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Abstract

Recent works on predictive uncertainty estimation have shown promising results
on Out-Of-Distribution (OOD) detection for semantic segmentation. However,
these methods struggle to precisely locate the point of interest in the image, i.e,
the anomaly. This limitation is due to the difficulty of fine-grained prediction at
the pixel level. To address this issue, we build upon the recent ObsNet approach
by providing object instance knowledge to the observer. We extend ObsNet by
harnessing an instance-wise mask prediction. We use an additional, class agnostic,
object detector to filter and aggregate observer predictions. Finally, we predict an
unique anomaly score for each instance in the image. We show that our proposed
method accurately disentangles in-distribution objects from OOD objects on three
datasets.

1 Introduction

Lately, an ever increasing number of safety-critical systems, such as autonomous driving, are looking
into leveraging Deep Neural Networks (DNNs) for the perception of the environment and as well
as for subsequent decisions. Despite some success, DNNs still remain unreliable for real world
deployment and often over-confident even they are incorrect on both In-Distribution [23] and Out-
Of-Distribution (OOD) data [48, 28]. In this work, we aim at detecting OOD objects for 2D object
segmentation. In this context, we consider as OOD the objects belonging to a class that is unknown
by the perception system, i.e., a class that is not defined nor present in the training data.

Most methods dealing with unknown-unknown are based on ensembles[34, 41, 19, 43], pseudo-
ensembles [33, 57, 18, 16], or deterministic approaches for computing uncertainty [30, 50, 56, 39].
However, most of them cannot simultaneously satisfy the real world requirements of high performance
and real-time inference, typically trading one for the other. Recent works inspired by practices from
system validation and monitoring, advance two-stage strategies to detect anomalies in semantic
segmentation [5, 4]. An Observer Network is trained to analyze and predict the confidence of a
main perception network. Observer-based approaches have been shown to find a good balance
between accuracy and computational efficiency [5, 4]. In this work we build on top on observer-based
approaches to leverage their properties.

We argue that pixel-wise error map (as shown in [5, 4, 33, 11]) by itself is sub-optimal for anomaly
detection in segmentation because these maps lack clarity. Due to the difficulty of fine-grained
prediction, most boundaries between two classes as well as small or distant objects are considered
uncertain. Therefore, the focus of interest in the image, i.e. the OOD object, is drowned into this
noise. The resulting error map does not provide precisely delimited spatial information: we know
there is an error on the image but we struggle to accurately locate the corresponding OOD object. In
other words, while we can get uncertainty estimates and predictions at pixel-level, extending them to
objects is not obvious and we cannot find automatically objects far from the training distribution. As
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Figure 1: Flows of the image processing. From the input image (left), we compute the pixels-wise
uncertainty and the object detection masks. Then we filter the uncertainty in the area of object only,
and finally aggregate the score in an instance aware manner. We can see that the OOD object is well
detected while in-distribution objects with low anomaly score and background errors are erased.

an example, an image depicting a crowd of pedestrian with lot of boundaries has, on average, higher
anomaly score than an image with only one OOD object in the middle of a road.

In this paper, we propose to reduce the granularity of the task in order to improve the relevance of the
error map. To this end, we use a class agnostic, instance segmentation network. With this additional
prediction, we first filter background errors, and then aggregate uncertainty in an instance-aware
manner Figure 2. Ultimately, we only want to highlight object instances with high errors. With this
pragmatic and practical solution we can sort objects by anomaly score and then discard all objects
close to the training distribution and keep those that are far from the training distribution.

