
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

X-PRUNER: AN ADAPTIVE PRUNING METHOD WITH
SELF-COMPENSATION DRIVEN BY REINFORCEMENT
LEARNING FOR LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

As small language models (SLMs) emerge as the backbone of on-device, mobile,
and edge devices, their constrained computational and memory budgets neces-
sitate aggressive yet reliable pruning. Compared with their larger counterparts,
SLMs exhibit more sensitivity to parameter removal, rendering the design of
robust pruning strategies particularly challenging. Existing post-training prun-
ing techniques, predominantly designed for large language models (LLMs), rely
on static criteria computed from tiny calibration sets, often resulting in subopti-
mal generalization. In this paper, we present X-Pruner, an unstructured adaptive
pruning framework featuring a variable-exponent importance metric. To unlock
its full potential, we introduce a reinforcement learning-based search algorithm
that efficiently identifies optimal parameter configurations. We further reveal that
the pruning path itself influences post-pruning performance and creatively pro-
pose the self-compensation mechanism, which rectifies pruning-induced errors
through layer-wise adaptive adjustments; grounded in this insight, we also de-
vise a unified path-scoring function to evaluate and select optimal pruning se-
quences across diverse target models. Extensive experiments on multiple lan-
guage benchmarks demonstrate that X-Pruner consistently surpasses state-of-the-
art post-training pruning techniques under comparable settings—achieving supe-
rior performance without any retraining—and in certain cases, even outperforms
approaches involving update weights.

1 INTRODUCTION

Large Language Models (LLMs) Touvron et al. (2023); Abdin et al. (2024); OpenAI et al. (2024)
have revolutionized the field of natural language processing (NLP), demonstrating exceptional capa-
bilities across diverse tasks such as language understanding, generation, and reasoning (Bommarito
& Katz, 2022; Wei et al., 2022; Bubeck et al., 2023). However, exponential growth in their pa-
rameter size, which often extends to billions of dimensions, poses substantial deployment obstacles,
particularly in resource-constrained scenarios, including edge computing systems and mobile ap-
plications (Zheng et al., 2025; Girija et al., 2025). In this context, Pruning LeCun et al. (1989);
Hassibi et al. (1993); Han et al. (2015) has emerged as a fundamental optimization strategy, offer-
ing a methodology to eliminate superfluous parameters while preserving the efficacy of the model.
However, a fundamental limitation persists in the poor cross-scale generalization of the existing
pruning methodologies, which are primarily developed for LLMs but exhibit significantly degraded
performance when applied to small language models (SLMs).

Conventional pruning techniques frequently fail to preserve satisfactory performance levels in SLMs
— a deficiency attributable to their underlying design. Most established post-training pruning ap-
proaches, including contemporary methods, employ static metrics that demonstrate high sensitivity
to variations in both the data and the model (Du et al., 2023). This sensitivity is further amplified
in compact models. For instance, Wanda Sun et al. (2024) utilizes first-order information, while
Pruner-Zero Dong et al. (2024) employs genetic algorithms to automate the search for pruning met-
rics but ultimately converges to a fixed, predetermined metric. Such inflexible metrics lack the
adaptability required for robust performance across diverse model architectures and data conditions.
This methodological constraint proves particularly detrimental for SLMs, where the impact of pa-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

rameter removal is substantially more pronounced, as shown in Figure 1. The smaller the scale of
the model, the more pronounced the impact of pruning becomes. The static nature of these prun-
ing criteria fails to provide theoretical guarantees or empirical consistency in maintaining baseline
performance. Such sensitivity mainly reflects redundancy differences; deeper causes are analyzed
later.

Figure 1: Relative perplexity (ppl) increase of differ-
ent pruning methods at 50% sparsity. The darker the
colour, the greater the decline in performance.

This gap highlights the urgent need to
advance pruning research specifically tai-
lored for SLMs. The primary motivation
for pruning SLMs stems from their fre-
quent deployment in resource-constrained
environments, where even marginal reduc-
tions in model size can yield substantial
improvements in computational efficiency
and accessibility.

To address these limitations, we pro-
pose X-Pruner, a layer-wise adaptive prun-
ing framework that jointly optimizes both
pruning criteria and pruning path to en-
hance post-pruning performance, particu-
larly for SLMs. As illustrated in the left
half of Figure 2, each transformer layer
undergoes pruning based on a parameter-

ized importance score formulated as W x×Gy , where exponents (x, y) are adaptively searched via
a reinforcement learning agent. This agent, depicted in the Figure 2’s upper right part, explores
the parameter space in a three-phase process: random exploration, strategy search, and local refine-
ment—guided by perplexity feedback to identify optimal exponent configurations without retrain-
ing. Beyond this, X-Pruner introduces a novel insight: the pruning path significantly impacts final
model quality due to a self-compensating effect among layers, which implies that pruning at each
layer inherently incorporates an offset or elimination of cumulative errors introduced by preceding-
layer pruning. ∆margin in the figure above represents the marginal cost, which is defined as the net
increase in loss induced by, under the current pruned state. A precise definition and detailed expla-
nation of this concept will be provided in later sections. To quantify the performance of different
paths, we develop a unified path scoring function that balances local pruning cost and compensa-
tion potential, thereby enabling the selection of the globally optimal pruning path. This fine-grained
unified optimization of ‘what to prune’ and ‘when to prune’ endows X-Pruner with superior scal-
ability and adaptability across diverse model architectures and data conditions. Notably, Pruning
SLMs is, in a sense, analogous to pruning LLMs at a much higher sparsity rate. This suggests that
our method not only advances SLM pruning but also provides a promising framework for pursuing
high sparsity regimes in LLMs. Our principal contributions include: (i) Adaptive pruning metric:
We propose a variable-exponent weight-gradient formulation, offering greater flexibility to trigger
compensation effects; (ii) Error compensation mechanism: We exploit an inherent compensation
mechanism, where pruning actions spontaneously offset part of the accumulated error; (iii) Fine-
grained RL controller: Our reinforcement learning framework locally maximizes compensation
at each layer without retraining; (iv) Optimized pruning path: A unified scoring strategy selects
paths that globally maximize compensation via inter-layer coupling.

Further clarification is needed regarding the interplay of these components. The adaptive pruning
metric serves as the framework’s core, while the error compensation mechanism provides the theo-
retical basis for its superior performance. The RL-based search ensures local optimality at the layer
level, and the pruning path achieves global performance optimization.

2 METHOD

In this section, we provide a detailed explanation of the components and design principles of the
X-Pruner framework, including the adaptive pruning metric (Section 2.1), the error propagation and
compensation mechanism (Section 2.2), the reinforcement learning-based search algorithm (Section
2.3), and the layer-wise optimization of the pruning path (Section 2.4).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Overview of X-Pruner framework. The framework integrates a flexible pruning metric
W x ·Gy , an inherent error compensation mechanism (manifested as ∆margin), a RL-based exponent
search and a globally optimized pruning path selected via a unified scoring function.

2.1 ADAPTIVE PRUNING METRIC

Consider a model with L layers (transformer blocks). For the kth layer, Wk ∈ Rdout×din represents
the original weight matrix and Gk is its corresponding gradient matrix. We define a new scoring
matrix as:

Sk = W xk

k ◦Gyk

k (1)

where xk, yk are adjustable power exponents; ◦ represents the Hadamard product (element-by-
element multiplication). All operations are performed element by element. Based on the scoring
matrix Sk, a gating matrix Mk ∈ {0, 1}dout×din is constructed by retaining the top (1− r) proportion
of elements (where r is the pruning rate). The pruned weight matrix is obtained by element-wise
multiplication of Mk and the original weight matrix Wk. The single-layer pruning error is defined
as the difference between the pruned and original weights, which equals the element-wise product
of (Mk − 1) and Wk.

