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ABSTRACT

Many black-box techniques for quantifying the uncertainty of large language mod-
els (LLMs) rely on repeated LLM sampling, which can be computationally ex-
pensive. Therefore, practical applicability demands reliable estimation from few
samples. Semantic entropy (SE) is a popular sample-based uncertainty estimator
with a discrete formulation attractive for the black-box setting. Recent extensions
of semantic entropy exhibit improved LLM hallucination detection, but do so with
less interpretable methods that admit additional hyperparameters. For this reason,
we revisit the canonical discrete semantic entropy estimator, finding that it un-
derestimates the “true” semantic entropy, as expected from theory. We propose
a modified semantic alphabet size estimator, and illustrate that using it to adjust
discrete semantic entropy for sample coverage results in more accurate semantic
entropy estimation in our setting of interest. Furthermore, our proposed alphabet
size estimator flags incorrect LLM responses as well or better than recent top-
performing approaches, with the added benefit of remaining highly interpretable.

1 INTRODUCTION

Large language models (LLMs) are not fact engines. They have been shown to forget provided
context (Liu et al., 2024), fabricate records (Lee et al., 2023), and otherwise hallucinate (Ji et al.,
2023). LLMs’ underlying training data may be of mixed factual reliability, but models can also
hallucinate when they have ample knowledge to respond adequately (Simhi et al., 2024). In risk-
sensitive settings, it may be prudent for systems to abstain when uncertainty is high (or, alternatively,
confidence is low) (Murphy, 2022; Hasan et al., 2025). For these reasons and others, it is prudent to
estimate LLMs’ intrinsic uncertainty.

Uncertainty quantification (UQ) in LLMs is particularly challenging, however, in part due to their
computational scale (Liu et al., 2025). Extensive sampling can be financially prohibitive or com-
putationally intractable, and these concerns are magnified if the UQ method is computationally
complex with respect to the number of samples. Furthermore, internal activations and sequence
log-probabilities are not always available from commercial inference providers (Farquhar et al.,
2024), potentially disqualifying so-called “white-box” methods. Therefore, sample-efficient UQ in
the black-box setting - where LLM internals are assumed inaccessible - is a crucial area of research
for deploying trustworthy AI systems.

We provide empirical evidence that canonical discrete semantic entropy underestimates the “true”
SE for typical sample sizes, on average (Figure 2). To address this limitation, we first suggest
a straightforward modification to existing alphabet size estimators, where we draw, in part, from
population ecology. Then, we use it to adjust entropy estimates for sample coverage, resulting in
reduced bias (Figure 2) and more accurate estimation of the “true” semantic entropy, compared to
other black-box semantic entropy estimators (Table 1).

Finally, we evaluate our suggested estimators for inaccuracy classification in sentence-length LLM
responses. In our experiments, the aforementioned coverage-adjusted estimator outperforms other
explicit discrete estimators of semantic entropy. More strikingly, the alphabet size estimator alone
outranks all other considered UQ methods in overall strength - except for one, from which we do
not statistically distinguish performance, after accounting for uncertainty in establishing an overall
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Figure 1: High-level schematic of semantic alphabet size estimation for LLM uncertainty quantifi-
cation (Section 3). (A) Generate LLM responses to a query. (B) Assign responses to categories of
shared meaning. (C) Estimate semantic alphabet size, accounting for semantic classes unobserved
in the sample (Equation 9). LLM response examples are hypothetical for illustrative purposes.

rank of methods. Our results indicate that semantic alphabet size estimation, which is highly inter-
pretable, can perform as well or better than state-of-the art methods in LLM inaccuracy detection.

2 PRELIMINARIES

Information entropy. Information entropy quantifies the expected surprise, or uncertainty, of a
random variable. For a discrete random variable 𝑋 with finite alphabet 𝑆, it is given by:

H(𝑋) = −
∑︁
𝑠∈𝑆

𝑝(𝑠) log 𝑝(𝑠), (1)

where 𝑝(𝑠) depicts the probability of symbol 𝑠 (Shannon, 1948). When a random variable’s proba-
bility density is not known analytically, entropy estimators are employed. A well-studied approach
in the finite-sample regime is the plugin approximation:

Ĥ𝑝𝑙𝑢𝑔𝑖𝑛 (𝑋) = −
𝑘∑︁
𝑖=1

𝑝(𝑠𝑖) log 𝑝(𝑠𝑖), (2)

where 𝑘 is the number of distinct observations in a sample, and 𝑝(𝑠𝑖) conveys the empirical fre-
quency of 𝑠𝑖 among the observations.

Semantic classification. Lexically distinct text sequences may belong to the same semantic equiv-
alence class (equivalently, “semantic category” or “semantic set”) - i.e., a set of text sequences with
mutually shared meaning. Sequence 𝑑1 entails sequence 𝑑2 if 𝑑1 implies 𝑑2 (Dagan et al., 2005).
Kuhn et al. (2023) assign sequences 𝑑1 and 𝑑2 to a shared semantic equivalence class under so-called
“strict entailment” if their textual entailment is bidirectional.

Semantic entropy. Semantic entropy (SE), introduced by Kuhn et al. (2023), aims to quantify
intrinsic LLM uncertainty with a three-step procedure:

1. Sampling: Given a query 𝑞, generate 𝑛 passages 𝑑1, 𝑑2, . . . , 𝑑𝑛.

2. Semantic Clustering: Iterating over pairs (𝑑𝑖 , 𝑑 𝑗 ), determine if both sequences belong
to the same semantic equivalence class. Greedily assign passages to classes based on the
pairwise semantic classifications.
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3. Estimation: Semantic equivalence classes are treated as symbols in an alphabet 𝑆. SE is
the entropy calculated over observed semantic equivalence classes:

𝑆𝐸 (𝑞 |𝜃) = −
∑︁
𝑠∈𝑆

𝑝(𝑠 |𝑞, 𝜃) log 𝑝(𝑠 |𝑞, 𝜃) (3)

where 𝑝(𝑠 |𝑞, 𝜃) represents the probability that an LLM parameterized by 𝜃 generates a
passage belonging to semantic equivalence class 𝑠 in response to a query 𝑞.

