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ABSTRACT

As small language models (SLMs) emerge as the backbone of on-device, mobile,
and edge devices, their constrained computational and memory budgets neces-
sitate aggressive yet reliable pruning. Compared with their larger counterparts,
SLMs exhibit more sensitivity to parameter removal, rendering the design of
robust pruning strategies particularly challenging. Existing post-training prun-
ing techniques, predominantly designed for large language models (LLMs), rely
on static criteria computed from tiny calibration sets, often resulting in subopti-
mal generalization. In this paper, we present X-Pruner, an unstructured adaptive
pruning framework featuring a variable-exponent importance metric. To unlock
its full potential, we introduce a reinforcement learning-based search algorithm
that efficiently identifies optimal parameter configurations. We further reveal that
the pruning path itself influences post-pruning performance and creatively pro-
pose the self-compensation mechanism, which rectifies pruning-induced errors
through layer-wise adaptive adjustments; grounded in this insight, we also de-
vise a unified path-scoring function to evaluate and select optimal pruning se-
quences across diverse target models. Extensive experiments on multiple lan-
guage benchmarks demonstrate that X-Pruner consistently surpasses state-of-the-
art post-training pruning techniques under comparable settings—achieving supe-
rior performance without any retraining—and in certain cases, even outperforms
approaches involving update weights.

1 INTRODUCTION

Large Language Models (LLMs) Touvron et al. (2023); Abdin et al. (2024); OpenAI et al. (2024)
have revolutionized the field of natural language processing (NLP), demonstrating exceptional capa-
bilities across diverse tasks such as language understanding, generation, and reasoning (Bommarito
& Katz, 2022; Wei et al., 2022; Bubeck et al., 2023). However, exponential growth in their pa-
rameter size, which often extends to billions of dimensions, poses substantial deployment obstacles,
particularly in resource-constrained scenarios, including edge computing systems and mobile ap-
plications (Zheng et al., 2025; Girija et al., 2025). In this context, Pruning LeCun et al. (1989);
Hassibi et al. (1993); Han et al. (2015) has emerged as a fundamental optimization strategy, offer-
ing a methodology to eliminate superfluous parameters while preserving the efficacy of the model.
However, a fundamental limitation persists in the poor cross-scale generalization of the existing
pruning methodologies, which are primarily developed for LLMs but exhibit significantly degraded
performance when applied to small language models (SLMs).

Conventional pruning techniques frequently fail to preserve satisfactory performance levels in SLMs
— a deficiency attributable to their underlying design. Most established post-training pruning ap-
proaches, including contemporary methods, employ static metrics that demonstrate high sensitivity
to variations in both the data and the model (Du et al., 2023). This sensitivity is further amplified
in compact models. For instance, Wanda Sun et al. (2024) utilizes first-order information, while
Pruner-Zero Dong et al. (2024) employs genetic algorithms to automate the search for pruning met-
rics but ultimately converges to a fixed, predetermined metric. Such inflexible metrics lack the
adaptability required for robust performance across diverse model architectures and data conditions.
This methodological constraint proves particularly detrimental for SLMs, where the impact of pa-
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rameter removal is substantially more pronounced, as shown in Figure 1. The smaller the scale of
the model, the more pronounced the impact of pruning becomes. The static nature of these prun-
ing criteria fails to provide theoretical guarantees or empirical consistency in maintaining baseline
performance. Such sensitivity mainly reflects redundancy differences; deeper causes are analyzed
later.

Figure 1: Relative perplexity (ppl) increase of differ-
ent pruning methods at 50% sparsity. The darker the
colour, the greater the decline in performance.

This gap highlights the urgent need to
advance pruning research specifically tai-
lored for SLMs. The primary motivation
for pruning SLMs stems from their fre-
quent deployment in resource-constrained
environments, where even marginal reduc-
tions in model size can yield substantial
improvements in computational efficiency
and accessibility.

To address these limitations, we pro-
pose X-Pruner, a layer-wise adaptive prun-
ing framework that jointly optimizes both
pruning criteria and pruning path to en-
hance post-pruning performance, particu-
larly for SLMs. As illustrated in the left
half of Figure 2, each transformer layer
undergoes pruning based on a parameter-

ized importance score formulated as W x×Gy , where exponents (x, y) are adaptively searched via
a reinforcement learning agent. This agent, depicted in the Figure 2’s upper right part, explores
the parameter space in a three-phase process: random exploration, strategy search, and local refine-
ment—guided by perplexity feedback to identify optimal exponent configurations without retrain-
ing. Beyond this, X-Pruner introduces a novel insight: the pruning path significantly impacts final
model quality due to a self-compensating effect among layers, which implies that pruning at each
layer inherently incorporates an offset or elimination of cumulative errors introduced by preceding-
layer pruning. ∆margin in the figure above represents the marginal cost, which is defined as the net
increase in loss induced by, under the current pruned state. A precise definition and detailed expla-
nation of this concept will be provided in later sections. To quantify the performance of different
paths, we develop a unified path scoring function that balances local pruning cost and compensa-
tion potential, thereby enabling the selection of the globally optimal pruning path. This fine-grained
unified optimization of ‘what to prune’ and ‘when to prune’ endows X-Pruner with superior scal-
ability and adaptability across diverse model architectures and data conditions. Notably, Pruning
SLMs is, in a sense, analogous to pruning LLMs at a much higher sparsity rate. This suggests that
our method not only advances SLM pruning but also provides a promising framework for pursuing
high sparsity regimes in LLMs. Our principal contributions include: (i) Adaptive pruning metric:
We propose a variable-exponent weight-gradient formulation, offering greater flexibility to trigger
compensation effects; (ii) Error compensation mechanism: We exploit an inherent compensation
mechanism, where pruning actions spontaneously offset part of the accumulated error; (iii) Fine-
grained RL controller: Our reinforcement learning framework locally maximizes compensation
at each layer without retraining; (iv) Optimized pruning path: A unified scoring strategy selects
paths that globally maximize compensation via inter-layer coupling.

Further clarification is needed regarding the interplay of these components. The adaptive pruning
metric serves as the framework’s core, while the error compensation mechanism provides the theo-
retical basis for its superior performance. The RL-based search ensures local optimality at the layer
level, and the pruning path achieves global performance optimization.

2 METHOD

In this section, we provide a detailed explanation of the components and design principles of the
X-Pruner framework, including the adaptive pruning metric (Section 2.1), the error propagation and
compensation mechanism (Section 2.2), the reinforcement learning-based search algorithm (Section
2.3), and the layer-wise optimization of the pruning path (Section 2.4).
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Figure 2: Overview of X-Pruner framework. The framework integrates a flexible pruning metric
W x ·Gy , an inherent error compensation mechanism (manifested as ∆margin), a RL-based exponent
search and a globally optimized pruning path selected via a unified scoring function.

