving the problem. \n\nnThe
steps:\n{claim_string}\n\nThe math problem:\n{prompt}. Remember, do not do any additional reasoning, just combine
the given steps.

Frequency scoring

You will get a list of claims and piece of text. For each claim, score whether the text supports, contradicts,

or is unrelated to the claim. Directly return a jsonl, where each line is {"id":[CLAIM_ID], "score":[SCORE]}.
Directly return the jsonl with no explanation or other formatting. For the [SCORE], return 1 for supports, -1 for
contradicts, and O for unrelated. The claims are:\n{claim_string}\n\nThe text is:\n{output}

Table 2. Prompts for sub-claim separator S and merger function M, as well as LM-based sub-claim scoring functions (GPT-4 confidence
and frequency). The prompt for frequency scoring is used to evaluate 5 alternate output sequences generated by GPT-4 with temperature
1.0.
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Algorithm 5 a-conformal-partial-factuality algorithm
Inputs: base LM L: X ~ Y, confidence «, calibration data { X, Y;*},, and back-off mechanism {F; };c7
for i < 1ton do
| ra(X;, YY) < inf{t e T:Vj>t, Ty (Ar(z)) > a}
end
o < Mth quantile of the scores {rq(X;, Y;")}iy
Output: conformally factual L(z) := F4_ (z,L(x)).

FActScore, a=0.7 NQ, a=0.9 MATH, a=0.8
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Figure 6. Factuality vs. percent of sub-claims removed across all datasets for partial factuality setting. The tick marks correspond to
different values of target «, and the standard deviations represent standard error.

D. Partial factuality

Here we give experimental results for the partial entailment/factuality setting of Section 4.1, which relaxes the standard
formulation with an acceptable fraction of entailed sub-claims a € [0, 1]. Our partial factuality algorithm is explicitly defined
in Algorithm 5. The only difference with respect to Algorithm 1 is that we use r, instead of ». We choose a = 0.7 for
FActScore, a = 0.9 for NQ, and a = 0.8 for MATH, and plot factuality vs. percent of sub-claims removed in Figure 6. While
the condition to be considered factual is relaxed, we observe a lower percentage of sub-claims removed.

E. Ranking-based scoring functions

Any sub-claim scoring function can be transformed into a ranking-based scoring function. These aim to remove a fixed
percentage of facts, which may be desirable in cases where modifying the outputs in roughly the same way is desirable.
Here, for a sub-claim scoring function s:2¢ x Y +> R, we define a ranking function f,:29 x Y > N, where f({c;}7,, ;)
returns the rank of s({c;};, ¢;) among the set {s({c;}I";, cx) } 1., in increasing order. Then, for each of sub-claim scoring
functions s defined above, we apply the score:

fS({Ci}?:l’ Cj)
-
We divide by n to account for varying-length output sequences. In Figure 7, we plot factuality vs. percent of sub-claims

removed for the ranking-based versions of all our sub-claim scoring functions. These do remove a higher percent of
sub-claims, but the standard deviations are smaller.

F. More conformal factuality output examples

Here we give more conformally factual output examples, supplementing those in Table 1. We give examples for FActScore
in Table 3, NQ in Table 4, and MATH in Table 5.

G. Empirical factuality for all scoring functions

To complete the study of empirical factuality in Section 5.2.1, we repeat the same procedure for the remaining sub-claim
scoring functions. We present the results in Figure 4.
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Figure 7. Factuality vs. percent of sub-claims removed across all datasets with ranking-based scoring functions. The tick marks correspond
to different values of target «, and the standard deviations represent standard error.
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Original

Luis Guillermo Rivera is a professional athlete from Colombia who
specializes in high jump. He was born on March 20, 1989 in Apartado,
Colombia. Rivera has represented Colombia in several international
competitions, including the World Championships in Athletics and the
Pan American Games. He won the gold medal in the high jump at the
2013 South American Championships in Athletics. His personal best in
the high jump is 2.31 meters, which he achieved in 2013.