Because the distribution over semantic sets is not known, it is approximated from response proba-
bilities 𝑝(𝑑 |𝑞, 𝜃) using so-called “Rao–Blackwellized Monte Carlo integration”:

𝑝(𝑠𝑖 |𝑞, 𝜃) ≈
∑

𝑑 𝟙𝑑∈𝑠𝑖 𝑝(𝑑 |𝑞, 𝜃)∑
𝑑 𝑝(𝑑 |𝑞, 𝜃)

, (4)

where 𝑑 ∈ 𝑠 indicates that response 𝑑 belongs to semantic equivalence class 𝑠, and 𝑝(𝑑 |𝑞, 𝜃)
are response probabilities returned by the LLM, for each of the 𝑘 observed semantic categories
𝑠1, 𝑠2, . . . , 𝑠𝑘 (Farquhar et al., 2024).

The black box setting. Response probabilities are not always available. Farquhar et al. (2024)
consider a discrete formulation of semantic entropy (DSE), where aggregated document probabilities
for each semantic equivalence class are replaced with empirical class frequencies:

𝐷𝑆𝐸 (𝑞 |𝜃) = −
𝑘∑︁
𝑖=1

(∑
𝑑 𝟙𝑑∈𝑠𝑖
𝑛

)
log

(∑
𝑑 𝟙𝑑∈𝑠𝑖
𝑛

)
(5)

with 𝑛 sampled passages and 𝑘 observed semantic categories. This is the plugin estimator (Equation
2) applied to semantic entropy (Equation 3). Both SE and DSE correspond with hallucination rate
in question-answering problems (Farquhar et al., 2024).

Generalizations. Recent work is said to have generalized semantic entropy. Two pertinent exam-
ples are Kernel Language Entropy (KLE) and Semantic Nearest Neighbor Entropy (SNNE), which
reported state-of-the-art performance for incorrectness classification (Nikitin et al., 2024; Nguyen
et al., 2025). These stronger estimators may come at the expense of interpretability, in part owing to
implementation complexity (e.g., applying a kernel to embed graph nodes in KLE) and introduction
of additional hyperparameters and design choices (e.g., similarity function and scale parameter in
SNNE). We elaborate on KLE and SNNE definitions and implementation details in Appendix A.5.

3 METHODS

The total number of semantic equivalence classes (i.e., the semantic alphabet size |𝑆 |) that may be
ellicited from an LLM in response to a prompt is generally unknown, and not all categories are
necessarily observed in the sample (i.e., 𝑘 < |𝑆 |). For instance, under a simple Zipfian model of
semantic category-abundance, we expect at least one category to be unobserved for sample size
𝑛 = 10 if |𝑆 | > 4 (Appendix B). This situation is known as the under-sampled regime, where the
empirical distribution over semantic categories can be less surprising than than the true one. In
other words, the plugin method for DSE may underestimate LLM uncertainty, which we illustrate
in Figure 2. For this reason, we are interested in methods for estimating semantic alphabet size and
adjusting for it when estimating semantic entropy.

Semantic alphabet size. Because plugin 𝐷𝑆𝐸 does not directly account for unobserved semantic
categories, the implicit alphabet size used by the plugin estimator is 𝑘 , called “NumSets” by Lin
et al. (2024). In the under-sampled regime, NumSets underestimates |𝑆 |, so a more accurate se-
mantic alphabet size estimator for small 𝑛 is desirable. Parallels exist with the so-called “unseen
species” problem in population ecology: given a sample of 𝑛 observations belonging to one or more
species, estimate the number of yet unseen species that would be discovered by collecting additional
observations (Fisher et al., 1943). In this setting, the sample coverage 𝐶, the fraction of all possible
categories observed in a sample (i.e., 𝐶 = 𝑘

|𝑆 | ), is also of interest (Chao & Shen, 2003).
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The so-called “Good-Turing” sample coverage estimator is 𝐶̂𝐺𝑇 = 1 − 𝑓1
𝑛

, where 𝑓1 is the number
of singletons, or semantic categories observed only once (Good, 1953). Modest arithmetic converts
the Good-Turing sample coverage estimator into an alphabet size estimator:

|̂𝑆 |𝐺𝑇 =
𝑘𝑛

𝑛 − 𝑓1
. (6)

More recently, Lin et al. (2024) suggested a “continuous” NumSets analogue: responses are inter-
preted as nodes of a fully-connected graph𝐺 with weights 𝑤𝑖 𝑗 =

𝑎𝑖 𝑗+𝑎 𝑗𝑖

2 , where 𝑎𝑖 𝑗 is the entailment
probability for response pair 𝑑𝑖 , 𝑑 𝑗 , via an NLI model. Given the eigenvalues (𝜆1 < · · · < 𝜆𝑛) of
𝐺’s normalized Laplacian, the estimator is given by:

𝑈𝐸𝑖𝑔𝑉 =

𝑛∑︁
𝑖=1

max(0, 1 − 𝜆𝑖). (7)

Coverage-adjusted entropy. To quantify a population’s ecological diversity, Chao & Shen (2003)
provide a coverage-adjusted discrete entropy estimator that scales empirical category frequencies by
estimated sample coverage:

Ĥ𝐶𝑆 = −
𝑘∑︁
𝑖=1

𝐶̂𝐺𝑇 𝑝𝑖 log(𝐶̂𝐺𝑇 𝑝𝑖)
1 − (1 − (𝐶̂𝐺𝑇 𝑝𝑖))𝑛

. (8)

This so-called “Chao-Shen” estimator is consistent and less biased than many empirical alternatives
(Vu et al., 2007; Pinchas et al., 2024).

Hybrid estimators. First, we adapt the two aforementioned semantic alphabet size estimators to
address shortcomings of each. When the number of singletons is zero, |̂𝑆 |𝐺𝑇 reduces to NumSets,
and it is undefined when all samples belong to distinct semantic categories. On the other hand,
𝑈𝐸𝑖𝑔𝑉 can be less than 𝑘 , which is a lower bound for |𝑆 |. To remediate the above limitations, we
propose an alternative “hybrid” semantic alphabet size estimator:

|̂𝑆 |𝐻𝑦𝑏𝑟𝑖𝑑 =

{
𝑈𝐸𝑖𝑔𝑉 , if 𝑓1 = 𝑛

𝑚𝑎𝑥

(
|̂𝑆 |𝐺𝑇 ,𝑈𝐸𝑖𝑔𝑉

)
, otherwise.