2.2 ERROR PROPAGATION AND COMPENSATION MECHANISM

We will analyze the error propagation and compensation mechanism in the layer-by-layer pruning
process through a rigorous mathematical framework.

Forward Error Propagation. When weights in layer k are pruned, the change can be modeled as a
small perturbation ∆Wk to the original weight matrix Wk. This perturbation interacts with the layer
input hk ∈ Rd, modifying the pre-activation Wkhk + bk, where bk is the bias vector. The resulting
output error can be approximated using a first-order Taylor expansion as

∆hk+1 ≈ Jf (Wkhk + bk) ·∆Wk · hk, (2)

where Jf (·) ∈ Rd×d denotes the Jacobian matrix of the activation function evaluated at the pre-
activation point. This formulation captures how the pruning-induced perturbation ∆Wk · hk is
further transformed by the local slope of the activation, resulting in a variation in the output. The
expression reveals that pruning errors propagate anisotropically, as they are jointly influenced by the
direction and magnitude of the input hk and by the local sensitivity of the activation encoded in Jf .

First- and Second-Order Expansion of the Total Loss Function. The foundational work, known
as Optimal Brain Damage LeCun et al. (1989), introduced a second-order pruning framework that
approximates loss change using only the diagonal of the Hessian for efficiency. Later, Optimal Brain
Surgeon Hassibi et al. (1993) improved upon this by incorporating off-diagonal terms for greater
accuracy. Although we refer to these two papers to obtain Formula 3, the Hessian matrix was only

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

used for mathematical derivation in our work. By incorporating pruning-induced perturbations, the
total loss function can be approximated as:

ℓ ≈ ℓ0 +

i∑
k=1

∂ℓ

∂Wk
: ∆Wk +

1

2

i∑
k,m=1

∆Wk :
∂2ℓ

∂Wk∂Wm
: ∆Wm (3)

Here, the symbol “:” denotes the Frobenius inner product (tensor contraction). The first term ℓ0
represents the baseline loss. The second term captures the first-order linear contribution from
pruning-induced perturbations and local gradients. The final term reflects the second-order contri-
bution under the influence of the Hessian matrix, that is, the second-order partial derivatives of the
loss with respect to the weights in the formula.

Compensation Mechanism. In order to maximize the absorption of existing errors at this level,
the goal is to construct a compensatory mask Mi+1 at layer i + 1 by selecting a suitable data point
(xi+1, yi+1). We then aim to minimize the propagated error through the following formula:

dL
d(xi+1, yi+1)

=
∂L

∂W pruned
i+1

· ∂Mi+1

∂(xi+1, yi+1)
◦Wi+1 (4)

The two derivatives on the right represent, respectively, the residual error propagated from the up-
per layers and the “movement direction” in the x, y space that influences the pruning mask. The
ingenuity of formula 4 lies in mapping the pruning error to the (x, y) space, which gives us more
freedom to handle error. As long as (x, y) is not a constant input, we can use the gradient direction
to adjust pruning and cancel out the residual error from upper layers (i.e., make the inner product
tend to zero).

Suppose that there exists a layer j that can compensate for the error induced by pruning at a previous
layer k, the second-order compensation can be expressed as:

∆W comp
j = −

[
∂2L
∂W 2

j

]−1

· ∂2L
∂Wj∂Wk

·∆Wk (5)

If we explicitly solve the Hessian and accurately update layer j along the above equation, we can
completely offset the pruning error of layer k. But this is challenging for models with hundreds
of billions of parameters. We have customized a reinforcement learning search algorithm as an
alternative to the Hessian matrix.

2.3 REINFORCEMENT LEARNING SEARCH ALGORITHM

While prior work (Zhang et al., 2022a) also employed RL for pruning, their controller operated at
a coarse layer-level granularity. In contrast, our approach leverages a fine-grained RL controller to
adaptively optimize the pruning metric itself (x, y exponents), thereby directly influencing intra-
layer sensitivity.

The proposed RL algorithm efficiently searches for optimal pruning parameters per layer through
online policy optimization, thereby avoiding the computational cost associated with Hessian-based
methods. Notably, pruning and searching occur simultaneously without requiring the training of a
separate policy network.

As shown in Algorithm 1, it proceeds in three phases: (1) Exploration uses Latin Hypercube Sam-
pling and policy/value networks (actor-critic) to evaluate diverse candidates, storing experiences in a
replay buffer; (2) Exploitation refines top candidates using ϵ-greedy search with simulated anneal-
ing to avoid local minima; (3) Fine-tuning reduces step size to converge precisely. This structured
process reduces computational overhead while maintaining accuracy in selecting effective pruning
parameters.

2.4 OPTIMIZATION OF PRUNING PATH

The pruning path—that is, the order in which layers are pruned—plays a critical role in determining
the model’s final performance. This is primarily due to the cumulative nature of error propagation
and the existence of a layer-wise compensation mechanism.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 RL Search Algorithm for Layer-wise Pruning.
Input: Pruning layer k, sparsity ρ, search range x ∈ [xmin, xmax], y ∈ [ymin, ymax]
Parameter: Step size δ, exploration steps Ne, exploitation steps Ng , refinement steps Nr

Output: Optimal pruning parameters (x∗, y∗), minimizing perplexity (PPL)
1: Define basic action space A = {up, down, left, right}
2: Initialize Strategic Network: actor π, Value Network: critic v, Replay Buffer B
3: Generate initial search starting points set S via Latin Hypercube Sampling
4: for all exploration point (x, y) in S do
5: for t = 1 to Ne do
6: Select random or π-guided action
7: Evaluate new parameters; store experience in B
8: Periodically update π, v from B
9: end for

10: end for
11: Select top-performing points as candidate set Q
12: for all (x, y) ∈ Q do
13: for t = 1 to Ng do
14: Perform ϵ-greedy and simulated annealing guided search
15: Evaluate, store in B, and periodically update π, v
16: end for
17: end for
18: Fine-grained local refinement around best (x∗, y∗) for Nr steps
19: return optimal parameters (x∗, y∗)

Importance of Pruning Path. Downstream layers can correct upstream pruning errors, but pruning
them too early disrupts this compensation, causing irreversible degradation. Second-order analysis
reveals that error correction depends on cross-layer dependencies. Hence, pruning should consider
not just what to remove, but when, preserving compensation capacity to maintain performance under
high sparsity.

How to Determine the Optimal Pruning Path. Define the pruning sequence as a permutation
π = (π1, . . . , πL). For each pruning step, in the context of considering path effects, rewrite formula
3:

ℓ(π) = ℓ0 +

L∑
t=1

〈
∇(π<t)

πt
,∆Wπt

〉
︸ ︷︷ ︸

First-order local cost

+ 1
2

∑
s<t

∆Wπs
: Hπsπt

: ∆Wπt︸ ︷︷ ︸
Second-order cross-layer compensation

(6)

The first-order term captures the immediate impact of pruning on the loss through the conditioned
gradient ∇(π<t)

πt , which represents the gradient of the loss with respect to the weights of layer πt un-
der the influence of previously pruned layers π<t. The second-order term reflects the compensatory
interactions between layers via the conditioned Hessian matrix Hπsπt

, encoding how the perturba-
tion in layer πs influences the loss sensitivity to changes in layer πt. This formulation leads to two
fundamental principles for pruning path: (i) prune layers with minimal local cost first, and (ii)
preserve layers with high compensatory potential until the end.

By adhering to these principles, we can minimize the cumulative pruning loss ℓ(π) along the pruning
path. The ideal strategy first removes layers that incur negligible loss while preserving the flexibility
of more influential layers. This sequential approach yields a smoother perplexity curve and improved
final performance.