2.1 ADAPTIVE PRUNING METRIC

Consider a model with L layers (transformer blocks). For the kth layer, Wk ∈ Rdout×din represents
the original weight matrix and Gk is its corresponding gradient matrix. We define a new scoring
matrix as:

Sk = W xk

k ◦Gyk

k (1)

where xk, yk are adjustable power exponents; ◦ represents the Hadamard product (element-by-
element multiplication). All operations are performed element by element. Based on the scoring
matrix Sk, a gating matrix Mk ∈ {0, 1}dout×din is constructed by retaining the top (1− r) proportion
of elements (where r is the pruning rate). The pruned weight matrix is obtained by element-wise
multiplication of Mk and the original weight matrix Wk. The single-layer pruning error is defined
as the difference between the pruned and original weights, which equals the element-wise product
of (Mk − 1) and Wk.

2.2 ERROR PROPAGATION AND COMPENSATION MECHANISM

We will analyze the error propagation and compensation mechanism in the layer-by-layer pruning
process through a rigorous mathematical framework.

Forward Error Propagation. When weights in layer k are pruned, the change can be modeled as a
small perturbation ∆Wk to the original weight matrix Wk. This perturbation interacts with the layer
input hk ∈ Rd, modifying the pre-activation Wkhk + bk, where bk is the bias vector. The resulting
output error can be approximated using a first-order Taylor expansion as

∆hk+1 ≈ Jf (Wkhk + bk) ·∆Wk · hk, (2)

where Jf (·) ∈ Rd×d denotes the Jacobian matrix of the activation function evaluated at the pre-
activation point. This formulation captures how the pruning-induced perturbation ∆Wk · hk is
further transformed by the local slope of the activation, resulting in a variation in the output. The
expression reveals that pruning errors propagate anisotropically, as they are jointly influenced by the
direction and magnitude of the input hk and by the local sensitivity of the activation encoded in Jf .

First- and Second-Order Expansion of the Total Loss Function. The foundational work, known
as Optimal Brain Damage LeCun et al. (1989), introduced a second-order pruning framework that
approximates loss change using only the diagonal of the Hessian for efficiency. Later, Optimal Brain
Surgeon Hassibi et al. (1993) improved upon this by incorporating off-diagonal terms for greater
accuracy. Although we refer to these two papers to obtain Formula 3, the Hessian matrix was only
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used for mathematical derivation in our work. By incorporating pruning-induced perturbations, the
total loss function can be approximated as:

ℓ ≈ ℓ0 +

i∑
k=1

∂ℓ

∂Wk
: ∆Wk +

1

2

i∑
k,m=1

∆Wk :
∂2ℓ

∂Wk∂Wm
: ∆Wm (3)

Here, the symbol “:” denotes the Frobenius inner product (tensor contraction). The first term ℓ0
represents the baseline loss. The second term captures the first-order linear contribution from
pruning-induced perturbations and local gradients. The final term reflects the second-order contri-
bution under the influence of the Hessian matrix, that is, the second-order partial derivatives of the
loss with respect to the weights in the formula.

Compensation Mechanism. In order to maximize the absorption of existing errors at this level,
the goal is to construct a compensatory mask Mi+1 at layer i + 1 by selecting a suitable data point
(xi+1, yi+1). We then aim to minimize the propagated error through the following formula:

dL
d(xi+1, yi+1)

=
∂L

∂W pruned
i+1

· ∂Mi+1

∂(xi+1, yi+1)
◦Wi+1 (4)

The two derivatives on the right represent, respectively, the residual error propagated from the up-
per layers and the “movement direction” in the x, y space that influences the pruning mask. The
ingenuity of formula 4 lies in mapping the pruning error to the (x, y) space, which gives us more
freedom to handle error. As long as (x, y) is not a constant input, we can use the gradient direction
to adjust pruning and cancel out the residual error from upper layers (i.e., make the inner product
tend to zero).

Suppose that there exists a layer j that can compensate for the error induced by pruning at a previous
layer k, the second-order compensation can be expressed as:

∆W comp
j = −

[
∂2L
∂W 2

j

]−1

· ∂2L
∂Wj∂Wk

·∆Wk (5)

If we explicitly solve the Hessian and accurately update layer j along the above equation, we can
completely offset the pruning error of layer k. But this is challenging for models with hundreds
of billions of parameters. We have customized a reinforcement learning search algorithm as an
alternative to the Hessian matrix.

2.3 REINFORCEMENT LEARNING SEARCH ALGORITHM

While prior work (Zhang et al., 2022a) also employed RL for pruning, their controller operated at
a coarse layer-level granularity. In contrast, our approach leverages a fine-grained RL controller to
adaptively optimize the pruning metric itself (x, y exponents), thereby directly influencing intra-
layer sensitivity.

The proposed RL algorithm efficiently searches for optimal pruning parameters per layer through
online policy optimization, thereby avoiding the computational cost associated with Hessian-based
methods. Notably, pruning and searching occur simultaneously without requiring the training of a
separate policy network.

As shown in Algorithm 1, it proceeds in three phases: (1) Exploration uses Latin Hypercube Sam-
pling and policy/value networks (actor-critic) to evaluate diverse candidates, storing experiences in a
replay buffer; (2) Exploitation refines top candidates using ϵ-greedy search with simulated anneal-
ing to avoid local minima; (3) Fine-tuning reduces step size to converge precisely. This structured
process reduces computational overhead while maintaining accuracy in selecting effective pruning
parameters.