2 Proposed Method

2.1 Observer Networks

Our work builds upon ObsNet [5, 4] that we briefly describe here. Observer networks are a two-
stage method to detect pixels-wise errors and OOD. [4] designed two principles to train efficiently
an auxiliary network. They improve the architecture by decoupling the OOD detector from the
segmentation branch and by observing the whole network via residual connections. Secondly, they
generate blind spots in the segmentation network with local adversarial attacks (LAA) at a random
location of the image, mimicking an OOD object. ObsNet (Obs) outputs a pixels-wise error map
corresponding to the probability that the semantic segmentation network (Seg) fails to predict the
correct class y:

Obs(x, Segr(x)) ≈ Pr[Seg(x) ̸= y], (1)

where x is the input image and Segr the skip connections from intermediate feature maps of
segmentation network Seg.

2.2 Instance Anomaly Detection

To this end, we upgrade the semantic segmentation framework with instance hints. We use an
additional class agnostic instance segmentation prediction. This detector (Det) produces a binary
mask by mapping each object in the image.

Then, the idea is to separate the observer’s prediction map into two categories. The background
(classes of stuff ) and the instance (classes of things) in the same way as the panoptic segmentation.
Background errors correspond to global ambiguities in the scene at different scales: error at the
decision boundary between two classes, prediction error between the road and the sidewalk or
complexity of the leaves of a tree. In contrast, an instance error corresponds to an object far from the
train distribution.

2.3 Uncertainty Aggregation and Filtering

In order to obtain a unique error score for each instance (similar to the well-known objectness score
in object detection), we aggregate the per-pixel uncertainty within the predicted object mask to a
unique value. In practice, given an image x ∈ R3×H×W , we predict for each detected object oi an
anomaly score ai ∈ R:
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ai =
1

M

H∑
h=0

W∑
w=0

u(h,w) ⊙m
(h,w)
i , (2)

where u = Obs(x, Segr(x)) ∈ RH×W is the pixel-wise error map of ObsNet; mi ∈ RH×W is the
binary mask of an instance oi in the set of the detector prediction Det(x) = {mi}; M =

∑H×W
h,w=0 mi

the area of the instance oi; and ⊙ is the element-wise product. We also filter predicted instance masks
mi by size, in order to remove very small detected objects (< 162 pixels) in the image.

This strategy shows several benefits. We can discover instances in the dataset that do not match
with the training distribution. We can also localize where the anomaly is in the image, which is a
primary requirement for safety-critical applications such as autonomous driving. In Figure 1, we
show that our framework is able to detect several instances in the images, and the ObsNet succeeds in
discriminating in-distribution objects from out-of-distribution ones.

Figure 2: Architecture. The image go through the in-
stance, the semantic and the observer network. Next,
the ObsNet prediction is filter by the class-agnostic in-
stance prediction and the remaining error is then aggre-
gate object-wise.

Method fpr95tpr↓ AuPR ↑ AuRoc ↑
Softmax [30] 70.0 11.45 76.7
ObsNet 40.5 22.72 87.9
ObsNet + in 31.3 49.4 92.3
ObsNet + pan 8.7 70.1 97.3
ObsNet + gt 1.0 90.5 99.7

Table 1: Pixel-wise evaluation on
CamVid OOD. We consider OOD pixels
only as the positive class. ObsNet + gt-
detector has nearly perfect performance as
every OOD instances are detected.

3 Experiments

We assess experimentally the effectiveness of our observer network coupled with an class-agnostic
instance detector and compare it against several baselines.

3.1 Datasets & Metrics

We conducts experiments on the CamVid OOD [5], StreetHazards [29] and BDD Anomaly [60]
datasets of urban streets scenes with anomalies in the test set. Anomalies correspond to OOD objects,
not seen during training.

To evaluate each method on these datasets, we select four metrics to detect misclassified and out-of-
distribution examples: fpr95tpr [36], Area Under the Receiver Operating Characteristic curve
(AuRoc) [30], Area under the Precision-Recall Curve (AuPR) [30] and Mean Average Prediction
(mAPδ). We compute the latter metric where we discard object smaller than δ2 pixels.