Unified Scoring Function for Pruning Path. To determine the optimal pruning order, we propose a
unified scoring function that integrates three essential factors: local pruning cost, interlayer compen-
sation capability, and layer depth. L layers are indexed by j ∈ {0, 1, . . . , L−1}. For each layer j, we
define: (i) Costj , the local performance cost caused by pruning the current layer j; (ii) Compj , the

compensation ability of layer j for prior layers’ pruning errors; (iii) Reach(j) =
L− j

L− 1
, the relative

remaining depth of layer j; and (iv) ∆(S)
margin(j) = PPL(S∪{j})−PPL(S) ≈ Costj −Compj , the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

marginal perplexity increase when pruning layer j conditioned on the already pruned set S, which
reflects the joint contribution of the layer-wise local cost and the compensatory effect.

Figure 3: (Top) Perplexity trend during layer-by-
layer search. (Bottom) Layer-wise distribution of
marginal cost, where the vertical axis represents
the net perplexity increment of each individual
layer, which corresponds to its marginal cost.

Layer depth influences both local cost propaga-
tion and the reach of compensation. We thus
re-weight the raw cost and compensation as
Reach(j) ·Costj and Reach(j) ·Compj , respec-
tively. To ensure comparability across layers,
we normalize both the local cost and compensa-
tion scores by dividing them by their respective
maximum values across all layers. The normal-
ized results, C̃j and P̃j , are scaled to a com-
mon range for use in the unified scoring func-
tion. We compute a linear combination of the
normalized components:

Sj = α · C̃j + β · P̃j (7)

where α and β control the relative importance
of local cost and compensation ability. We sort
layers in ascending order of Sj and prune ac-
cordingly.

Based on our analysis and empirical validation,
Formula 7 typically leads to three distinct prun-
ing paths across different models in most cases:
(i) Layer-Index Sweep (Position factor dom-
inant). For the shallow model like OPT-125m
illustrated by the red curves in Figures 3, the
compensation window is short and interlayer
coupling is weak; consequently, pruning in
layer-index order preserves the original com-
pensation chain and is therefore the safest strat-
egy. (ii) ∆margin Ascending (Cost factor dom-
inant). For models like OPT-350m, where the

compensation chain is sufficiently long and relatively uniform, pruning layers in ascending order of
marginal cost resembles a greedy strategy, in which each step selects the least costly option, leading
to minimal overall loss. (iii) ∆margin Descending (Compensation factor dominant). As shown by
the green curves in Figures 3, models like OPT-1.3b exhibit strong compensation potential and pro-
nounced heavy-tail phenomenon Lu et al. (2024), where a small number of tail-end layers accounts
for the majority of the error. In such cases, it is preferable to preserve as many compensation-capable
layers as possible to mitigate the impact of pruning these high-error layers. The rigorous mathemat-
ical derivation, which illustrates how the three general pruning paths can be obtained, follows.

2.5 MATHEMATICAL JUSTIFICATION OF ORDER RATIONALE

I: Layer-index sweep. Assuming that Compj ≈ 0, Costj varies slowly and correlates with depth,
and β → 0, the score satisfies Sj ∝ C̃j , which is approximately monotone in the layer index j.
Consequently, the order reduces to

Sj1 < Sj2 ⇐⇒ j1 < j2. (8)

Thus, sorting Sj in ascending order corresponds to layer-index ascending.

II: ∆margin ascending. If the layer-wise compensation scores are nearly constant (Compj ≈ const)
and their variance is negligible compared to that of the costs (Var(Costj) ≫ Var(Compj)), then we
can set β ≈ 0, leading to Sj ≈ αC̃j . In this case, Sj is proportional to ∆̃margin(j) ≈ Costj − const,
so the ordering becomes

Sj1 < Sj2 ⇐⇒ ∆margin(j1) < ∆margin(j2). (9)

Hence, sorting Sj ascending appears as ∆margin ascending.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Perplexity results on WikiText2 of unstructured 50% sparse models. Our X-Pruner outper-
forms Wanda and Pruner-Zero. For perplexity, the lower the better.

Method OPT Pythia Qwen2 Qwen3 Llama3.2
125m 350m 1.3B 160m 410m 1B 1.4B 0.5B 1.5B 0.6B 1.7B 1B

Dense 27.66 22.00 14.62 26.88 16.31 13.16 11.79 17.61 12.37 28.63 21.60 12.96
Magnitude 7e3 6e3 1e4 6.9e3 1.2e3 4.9e2 3.1e2 1.6e2 31.79 1.1e3 3.4e2 1.5e3
Wanda 38.96 35.92 19.12 275.0 74.37 52.03 22.41 30.03 17.96 50.48 29.28 30.88
Pruner-Zero 37.69 35.91 18.19 239.5 61.06 36.63 20.15 28.42 16.44 49.14 27.25 30.04
X-Pruner 36.67 34.25 17.80 168.3 53.24 26.87 19.20 26.44 16.01 45.63 26.47 26.31

III: ∆margin descending. When a small tail subset of layers exhibits significantly larger ∆margin

values (heavy tail) and the compensation term P̃j consistently dominates the unified score despite
shrinking over pruning (β > α), the unified score is effectively dominated by compensation, Sj ∝
Compj . Since ∆margin(j) ≈ Costj − Compj , fixing Costj yields the relation

Sj1 < Sj2 ⇐⇒ Compj1 < Compj2 ⇐⇒ ∆margin(j1) > ∆margin(j2). (10)

Thus, sorting Sj ascending manifests as ∆margin descending.

3 EXPERIMENT

3.1 EXPERIMENT SETUP

Models and Evaluation. We assess X-Pruner using several prominent families of SMLs: OPT
125m/350m/1.3B Zhang et al. (2022b) and Pythia 160m/410m/1B/1.4B Biderman et al. (2023). To
further explore the generalizability of X-Pruner, we apply the developed adaptive pruning metric to
some LLM families, such as Qwen2 0.5B/1.5B Yang et al. (2024), Qwen3 0.6B/1.7B Yang et al.
(2025), and Llama3.2 1B Grattafiori et al. (2024). The effectiveness of the pruned models is eval-
uated based on their language modeling performance. Following prior work Xiao et al. (2024);
Frantar & Alistarh (2023), we use WikiText validation perplexity (Merity et al., 2016).

Table 2: Per-layer perplexity (PPL) and margin
cost (∆) under three pruning paths.

Path(i) Path(ii) Path(iii)

Layer PPL ∆ Layer PPL ∆ Layer PPL ∆

dense 14.62 - dense 14.62 - dense 14.62 -
0 14.58 -0.03 2 14.40 -0.21 23 15.48 +0.86
1 14.49 -0.08 1 14.30 -0.09 15 15.64 +0.16
2 14.37 -0.12 4 14.31 +0.00 11 15.86 +0.24
3 14.36 -0.01 5 14.25 -0.05 21 16.12 +0.23
4 14.40 +0.03 3 14.25 -0.00 17 16.26 +0.14
5 14.36 -0.03 6 14.24 -0.00 16 16.45 +0.18
6 14.36 -0.00 9 14.25 +0.01 19 16.58 +0.12
7 14.44 +0.08 4 14.29 +0.03 20 16.82 +0.24
8 14.51 +0.07 8 14.36 +0.06 13 16.91 +0.08
9 14.54 +0.02 7 14.47 +0.11 22 17.16 +0.25
10 14.64 +0.10 10 14.45 +0.11 11 17.22 +0.06
11 14.76 +0.11 14 14.66 +0.08 12 17.31 +0.09
12 14.87 +0.11 13 14.77 +0.11 14 17.50 +0.19
13 15.02 +0.15 11 14.93 +0.16 10 17.64 +0.14
14 15.13 +0.10 22 15.11 +0.17 7 17.68 +0.03
15 15.37 +0.24 13 15.30 +0.18 8 17.74 +0.05
16 15.61 +0.23 20 15.43 +0.13 4 17.80 +0.05
17 15.81 +0.20 19 15.54 +0.11 9 17.83 +0.03
18 16.01 +0.20 18 15.70 +0.16 6 17.78 -0.04
19 16.16 +0.20 15 15.92 +0.21 3 17.82 +0.04
20 16.35 +0.16 17 16.03 +0.11 18 17.85 +0.02
21 16.58 +0.22 21 16.37 +0.23 0 17.86 +0.06
22 16.73 +0.14 16 16.73 +0.41 1 17.85 -0.01
23 17.97 +1.23 23 18.12 +1.33 2 17.80 -0.09