Roxana Diaz is a Venezuelan athlete who specializes in the 400 me
ters hurdles. She represented her country in various international
competitions, including the World Championships and the Pan American
Games. Diaz is known for her speed, agility, and determination on
the track. She has won several medals throughout her career, making
her one of the most successful athletes in her country.

Sharad Kumar is an Indian para-athlete who competes in high jump
events. He was born on March 1, 1992, in Bihar, India. Kumar

was diagnosed with polio at a young age, which affected his left
leg. Despite this, he pursued his passion for sports and began
training as a high jumper.\n\nKumar has represented India in several
international competitions and has won numerous medals. He won a
gold medal at the 2014 Asian Para Games in Incheon, South Korea, and
a silver medal at the 2018 Asian Para Games in Jakarta, Indonesia.
He also won a bronze medal at the 2017 World Para Athletics Champi
onships in London.\nnIn 2021, Kumar won a bronze medal in the men’s
high jump T42 category at the Tokyo Paralympics, marking his first
Paralympic medal. His personal best in high jump is 1.90 meters,
which he achieved at the 2017 World Para Athletics Championships.

Katsunosuke Hori is a Japanese actor and voice actor. He was born
on November 28, 1941 in Tokyo, Japan. He is best known for his work
in anime and video games, including roles in "Neon Genesis Evange
lion", "Ghost in the Shell: Stand Alone Complex", and "Final Fantasy
VII: Advent Children". He is also known for his dubbing roles in
foreign films, such as the voice of Gandalf in the Japanese version
of "The Lord of the Rings" trilogy.

Ra Jong-yil is a South Korean diplomat and academic. He served as
the South Korean ambassador to the United Kingdom and Japan. He
also served as the deputy director of the National Intelligence
Service. As an academic, he has taught at various universities and
written several books on North Korea and international relations.

Luis N. Rivera-PagOOeln is a Puerto Rican theologian and author. He
was the first Latino to be tenured as a professor at Princeton Theo
logical Seminary, where he taught for many years. His work focuses
on the intersection of religion, colonialism, and social justice,
particularly in the context of Latin America and the Caribbean. He
has written several books, including "A Violent Evangelism: The
Political and Religious Conquest of the Americas" and "Essays from
the Margins".

Jesse Foppert is a former professional baseball player from
the United States. He was born on July 10, 1980 in Reading,
Pennsylvania. Foppert was a pitcher and played in Major League

Baseball (MLB) for the San Francisco Giants and the Seattle Mariners.

He was considered one of the top pitching prospects in baseball in
2003, but his career was derailed by injuries. After retiring from
professional baseball, Foppert became a coach.

Zelma Wilson (1926-1996) was an American architect known for her
work in the field of sustainable design. She was one of the first
women to establish her own architectural firm in California and

was a pioneer in the use of solar energy in architecture. Wilson’s
designs often incorporated natural materials and were designed to
blend in with their surroundings. Some of her most notable projects
include the Ojai City Hall and the Ventura County Government Center.
She was also a dedicated advocate for women in architecture and
served as a mentor to many young architects.

Conformal Factuality

I’m uncertain about the specific details, and I
recommend using a search engine like Google for more
accurate and up-to-date information.

Roxana Diaz is an athlete who has represented
Venezuela in various international competitions.
She has also participated in the World Championships.

Sharad Kumar is an Indian para-athlete who was born
on March 1, 1992, in Bihar, India. He competes

in high jump events and despite his condition, he
pursued his passion for sports and began training as
a high jumper. Sharad Kumar has represented India

in several international competitions and has won
numerous medals in his career. Most notably, in 2021,
he won a bronze medal in the men’s high jump T42
category at the Tokyo Paralympics.

Katsunosuke Hori is a Japanese actor and voice actor.
He is known for his work in anime and video games.