(9)

Additionally, we propose a Chao-Shen-like DSE estimator that takes the form of Equation 8, but
invokes the hybrid semantic alphabet size estimator for coverage adjustment:

Ĥ𝐻𝑦𝑏𝑟𝑖𝑑 = −
𝑘∑︁
𝑖=1

𝑘 𝑝̂𝑖

|̂𝑆 |𝐻𝑦𝑏𝑟𝑖𝑑

log
(

𝑘 𝑝̂𝑖

|̂𝑆 |𝐻𝑦𝑏𝑟𝑖𝑑

)
1 −

(
1 − 𝑘 𝑝̂𝑖

|̂𝑆 |𝐻𝑦𝑏𝑟𝑖𝑑

)𝑛 . (10)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Models. Following Farquhar et al. (2024), we focus on fine-tuned models - in our case, the
instruction-tuned models of Gemma-2-9B (Team et al., 2024), Llama-3.1-8B (Grattafiori et al.,
2024), Mistral-v0.3-7B, and Phi-3.5-3.8B (Abdin et al., 2024). We perform text generation at two
temperatures, for distinct purposes. Following related prior work, we sample at temperature 𝜏 = 1.0
to calculate uncertainty scores and again at 𝜏 = 0.1 to obtain a “best guess” response for assessing
the correctness of LLM responses (Farquhar et al., 2024; Nikitin et al., 2024; Nguyen et al., 2025).
With the exception of Figure 2, which iterates over several sample sizes, the results shown in the
main body of this work use a sample size of 𝑛 = 10, which is also found in prior work on semantic
entropy (Kuhn et al., 2023; Farquhar et al., 2024; Nikitin et al., 2024; Nguyen et al., 2025). Due
to its reduced computational burden compared to larger sample sizes and prevalence in the relevant
literature, we will refer to 𝑛 = 10 as a “practical” or “typical” sample size.
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Figure 2: Illustrating underestimation in discrete semantic entropy calculation with typical sample
sizes. The ratios of semantic entropy estimators with varying sample size (𝑛 = 5, 10, 25, 50, 75, 100)
to white-box semantic entropy with 𝑛 = 100 (denoted 𝑆𝐸∗) are shown, with values below 1 sug-
gesting underestimation (dotted grey line). The estimators displayed are the plugin estimator of
canonical discrete semantic entropy (i.e., Equation 5, dotted indigo line) and the “hybrid” semantic
entropy estimator of Equation 10 (solid indigo line). Results are averaged across queries within each
dataset, then uniformly averaged across datasets. Log scale is used on the x-axis to highlight dif-
ferences between estimators with smaller sample sizes. Instances with only one observed semantic
category at 𝑛 = 100, resulting in a denominator of 0, are ignored.

Datasets. We consider question-answering datasets wherein each query has either one or multiple
correct answer(s). For the former, we use the validation sets of HotpotQA (Yang et al., 2018) and
SQuAD 2.0 (Rajpurkar et al., 2018; 2016), which contain 1852 and 11864 exemplars, respectively.
Our experiments require extensive sampling of LLM responses, and BEC demands combinatorially
many language model calls. For these reasons, and because SQuAD 2.0 is much larger than the other
data sets, our experiments using it are performed on a random 20% subset. We also consider queries
with a wider variety of possible correct answers. The first such dataset is BioASQ, a biomedical
QA benchmark with 4719 exemplars. Each question in BioASQ has between 1 and 15 reference
answers. We also prepare a small (131 exemplars) supplementary dataset called Plethora Of ac-
cepTable cATegOries (POTATO), for which the number of possible correct semantic categories has
an even larger range (up to 722). We discuss POTATO in greater detail in Section A.2.

4.2 METRICS AND BASELINES

Semantic entropy estimator evaluation. For a given prompt-LLM pair, |𝑆 | and the true prob-
ability distribution over semantic equivalence classes are unknown, so semantic alphabet size and
semantic entropy have no ground truths. Instead, we assume that white-box semantic entropy with
a large number of samples (𝑛 = 100), denoted 𝑆𝐸∗, is interchangeable with the true estimand (i.e.,
𝑆𝐸∗ well-represents the true entropy over all possible semantic categories). When illustrating the
degree to which 𝑆𝐸∗ is underestimated (i.e., Figure 2), we report the ratio of the estimator of interest
to 𝑆𝐸∗. Since information entropy is non-negative, values below 1 indicate underestimation. Our
primary evaluation metric for entropy estimators, however, is mean-squared error (MSE): we assess
the MSE between an estimate using the small sample size (𝑛 = 10) and 𝑆𝐸∗.

Incorrectness evaluation. We also assess the ability of estimators to classify LLM responses as
“correct” or “incorrect,” sometimes referred to as “hallucination” or “confabulation” detection (Far-
quhar et al., 2024). We calculate the area under the receiver operating characterstic curve (AUROC),
corresponding to the probability that a randomly selected incorrect LLM response has a higher
uncertainty score than a randomly selected correct response. Empirical AUROC values are point
estimates, which themselves have uncertainty. Nikitin et al. (2024) point out that such uncertainty is
strongly driven by the model and dataset, rather than UQ method, motivating head-to-head compar-
isons and evaluation by win rate. We advance a similar approach, but we rely on Bradley-Terry latent
strength scores (Zermelo, 1929; Bradley & Terry, 1952), calculated via minorization-maximization
(Caron & Doucet, 2012; Hunter, 2004), allowing us to establish an overall rank of methods.
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Dataset Estimator Gemma-2-9B Llama-3.1-8B Mistral-7B Phi-3.5-3.8B

HotpotQA
Ĥ𝑃𝑙𝑢𝑔𝑖𝑛 0.47 ± 0.02 0.72 ± 0.03 0.60 ± 0.03 0.62 ± 0.03
Ĥ𝐶𝑆 0.39 ± 0.02 0.57 ± 0.03 0.46 ± 0.03 0.47 ± 0.03

Ĥ𝐻𝑦𝑏𝑟𝑖𝑑 0.30 ± 0.02 0.45 ± 0.02 0.39 ± 0.02 0.39 ± 0.02

SQuAD 2.0
Ĥ𝑃𝑙𝑢𝑔𝑖𝑛 0.69 ± 0.03 0.84 ± 0.03 1.40 ± 0.04 1.46 ± 0.04
Ĥ𝐶𝑆 0.51 ± 0.03 0.60 ± 0.03 0.86 ± 0.06 0.91 ± 0.06