Baselines. We benchmark X-Pruner against
four existing pruning methods, including mag-
nitude pruning Han et al. (2015), SparseGPT
Frantar & Alistarh (2023), Wanda Sun et al.
(2024), and Pruner-Zero Dong et al. (2024). All
of them rely on calibration data to estimate in-
put statistics. To ensure a fair comparison, we
use the same calibration dataset as SparseGPT
and Wanda—128 sequences with a fixed con-
text length, drawn from the C4 training set Raf-
fel et al. (2023) to estimate input statistics, such
as Gradients (G).

Sparsity. We adopt a uniform sparsity level
across all linear layers under unstructured prun-
ing, following the methodology of Wanda
and Pruner-Zero. Our experiments focus on
linear layers, as unstructured pruning offers
finer granularity and flexibility, enabling ef-
fective compression with minimal performance
loss—critical for SLM deployment in resource-
constrained environments. All implementa-
tions build on Wanda’s codebase to ensure com-
parability across pruning approaches.

Search Settings. Online RL framework searches for optimal pruning-score exponents (x, y) ∈
[0.5, 2.5]2 for each transformer layer. The action space adjusts x or y by ±0.1, and the policy is
parameterized by a two-layer MLP. Actor and critic networks are respectively trained using Adam

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

with learning rates 3 × 10−4 and 1 × 10−3. Additional implementation details are provided in
Appendix B.

3.2 EXPERIMENT RESULTS

Perplexity Advantage. As shown in Table 1, X-Pruner consistently achieves the lowest perplexity
across nearly all model scales and families under the same 50% unstructured sparsity without weight
update. Our method significantly outperforms fixed-metric baselines with the maximum observed
improvement reaching 30%, which strongly validates the efficacy of our adaptive pruning criterion
in maintaining model expressiveness even under aggressive compression.

Table 3: Comparison with the SparseGPT method
in terms of mean and standard deviation of per-
plexity. The values in the table represent the mean
± standard.

Method OPT Pythia Others

SparseGPT 29.76±9.59 114.1±148.4 29.76±112.1
X-Pruner 29.57±8.36 66.90±59.89 28.52±91.69

No weight update. SparseGPT alleviates
pruning-induced degradation through weight
updates. In contrast, X-Pruner operates under
a strictly no-tuning regime. Remarkably, even
without weight updates, X-Pruner achieves per-
plexity comparable to SparseGPT (with up-
dates) on OPT and significantly outperforms it
on Pythia (Table 3). This highlights the effec-
tiveness of our metric–path co-design in offset-
ting the lack of fine-tuning.

Stability. In addition to improved performance, X-Pruner also shows superior robustness. As re-
ported in Table 3, the standard deviation of perplexity across checkpoints is markedly lower than
that of SparseGPT and the static-metric baselines. This indicates that our framework maintains con-
sistent effectiveness across different model sizes and architectures, thereby offering a more reliable
solution in practical deployment scenarios.

3.3 EFFECTIVENESS OF OPTIMIZED PRUNING PATH

Figure 4: Comparison of three simplified layer
pruning paths: (i) layer-index sweep; (ii) ∆margin
ascending; (iii) ∆margin descending.

Under the same no-weight-update setting, the
incorporation of dynamic scoring metric and
search algorithm enables our method to con-
sistently outperform static approaches (e.g.,
Wanda and Pruner-Zero), as reflected by the
blue bars being overall lower than the red bars
in Figure 4. With optimal pruning-path strat-
egy, we further depress post-pruning perplex-
ity, reaching levels comparable to SparseGPT—
which performs weight fine-tuning—and even
surpassing it on OPT-125m and OPT-350m.

In Table 2, we report the layer-wise perplex-
ity (PPL) and marginal cost ∆ under the three
pruning paths for OPT-1.3B. The symbols “–”
and “+” mark the sign of ∆: a negative value in-
dicates that the layer’s compensatory effect out-

weighs local-error propagation, thereby reducing overall model perplexity. All three paths exhibit
compensation to varying degrees. We argue that such compensatory capacity is an inherent property
of the model architecture; static criteria tend to suppress it, whereas dynamic metrics can elicit it,
and a well-chosen pruning path amplifies it. This is the fundamental reason for the success of the
X-Pruner framework.

3.4 ABLATION STUDY

To quantify the contribution of each design choice in X-Pruner, we conduct a series of controlled
ablation experiments on OPT-125m under the default 50 % unstructured sparsity. Table 4 reports
validation perplexity. Additional experimental results can be found in the Appendix C.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Ablation study of key components in X-Pruner.

Variant Adaptive metric RL search Comp-aware order ppl ↓ ∆ppl
Full X-Pruner ✓ ✓ ✓ 36.67 –
(a) Fixed exponent ✗ ✓ ✓ 37.44 +0.77
(b) Grid/random search ✓ ✗ ✓ 36.82 +0.15
(c) Random layer order ✓ ✓ ✗ 37.16 +0.49

Figure 5: Comparison between RL Search, Grid and Random Search Processes. Individual PPL
denotes the individual solution obtained at each iteration. The pareto front represents the curve of
historically best results within the current iteration (i.e., the “optimal convergence trajectory”).

Adaptive exponent vs. Fixed exponent. We conducted extensive random generation tests with
fixed exponents (i.e., pruning metric remained unchanged across all transformer layers). Experi-
mental results indicate that the optimal fixed points lie near x = 1.6 and y = 1, although they
exhibit a certain performance gap compared to the dynamic exponents.

RL Search vs. Grid/Random search. In terms of both the final convergence outcome and con-
vergence speed, RL search comprehensively outperforms other search methods. As can be read-
ily observed from Figure 5, RL search achieves comparable pruning performance to Grid/Random
search with only half the number of iterations, and even lower perplexity. Upon closer inspection,
the individual PPL values in RL search remain consistently close to the Pareto front, suggesting that
most iterations contribute to progressive optimization rather than random fluctuation. This reflects
the stability and efficiency of the RL-based search process.

Comp-Aware Order vs. Random layer order. Among the pruning paths generated through multi-
ple random sequences, even the best-performing random path fails to match the optimal path identi-
fied by our unified scoring function.