Ra Jong-yil is a South Korean diplomat and academic
who has served as the South Korean ambassador to
both the United Kingdom and Japan. In addition to
his diplomatic work, he has written several books on
North Korea and international relations.

Luis N. Rivera-PagOOeln is a Puerto Rican theologian
and author who has written several books. His work
primarily focuses on the intersection of religion,
colonialism, and social justice. He has spent many
years teaching at Princeton Theological Seminary."

Jesse Foppert is a former professional baseball
player from the United States, born on July 10, 1980
in Reading, Pennsylvania. He was a pitcher in Major
League Baseball (MLB), playing for the San Francisco
Giants and the Seattle Mariners. Unfortunately, his
career was derailed by injuries. After retiring from
professional baseball, Foppert became a coach.

Zelma Wilson was an American architect.

Table 3. FActScore with oo = 0.2 and frequency scoring: comparison of original output by GPT-4 versus our modified output from
conformal factuality. Incorrect claims are highlighted in red.
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Question

when is the last
episode of season 8 of
the walking dead

in greek mythology
who was the goddess of
spring growth

until we meet again
filipino soap episode
10

what is the name of
spain’s most famous
soccer team

who are uncle owen and
aunt beru related to

where was donovan
mitchell picked in the
draft

where did the beatles
final live performance
take place

when does maggie come
on grey’s anatomy

who are the actors in
fast and furious

Original

The last episode of season 8 of The Walking
Dead aired on April 15, 2018.

The goddess of spring growth in Greek
mythology was Persephone. She was also the
queen of the underworld as she was abducted
by Hades, the god of the underworld. Her
return to the surface each year was believed
to symbolize the rebirth of plants and the
arrival of spring.

"Until We Meet Again" is a popular Filipino
soap opera. However, I’m sorry, but I can’t
provide a summary for episode 10 as the
details for specific episodes of this show
are not readily available online. It’s best
to watch the series through a legitimate
streaming service or on the network it
originally aired on.

Real Madrid and FC Barcelona are the most
famous soccer teams in Spain.

Uncle Owen and Aunt Beru are related to Luke
Skywalker. They are his uncle and aunt, who
raised him on the planet Tatooine in the
Star Wars series. Uncle Owen is also the
stepbrother of Anakin Skywalker, who later
becomes Darth Vader.

Donovan Mitchell was picked 13th overall in
the 2017 NBA Draft.

The Beatles’ final live performance took
place on the rooftop of the Apple Corps
building in London, England on January 30,
1969.

Maggie Pierce, played by Kelly McCreary,
first appears in Grey’s Anatomy in the last
episode of Season 10, which aired on May 15,
2014. However, her character is formally
introduced in the first episode of Season 11,
which aired on September 25, 2014.

1. Vin Diesel as Dominic Toretto\n 2. Paul

Walker as Brian 0’Conner\n 3. Michelle
Rodriguez as Letty Ortiz\n 4. Jordana
Brewster as Mia Toretto\n 5. Tyrese

Gibson as Roman Pearce\n 6. Ludacris as

Tej Parker\n 7. Dwayne Johnson as Luke
Hobbs\n 8. Jason Statham as Deckard Shaw\n
9. Sung Kang as Han Lue\n 10. Gal Gadot

as Gisele Yashar\n 11. Elsa Pataky as Elena
Neves\n 12. Nathalie Emmanuel as Ramsey\n 13.
John Cena as Jakob Toretto\n 14. Charlize
Theron as Cipher\n 15. Lucas Black as Sean
Boswell\n 16. Bow Wow as Twinkie (Fast and
Furious: Tokyo Drift)\n 17. Eva Mendes as
Monica Fuentes (2 Fast 2 Furious and Fast
Five)\n 18. Kurt Russell as Mr. Nobody\n
19. Helen Mirren as Magdalene Shaw\n 20.
Scott Eastwood as Little Nobody (The Fate of
the Furious and F9) \n Please note that this
list includes main characters from the entire
Fast & Furious franchise, not just the first
movie.