Ĥ𝐻𝑦𝑏𝑟𝑖𝑑 0.43 ± 0.02 0.50 ± 0.02 0.68 ± 0.03 0.74 ± 0.03

POTATO
Ĥ𝑃𝑙𝑢𝑔𝑖𝑛 0.42 ± 0.08 0.71 ± 0.12 1.75 ± 0.15 1.96 ± 0.16
Ĥ𝐶𝑆 0.30 ± 0.07 0.52 ± 0.11 0.94 ± 0.29 1.57 ± 0.55

Ĥ𝐻𝑦𝑏𝑟𝑖𝑑 0.27 ± 0.06 0.42 ± 0.09 0.70 ± 0.11 0.72 ± 0.11

BioASQ
Ĥ𝑃𝑙𝑢𝑔𝑖𝑛 1.66 ± 0.03 1.81 ± 0.03 2.06 ± 0.03 1.85 ± 0.02
Ĥ𝐶𝑆 0.96 ± 0.04 1.05 ± 0.05 1.31 ± 0.08 0.98 ± 0.04

Ĥ𝐻𝑦𝑏𝑟𝑖𝑑 0.78 ± 0.02 0.78 ± 0.02 0.72 ± 0.02 0.82 ± 0.02

Table 1: Empirically evaluating the accuracy of explicit discrete semantic entropy estimators. Val-
ues reflect MSE between the estimated value using 𝑛 = 10 samples and white-box semantic entropy
with 𝑛 = 100 (i.e., 𝑆𝐸∗). The lowest MSE value for each model-dataset pair is shown in bold.
Intervals, shown in grey, reflect 95% CIs via the standard error of the mean.

We also employ a Monte Carlo procedure that attempts to account for uncertainty in estimating both
AUROC and strength scores. First, we fit Gaussian uncertainty distributions about AUROC point
estimates from the 95% confidence intervals (CIs) obtained via DeLong’s method (DeLong et al.,
1988; Sun & Xu, 2014), a modeling assumption we justify by the approximate normality of the U
statistic (Mann & Whitney, 1947).1 For each model-dataset pair, we simulate 𝐿 = 100 matches
between each pair of methods by comparing AUROC values sampled from their corresponding
uncertainty distributions. After obtaining strength scores from the simulated matches, we calculate
CIs about the Bradley-Terry scores and establish 95% CIs about the ranks of latent strengths using
the methods of Gao et al. (2023). We provide additional details in Appendix A.6.

Baselines. Because our priority is black-box uncertainty estimation, we compare with other black-
box approaches. For semantic entropy estimation, we compare our presented hybrid approach (i.e.,
Equation 10) to the other explicit discrete semantic entropy estimators: the canonical discrete ap-
proach of Farquhar et al. (2024) (i.e., the plugin estimator, Equation 5) and the coverage-adjusted
estimator of Chao & Shen (2003) (i.e., Equation 8).

For incorrectness classification, we consider the three aforementioned explicit semantic entropy
estimators, four alphabet size estimators, and three other uncertainty methods. The alphabet size
estimators are the number of semantic categories (i.e., NumSets) (Kuhn et al., 2023), the alphabet
size estimator converted from the Good-Turing sample coverage estimator (Good, 1953), the spec-
tral estimator of Lin et al. (2024) (i.e., 𝑈𝐸𝑖𝑔𝑉 ), and our presented hybrid alphabet size estimator
(i.e., Equation 9). The other uncertainty methods are Predictive Entropy (PE, see Appendix A.5)
(Kadavath et al., 2022), SNNE (Nguyen et al., 2025), and KLE (Nikitin et al., 2024).

4.3 RESULTS

Canonical DSE underestimates “true” semantic entropy. The plugin estimator for
information entropy Ĥ𝑝𝑙𝑢𝑔𝑖𝑛 has a theoretically-established negative bias (Basharin,
1959; Harris, 1975), which largely governs its mean-squared error (Antos & Kon-
toyiannis, 2001). We are interested in observing this phenomenon empirically, where
we do not have access to the true distribution over semantic equivalence classes.

1In principle, samples from these distributions may exist outside the [0, 1] range, but this is unlikely in our
case, given the AUROC CI bounds (Figure 7).
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Figure 3: Establishing overall performance of ten UQ methods on incorrectness detection. (A)
Bradley-Terry latent strength scores from pairwise comparison of AUROC point estimates. (B)
Bradley-Terry latent strength scores after accounting for uncertainty in estimating AUROC. Error
bars are “conservative” CIs about strength scores, which may be slightly stricter than 95%; see
Section A.6 for details. (C) For each method, we establish 95% CIs about the rank of Bradley-
Terry latent strength MLEs (Gao et al., 2023) for the incorrectness detection task; see Section A.6
for details. We highlight i) semantic alphabet size estimators, ii) explicit discrete semantic entropy
estimators, and iii) other uncertainty estimators. The interval [a, b] denotes all integers from 𝑎 to 𝑏,
inclusively. The CI for SNNE reflects [6, 6] and is extended for readability.
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Figure 4: Heatmap illustrating the portion of
model-dataset pairs, rounded to the nearest inte-
ger, for which a row’s method achieved a larger
AUROC point estimate than a column’s method.
Uncertainty methods are organized into three
groups: (i) semantic alphabet size estimators, (ii)
semantic entropy estimators, and (iii) other un-
certainty methods. The hybrid discrete semantic
entropy estimator consistently outperforms other
DSE estimators, and the hybrid semantic alphabet
size estimator consistently outperforms other al-
phabet size estimators.

In Figure 2, we compare plugin DSE estimates
to 𝑆𝐸∗ (dotted lines), indicating that the canon-
ical plugin DSE approach underestimates its
quantity of interest for practical sample sizes.
Such underestimation can be problematic for
reliable UQ, because drawing a large number of
samples from an LLM can be costly and time-
consuming at scale.

Our proposed estimator improves the accu-
racy of discrete semantic entropy estimation.
In Figure 2, we observed that Ĥ𝐻𝑦𝑏𝑟𝑖𝑑 underes-
timated its target quantity by less than canoni-
cal plugin DSE for a range of sample sizes. De-
tailed results, broken out by dataset, are shown
in Appendix C (Figure 6), where similar pat-
terns are exhibited. We perform a more gran-
ular comparison of semantic entropy estima-
tor accuracy with 𝑛 = 10 in Table 1, where
Ĥ𝐻𝑦𝑏𝑟𝑖𝑑 consistently achieves the lowest MSE
among explicit discrete semantic entropy esti-
mators across four models and four datasets.