4 CONCLUSION

We propose X-Pruner, a complete adaptive pruning framework for small language models (SLMs),
featuring a parameterized adaptive importance metric, a reinforcement learning-based search algo-
rithm, and a unified pruning path scoring function. We also reveal a layer-wise error compensation
mechanism inherent in the pruning process. X-Pruner addresses the limitations of existing Large
Language Models (LLMs) pruning methods, which often suffer from weak adaptability and poor
generalization when applied to smaller models. Experimental results show that, under comparable
conditions, our method consistently outperforms state-of-the-art pruning techniques. Although X-
Pruner is designed with SLMs in mind, it retains the potential to generalize to LLMs. Particularly,
in light of the performance degradation commonly observed in LLMs pruning under high sparsity
regimes, our strategy of pruning compact models as a means to achieve extreme sparsity offers a
novel perspective.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our X-Pruner framework provides a powerful tool for adaptively pruning small and large language
models, enabling substantial efficiency gains and facilitating deployment in resource-constrained
environments. While such compression techniques can democratize access to language technolo-
gies, they also pose potential ethical risks. For instance, overly aggressive pruning or misuse of
pruning strategies may degrade model reliability, amplify hidden biases, or compromise safety in
downstream applications. Moreover, the ability to prune models without retraining could inadver-
tently be exploited to deploy lightweight but insufficiently validated systems in sensitive domains.
We therefore urge researchers and practitioners to apply strict validation, fairness assessment, and
oversight when adopting X-Pruner in practice. Ultimately, our framework is designed with positive
intent: to advance responsible and sustainable AI by making models more efficient, transparent, and
accessible. We strongly encourage the community to leverage these benefits responsibly and with
care.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our work. The proposed pruning
framework and reinforcement learning search algorithm are fully described in Section 2, with im-
plementation details and hyperparameter settings provided in Appendix B. All experimental setups,
including datasets and preprocessing steps, are reported in Section 3, while extended results and ab-
lation studies are presented in Appendix C. A complete theoretical justification of the compensation
effect is included in Appendix 2. To facilitate further verification, we provide the source code and
scripts in the supplementary materials.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, et al. Phi-3 technical report: A
highly capable language model locally on your phone, 2024. URL https://arxiv.org/
abs/2404.14219.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya
Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language
models across training and scaling, 2023. URL https://arxiv.org/abs/2304.01373.

Michael Bommarito and Daniel Martin Katz. Gpt takes the bar exam, 2022. URL https://
arxiv.org/abs/2212.14402.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi,
Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments
with gpt-4, 2023. URL https://arxiv.org/abs/2303.12712.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions, 2019. URL
https://arxiv.org/abs/1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness, 2022. URL https://arxiv.org/abs/
2205.14135.

Rocktim Jyoti Das, Mingjie Sun, Liqun Ma, and Zhiqiang Shen. Beyond size: How gradients shape
pruning decisions in large language models, 2024. URL https://arxiv.org/abs/2311.
04902.

10

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2212.14402
https://arxiv.org/abs/2212.14402
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2311.04902
https://arxiv.org/abs/2311.04902

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen Chu.
Pruner-zero: Evolving symbolic pruning metric from scratch for large language models, 2024.
URL https://arxiv.org/abs/2406.02924.

Mengnan Du, Subhabrata Mukherjee, Yu Cheng, Milad Shokouhi, Xia Hu, and Ahmed Hassan
Awadallah. Robustness challenges in model distillation and pruning for natural language under-
standing, 2023. URL https://arxiv.org/abs/2110.08419.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning, 2023. URL https://arxiv.org/abs/2301.12900.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Stabilizing the
lottery ticket hypothesis, 2020. URL https://arxiv.org/abs/1903.01611.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot, 2023. URL https://arxiv.org/abs/2301.00774.

Advait Gadhikar, Sohom Mukherjee, and Rebekka Burkholz. Why random pruning is all we need
to start sparse, 2023. URL https://arxiv.org/abs/2210.02412.

Sanjay Surendranath Girija, Shashank Kapoor, Lakshit Arora, Dipen Pradhan, Aman Raj, and Ankit
Shetgaonkar. Optimizing llms for resource-constrained environments: A survey of model com-
pression techniques, 2025. URL https://arxiv.org/abs/2505.02309.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, et al. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.
21783.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural networks, 2015. URL https://arxiv.org/abs/1506.02626.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding, 2016. URL https://arxiv.org/
abs/1510.00149.

B. Hassibi, D.G. Stork, and G.J. Wolff. Optimal brain surgeon and general network pruning. In
IEEE International Conference on Neural Networks, pp. 293–299 vol.1, 1993. doi: 10.1109/
ICNN.1993.298572.

Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures, 2016. URL https://arxiv.
org/abs/1607.03250.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding, 2020. URL https://arxiv.
org/abs/1909.10351.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham
Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity, 2020.
URL https://arxiv.org/abs/2002.03231.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touretzky
(ed.), Advances in Neural Information Processing Systems, volume 2. Morgan-Kaufmann,
1989. URL https://proceedings.neurips.cc/paper_files/paper/1989/
file/6c9882bbac1c7093bd25041881277658-Paper.pdf.

11

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2406.02924
https://arxiv.org/abs/2110.08419
https://arxiv.org/abs/2301.12900
https://arxiv.org/abs/1903.01611
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2210.02412
https://arxiv.org/abs/2505.02309
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1607.03250
https://arxiv.org/abs/1607.03250
https://arxiv.org/abs/1909.10351
https://arxiv.org/abs/1909.10351
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2002.03231
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shiwei Liu, Tianlong Chen, Zhenyu Zhang, Xuxi Chen, Tianjin Huang, Ajay Jaiswal, and
Zhangyang Wang. Sparsity may cry: Let us fail (current) sparse neural networks together!, 2023.
URL https://arxiv.org/abs/2303.02141.

Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, Liangzhen Lai, and Vikas
Chandra. Mobilellm: Optimizing sub-billion parameter language models for on-device use cases,
2024. URL https://arxiv.org/abs/2402.14905.

Haiquan Lu, Yefan Zhou, Shiwei Liu, Zhangyang Wang, Michael W. Mahoney, and Yaoqing Yang.
Alphapruning: Using heavy-tailed self regularization theory for improved layer-wise pruning of
large language models, 2024. URL https://arxiv.org/abs/2410.10912.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models, 2023. URL https://arxiv.org/abs/2305.11627.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016. URL https://arxiv.org/abs/1609.07843.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering, 2018. URL https://arxiv.
org/abs/1809.02789.

Azade Nova, Hanjun Dai, and Dale Schuurmans. Gradient-free structured pruning with unlabeled
data, 2023. URL https://arxiv.org/abs/2303.04185.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, et al. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023. URL https://arxiv.org/abs/1910.10683.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale, 2019. URL https://arxiv.org/abs/1907.
10641.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter, 2020a. URL https://arxiv.org/abs/1910.
01108.

Victor Sanh, Thomas Wolf, and Alexander M. Rush. Movement pruning: Adaptive sparsity by
fine-tuning, 2020b. URL https://arxiv.org/abs/2005.07683.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models, 2024. URL https://arxiv.org/abs/2306.11695.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. Mobilebert:
a compact task-agnostic bert for resource-limited devices, 2020. URL https://arxiv.org/
abs/2004.02984.

Jean-Loup Tastet and Inar Timiryasov. Babyllama-2: Ensemble-distilled models consistently out-
perform teachers with limited data, 2024. URL https://arxiv.org/abs/2409.17312.

Omkar Thawakar, Ashmal Vayani, Salman Khan, Hisham Cholakal, Rao M. Anwer, Michael Fels-
berg, Tim Baldwin, Eric P. Xing, and Fahad Shahbaz Khan. Mobillama: Towards accurate and
lightweight fully transparent gpt, 2024. URL https://arxiv.org/abs/2402.16840.

Inar Timiryasov and Jean-Loup Tastet. Baby llama: knowledge distillation from an ensemble of
teachers trained on a small dataset with no performance penalty, 2023. URL https://arxiv.
org/abs/2308.02019.

12

https://arxiv.org/abs/2303.02141
https://arxiv.org/abs/2402.14905
https://arxiv.org/abs/2410.10912
https://arxiv.org/abs/2305.11627
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/2303.04185
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/2005.07683
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2004.02984
https://arxiv.org/abs/2004.02984
https://arxiv.org/abs/2409.17312
https://arxiv.org/abs/2402.16840
https://arxiv.org/abs/2308.02019
https://arxiv.org/abs/2308.02019

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971.