2.4 OPTIMIZATION OF PRUNING PATH

The pruning path—that is, the order in which layers are pruned—plays a critical role in determining
the model’s final performance. This is primarily due to the cumulative nature of error propagation
and the existence of a layer-wise compensation mechanism.
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Algorithm 1 RL Search Algorithm for Layer-wise Pruning.
Input: Pruning layer k, sparsity ρ, search range x ∈ [xmin, xmax], y ∈ [ymin, ymax]
Parameter: Step size δ, exploration steps Ne, exploitation steps Ng , refinement steps Nr

Output: Optimal pruning parameters (x∗, y∗), minimizing perplexity (PPL)
1: Define basic action space A = {up, down, left, right}
2: Initialize Strategic Network: actor π, Value Network: critic v, Replay Buffer B
3: Generate initial search starting points set S via Latin Hypercube Sampling
4: for all exploration point (x, y) in S do
5: for t = 1 to Ne do
6: Select random or π-guided action
7: Evaluate new parameters; store experience in B
8: Periodically update π, v from B
9: end for

10: end for
11: Select top-performing points as candidate set Q
12: for all (x, y) ∈ Q do
13: for t = 1 to Ng do
14: Perform ϵ-greedy and simulated annealing guided search
15: Evaluate, store in B, and periodically update π, v
16: end for
17: end for
18: Fine-grained local refinement around best (x∗, y∗) for Nr steps
19: return optimal parameters (x∗, y∗)

Importance of Pruning Path. Downstream layers can correct upstream pruning errors, but pruning
them too early disrupts this compensation, causing irreversible degradation. Second-order analysis
reveals that error correction depends on cross-layer dependencies. Hence, pruning should consider
not just what to remove, but when, preserving compensation capacity to maintain performance under
high sparsity.

How to Determine the Optimal Pruning Path. Define the pruning sequence as a permutation
π = (π1, . . . , πL). For each pruning step, in the context of considering path effects, rewrite formula
3:

ℓ(π) = ℓ0 +

L∑
t=1

〈
∇(π<t)

πt
,∆Wπt

〉
︸ ︷︷ ︸

First-order local cost

+ 1
2

∑
s<t

∆Wπs
: Hπsπt

: ∆Wπt︸ ︷︷ ︸
Second-order cross-layer compensation

(6)

The first-order term captures the immediate impact of pruning on the loss through the conditioned
gradient ∇(π<t)

πt , which represents the gradient of the loss with respect to the weights of layer πt un-
der the influence of previously pruned layers π<t. The second-order term reflects the compensatory
interactions between layers via the conditioned Hessian matrix Hπsπt

, encoding how the perturba-
tion in layer πs influences the loss sensitivity to changes in layer πt. This formulation leads to two
fundamental principles for pruning path: (i) prune layers with minimal local cost first, and (ii)
preserve layers with high compensatory potential until the end.

By adhering to these principles, we can minimize the cumulative pruning loss ℓ(π) along the pruning
path. The ideal strategy first removes layers that incur negligible loss while preserving the flexibility
of more influential layers. This sequential approach yields a smoother perplexity curve and improved
final performance.

Unified Scoring Function for Pruning Path. To determine the optimal pruning order, we propose a
unified scoring function that integrates three essential factors: local pruning cost, interlayer compen-
sation capability, and layer depth. L layers are indexed by j ∈ {0, 1, . . . , L−1}. For each layer j, we
define: (i) Costj , the local performance cost caused by pruning the current layer j; (ii) Compj , the

compensation ability of layer j for prior layers’ pruning errors; (iii) Reach(j) =
L− j

L− 1
, the relative

remaining depth of layer j; and (iv) ∆(S)
margin(j) = PPL(S∪{j})−PPL(S) ≈ Costj −Compj , the
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marginal perplexity increase when pruning layer j conditioned on the already pruned set S, which
reflects the joint contribution of the layer-wise local cost and the compensatory effect.

Figure 3: (Top) Perplexity trend during layer-by-
layer search. (Bottom) Layer-wise distribution of
marginal cost, where the vertical axis represents
the net perplexity increment of each individual
layer, which corresponds to its marginal cost.

Layer depth influences both local cost propaga-
tion and the reach of compensation. We thus
re-weight the raw cost and compensation as
Reach(j) ·Costj and Reach(j) ·Compj , respec-
tively. To ensure comparability across layers,
we normalize both the local cost and compensa-
tion scores by dividing them by their respective
maximum values across all layers. The normal-
ized results, C̃j and P̃j , are scaled to a com-
mon range for use in the unified scoring func-
tion. We compute a linear combination of the
normalized components:

Sj = α · C̃j + β · P̃j (7)

where α and β control the relative importance
of local cost and compensation ability. We sort
layers in ascending order of Sj and prune ac-
cordingly.

Based on our analysis and empirical validation,
Formula 7 typically leads to three distinct prun-
ing paths across different models in most cases:
(i) Layer-Index Sweep (Position factor dom-
inant). For the shallow model like OPT-125m
illustrated by the red curves in Figures 3, the
compensation window is short and interlayer
coupling is weak; consequently, pruning in
layer-index order preserves the original com-
pensation chain and is therefore the safest strat-
egy. (ii) ∆margin Ascending (Cost factor dom-
inant). For models like OPT-350m, where the

compensation chain is sufficiently long and relatively uniform, pruning layers in ascending order of
marginal cost resembles a greedy strategy, in which each step selects the least costly option, leading
to minimal overall loss. (iii) ∆margin Descending (Compensation factor dominant). As shown by
the green curves in Figures 3, models like OPT-1.3b exhibit strong compensation potential and pro-
nounced heavy-tail phenomenon Lu et al. (2024), where a small number of tail-end layers accounts
for the majority of the error. In such cases, it is preferable to preserve as many compensation-capable
layers as possible to mitigate the impact of pruning these high-error layers. The rigorous mathemat-
ical derivation, which illustrates how the three general pruning paths can be obtained, follows.

2.5 MATHEMATICAL JUSTIFICATION OF ORDER RATIONALE

I: Layer-index sweep. Assuming that Compj ≈ 0, Costj varies slowly and correlates with depth,
and β → 0, the score satisfies Sj ∝ C̃j , which is approximately monotone in the layer index j.
Consequently, the order reduces to

Sj1 < Sj2 ⇐⇒ j1 < j2. (8)

Thus, sorting Sj in ascending order corresponds to layer-index ascending.

II: ∆margin ascending. If the layer-wise compensation scores are nearly constant (Compj ≈ const)
and their variance is negligible compared to that of the costs (Var(Costj) ≫ Var(Compj)), then we
can set β ≈ 0, leading to Sj ≈ αC̃j . In this case, Sj is proportional to ∆̃margin(j) ≈ Costj − const,
so the ordering becomes

Sj1 < Sj2 ⇐⇒ ∆margin(j1) < ∆margin(j2). (9)

Hence, sorting Sj ascending appears as ∆margin ascending.
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Table 1: Perplexity results on WikiText2 of unstructured 50% sparse models. Our X-Pruner outper-
forms Wanda and Pruner-Zero. For perplexity, the lower the better.