We improve upon prior work on incorrect-
ness detection. LLM uncertainty estimation
is often employed as a proxy for hallucina-
tion, confabulation, or incorrectness detection
among LLM responses (Kuhn et al., 2023; Far-
quhar et al., 2024). Following Nikitin et al.
(2024), we calculate pairwise AUROC win
rates between models – for each model-dataset
pair, a win is recorded in method 𝑖’s favor
over method 𝑗 if the corresponding AUROC for
method 𝑖 is greater than that of method 𝑗 (Fig-
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ure 4). We characterize overall performance of each uncertainty method via Bradley-Terry latent
strength scores. Figure 3A displays maximum likelihood estimates of the methods’ strength scores
from pairwise AUROC comparisons. Here, |̂𝑆 |𝐻𝑦𝑏𝑟𝑖𝑑 achieves the highest strength score, followed
closely by KLE.

We highlight the uncertainty in both AUROC and Bradley-Terry estimation in Figure 3B (CIs about
Bradley-Terry estimates, which may be slightly stricter than 95%) and Figure 3C (95% CIs around
each method’s rank by Bradley-Terry score). We observe that the hybrid estimators presented herein
outperform estimators of the same type - i.e., |̂𝑆 |𝐻𝑦𝑏𝑟𝑖𝑑 achieves the highest strength score among
semantic alphabet size estimators, and |̂𝑆 |𝐻𝑦𝑏𝑟𝑖𝑑 does the same among explicit semantic entropy
estimators. Finally, we find that |̂𝑆 |𝐻𝑦𝑏𝑟𝑖𝑑 shares the [1, 2] CI with KLE (Figure 3C), a conceptually
complex approach that may be more difficult to interpret. We do not statistically distinguish the
incorrectness detection performance of |̂𝑆 |𝐻𝑦𝑏𝑟𝑖𝑑 from that of KLE, with both methods holding top
performance, after accounting for uncertainty in our rank-generating procedure. Our results are
consistent with Kuhn et al. (2023)’s observation that the number of observed semantic categories is
itself “a reasonable uncertainty measure.”

5 RELATED WORK

Herein, we briefly review related contributions not discussed elsewhere in this work.

Earlier LLM uncertainty quantification methods. Linguistic Confidence assesses whether the
LLM articulates its confidence in its response (Mielke et al., 2022). The P(True) method of Kada-
vath et al. (2022) similarly relies on an LLM’s self-perceived uncertainty, asking a language model
if a response is “True” or “False,” with the response probability of “False” ultimately reported. Self-
CheckGPT draws 𝑛 + 1 responses from an LLM and assesses the consistency of each sentence of
the first response with each of the 𝑛 following responses (Manakul et al., 2023). In prior work, such
approaches have been consistently superseded by the methods otherwise described herein (Kuhn
et al., 2023; Lin et al., 2024; Farquhar et al., 2024; Nikitin et al., 2024; Nguyen et al., 2025).

Uncertainty and internal representations. In the white-box setting, it may be desirable to as-
certain LLM uncertainty from internal representations, rather than repeated sampling. Han et al.
(2024b) and Han et al. (2024a), for example, approach this from an interpretability point of view,
building on earlier work on semantic entropy (Kuhn et al., 2023; Farquhar et al., 2024). Other analy-
ses, however, contend that so-called “truthfulness encodings” are difficult to generalize (Orgad et al.,
2025), warranting further examination.

Alphabet size estimation. The Good-Turing estimator discussed herein accounts for singletons
in the sample (Chao & Shen, 2003). Alternative alphabet size estimators accounting for double-
tons (i.e., semantic categories appearing exactly twice in the sample) (Chao, 1987) and tripletons
(i.e., categories appearing exactly three times) (Lanumteang & Böhning, 2011) exist, but they are
undefined when the number of doubletons is zero.

Unbiased entropy estimation. The entropy estimator of Montgomery-Smith & Schürmann
(2014) is unbiased, but it is incompatible with the possibility of unobserved semantic equivalence
classes. Otherwise, no unbiased estimator exists, to the best of our knowledge (Paninski, 2003).

6 DISCUSSION

6.1 CONCLUSION

Several approaches for estimating LLM uncertainty have emerged in recent years, but UQ perfor-
mance can be constrained absent white-box LLM access. Furthermore, the practicality of sampling-
based UQ methods is limited by the computational costs associated with repeated text generation.
We illustrate the importance of semantic alphabet size in LLM uncertainty estimation with small
sample sizes. Adjusting discrete semantic entropy for sample coverage using our proposed semantic
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alphabet size estimator results in more accurate semantic entropy estimation and improved LLM
incorrectness classification, compared to other discrete semantic entropy estimators. Further, the
aforementioned semantic alphabet size estimator achieves as good or better performance on incor-
rectness classification than all nine other black-box UQ methods considered in our QA experiments.

Though out of scope for the present study, we underscore that semantic alphabet size estimation
- and |̂𝑆 |𝐻𝑦𝑏𝑟𝑖𝑑 , in particular - may have broader application than merely entropy estimation. For
instance, concurrent work by Li et al. (2025) applied a Good-Turing method to estimate the extent
of LLMs’ unexpressed factual knowledge (e.g., mathematical theorems and diseases).

6.2 LIMITATIONS

We highlight several limitations in the present work. First, computational constraints limit our ability
to run the experiments herein with models larger than 9 billion parameters. That said, our analysis
is extensive, spanning four distinct model families, four datasets, and ten uncertainty estimators.
Though our results are empirical, and experimental results may vary across studies, we make efforts
to express our statistical uncertainty, and our final rank-generating procedure aims to account for it.

Second, our work aims to improve upon plugin discrete semantic entropy, whose estimator is neg-
atively biased. For this reason, we take semantic cluster labels as fixed, without ablating across
alternative clustering strategies. End-to-end semantic entropy calculation involves several steps,
however, and a biased estimator does not necessitate that the entire process results in a negatively
biased estimate. For instance, a high false negative rate in the assignment of responses to semantic
equivalence classes (e.g., due to minor lexical alterations inducing false negatives) may positively
bias the final estimate (Grewal et al., 2024).