Elena Voita, Javier Ferrando, and Christoforos Nalmpantis. Neurons in large language models:
Dead, n-gram, positional, 2023. URL https://arxiv.org/abs/2309.04827.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding, 2019.
URL https://arxiv.org/abs/1804.07461.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models,
2022. URL https://arxiv.org/abs/2206.07682.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate
models, 2022. URL https://arxiv.org/abs/2204.00408.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming lan-
guage models with attention sinks, 2024. URL https://arxiv.org/abs/2309.17453.

Mengwei Xu, Dongqi Cai, Yaozong Wu, Xiang Li, and Shangguang Wang. Fwdllm: Efficient fedllm
using forward gradient, 2024. URL https://arxiv.org/abs/2308.13894.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, et al. Qwen2 technical report, 2024. URL https://arxiv.org/abs/
2407.10671.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, et al. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluı́s Màrquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.
18653/v1/P19-1472. URL https://aclanthology.org/P19-1472/.

Li Lyna Zhang, Youkow Homma, Yujing Wang, Min Wu, Mao Yang, Ruofei Zhang, Ting Cao, and
Wei Shen. Swiftpruner: Reinforced evolutionary pruning for efficient ad relevance, 2022a. URL
https://arxiv.org/abs/2209.00625.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model, 2024. URL https://arxiv.org/abs/2401.02385.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, et al. Opt: Open pre-trained transformer language models, 2022b. URL https:
//arxiv.org/abs/2205.01068.

Yue Zheng, Yuhao Chen, Bin Qian, Xiufang Shi, Yuanchao Shu, and Jiming Chen. A review on
edge large language models: Design, execution, and applications. ACM Comput. Surv., 57(8),
March 2025. ISSN 0360-0300. doi: 10.1145/3719664. URL https://doi.org/10.1145/
3719664.

Yefan Zhou, Yaoqing Yang, Arin Chang, and Michael W. Mahoney. A three-regime model of net-
work pruning, 2023. URL https://arxiv.org/abs/2305.18383.

13

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2309.04827
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2204.00408
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2308.13894
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2505.09388
https://aclanthology.org/P19-1472/
https://arxiv.org/abs/2209.00625
https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://doi.org/10.1145/3719664
https://doi.org/10.1145/3719664
https://arxiv.org/abs/2305.18383

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATED WORK

Recent advances in language modeling have bifurcated into two principal trajectories. On the one
hand, large language models (LLMs) continue to scale in accordance with established scaling laws,
pursuing increasingly complex linguistic tasks with the overarching goal of progressing toward arti-
ficial general intelligence (Kaplan et al., 2020; Xu et al., 2024). On the other hand, small language
models (SLMs) emphasize computational efficiency and are explicitly optimized for deployment in
resource-constrained environments such as smartphones, edge devices, and wearables. These com-
pact models aim to democratize machine intelligence by reducing costs, improving accessibility,
and enabling practical applications across diverse platforms.

SLMs typically adopt either encoder-only or decoder-only architectures. Encoder-only models, gen-
erally derived from BERT Devlin et al. (2019), achieve compression and acceleration through struc-
tural modifications. For instance, MobileBERT Sun et al. (2020) employs an inverted bottleneck
design to reduce parameters and computation, while DistilBERT Sanh et al. (2020a) and TinyBERT
Jiao et al. (2020) compress the BERT architecture while retaining over 96% of its accuracy. Decoder-
only variants, following autoregressive designs such as GPT Radford et al. (2018) and LLaMA
Touvron et al. (2023), leverage techniques including knowledge distillation, parameter sharing, and
memory optimization. Notable examples include BabyLLaMA Timiryasov & Tastet (2023) and
BabyLLaMA-2 Tastet & Timiryasov (2024), which distill multiple teacher models into compact ar-
chitectures, TinyLLaMA Zhang et al. (2024), which incorporates FlashAttention Dao et al. (2022)
for memory efficiency, MobilLLaMA Thawakar et al. (2024), which introduces parameter sharing
to lower both pretraining and inference costs, and MobileLLM Liu et al. (2024), which combines
embedding-sharing, grouped-query attention, and block-wise weight sharing to minimize latency.

In parallel with architectural innovation, network pruning has emerged as a central compression
paradigm for both LLMs and SLMs. By removing redundant parameters while preserving core
functionality, pruning enables the creation of efficient sparse networks (LeCun et al., 1989; Hassibi
et al., 1993). Pruning approaches are broadly divided into structured and unstructured meth-
ods. Structured pruning eliminates entire components—such as neurons, channels, or attention
heads—thereby enhancing GPU efficiency (Xia et al., 2022; Fang et al., 2023; Nova et al., 2023).
Recent work has explored task- and prompt-specific sparsity within attention and MLP layers (Hu
et al., 2016; Voita et al., 2023), with LLM-Pruner Ma et al. (2023) demonstrating the effectiveness
of gradient-based importance measures combined with low-rank approximations. By contrast, un-
structured pruning Han et al. (2015; 2016); Gadhikar et al. (2023); Liu et al. (2023) removes individ-
ual weights (e.g., via magnitude pruning), often preserving accuracy without structural constraints.
However, many unstructured methods rely on modified training Sanh et al. (2020b); Kusupati et al.
(2020), retraining Zhou et al. (2023), or iterative pruning Frankle et al. (2020), which impose sig-
nificant computational costs for large models (Zhang et al., 2022b).

To mitigate these costs, recent research emphasizes post-training pruning, which dispenses with
retraining phases and is particularly advantageous for scaling to LLMs. SparseGPT Frantar & Al-
istarh (2023) leverages second-order Hessian information and calibration data for efficient weight
updates, while Wanda Sun et al. (2024) combines weight magnitudes with activation norms to re-
duce computational overhead. GBLM-Pruner Das et al. (2024) prioritizes gradient importance using
first-order Taylor expansion, enabling pruning under compute-constrained scenarios. Most recently,
Pruner-Zero Dong et al. (2024) introduced a symbolic evolution framework that automates the dis-
covery of pruning metrics through genetic algorithms, thereby advancing the frontier of pruning
research.

B IMPLEMENTATION OF REINFORCEMENT LEARNING SEARCH
FRAMEWORK

To optimize the pruning exponents (x, y) for each transformer layer, we design a customized online
reinforcement learning (RL) framework. This section details its implementation and search strategy.
We provide the required parameter settings and corresponding functional descriptions in the table 5.

Actor-Critic Architecture with Noisy Exploration. We adopt a lightweight actor-critic architec-
ture. The actor network predicts a probability distribution over four discrete actions: up (+y), down
(−y), left (−x), and right (+x). Noise-injection layers are incorporated to promote early ex-

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

ploration. The critic is a feedforward network estimating the state value. Both networks are trained
using Adam optimizers with different learning rates.

Action Space and State Representation. Each pruning state is encoded as a 2D vector [x, y],
representing the current exponents. Actions are predefined directional moves in this space. The
actor produces a softmax probability over actions, and the agent follows an ϵ-greedy or stochastic
policy based on the training phase.

Experience Replay and Network Updates. We maintain an experience replay buffer containing
transitions (st, at, st+1, rt), where:

• st denotes the current state (e.g., the current pruning exponents (x, y));

• at is the action taken (e.g., up indicates increasing y);

• st+1 is the next state after executing at;

• rt is the reward received (e.g., the reduction in perplexity).

Network updates are conducted using minibatches, applying temporal difference learning to com-
pute the advantage. To stabilize training, we clip gradients during backpropagation.