Method OPT Pythia Qwen2 Qwen3 Llama3.2
125m 350m 1.3B 160m 410m 1B 1.4B 0.5B 1.5B 0.6B 1.7B 1B

Dense 27.66 22.00 14.62 26.88 16.31 13.16 11.79 17.61 12.37 28.63 21.60 12.96
Magnitude 7e3 6e3 1e4 6.9e3 1.2e3 4.9e2 3.1e2 1.6e2 31.79 1.1e3 3.4e2 1.5e3
Wanda 38.96 35.92 19.12 275.0 74.37 52.03 22.41 30.03 17.96 50.48 29.28 30.88
Pruner-Zero 37.69 35.91 18.19 239.5 61.06 36.63 20.15 28.42 16.44 49.14 27.25 30.04
X-Pruner 36.67 34.25 17.80 168.3 53.24 26.87 19.20 26.44 16.01 45.63 26.47 26.31

III: ∆margin descending. When a small tail subset of layers exhibits significantly larger ∆margin

values (heavy tail) and the compensation term P̃j consistently dominates the unified score despite
shrinking over pruning (β > α), the unified score is effectively dominated by compensation, Sj ∝
Compj . Since ∆margin(j) ≈ Costj − Compj , fixing Costj yields the relation

Sj1 < Sj2 ⇐⇒ Compj1 < Compj2 ⇐⇒ ∆margin(j1) > ∆margin(j2). (10)

Thus, sorting Sj ascending manifests as ∆margin descending.

3 EXPERIMENT

3.1 EXPERIMENT SETUP

Models and Evaluation. We assess X-Pruner using several prominent families of SMLs: OPT
125m/350m/1.3B Zhang et al. (2022b) and Pythia 160m/410m/1B/1.4B Biderman et al. (2023). To
further explore the generalizability of X-Pruner, we apply the developed adaptive pruning metric to
some LLM families, such as Qwen2 0.5B/1.5B Yang et al. (2024), Qwen3 0.6B/1.7B Yang et al.
(2025), and Llama3.2 1B Grattafiori et al. (2024). The effectiveness of the pruned models is eval-
uated based on their language modeling performance. Following prior work Xiao et al. (2024);
Frantar & Alistarh (2023), we use WikiText validation perplexity (Merity et al., 2016).

Table 2: Per-layer perplexity (PPL) and margin
cost (∆) under three pruning paths.

Path(i) Path(ii) Path(iii)

Layer PPL ∆ Layer PPL ∆ Layer PPL ∆

dense 14.62 - dense 14.62 - dense 14.62 -
0 14.58 -0.03 2 14.40 -0.21 23 15.48 +0.86
1 14.49 -0.08 1 14.30 -0.09 15 15.64 +0.16
2 14.37 -0.12 4 14.31 +0.00 11 15.86 +0.24
3 14.36 -0.01 5 14.25 -0.05 21 16.12 +0.23
4 14.40 +0.03 3 14.25 -0.00 17 16.26 +0.14
5 14.36 -0.03 6 14.24 -0.00 16 16.45 +0.18
6 14.36 -0.00 9 14.25 +0.01 19 16.58 +0.12
7 14.44 +0.08 4 14.29 +0.03 20 16.82 +0.24
8 14.51 +0.07 8 14.36 +0.06 13 16.91 +0.08
9 14.54 +0.02 7 14.47 +0.11 22 17.16 +0.25
10 14.64 +0.10 10 14.45 +0.11 11 17.22 +0.06
11 14.76 +0.11 14 14.66 +0.08 12 17.31 +0.09
12 14.87 +0.11 13 14.77 +0.11 14 17.50 +0.19
13 15.02 +0.15 11 14.93 +0.16 10 17.64 +0.14
14 15.13 +0.10 22 15.11 +0.17 7 17.68 +0.03
15 15.37 +0.24 13 15.30 +0.18 8 17.74 +0.05
16 15.61 +0.23 20 15.43 +0.13 4 17.80 +0.05
17 15.81 +0.20 19 15.54 +0.11 9 17.83 +0.03
18 16.01 +0.20 18 15.70 +0.16 6 17.78 -0.04
19 16.16 +0.20 15 15.92 +0.21 3 17.82 +0.04
20 16.35 +0.16 17 16.03 +0.11 18 17.85 +0.02
21 16.58 +0.22 21 16.37 +0.23 0 17.86 +0.06
22 16.73 +0.14 16 16.73 +0.41 1 17.85 -0.01
23 17.97 +1.23 23 18.12 +1.33 2 17.80 -0.09

Baselines. We benchmark X-Pruner against
four existing pruning methods, including mag-
nitude pruning Han et al. (2015), SparseGPT
Frantar & Alistarh (2023), Wanda Sun et al.
(2024), and Pruner-Zero Dong et al. (2024). All
of them rely on calibration data to estimate in-
put statistics. To ensure a fair comparison, we
use the same calibration dataset as SparseGPT
and Wanda—128 sequences with a fixed con-
text length, drawn from the C4 training set Raf-
fel et al. (2023) to estimate input statistics, such
as Gradients (G).

Sparsity. We adopt a uniform sparsity level
across all linear layers under unstructured prun-
ing, following the methodology of Wanda
and Pruner-Zero. Our experiments focus on
linear layers, as unstructured pruning offers
finer granularity and flexibility, enabling ef-
fective compression with minimal performance
loss—critical for SLM deployment in resource-
constrained environments. All implementa-
tions build on Wanda’s codebase to ensure com-
parability across pruning approaches.

Search Settings. Online RL framework searches for optimal pruning-score exponents (x, y) ∈
[0.5, 2.5]2 for each transformer layer. The action space adjusts x or y by ±0.1, and the policy is
parameterized by a two-layer MLP. Actor and critic networks are respectively trained using Adam
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with learning rates 3 × 10−4 and 1 × 10−3. Additional implementation details are provided in
Appendix B.

3.2 EXPERIMENT RESULTS

Perplexity Advantage. As shown in Table 1, X-Pruner consistently achieves the lowest perplexity
across nearly all model scales and families under the same 50% unstructured sparsity without weight
update. Our method significantly outperforms fixed-metric baselines with the maximum observed
improvement reaching 30%, which strongly validates the efficacy of our adaptive pruning criterion
in maintaining model expressiveness even under aggressive compression.

Table 3: Comparison with the SparseGPT method
in terms of mean and standard deviation of per-
plexity. The values in the table represent the mean
± standard.

Method OPT Pythia Others

SparseGPT 29.76±9.59 114.1±148.4 29.76±112.1
X-Pruner 29.57±8.36 66.90±59.89 28.52±91.69

No weight update. SparseGPT alleviates
pruning-induced degradation through weight
updates. In contrast, X-Pruner operates under
a strictly no-tuning regime. Remarkably, even
without weight updates, X-Pruner achieves per-
plexity comparable to SparseGPT (with up-
dates) on OPT and significantly outperforms it
on Pythia (Table 3). This highlights the effec-
tiveness of our metric–path co-design in offset-
ting the lack of fine-tuning.