Finally, the uncertainty estimation methods considered herein do not directly measure factual in-
accuracy. Instead, they may be better understood as indicators of semantic diversity. Of course,
high semantic diversity may correspond to a high factual error rate, but there are scenarios wherein
semantic diversity does not necessarily imply incorrectness (Ilia & Aziz, 2024), and, conversely,
models can be confidently wrong.

6.3 REPRODUCIBILITY

We outline our major experimental settings in Section 4.1, as well as evaluation metrics and base-
line methods in Section 4.2. In Appendix A, we elaborate extensively on additional implementation
details needed to reproduce our results, including algorithms, models, and prompt templates. In-
terested readers will also find a brief overview of implementation variations found in other work
in Section E. Finally, we offer our code in supplementary materials, with hope to support scientific
accessibility and reproducibility in future work.

6.4 LLM USAGE

During this project, LLMs were employed at times for coding assistance.
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A ADDITIONAL IMPLEMENTATION DETAILS

A.1 TEXT GENERATION

Throughout this work, we generate a maximum of 100 tokens for each response, with early stopping
enabled if the EOS token is generated. All otherwise unspecified hyperparameters are set to their
defaults (e.g., we do not invoke top-𝑘 sampling, top-𝑝 sampling, beam search, repetition penalty,
etc.).

For incorrectness classification, we follow prior work that elicits concise responses by pre-pending
QA queries with the following “pre-prompt” (Farquhar et al., 2024; Nikitin et al., 2024):

Pre-Prompt for Single-Sentence QA

Answer the following question in a single brief but complete sentence.

A.2 SYNTHETIC DATA GENERATION

Plethora Of accepTable cATegOries (POTATO) is a small synthetic dataset wherein every question
is, in principle, answerable with a one-word or few-word response, and each question has more than
one correct answer. We repeatedly invoke the following prompt against OpenAI’s GPT-4-turbo:

Prompt for POTATO Question Generation

Using the available function, generate 10 questions from diverse topic areas. Each question
should request only a single answer, but there should be exactly [NUM ANSWERS] possi-
ble semantically distinct correct answer(s) to the question. For example, ‘Name a continent
on Earth’ has seven possible correct answers, because Earth has seven continents, but ‘Name
all the continents on Earth’ only has one possible semantically distinct correct answer (a list
of all seven continents).
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|𝑆 | > 1 |𝑆 | ≥ 1
Classifier FMI NMI PA FMI NMI PA

LLM 0.84 0.72 0.84 0.86 0.63 0.83
NLI-NQ 0.84 0.64 0.85 0.85 0.63 0.83

Table 2: Evaluating semantic classification methods against human-annotated ground truth. Results
are averaged across questions from the POTATO dataset, either excluding or including questions for
which all responses were semantically equivalent (|𝑆 | > 1 and |𝑆 | ≥ 1, respectively), according to
the human rater. Metrics considered are the Fowlkes–Mallows index (FMI), normalized mutual in-
formation (NMI), and pairwise agreement (PA), assessed between the semantic equivalence classes
assigned by the provided method and the human-annotated ground truth. Values are rounded to two
decimal places. The best-performing BEC method by each metric (unrounded) is in bold. Instances
where a Semantic Embedding method outperforms a BEC method are underlined. Responses are
generated by GPT-4o-mini.

100 101 102 103

Count

10−2

10−1

100

Su
rv

iva
l P

ro
ba

bil
ity

(A)
Possible
Observed

101 102

Possible correct

5

10

15

20

Ob
se

rv
ed

ρ= −0.008

(B)

Figure 5: (A) Empirical survival function of the
number of possible correct semantic categories
and the number of observed semantic categories
in the responses generated by GPT-4o-mini, ac-
cording to a human annotator. (B) Scattergram
of the number of observed semantic categories
(“Observed“), according to the human annotator,
against the number of possible correct semantic
categories (“Possible“). One question is excluded
(“Identify a programming language designed by
Microsoft.”), because the total number of possible
correct semantic categories was not known by the
authors of this work.

Above, [NUM ANSWERS] is an integer be-
tween 1 and 50, and the available function is
a Pydantic object enforcing structured genera-
tion (Colvin et al., 2024). A human annota-
tor assessed the number of semantic categories
for possible correct answers, discarded those
with only one possible correct semantic cate-
gory, and removed duplicate questions. The re-
sulting dataset has 131 unique questions. We
generate 100 responses to each question from
the POTATO dataset using GPT-4o-mini. A hu-
man annotator manually assigned the responses
to semantic categories.

One query (“Name a piece of classical music
composed by Ludwig van Beethoven.”) has a
particularly large number of possible correct se-
mantic categories, owing to Beethoven’s pro-
lific output of several hundred compositions.
Figure 5A suggests that the distribution of se-
mantic alphabet sizes for model-query pairs
is generally dominated by the distribution of
the numbers of possible correct semantic cat-
egories for those queries. On a per-query basis,
however, these quantities exhibit low correlation (Figure 5B).

A.3 BIDIRECTIONAL ENTAILMENT CLUSTERING

Semantic classification. The semantic clustering step of semantic entropy calculation is per-
formed using a Bidirectional Entailment Clustering (BEC), which classifies pairs of passages
(𝑑𝑖 , 𝑑 𝑗 ) bidirectionally as “entailment,” “neutral,” or “contradiction,” and uses these labels to greed-
ily assign passages to semantic equivalence classes. Like previous work, our implementation fo-
cuses on strict entailment, where both unidirectional relations must be considered “entailment” or
equivalent (i.e., not “neutral”). We refer the reader to Kuhn et al. (2023); Farquhar et al. (2024) for
further detail on the BEC algorithm. The classifier used varies by implementation, either an LLM-
or NLI-based method:

Large Language Model (LLM). Farquhar et al. (2024) classify passage pairs (T1, T2) by invok-
ing OpenAI’s GPT-3.5 endpoint with the following prompt:
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Prompt for Entailment Classification

We are evaluating answers to the question {question}
Here are two possible answers:
Possible Answer 1: {T1}
Possible Answer 2: {T2}
Does Possible Answer 1 semantically entail Possible Answer 2? Respond with entailment,
contradiction, or neutral.

Our implementation invokes OpenAI’s GPT-4o-mini model, due to the sunsetting of GPT-3.5.