For each metric, we report the result where an object is considered as well detected if the predicted
mask has IoU > .5 with the ground truth. We assign to each detected object the anomaly score
computed as Equation 2. We use a Bayesian SegNet [2], [32] as the main network for CamVid and a
DeepLabv3+ [8] for BDD Anomaly and StreetHazards. The ObsNet follows the same architecture as
the corresponding segmentation network.

For our instance segmentation module, we select two Mask R-CNN variants [26]: one trained on
CityScapes [12], reported as In-Distribution Detector, and one trained on MS-COCO [37], reported
as Pan-Distribution. We do not leverage the class predicted but only the instance mask. Moreover, we
use an additional oracle: we take every connected region of the same class in the annotation as one
instance of an object, we report this detector as GT-detector.

We compare our method against MCP [30]: One minus the maximum of the prediction; and MC
Dropout [21]: The entropy of the mean of 50 softmax prediction with dropout.
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CamVid OoD StreetHazard Bdd Anomaly
Det Method fpr9532 ↓ Roc32 ↑ mAP0 mAP32 fpr9548 ↓ Roc48 ↑ mAP16 mAP48 fpr9532 ↓ Roc32 ↑ mAP0 mAP32

Softmax [30] * 56.7 7.7 55.2 * 50.4 80.0 81.9 * 56.7 7.7 55.2
In MC Dropout [21] * 58.3 8.4 58.5 * 50.3 80.0 81.2 * 58.3 8.4 58.5

ObsNet * 60.5 9.9 63.7 * 50.4 80.1 81.9 * 60.5 9.9 63.7
Softmax [30] 57.2 79.4 4.8 62.1 * 53.7 57.6 77.7 57.2 79.4 4.8 62.1

Pan MC Dropout [21] 52.8 84.6 6.9 70.8 * 53.6 57.7 77.6 52.8 84.6 6.9 70.8
ObsNet 46.4 89.6 11.3 81.4 * 54.1 56.9 77.8 46.4 89.6 11.3 81.4
Softmax [30] 43.3 80.4 10.8 72.1 80.0 85.2 88.9 99.0 43.3 80.4 10.8 72.1

GT MC Dropout [21] 32.1 85.5 13.5 79.2 74.5 86.0 86.9 99.0 32.1 85.5 13.5 79.2
ObsNet 27.2 94.3 22.3 92.0 72.6 87.5 89.0 99.2 27.2 94.3 22.3 92.0

Table 2: Instance-Wise Evaluation on CamVid OoD, StreetHazard and Bdd Anomaly. We consider
OOD examples only as the positive class.

Figure 3: Qualitative results on the StreetHazards (top row), BDD Anomaly (mid) and CamVid
(bot). From left to right, the input image; the semantic segmentation; the instance segmentation;
the pixel-wise error and the instance-wise error. Our method is able to detect numerous objects and
disentangle in-distribution objects (ai < .5 in green) from out-of-distribution objects (ai > .5 in red).
3.2 Benefit of the instance module

To validate the benefit of the instance detector, we first check that filtering the pixel-wise error map
with the instance detector helps for pixel OOD detection, see Table 1. Using an instance detector
improves significantly the performance of ObsNet. Moreover, this experiment shows that keeping
raw error map is sub-optimal because many pixels with high anomaly score do not correspond to an
OOD object but actually belong to the background of the images, whereas they can easily be filtered
out by our instance scheme.

3.3 Instance-Wise Results

We can observe on Table 2 that for each dataset the results are quite different. This is due to the scale
of the anomalies and the number of them in each the dataset. For CamVid, all anomalies are above
64² pixels, which can explain why the metrics drastically improve as we discard smaller detected
objects. For StreetHazard, most of the objects are in fact anomalies, which is why mAP is high, even
for the object below 32² pixels. Finally, even if on average pan-detector outperforms in-detector,
this is not always the case for Bdd Anomaly. Indeed, pan-detector can detect more objects, and
among them smaller in-distribution objects, that can hurt performances. Overall, ObsNet outperforms
baseline methods, regardless of the detector.