Stability. In addition to improved performance, X-Pruner also shows superior robustness. As re-
ported in Table 3, the standard deviation of perplexity across checkpoints is markedly lower than
that of SparseGPT and the static-metric baselines. This indicates that our framework maintains con-
sistent effectiveness across different model sizes and architectures, thereby offering a more reliable
solution in practical deployment scenarios.

3.3 EFFECTIVENESS OF OPTIMIZED PRUNING PATH

Figure 4: Comparison of three simplified layer
pruning paths: (i) layer-index sweep; (ii) ∆margin
ascending; (iii) ∆margin descending.

Under the same no-weight-update setting, the
incorporation of dynamic scoring metric and
search algorithm enables our method to con-
sistently outperform static approaches (e.g.,
Wanda and Pruner-Zero), as reflected by the
blue bars being overall lower than the red bars
in Figure 4. With optimal pruning-path strat-
egy, we further depress post-pruning perplex-
ity, reaching levels comparable to SparseGPT—
which performs weight fine-tuning—and even
surpassing it on OPT-125m and OPT-350m.

In Table 2, we report the layer-wise perplex-
ity (PPL) and marginal cost ∆ under the three
pruning paths for OPT-1.3B. The symbols “–”
and “+” mark the sign of ∆: a negative value in-
dicates that the layer’s compensatory effect out-

weighs local-error propagation, thereby reducing overall model perplexity. All three paths exhibit
compensation to varying degrees. We argue that such compensatory capacity is an inherent property
of the model architecture; static criteria tend to suppress it, whereas dynamic metrics can elicit it,
and a well-chosen pruning path amplifies it. This is the fundamental reason for the success of the
X-Pruner framework.

3.4 ABLATION STUDY

To quantify the contribution of each design choice in X-Pruner, we conduct a series of controlled
ablation experiments on OPT-125m under the default 50 % unstructured sparsity. Table 4 reports
validation perplexity. Additional experimental results can be found in the Appendix C.
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Table 4: Ablation study of key components in X-Pruner.

Variant Adaptive metric RL search Comp-aware order ppl ↓ ∆ppl
Full X-Pruner ✓ ✓ ✓ 36.67 –
(a) Fixed exponent ✗ ✓ ✓ 37.44 +0.77
(b) Grid/random search ✓ ✗ ✓ 36.82 +0.15
(c) Random layer order ✓ ✓ ✗ 37.16 +0.49

Figure 5: Comparison between RL Search, Grid and Random Search Processes. Individual PPL
denotes the individual solution obtained at each iteration. The pareto front represents the curve of
historically best results within the current iteration (i.e., the “optimal convergence trajectory”).

Adaptive exponent vs. Fixed exponent. We conducted extensive random generation tests with
fixed exponents (i.e., pruning metric remained unchanged across all transformer layers). Experi-
mental results indicate that the optimal fixed points lie near x = 1.6 and y = 1, although they
exhibit a certain performance gap compared to the dynamic exponents.

RL Search vs. Grid/Random search. In terms of both the final convergence outcome and con-
vergence speed, RL search comprehensively outperforms other search methods. As can be read-
ily observed from Figure 5, RL search achieves comparable pruning performance to Grid/Random
search with only half the number of iterations, and even lower perplexity. Upon closer inspection,
the individual PPL values in RL search remain consistently close to the Pareto front, suggesting that
most iterations contribute to progressive optimization rather than random fluctuation. This reflects
the stability and efficiency of the RL-based search process.

Comp-Aware Order vs. Random layer order. Among the pruning paths generated through multi-
ple random sequences, even the best-performing random path fails to match the optimal path identi-
fied by our unified scoring function.

4 CONCLUSION

We propose X-Pruner, a complete adaptive pruning framework for small language models (SLMs),
featuring a parameterized adaptive importance metric, a reinforcement learning-based search algo-
rithm, and a unified pruning path scoring function. We also reveal a layer-wise error compensation
mechanism inherent in the pruning process. X-Pruner addresses the limitations of existing Large
Language Models (LLMs) pruning methods, which often suffer from weak adaptability and poor
generalization when applied to smaller models. Experimental results show that, under comparable
conditions, our method consistently outperforms state-of-the-art pruning techniques. Although X-
Pruner is designed with SLMs in mind, it retains the potential to generalize to LLMs. Particularly,
in light of the performance degradation commonly observed in LLMs pruning under high sparsity
regimes, our strategy of pruning compact models as a means to achieve extreme sparsity offers a
novel perspective.
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ETHICS STATEMENT

Our X-Pruner framework provides a powerful tool for adaptively pruning small and large language
models, enabling substantial efficiency gains and facilitating deployment in resource-constrained
environments. While such compression techniques can democratize access to language technolo-
gies, they also pose potential ethical risks. For instance, overly aggressive pruning or misuse of
pruning strategies may degrade model reliability, amplify hidden biases, or compromise safety in
downstream applications. Moreover, the ability to prune models without retraining could inadver-
tently be exploited to deploy lightweight but insufficiently validated systems in sensitive domains.
We therefore urge researchers and practitioners to apply strict validation, fairness assessment, and
oversight when adopting X-Pruner in practice. Ultimately, our framework is designed with positive
intent: to advance responsible and sustainable AI by making models more efficient, transparent, and
accessible. We strongly encourage the community to leverage these benefits responsibly and with
care.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our work. The proposed pruning
framework and reinforcement learning search algorithm are fully described in Section 2, with im-
plementation details and hyperparameter settings provided in Appendix B. All experimental setups,
including datasets and preprocessing steps, are reported in Section 3, while extended results and ab-
lation studies are presented in Appendix C. A complete theoretical justification of the compensation
effect is included in Appendix 2. To facilitate further verification, we provide the source code and
scripts in the supplementary materials.
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A RELATED WORK

Recent advances in language modeling have bifurcated into two principal trajectories. On the one
hand, large language models (LLMs) continue to scale in accordance with established scaling laws,
pursuing increasingly complex linguistic tasks with the overarching goal of progressing toward arti-
ficial general intelligence (Kaplan et al., 2020; Xu et al., 2024). On the other hand, small language
models (SLMs) emphasize computational efficiency and are explicitly optimized for deployment in
resource-constrained environments such as smartphones, edge devices, and wearables. These com-
pact models aim to democratize machine intelligence by reducing costs, improving accessibility,
and enabling practical applications across diverse platforms.