Three-Phase Search Strategy. Our RL search comprises three sequential stages:

• Phase 1: Enhanced Exploration. Initial search points are generated via Latin Hypercube Sam-
pling (LHS). From each point, the agent explores for 10 steps using a hybrid of random and
noisy-policy actions to broadly sample the compensation landscape.

• Phase 2: Multi-Start Policy Search. The top 10% of explored configurations (ranked by per-
plexity) are used as new anchors for deeper policy-guided search. A simulated annealing strategy
is applied to escape local minima, and we periodically reset to the best global configuration.

• Phase 3: Local Refinement. We conduct a fine-grained local search around the best point (x∗, y∗)
using reduced step sizes. All directions are probed to ensure optimality.

Evaluation and Caching. Each configuration is evaluated via perplexity on a held-out calibration
dataset. All evaluated points are cached to avoid redundancy. The globally best (x∗, y∗) pair is
reapplied to the corresponding layer for final pruning.

Table 5: Hyperparameters used in the reinforcement learning search algorithm.

Parameter Value Description
n start points 5 Number of initial points generated via Latin Hypercube

Sampling.
steps per point 10 RL steps per starting point during Phase 1.
replay buffer.size 1000 Maximum capacity of the experience replay buffer.
epsilon.start 1.0 Initial exploration rate in ε-greedy strategy.
epsilon.end 0.1 Minimum exploration rate allowed.
epsilon.decay 0.97 Exponential decay rate of ε per step.
actor lr 0.0003 Learning rate for the actor policy network.
critic lr 0.001 Learning rate for the critic value network.
update batch size 10 Number of experience tuples per update step.
gamma 0.9 Discount factor for future rewards.
max steps 20 Maximum search depth per trajectory in Phase 2.
max depth 5 Reset interval to return to global best.
noise factor 0.2 Strength of noise injected into actor network layers.
refinement rounds 3 Number of rounds in local fine-tuning (Phase 3).
refinement step scale 1/5 Step size is scaled down by 5× in local search.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C ADDITIONAL EXPERIMENTS

C.1 FEW-SHOTS TASKS

To comprehensively assess model robustness under sparsity constraints, we report the performance
of several pruning methods across seven representative few-shot tasks. These tasks include BoolQ
Clark et al. (2019), RTE Wang et al. (2019), HellaSwag Zellers et al. (2019), WinoGrande Sakaguchi
et al. (2019), ARC-e Clark et al. (2018), ARC-c Clark et al. (2018), and OBQA Mihaylov et al.
(2018), with Table 6 summarizing the accuracy under a fixed 50% unstructured sparsity.

Unlike zero-shot evaluation, which relies solely on model pretraining for task understanding, few-
shot settings inject limited in-context supervision, better reflecting practical deployment where
small-scale user feedback or prompts are available. Moreover, small and medium-sized models
typically underperform in zero-shot scenarios due to capacity limitations. The 3-shot setup thus al-
lows for a more realistic evaluation of a pruned model’s retained expressiveness and generalization
ability.

Among all methods, X-Pruner consistently ranks among the top performers, yielding the highest
mean accuracy across most models. SparseGPT also performs strongly, especially on larger models.
Notably, traditional baselines such as Wanda and Pruner-Zero remain competitive on certain tasks,
but their performance fluctuates more widely across architectures.

Tasks with strong lexical signals, such as BoolQ and WinoGrande, tend to exhibit smaller perfor-
mance gaps between pruned and dense models, indicating that surface-level features are relatively
well preserved under pruning. In contrast, reasoning-heavy benchmarks like ARC-c and OBQA re-
veal more pronounced differences among pruning strategies, where fine-tuning or adaptive methods
such as SparseGPT and X-Pruner consistently outperform magnitude-based baselines. This suggests
that advanced pruning criteria are more effective at preserving the deeper representational capacity
required for complex reasoning tasks.

C.2 OPTIMAL PRUNING PARAMETERS

Table 7 and 8 reports the optimal pruning exponents (x, y) searched by our reinforcement learning-
based framework for each transformer layer across a wide range of models. These values correspond
to the exponents used in the pruning criterion |W |x · |G|y , where W and G denote the weight and
gradient tensors, respectively. For each layer, the reported (x, y) pair achieves the lowest perplexity
under a fixed sparsity ratio of 50%. Dashes indicate layers that are absent in the corresponding
model. This layer-wise differentiation enables X-Pruner to adaptively tailor its pruning behavior
to the unique sensitivity of each layer, contributing to its superior overall performance under high
sparsity.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this paper, LLMs (specifically, OpenAI’s GPT-5) were used as a general-
purpose assist tool. Their role was limited to language polishing, LaTeX formatting suggestions, and
improving readability of the manuscript. All research ideas, theoretical developments, algorithmic
design, and experimental implementations were conceived, conducted, and validated solely by the
authors. The LLM was not involved in generating novel research ideas, designing experiments, or
interpreting results. Its contributions do not meet the criteria for authorship, and it should not be
regarded as a scientific contributor to this work.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Accuracies (%) on 7 few-shot tasks under unstructured 50% sparsity.

Models Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

OPT-350m

Dense 56.94 51.99 32.15 52.01 46.09 21.25 18.40 39.83
Magnitude 53.82 53.07 27.76 51.70 35.61 18.52 10.80 35.90
SparseGPT 56.79 50.54 30.08 51.85 42.09 19.20 15.80 38.05
Wanda 48.44 53.43 29.48 49.72 39.23 17.83 12.80 35.85
Pruner-Zero 55.63 51.26 29.18 50.99 39.44 16.89 12.20 36.51
X-Pruner 56.01 52.90 30.13 51.59 43.18 19.98 12.80 38.08

Pythia-1B

Dense 57.49 51.62 37.54 52.80 59.64 25.60 19.60 43.47
Magnitude 37.83 47.65 26.48 50.04 31.52 20.48 11.80 32.26
SparseGPT 59.45 53.07 34.02 52.49 52.15 23.38 17.40 41.71
Wanda 61.53 53.43 32.20 51.46 51.09 21.67 17.60 41.28
Pruner-Zero 61.22 54.15 32.25 51.70 49.92 21.93 16.40 41.08
X-Pruner 61.38 54.09 34.08 52.30 52.28 23.18 17.40 42.10

Qwen2-0.5B

Dense 62.75 64.26 38.26 57.06 61.61 27.56 24.00 47.93
Magnitude 42.29 50.18 28.47 50.12 38.68 20.90 14.20 34.98
SparseGPT 59.91 58.84 34.53 55.41 53.28 22.95 20.00 43.56
Wanda 60.18 56.68 32.58 55.56 49.66 21.26 16.40 41.76
Pruner-Zero 60.76 57.04 32.23 54.06 50.93 20.82 16.20 41.72
X-Pruner 60.64 58.35 34.20 55.22 53.43 23.48 20.80 43.73

Qwen3-1.7B

Dense 79.66 71.84 46.14 61.01 78.79 47.18 30.40 59.29
Magnitude 51.28 51.99 26.87 49.33 30.68 18.77 16.40 35.05
SparseGPT 76.09 71.12 40.14 58.17 69.69 37.12 28.60 54.42
Wanda 75.78 72.56 38.38 55.33 67.72 33.79 22.60 52.31
Pruner-Zero 74.83 69.68 36.89 56.20 69.32 35.15 21.00 51.87
X-Pruner 76.53 71.95 40.88 57.85 69.85 36.11 28.67 54.55

Llama3.2-1B

Dense 64.65 57.76 48.08 64.01 68.60 34.98 29.80 52.55
Magnitude 40.24 51.99 25.96 50.20 27.99 18.52 14.40 32.76
SparseGPT 60.98 53.79 38.68 58.17 56.73 27.13 22.80 45.47
Wanda 61.38 52.71 35.04 56.67 53.83 25.51 18.80 43.42
Pruner-Zero 61.22 52.35 33.61 53.91 52.44 22.70 17.00 41.89
X-Pruner 61.28 53.79 35.53 56.67 55.30 25.83 19.60 44.00

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 7: Layer-wise optimal pruning parameters (x, y) for OPT, Qwen2, and LLaMA3.2. Dashes
indicate layers not present.