Natural Language Inference (NLI). The BEC approach of Kuhn et al. (2023) classifies (𝑑𝑖 , 𝑑 𝑗 )
using a DeBERTa model fine-tuned for NLI tasks.2 Our implementation, used throughout this work,
updates the classifier to a fine-tuned NLI model based on Microsoft’s newer DeBERTaV3 (He et al.,
2021).3 The NLI classification can be performed with or without the source questions (NLI-Q and
NLI-NQ, respectively); in the former, the query is prepended to both 𝑑𝑖 and 𝑑 𝑗 before passing
through the NLI model.

Comparison. To compare the alignment between each clustering method and the human-
annotated ground-truth, we measure the Fowlkes–Mallows index (FMI) (Fowlkes & Mallows, 1983)
and normalized mutual information (NMI) (Danon et al., 2005; Lancichinetti et al., 2009). We also
consider pairwise agreement (PA), wherein we iterate over pairs of passages, classify each pair as
“entailment” or “contradiction,” based on the clustering results, and report for each method the por-
tion of pairs whose entailment label agrees with that of the human annotator (Farquhar et al., 2024).
Across metrics, we observe that the NLI method without the inclusion of questions performs roughly
similarly to LLM (Table 2). For its comparable performance while limiting costs, we use NLI-NQ
throughout this work.

A.4 LLM-AS-JUDGE

Prior work labeled an LLM’s response as correct if the ROUGE-L score (Lin, 2004; Lin & Och,
2004) between the response and a reference answer was above 0.3 (Kuhn et al., 2023). Appropriate
thresholds may vary by model and dataset - for instance, the reference answers in HotPotQA appear
rather brief, and models can vary in their verbosity, without it necessarily impacting the correctness
of their responses. Additionally, such methods may not capture semantically equivalent, but lexically
distinct, paraphrasings (e.g., using an acronym).

Instead, Lin et al. (2024) prompt a commercial LLM to provide a numerical rating of consistency be-
tween LLM responses and reference answers, with ratings above 70 indicating an accurate response.
They observe, however, that a small portion of LLM judgements do not have an easily-parseable rat-
ing. For this reason, we modify their prompt to request ratings within XML-style tags and include
an in-context example:

Prompt for Consistency-Based Judge

Rate the level of consistency between the answer to the question and the reference answer,
from 0 to 100. Output the float rating inside <rating>< /rating> tags.
Here is an example output:
Question: What is the capital of France? Reference: Paris is the capital of France. Answer:
The capital of France is Paris. <rating>100< /rating>
Now rate the following:
Question: {question}
Reference: {groundtruth}
Answer: {pred}

2https://huggingface.co/microsoft/deberta-large-mnli
3https://huggingface.co/cross-encoder/nli-deberta-v3-base
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When a query has multiple reference answers (e.g., those in the BioASQ), we invoke the above
prompt to compare the LLM response to each reference answer, then report the maximum LLM-as-
judge rating. Our choice of commercial model for LLM-as-judge is OpenAI’s GPT-4o-mini.

A.5 UNCERTAINTY ESTIMATORS

Predictive entropy. The so-called “total uncertainty” associated with a prediction is the informa-
tion entropy of the corresponding predictive posterior distribution (Malinin & Gales, 2021). In UQ
for natural language generation, an analogue is predictive entropy (PE), the entropy of the distribu-
tion of generable sequences by an LLM in response to a prompt (Kuhn et al., 2023; Lin et al., 2024;
Farquhar et al., 2024). Since not all generable sequences are typically known, PE is calculated using
the above plugin method to estimate the entropy of a prompt-model pair’s “answer distribution” (Ka-
davath et al., 2022). A shortcoming of this approach is that it treats all lexically distinct sequences
as unique elements of an alphabet, even if they are semantically similar.

SNNE. SNNE aims to account for both “intra-and inter-cluster similarity.” Provided a scale factor
𝜏 and a similarity function 𝑓 for assessing passage pairs (𝑑𝑖 , 𝑑 𝑗 ), SNNE is defined as:

𝑆𝑁𝑁𝐸 (𝑞) = −1
𝑛

𝑛∑︁
𝑖=1

log
𝑛∑︁
𝑗=1

exp

(
𝑓 (𝑑𝑖 , 𝑑 𝑗 )

𝜏

)
(11)

(Nguyen et al., 2025). Our implementation uses ROUGE-L for 𝑓 and scale factor 𝜏 = 1, which the
authors report as best-performing (Nguyen et al., 2025).

KLE. Like 𝑈𝐸𝑖𝑔𝑉 , KLE constructs a graph over LLM responses to a query, where nodes are
responses and edge weights are prescribed by the results of an NLI model. Instead of using the
model’s categorical scores, however, KLE’s semantic graph has weights 𝑤𝑖, 𝑗 = 𝑔(𝑑𝑖 , 𝑑 𝑗 )+𝑔(𝑑 𝑗 , 𝑑𝑖),
where 𝑔 is 1 if the NLI model predicts “entailment” for the provided response pair, 0.5 if it predicts
“neutral,” and 0 otherwise. The standard graph Laplacian (i.e., the difference between the degree
matrix and the weight matrix) is then taken over the resultant semantic graph (Nikitin et al., 2024).

KLE admits a choice of kernel to apply to the Laplacian, resulting in a “density” matrix 𝐾 . Given
the eigenvalues (𝜆1 < · · · < 𝜆𝑛) of 𝐾 , the von Neumann entropy is calculated:

𝑉𝑁𝐸 (𝐾) =
𝑛∑︁
𝑖=1

𝜆𝑖 log𝜆𝑖 . (12)

Although the concept of von Neumann entropy has its roots in quantum physics (Petz, 2001), it has
also been used more recently in network science literature to quantify graph complexity (Minello
et al., 2019).

Nikitin et al. (2024) report the heat kernel as best-performing overall:

𝐾ℎ𝑒𝑎𝑡 = 𝑒
−𝑡𝐿 . (13)

Our implementation of KLE invokes 𝐾ℎ𝑒𝑎𝑡 with hyperparameter 𝑡 = 0.3, which the authors con-
sider a “reasonable default” that outperforms prior approaches without additional hyperparameter
optimization (Nikitin et al., 2024).