SLMs typically adopt either encoder-only or decoder-only architectures. Encoder-only models, gen-
erally derived from BERT Devlin et al. (2019), achieve compression and acceleration through struc-
tural modifications. For instance, MobileBERT Sun et al. (2020) employs an inverted bottleneck
design to reduce parameters and computation, while DistilBERT Sanh et al. (2020a) and TinyBERT
Jiao et al. (2020) compress the BERT architecture while retaining over 96% of its accuracy. Decoder-
only variants, following autoregressive designs such as GPT Radford et al. (2018) and LLaMA
Touvron et al. (2023), leverage techniques including knowledge distillation, parameter sharing, and
memory optimization. Notable examples include BabyLLaMA Timiryasov & Tastet (2023) and
BabyLLaMA-2 Tastet & Timiryasov (2024), which distill multiple teacher models into compact ar-
chitectures, TinyLLaMA Zhang et al. (2024), which incorporates FlashAttention Dao et al. (2022)
for memory efficiency, MobilLLaMA Thawakar et al. (2024), which introduces parameter sharing
to lower both pretraining and inference costs, and MobileLLM Liu et al. (2024), which combines
embedding-sharing, grouped-query attention, and block-wise weight sharing to minimize latency.

In parallel with architectural innovation, network pruning has emerged as a central compression
paradigm for both LLMs and SLMs. By removing redundant parameters while preserving core
functionality, pruning enables the creation of efficient sparse networks (LeCun et al., 1989; Hassibi
et al., 1993). Pruning approaches are broadly divided into structured and unstructured meth-
ods. Structured pruning eliminates entire components—such as neurons, channels, or attention
heads—thereby enhancing GPU efficiency (Xia et al., 2022; Fang et al., 2023; Nova et al., 2023).
Recent work has explored task- and prompt-specific sparsity within attention and MLP layers (Hu
et al., 2016; Voita et al., 2023), with LLM-Pruner Ma et al. (2023) demonstrating the effectiveness
of gradient-based importance measures combined with low-rank approximations. By contrast, un-
structured pruning Han et al. (2015; 2016); Gadhikar et al. (2023); Liu et al. (2023) removes individ-
ual weights (e.g., via magnitude pruning), often preserving accuracy without structural constraints.
However, many unstructured methods rely on modified training Sanh et al. (2020b); Kusupati et al.
(2020), retraining Zhou et al. (2023), or iterative pruning Frankle et al. (2020), which impose sig-
nificant computational costs for large models (Zhang et al., 2022b).

To mitigate these costs, recent research emphasizes post-training pruning, which dispenses with
retraining phases and is particularly advantageous for scaling to LLMs. SparseGPT Frantar & Al-
istarh (2023) leverages second-order Hessian information and calibration data for efficient weight
updates, while Wanda Sun et al. (2024) combines weight magnitudes with activation norms to re-
duce computational overhead. GBLM-Pruner Das et al. (2024) prioritizes gradient importance using
first-order Taylor expansion, enabling pruning under compute-constrained scenarios. Most recently,
Pruner-Zero Dong et al. (2024) introduced a symbolic evolution framework that automates the dis-
covery of pruning metrics through genetic algorithms, thereby advancing the frontier of pruning
research.

B IMPLEMENTATION OF REINFORCEMENT LEARNING SEARCH
FRAMEWORK

To optimize the pruning exponents (x, y) for each transformer layer, we design a customized online
reinforcement learning (RL) framework. This section details its implementation and search strategy.
We provide the required parameter settings and corresponding functional descriptions in the table 5.

Actor-Critic Architecture with Noisy Exploration. We adopt a lightweight actor-critic architec-
ture. The actor network predicts a probability distribution over four discrete actions: up (+y), down
(−y), left (−x), and right (+x). Noise-injection layers are incorporated to promote early ex-
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ploration. The critic is a feedforward network estimating the state value. Both networks are trained
using Adam optimizers with different learning rates.

Action Space and State Representation. Each pruning state is encoded as a 2D vector [x, y],
representing the current exponents. Actions are predefined directional moves in this space. The
actor produces a softmax probability over actions, and the agent follows an ϵ-greedy or stochastic
policy based on the training phase.

Experience Replay and Network Updates. We maintain an experience replay buffer containing
transitions (st, at, st+1, rt), where:

• st denotes the current state (e.g., the current pruning exponents (x, y));

• at is the action taken (e.g., up indicates increasing y);

• st+1 is the next state after executing at;

• rt is the reward received (e.g., the reduction in perplexity).

Network updates are conducted using minibatches, applying temporal difference learning to com-
pute the advantage. To stabilize training, we clip gradients during backpropagation.

Three-Phase Search Strategy. Our RL search comprises three sequential stages:

• Phase 1: Enhanced Exploration. Initial search points are generated via Latin Hypercube Sam-
pling (LHS). From each point, the agent explores for 10 steps using a hybrid of random and
noisy-policy actions to broadly sample the compensation landscape.

• Phase 2: Multi-Start Policy Search. The top 10% of explored configurations (ranked by per-
plexity) are used as new anchors for deeper policy-guided search. A simulated annealing strategy
is applied to escape local minima, and we periodically reset to the best global configuration.

• Phase 3: Local Refinement. We conduct a fine-grained local search around the best point (x∗, y∗)
using reduced step sizes. All directions are probed to ensure optimality.

Evaluation and Caching. Each configuration is evaluated via perplexity on a held-out calibration
dataset. All evaluated points are cached to avoid redundancy. The globally best (x∗, y∗) pair is
reapplied to the corresponding layer for final pruning.

Table 5: Hyperparameters used in the reinforcement learning search algorithm.

Parameter Value Description
n start points 5 Number of initial points generated via Latin Hypercube

Sampling.
steps per point 10 RL steps per starting point during Phase 1.
replay buffer.size 1000 Maximum capacity of the experience replay buffer.
epsilon.start 1.0 Initial exploration rate in ε-greedy strategy.
epsilon.end 0.1 Minimum exploration rate allowed.
epsilon.decay 0.97 Exponential decay rate of ε per step.
actor lr 0.0003 Learning rate for the actor policy network.
critic lr 0.001 Learning rate for the critic value network.
update batch size 10 Number of experience tuples per update step.
gamma 0.9 Discount factor for future rewards.
max steps 20 Maximum search depth per trajectory in Phase 2.
max depth 5 Reset interval to return to global best.
noise factor 0.2 Strength of noise injected into actor network layers.
refinement rounds 3 Number of rounds in local fine-tuning (Phase 3).
refinement step scale 1/5 Step size is scaled down by 5× in local search.
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C ADDITIONAL EXPERIMENTS

C.1 FEW-SHOTS TASKS

To comprehensively assess model robustness under sparsity constraints, we report the performance
of several pruning methods across seven representative few-shot tasks. These tasks include BoolQ
Clark et al. (2019), RTE Wang et al. (2019), HellaSwag Zellers et al. (2019), WinoGrande Sakaguchi
et al. (2019), ARC-e Clark et al. (2018), ARC-c Clark et al. (2018), and OBQA Mihaylov et al.
(2018), with Table 6 summarizing the accuracy under a fixed 50% unstructured sparsity.