Conformal Factuality

The Walking Dead, which has at least 8
seasons, aired its last episode of season 8
on April 15, 2018.

In Greek mythology, the goddess of spring
growth was Persephone. Interestingly,
Persephone also held the title of the queen
of the underworld.

I’m uncertain about the specific details, and
I recommend using a search engine like Google
for more accurate and up-to-date information.

Real Madrid and FC Barcelona are both soccer
teams in Spain and are considered to be

two of the most famous soccer teams in the
country.

Uncle Owen and Aunt Beru are related to Luke
Skywalker, as they are his uncle and aunt.
They are characters in the Star Wars series,
along with Luke. Uncle Owen is also the
stepbrother of Anakin Skywalker, who later
becomes Darth Vader in the series. Uncle
Owen and Aunt Beru raised Luke Skywalker.

Donovan Mitchell, who is a person, was picked
13th overall in the 2017 NBA Draft.

The Beatles’ final live performance took
place on January 30, 1969, on a rooftop.

This rooftop was of the Apple Corps building,
which is located in London, England.

Maggie Pierce, a character in Grey’s Anatomy,
first appears in the series on the last
episode of Season 10. This episode aired on
May 15, 2014.

The Fast & Furious franchise features a
star-studded cast. Vin Diesel plays the
character Dominic Toretto, while Paul Walker
is known for his role as Brian 0’Conner.
Michelle Rodriguez portrays Letty Ortiz and
Jordana Brewster plays Mia Toretto. Tyrese
Gibson takes on the role of Roman Pearce,
and Ludacris is cast as Tej Parker. Dwayne
Johnson is recognized as Luke Hobbs, and
Jason Statham plays Deckard Shaw. Sung Kang
is cast as Han Lue, and Gal Gadot plays
Gisele Yashar. Elsa Pataky portrays Elena
Neves, and Nathalie Emmanuel is known for
her role as Ramsey. John Cena plays Jakob
Toretto, and Charlize Theron is cast as
Cipher. This list includes main characters
from the entire Fast & Furious franchise, not
just the first movie.

Table 4. NQ with o = 0.1 and frequency scoring: comparison of original output by GPT-4 versus our modified output from conformal
factuality. Incorrect claims are highlighted in red.
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Question

How many vertical
asymptotes does the
graph of y =

2
x“+x—6
have?

What is the positive
difference between
120% of 30 and 130%
of 207

Find the sum of all
integers that satisfy
these conditions:

|| +1>7 and |z+1]|< 7.

What is the number of
units in the distance
from the origin to
the point (-8,6) in a
coordinate system?

If A, B and C are
positive integers such
that AYE

B = _9_
] 2v3°
what is the value of
A+ B+ C given that A
and C have no common
prime factors, and B
has no perfect-square
factors other than 17

Ten treeks weigh as
much as three squigs
and one goolee. Two
treeks and one goolee
are equal in weight

to one squig. The
combined weight of how
many treeks equals the
weight of one squig?

Evaluate the
expression a® . a
if a=5.

Let f(y)=y'-3y°+y-3
and g(y) = y* + 7y - 2.
Find f(y) +  g(y).
Write your answer as a
polynomial with terms
of decreasing degree.

Original

The graph of y = ﬁ has vertical asymptotes
where the denominator is equal to zero. The
denominator @ + x — 6 factors as (z - 2)(z + 3), so
the vertical asymptotes are at = =

Therefore, the graph has vertical asymptotes.

120% of 30 is 1.2(30) = 36 and 130% of 20 is
1.3(20) = 26. The positive difference between

these two numbers is 36 —26 = .