We illustrate a few qualitative results in Figure 3. ObsNet emphasizes OOD objects with higher
anomaly scores compared to in-distribution objects. Its predicted error maps are generally clearer
and more accurate.

4 Conclusion

In this paper, with propose to use an additional, class-agnostic, object detector to filter and aggregate
an anomaly score from ObsNet pixel-wise error map. Our strategy helps to better disentangle in from
out-of-distribution objects.
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[1] Tiago Azevedo, René de Jong, Matthew Mattina, and Partha Maji. Stochastic-yolo: Efficient probabilistic
object detection under dataset shifts. In NeurIPS Workshops, 2020. 7

[2] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. SegNet: A deep convolutional encoder-decoder
architecture for image segmentation. IEEE Trans. PAMI, 2017. 3

[3] Christoph Baur, Benedikt Wiestler, Shadi Albarqouni, and Nassir Navab. Deep autoencoding models for
unsupervised anomaly segmentation in brain MR images. In MICCAI Workshops, 2018. 7

[4] Victor Besnier, Andrei Bursuc, David Picard, and Alexandre Briot. Triggering failures: Out-of-distribution
detection by learning from local adversarial attacks in semantic segmentation. In ICCV, 2021. 1, 2

[5] Victor Besnier, David Picard, and Alexandre Briot. Learning uncertainty for safety-oriented semantic
segmentation in autonomous driving. In ICIP, 2021. 1, 2, 3, 7
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A Related Work

The widespread DNN adoption in this field has led to a fresh wave of approaches to improve OOD
detection by input reconstruction [54, 3, 38, 58], predictive uncertainty [21, 33, 42], ensembles
[34, 19, 16], adversarial attacks [36, 35], using a void or background class [52, 40] or dataset
[6, 31, 42], etc.., to name just a few.

Bayesian approaches and ensembles. BNNs [47, 7] can capture predictive uncertainty from learned
distributions over network weights, but don’t scale well [17] and approximate solutions are preferred
in practice. Deep Ensembles (DE) [34] is a highly effective, yet costly approach, that trains an
ensemble of DNNs with different initialization seeds. Efficient or pseudo-ensemble approaches are a
pragmatic alternative to DE that bypass training of multiple networks and generate predictions from
different random subsets of neurons [20, 55, 16] or from networks sampled from approximate weight
distributions [41, 19, 43, 57, 18]. However they all require multiple forward passes and/or storage of
additional networks in memory.

Learning to predict errors. Inspired by early approaches from model calibration literature [49, 61,
62, 45, 46], a number of methods propose endowing the task network with an error prediction branch
allowing self-assessment of predictive performance. This branch can be trained jointly with the main
network [13, 59], however better learning stability and results are achieved with two-stage sequential
training [11, 27, 5, 53].

OOD in object detection. Compared to classification and segmentation, OOD identification for 2D
object detection is more challenging (mix of classification and regression predictions) and is less
explored. Here, ensembles and pseudo-ensembles are often used for predictive uncertainty [44, 25,
1, 51]. Spatial uncertainty can be computed with slight changes in popular architectures and losses
[9, 24, 10]. Other works leverage sampling-free approaches for both spatial and class uncertainty
for real-time applications [22]. OOD detection itself has started to be addressed only recently by
generating outliers in the feature space [15] or by “seeing” unknown objects from videos in the
wild [14].

B Detected object histogram

In Figure 4, we report the histogram of objects detected by our detector, ranked by our framework.
We can well disentangle in-distribution objects as cars, bicycles, or pedestrians, from OoD objects.

Figure 4: Histogram on CamVid OOD. Anomaly score from obsnet and detection from mask RcNN
trained on the pan-distribution. We show here some examples of well-detected objects and predicted
as in distribution in blue (left). While objects detected with high anomaly score (right) are considered
as OOD in orange.
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