Unlike zero-shot evaluation, which relies solely on model pretraining for task understanding, few-
shot settings inject limited in-context supervision, better reflecting practical deployment where
small-scale user feedback or prompts are available. Moreover, small and medium-sized models
typically underperform in zero-shot scenarios due to capacity limitations. The 3-shot setup thus al-
lows for a more realistic evaluation of a pruned model’s retained expressiveness and generalization
ability.

Among all methods, X-Pruner consistently ranks among the top performers, yielding the highest
mean accuracy across most models. SparseGPT also performs strongly, especially on larger models.
Notably, traditional baselines such as Wanda and Pruner-Zero remain competitive on certain tasks,
but their performance fluctuates more widely across architectures.

Tasks with strong lexical signals, such as BoolQ and WinoGrande, tend to exhibit smaller perfor-
mance gaps between pruned and dense models, indicating that surface-level features are relatively
well preserved under pruning. In contrast, reasoning-heavy benchmarks like ARC-c and OBQA re-
veal more pronounced differences among pruning strategies, where fine-tuning or adaptive methods
such as SparseGPT and X-Pruner consistently outperform magnitude-based baselines. This suggests
that advanced pruning criteria are more effective at preserving the deeper representational capacity
required for complex reasoning tasks.

C.2 OPTIMAL PRUNING PARAMETERS

Table 7 and 8 reports the optimal pruning exponents (x, y) searched by our reinforcement learning-
based framework for each transformer layer across a wide range of models. These values correspond
to the exponents used in the pruning criterion |W |x · |G|y , where W and G denote the weight and
gradient tensors, respectively. For each layer, the reported (x, y) pair achieves the lowest perplexity
under a fixed sparsity ratio of 50%. Dashes indicate layers that are absent in the corresponding
model. This layer-wise differentiation enables X-Pruner to adaptively tailor its pruning behavior
to the unique sensitivity of each layer, contributing to its superior overall performance under high
sparsity.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this paper, LLMs (specifically, OpenAI’s GPT-5) were used as a general-
purpose assist tool. Their role was limited to language polishing, LaTeX formatting suggestions, and
improving readability of the manuscript. All research ideas, theoretical developments, algorithmic
design, and experimental implementations were conceived, conducted, and validated solely by the
authors. The LLM was not involved in generating novel research ideas, designing experiments, or
interpreting results. Its contributions do not meet the criteria for authorship, and it should not be
regarded as a scientific contributor to this work.
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Table 6: Accuracies (%) on 7 few-shot tasks under unstructured 50% sparsity.

Models Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

OPT-350m

Dense 56.94 51.99 32.15 52.01 46.09 21.25 18.40 39.83
Magnitude 53.82 53.07 27.76 51.70 35.61 18.52 10.80 35.90
SparseGPT 56.79 50.54 30.08 51.85 42.09 19.20 15.80 38.05
Wanda 48.44 53.43 29.48 49.72 39.23 17.83 12.80 35.85
Pruner-Zero 55.63 51.26 29.18 50.99 39.44 16.89 12.20 36.51
X-Pruner 56.01 52.90 30.13 51.59 43.18 19.98 12.80 38.08

Pythia-1B

Dense 57.49 51.62 37.54 52.80 59.64 25.60 19.60 43.47
Magnitude 37.83 47.65 26.48 50.04 31.52 20.48 11.80 32.26
SparseGPT 59.45 53.07 34.02 52.49 52.15 23.38 17.40 41.71
Wanda 61.53 53.43 32.20 51.46 51.09 21.67 17.60 41.28
Pruner-Zero 61.22 54.15 32.25 51.70 49.92 21.93 16.40 41.08
X-Pruner 61.38 54.09 34.08 52.30 52.28 23.18 17.40 42.10

Qwen2-0.5B

Dense 62.75 64.26 38.26 57.06 61.61 27.56 24.00 47.93
Magnitude 42.29 50.18 28.47 50.12 38.68 20.90 14.20 34.98
SparseGPT 59.91 58.84 34.53 55.41 53.28 22.95 20.00 43.56
Wanda 60.18 56.68 32.58 55.56 49.66 21.26 16.40 41.76
Pruner-Zero 60.76 57.04 32.23 54.06 50.93 20.82 16.20 41.72
X-Pruner 60.64 58.35 34.20 55.22 53.43 23.48 20.80 43.73

Qwen3-1.7B

Dense 79.66 71.84 46.14 61.01 78.79 47.18 30.40 59.29
Magnitude 51.28 51.99 26.87 49.33 30.68 18.77 16.40 35.05
SparseGPT 76.09 71.12 40.14 58.17 69.69 37.12 28.60 54.42
Wanda 75.78 72.56 38.38 55.33 67.72 33.79 22.60 52.31
Pruner-Zero 74.83 69.68 36.89 56.20 69.32 35.15 21.00 51.87
X-Pruner 76.53 71.95 40.88 57.85 69.85 36.11 28.67 54.55

Llama3.2-1B

Dense 64.65 57.76 48.08 64.01 68.60 34.98 29.80 52.55
Magnitude 40.24 51.99 25.96 50.20 27.99 18.52 14.40 32.76
SparseGPT 60.98 53.79 38.68 58.17 56.73 27.13 22.80 45.47
Wanda 61.38 52.71 35.04 56.67 53.83 25.51 18.80 43.42
Pruner-Zero 61.22 52.35 33.61 53.91 52.44 22.70 17.00 41.89
X-Pruner 61.28 53.79 35.53 56.67 55.30 25.83 19.60 44.00
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Table 7: Layer-wise optimal pruning parameters (x, y) for OPT, Qwen2, and LLaMA3.2. Dashes
indicate layers not present.