The first inequality, |z|+ 1 > 7, is equivalent to
|z| > 6, which means = > 6 or & < —6. The second
inequality, |z+1|<7, is equivalent to -7<z+1<
7, or -8 < x < 6. The integers that satisfy both

inequalities are —7 and 7, so their sum is @

The distance from the origin to a point (z,y)
in a coordinate system is given by the formula

Va2 +y?. Substituting & = -8 and y =
V(=8)2 + 62 = \/64+ 36 = /00 = units.

6 gives

We can simplify the right side of the equation

AVB 9 9v3 3V3 ; ;
to get Tf =5/ - Tf = Tf Setting this

equal to Agﬁ, we get A=3, B=3, and C =2, so

A+B+C=[8].

From the first statement, we can write the
equation 10T = 3S + G (where T represents the
weight of a treek, S represents the weight of a
squig, and G represents the weight of a goolee).
From the second statement, we can write the
equation 2T + G = S. Substituting the second
equation into the first, we get 10T = 3(2T + G) +
G, which simplifies to 10T = 6T + 3G. Subtracting
6T from both sides, we get 4T = 3G. Substituting
this into the second equation, we get 2T + 4T/3 =
S, which simplifies to 10T/3 = S. Therefore, the
combined weight of 10/3, or approximately 3.33
treeks, equals the weight of one squig.

We have a®-a? =

then a®-a? =5° —.

Therefore, if a = 5,

We have f(y)+g(y) = (y*~3y°+y-3)+(y*+7y*-2) =
v' =20+ Ty y -5 |,

2 and z = -3.

Conformal Factuality

The graph of y = % has vertical asymptotes

where the denominator is equal to zero. The
denominator z? + x — 6 factors as (z — 2)(z + 3).
Therefore, the vertical asymptotes are at x = 2
and T = —-3. So, the graph has 2 vertical
asymptotes.

First, find 120% of 30 by multiplying 1.2 by 30
to get 36. Then, find 130% of 20 by multiplying
1.3 by 20 to get 26. Finally, find the positive
difference between 36 and 26 which is 10.

The first inequality, |z|+ 1 > 7, is equivalent to
|| > 6. This means © > 6 or & < —6. The second
inequality, |z+1| <7, is equivalent to —-7<z+1<
7. This can be rewritten as -8 < x < 6. The sum
of the integers -7 and 7 is 0.

The distance from the origin to a point (z,y)
in a coordinate system is given by the formula

Vz2+y2. If we substitute z = -8 andy = 6

into the formula, we get /(-8)2+62. This
calculation simplifies to /64 + 36, which further
simplifies to \/100. Therefore, the distance
from the origin to the point (-8,6) is 10 units.

First, the right side of the equation is

simplified to get A¥E = 3 = 238 - 33
Setting this equal to Agﬁ, we find that A = 3,
B = 3, and C = 2. Therefore, the sum of A, B,
and C is 8.

First, we can represent the weight of a treek as
T, the weight of a squig as S, and the weight of
a goolee as G. From the first statement, we can
derive the equation 10T = 3S + G. From the second
statement, we can derive the equation 2T + G =

S. We can then substitute the second equation
into the first, resulting in the equation 10T

= 3(2T + G) + G. This equation represents the
relationship between the weights of treeks,
squigs, and goolees.

3 is equivalent to at?,

First, we know that a° - a?

Then, a’*? is equivalent to a®. Given that a = 5,
we can substitute this value into the expression,

so a® - a? is equivalent to 55, Finally, we know
that 5° equals 3125. Therefore, if a = 5, the

expression a®-a® evaluates to 3125.

The function f(y) is represented by the equation

4 3 B . .
y*-3y°+y—3 and the function g(y) is represented
by the equation y3 + 7y2 —2. The sum of these two
functions, f(y) + g(y), equals g4—2y3+7y2+y—5.
Therefore, f(y) + g(y) = y4 —2y° + 7y2 +y->5.

Table 5. MATH with o = 0.1 and frequency scoring: comparison of original output by GPT-4 versus our modified output from conformal
factuality. Incorrect claims are highlighted in red.
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