A.6 BRADLEY-TERRY CONFIDENCE INTERVALS

Gao et al. (2023) offers a procedure for ascertaining CIs about ranks of Bradley-Terry strength
estimates, which we cursorily summarize as follows: Assuming a Bradley-Terry model, let 𝛽 =

{𝛽1, . . . , 𝛽𝑚} be the true latent strengths of 𝑚 methods, and let 𝛽 = {𝛽1, . . . , 𝛽𝑚} be MLEs of the
same. Given a provided level 𝛼 and a “target” method 𝑖, we may establish a (1 − 𝛼) CI about
𝛽𝑖 , as well as “slightly more conservative” intervals about the remaining strength estimates. Let
𝑛1 be the number of resultant intervals whose lower bounds are greater than the upper bound of
method 𝑖’s. Similarly, let 𝑛2 be the number of intervals whose upper bounds are less than the lower
bound of method 𝑖’s. The true rank of method 𝑖’s Bradley-Terry strength is in the integer inter-
val [𝑛1 + 1, 𝑛 − 𝑛2] with approximate probability 1 − 𝛼. Because Proposition 4.1 of Gao et al.
(2023) only holds for fixed number of methods/agents/players, we illustrate the “conservative” CIs
in Figure 3C. We repeat this procedure for each UQ method to establish CIs for all strength ranks.
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Figure 6: Ratio of semantic entropy estimator with varying sample size (𝑛 = 5, 10, 25, 50, 75, 100)
to white-box semantic entropy with 𝑛 = 100 (denoted 𝑆𝐸∗), with values below 1 suggesting un-
derestimation (dotted grey line). Estimators shown are the plugin estimator of canonical discrete
semantic entropy (dotted rose, indigo, green, and cyan lines) and the presented semantic entropy
estimator of Equation 10 (solid rose, indigo, green, and cyan lines). Results are averaged across
queries for each dataset. Log scale is used on the x-axis to highlight differences between estimators
with smaller sample sizes. Instances with only one observed semantic category at 𝑛 = 100, resulting
in a denominator of 0, are ignored.

𝑎

Method 0 0.01 0.1 1
|̂𝑆 |𝐻𝑦𝑏𝑟𝑖𝑑 [1, 2] [1, 2] [1, 2] [1, 2]
NumSets [7, 10] [7, 10] [7, 10] [7, 10]

Good-Turing [7, 10] [7, 10] [7, 10] [7, 10]
𝑈𝐸𝑖𝑔𝑉 [3, 4] [3, 4] [3, 4] [3, 4]
Ĥ𝑃𝑙𝑢𝑔𝑖𝑛 [7, 10] [7, 10] [7, 10] [7, 10]
Ĥ𝐶𝑆 [7, 10] [7, 10] [7, 10] [7, 10]

Ĥ𝐻𝑦𝑏𝑟𝑖𝑑 [4, 5] [4, 5] [4, 5] [4, 5]
PE [3, 5] [3, 5] [3, 5] [3, 5]

SNNE [6, 6] [6, 6] [6, 6] [6, 6]
KLE [1, 2] [1, 2] [1, 2] [1, 2]

Table 3: Employing distinct values of regularization
parameter 𝑎, including zero regularization, we compute
MLE Bradley-Terry latent strength scores and establish
95% CIs of each method’s latent strength rank via the
methods of Gao et al. (2023). Results are identical for
all 𝑎 values considered.

We refer interested readers to Gao et al.
(2023) for further details.

The algorithm we use to estimate strength
scores employs a regularization parameter,
which we take as 𝑎 = 0.1 in the main body
of the paper. Table 3, which repeats the
analysis of Figure 3C for varying 𝑎, indi-
cates that the rank order of our Bradley-
Terry results is not sensitive to this choice.

B THE
UNDER-SAMPLED REGIME

Consider a simple model of semantic
category-abundance, where the probabil-
ity that a model parameterized by 𝜃 gener-
ates a response belonging to the 𝑟 𝑡ℎ-most
prevalent semantic category 𝑠𝑟 in response
to a query 𝑞 follows a Zipfian distribu-
tion, similar to some models of species-
abundance (Ulrich et al., 2010):

𝑝(𝑠𝑟 |𝑞, 𝜃) =
1

𝑟𝐻 |𝑆 |
, (14)

where 𝐻 𝑗 is the 𝑗 𝑡ℎ harmonic number (Kingsley Zipf, 1932). If the expected number of occurrences
of 𝑠𝑟 in a sample of 𝑛 responses is less than 1, then |𝑆 | > 𝑛

𝐻|𝑆 |
. For sample size 𝑛 = 10, we expect at

least one semantic category to be unobserved with just |𝑆 | > 4.

C ADDITIONAL UNDERESTIMATION RESULTS

Detailed results for SE underestimation, broken out across four datasets, are shown in Figure 6.
Results are qualitatively similar to those in Figure 2, with Ĥ𝐻𝑦𝑏𝑟𝑖𝑑 consistently underestimating
𝑆𝐸∗ less than plugin DSE for practical sample sizes.
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Figure 7: Performance of incorrectness classification on single-answer QA for uncertainty mea-
sures using 𝑛 = 10 samples. “Plugin,” “CS-GT,” and “CS-H” are estimators of semantic entropy.
“NumSets,” “𝑈𝐸𝑖𝑔𝑉 ,” and “ |̂𝑆 |𝐻𝑦𝑏𝑟𝑖𝑑” are estimators of semantic alphabet size. Error bars reflect
95% CIs about the AUROC.

D ADDITIONAL INCORRECTNESS DETECTION RESULTS

Detailed results for incorrectness classification across three datasets, four LLMs, and ten UQ meth-
ods are shown in Figure 7. Error bars are 95% CIs about empirical AUROC values, calculated via
DeLong’s method (DeLong et al., 1988; Sun & Xu, 2014).

E IMPLEMENTATION VARIATIONS

The relevant LLM UQ literature is not always consistent in experimental setup. For instance, the
plurality of considered works use 𝑛 = 10 sampled responses per query (Kuhn et al., 2023; Farquhar
et al., 2024; Nikitin et al., 2024; Nguyen et al., 2025), but Lin et al. (2024) use 𝑛 = 20. Some works
vary prompting templates across datasets (e.g., zero-shot vs. multi-shot prompting) (Kuhn et al.,
2023; Lin et al., 2024). A variety of methods for automated LLM incorrectness evaluation have
been employed, including thresholded ROUGE-L (Kuhn et al., 2023), binary LLM-as-judge (Far-
quhar et al., 2024), thresholded consistency-based LLM-as-judge Lin et al. (2024), and BERTScore
(Nguyen et al., 2025). Although it is out of this work’s scope to exhaustively ablate all such choices,
we attempt to be explicit in describing our selections to support future work.
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