Layer OPT Qwen2 LLaMA3.2

125m 350m 1.3B 0.5B 1.5B 1B

0 (2.40,1.50) (1.30,0.50) (2.00,1.20) (2.50,1.30) (1.70,1.00) (2.30,1.68)
1 (1.70,1.80) (1.20,2.20) (1.74,0.70) (1.90,1.20) (2.20,1.70) (2.00,2.40)
2 (2.24,2.20) (2.40,1.90) (0.70,1.14) (1.90,2.44) (1.42,1.20) (2.10,1.30)
3 (1.30,2.48) (1.02,0.50) (0.90,2.32) (1.40,2.38) (1.90,1.02) (1.90,1.80)
4 (2.10,2.20) (2.10,1.60) (0.60,0.94) (1.10,1.20) (2.50,1.50) (1.50,1.24)
5 (1.92,1.10) (2.30,2.50) (0.50,1.54) (1.90,1.90) (1.76,0.70) (1.20,1.10)
6 (0.94,0.50) (2.20,1.16) (2.54,0.80) (1.56,1.60) (2.50,2.30) (1.60,1.42)
7 (1.70,1.10) (1.70,1.28) (0.80,2.18) (2.50,2.00) (0.90,1.60) (1.40,2.50)
8 (1.68,1.10) (2.20,1.60) (1.70,2.40) (0.90,1.18) (2.10,2.16) (2.30,1.90)
9 (2.40,2.10) (1.90,0.70) (1.30,0.46) (1.70,1.60) (2.20,1.30) (1.30,1.90)

10 (1.70,1.12) (1.60,0.70) (1.20,0.80) (1.98,0.80) (2.20,1.70) (1.90,1.88)
11 (1.80,1.12) (2.22,0.60) (2.40,0.70) (2.54,2.40) (2.40,0.50) (1.90,1.60)
12 — (1.50,0.74) (1.82,1.10) (1.00,1.70) (1.30,2.40) (1.70,1.80)
13 — (2.00,1.20) (1.00,0.80) (1.30,1.90) (2.00,2.42) (1.80,2.00)
14 — (2.50,1.80) (1.32,0.50) (0.70,0.90) (1.62,0.50) (1.90,1.60)
15 — (1.20,1.20) (1.40,1.50) (2.20,2.10) (0.70,1.80) (0.82,0.50)
16 — (1.30,0.70) (1.10,0.80) (1.30,1.60) (1.50,1.40) —
17 — (1.30,1.10) (2.40,0.94) (2.20,1.80) (1.12,1.50) —
18 — (2.50,2.10) (1.20,1.60) (1.30,1.00) (2.20,2.00) —
19 — (2.30,0.70) (2.50,0.50) (1.80,1.70) (2.40,1.52) —
20 — (2.30,1.30) (1.10,0.90) (2.48,2.10) (2.40,1.38) —
21 — (2.08,1.20) (1.20,1.60) (1.50,1.40) (1.80,2.50) —
22 — (2.40,1.54) (2.30,0.70) (1.60,1.60) (2.10,1.80) —
23 — (2.20,2.48) (1.50,1.00) (2.10,1.90) (1.60,1.40) —
24 — — — — (1.10,0.70) —
25 — — — — (1.20,0.64) —
26 — — — — (2.10,1.30) —
27 — — — — (1.40,1.20) —
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Table 8: Layer-wise optimal pruning parameters (x, y) for Pythia and Qwen3. Dashes indicate
layers not present.

Layer Pythia Qwen3

160m 410m 1B 1.4B 0.6B 1.7B

0 (1.60,1.30) (1.50,1.10) (2.50,0.56) (2.50,0.48) (2.00,2.20) (1.00,1.90)
1 (1.80,1.40) (2.00,1.30) (2.54,0.60) (1.60,0.80) (1.72,1.60) (2.30,0.50)
2 (2.22,1.50) (1.70,0.72) (2.10,2.20) (2.52,2.00) (1.60,0.60) (1.60,0.68)
3 (2.02,2.00) (1.94,1.90) (2.40,2.24) (2.10,2.08) (1.50,0.60) (2.00,1.60)
4 (2.22,1.50) (1.86,2.00) (2.38,1.10) (2.10,1.16) (2.20,1.80) (1.10,2.04)
5 (1.30,1.32) (1.40,0.90) (1.80,0.80) (2.50,1.90) (2.18,0.50) (2.40,1.52)
6 (2.10,2.02) (1.90,0.96) (2.20,1.20) (1.98,1.60) (1.40,1.10) (2.50,1.20)
7 (1.90,2.52) (1.80,1.00) (2.42,0.80) (1.70,1.42) (2.50,1.00) (1.20,2.30)
8 (1.60,2.50) (1.90,0.90) (2.50,2.50) (2.30,1.80) (2.10,1.90) (2.20,0.80)
9 (1.50,1.50) (1.50,2.10) (2.22,2.50) (0.90,2.26) (2.08,1.20) (1.78,0.70)

10 (2.08,1.40) (1.60,1.50) (2.20,1.30) (2.50,1.78) (1.60,1.42) (1.88,1.00)
11 (1.98,0.60) (1.50,0.70) (2.30,2.00) (2.20,2.50) (2.00,1.70) (2.00,1.30)
12 — (0.90,1.68) (1.90,1.30) (2.20,1.90) (2.30,0.70) (2.42,0.80)
13 — (1.50,1.98) (1.00,2.20) (1.92,0.80) (1.70,2.12) (1.86,0.50)
14 — (1.70,2.30) (1.06,1.50) (1.70,0.90) (2.14,2.20) (0.90,1.40)
15 — (1.20,0.50) (2.50,2.40) (1.70,1.40) (1.90,0.60) (1.90,1.08)
16 — (1.60,1.00) — (2.50,1.30) (2.18,0.60) (1.16,0.50)
17 — (2.46,2.20) — (1.80,1.50) (2.30,1.20) (2.32,0.70)
18 — (2.40,2.20) — (1.60,1.10) (2.20,1.70) (2.46,1.60)
19 — (1.60,1.50) — (0.90,1.30) (2.00,1.30) (2.20,1.12)
20 — (1.90,2.10) — (2.30,0.74) (1.60,0.90) (2.40,1.60)
21 — (0.90,1.40) — (2.30,1.90) (2.00,2.40) (1.28,1.20)
22 — (2.40,2.20) — (2.20,0.80) (1.10,1.50) (2.10,1.60)
23 — (1.40,2.30) — (1.38,1.40) (1.80,1.40) (1.68,0.80)
24 — — — — (0.90,1.10) (1.10,0.90)
25 — — — — (2.40,1.50) (1.86,0.80)
26 — — — — (2.40,1.38) (1.80,0.80)
27 — — — — (2.42,2.50) (1.90,0.80)
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