Layer OPT Qwen2 LLaMA3.2

125m 350m 1.3B 0.5B 1.5B 1B

0 (2.40,1.50) (1.30,0.50) (2.00,1.20) (2.50,1.30) (1.70,1.00) (2.30,1.68)
1 (1.70,1.80) (1.20,2.20) (1.74,0.70) (1.90,1.20) (2.20,1.70) (2.00,2.40)
2 (2.24,2.20) (2.40,1.90) (0.70,1.14) (1.90,2.44) (1.42,1.20) (2.10,1.30)
3 (1.30,2.48) (1.02,0.50) (0.90,2.32) (1.40,2.38) (1.90,1.02) (1.90,1.80)
4 (2.10,2.20) (2.10,1.60) (0.60,0.94) (1.10,1.20) (2.50,1.50) (1.50,1.24)
5 (1.92,1.10) (2.30,2.50) (0.50,1.54) (1.90,1.90) (1.76,0.70) (1.20,1.10)
6 (0.94,0.50) (2.20,1.16) (2.54,0.80) (1.56,1.60) (2.50,2.30) (1.60,1.42)
7 (1.70,1.10) (1.70,1.28) (0.80,2.18) (2.50,2.00) (0.90,1.60) (1.40,2.50)
8 (1.68,1.10) (2.20,1.60) (1.70,2.40) (0.90,1.18) (2.10,2.16) (2.30,1.90)
9 (2.40,2.10) (1.90,0.70) (1.30,0.46) (1.70,1.60) (2.20,1.30) (1.30,1.90)

10 (1.70,1.12) (1.60,0.70) (1.20,0.80) (1.98,0.80) (2.20,1.70) (1.90,1.88)
11 (1.80,1.12) (2.22,0.60) (2.40,0.70) (2.54,2.40) (2.40,0.50) (1.90,1.60)
12 — (1.50,0.74) (1.82,1.10) (1.00,1.70) (1.30,2.40) (1.70,1.80)
13 — (2.00,1.20) (1.00,0.80) (1.30,1.90) (2.00,2.42) (1.80,2.00)
14 — (2.50,1.80) (1.32,0.50) (0.70,0.90) (1.62,0.50) (1.90,1.60)
15 — (1.20,1.20) (1.40,1.50) (2.20,2.10) (0.70,1.80) (0.82,0.50)
16 — (1.30,0.70) (1.10,0.80) (1.30,1.60) (1.50,1.40) —
17 — (1.30,1.10) (2.40,0.94) (2.20,1.80) (1.12,1.50) —
18 — (2.50,2.10) (1.20,1.60) (1.30,1.00) (2.20,2.00) —
19 — (2.30,0.70) (2.50,0.50) (1.80,1.70) (2.40,1.52) —
20 — (2.30,1.30) (1.10,0.90) (2.48,2.10) (2.40,1.38) —
21 — (2.08,1.20) (1.20,1.60) (1.50,1.40) (1.80,2.50) —
22 — (2.40,1.54) (2.30,0.70) (1.60,1.60) (2.10,1.80) —
23 — (2.20,2.48) (1.50,1.00) (2.10,1.90) (1.60,1.40) —
24 — — — — (1.10,0.70) —
25 — — — — (1.20,0.64) —
26 — — — — (2.10,1.30) —
27 — — — — (1.40,1.20) —

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 8: Layer-wise optimal pruning parameters (x, y) for Pythia and Qwen3. Dashes indicate
layers not present.

Layer Pythia Qwen3

160m 410m 1B 1.4B 0.6B 1.7B

0 (1.60,1.30) (1.50,1.10) (2.50,0.56) (2.50,0.48) (2.00,2.20) (1.00,1.90)
1 (1.80,1.40) (2.00,1.30) (2.54,0.60) (1.60,0.80) (1.72,1.60) (2.30,0.50)
2 (2.22,1.50) (1.70,0.72) (2.10,2.20) (2.52,2.00) (1.60,0.60) (1.60,0.68)
3 (2.02,2.00) (1.94,1.90) (2.40,2.24) (2.10,2.08) (1.50,0.60) (2.00,1.60)
4 (2.22,1.50) (1.86,2.00) (2.38,1.10) (2.10,1.16) (2.20,1.80) (1.10,2.04)
5 (1.30,1.32) (1.40,0.90) (1.80,0.80) (2.50,1.90) (2.18,0.50) (2.40,1.52)
6 (2.10,2.02) (1.90,0.96) (2.20,1.20) (1.98,1.60) (1.40,1.10) (2.50,1.20)
7 (1.90,2.52) (1.80,1.00) (2.42,0.80) (1.70,1.42) (2.50,1.00) (1.20,2.30)
8 (1.60,2.50) (1.90,0.90) (2.50,2.50) (2.30,1.80) (2.10,1.90) (2.20,0.80)
9 (1.50,1.50) (1.50,2.10) (2.22,2.50) (0.90,2.26) (2.08,1.20) (1.78,0.70)

10 (2.08,1.40) (1.60,1.50) (2.20,1.30) (2.50,1.78) (1.60,1.42) (1.88,1.00)
11 (1.98,0.60) (1.50,0.70) (2.30,2.00) (2.20,2.50) (2.00,1.70) (2.00,1.30)
12 — (0.90,1.68) (1.90,1.30) (2.20,1.90) (2.30,0.70) (2.42,0.80)
13 — (1.50,1.98) (1.00,2.20) (1.92,0.80) (1.70,2.12) (1.86,0.50)
14 — (1.70,2.30) (1.06,1.50) (1.70,0.90) (2.14,2.20) (0.90,1.40)
15 — (1.20,0.50) (2.50,2.40) (1.70,1.40) (1.90,0.60) (1.90,1.08)
16 — (1.60,1.00) — (2.50,1.30) (2.18,0.60) (1.16,0.50)
17 — (2.46,2.20) — (1.80,1.50) (2.30,1.20) (2.32,0.70)
18 — (2.40,2.20) — (1.60,1.10) (2.20,1.70) (2.46,1.60)
19 — (1.60,1.50) — (0.90,1.30) (2.00,1.30) (2.20,1.12)
20 — (1.90,2.10) — (2.30,0.74) (1.60,0.90) (2.40,1.60)
21 — (0.90,1.40) — (2.30,1.90) (2.00,2.40) (1.28,1.20)
22 — (2.40,2.20) — (2.20,0.80) (1.10,1.50) (2.10,1.60)
23 — (1.40,2.30) — (1.38,1.40) (1.80,1.40) (1.68,0.80)
24 — — — — (0.90,1.10) (1.10,0.90)
25 — — — — (2.40,1.50) (1.86,0.80)
26 — — — — (2.40,1.38) (1.80,0.80)
27 — — — — (2.42,2.50) (1.90,0.80)

19

	Introduction
	Method
	Adaptive Pruning Metric
	Error Propagation and Compensation Mechanism
	Reinforcement Learning Search Algorithm
	Optimization of Pruning Path
	Mathematical Justification of Order Rationale

	Experiment
	Experiment Setup
	Experiment Results
	Effectiveness of Optimized Pruning Path
	Ablation Study

	Conclusion
	Related Work
	Implementation of Reinforcement Learning Search Framework
	Additional Experiments
	Few-shots Tasks
	Optimal Pruning Parameters

	The Use of Large Language Models (LLMs)

