Under review as a conference paper at ICLR 2026

X-PRUNER: AN ADAPTIVE PRUNING METHOD WITH
SELF-COMPENSATION DRIVEN BY REINFORCEMENT
LEARNING FOR LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

As small language models (SLMs) emerge as the backbone of on-device, mobile,
and edge devices, their constrained computational and memory budgets neces-
sitate aggressive yet reliable pruning. Compared with their larger counterparts,
SLMs exhibit more sensitivity to parameter removal, rendering the design of
robust pruning strategies particularly challenging. Existing post-training prun-
ing techniques, predominantly designed for large language models (LLMs), rely
on static criteria computed from tiny calibration sets, often resulting in subopti-
mal generalization. In this paper, we present X-Pruner, an unstructured adaptive
pruning framework featuring a variable-exponent importance metric. To unlock
its full potential, we introduce a reinforcement learning-based search algorithm
that efficiently identifies optimal parameter configurations. We further reveal that
the pruning path itself influences post-pruning performance and creatively pro-
pose the self-compensation mechanism, which rectifies pruning-induced errors
through layer-wise adaptive adjustments; grounded in this insight, we also de-
vise a unified path-scoring function to evaluate and select optimal pruning se-
quences across diverse target models. Extensive experiments on multiple lan-
guage benchmarks demonstrate that X-Pruner consistently surpasses state-of-the-
art post-training pruning techniques under comparable settings—achieving supe-
rior performance without any retraining—and in certain cases, even outperforms
approaches involving update weights.

1 INTRODUCTION

Large Language Models (LLMs) [Touvron et al.| (2023)); |Abdin et al.| (2024); OpenAl et al.| (2024)
have revolutionized the field of natural language processing (NLP), demonstrating exceptional capa-
bilities across diverse tasks such as language understanding, generation, and reasoning (Bommarito
& Katzl 20225 (Wei et al.) 2022} [Bubeck et al., |2023). However, exponential growth in their pa-
rameter size, which often extends to billions of dimensions, poses substantial deployment obstacles,
particularly in resource-constrained scenarios, including edge computing systems and mobile ap-
plications (Zheng et al., 2025} |Girija et al., |2025). In this context, Pruning |[LeCun et al.| (1989);
Hassibi et al.[(1993); [Han et al.|(2015) has emerged as a fundamental optimization strategy, offer-
ing a methodology to eliminate superfluous parameters while preserving the efficacy of the model.
However, a fundamental limitation persists in the poor cross-scale generalization of the existing
pruning methodologies, which are primarily developed for LLMs but exhibit significantly degraded
performance when applied to small language models (SLMs).

Conventional pruning techniques frequently fail to preserve satisfactory performance levels in SLMs
— a deficiency attributable to their underlying design. Most established post-training pruning ap-
proaches, including contemporary methods, employ static metrics that demonstrate high sensitivity
to variations in both the data and the model (Du et al.| [2023)). This sensitivity is further amplified
in compact models. For instance, Wanda |Sun et al.| (2024)) utilizes first-order information, while
Pruner-Zero Dong et al.| (2024) employs genetic algorithms to automate the search for pruning met-
rics but ultimately converges to a fixed, predetermined metric. Such inflexible metrics lack the
adaptability required for robust performance across diverse model architectures and data conditions.
This methodological constraint proves particularly detrimental for SLMs, where the impact of pa-

Under review as a conference paper at ICLR 2026

rameter removal is substantially more pronounced, as shown in Figure [I] The smaller the scale of
the model, the more pronounced the impact of pruning becomes. The static nature of these prun-
ing criteria fails to provide theoretical guarantees or empirical consistency in maintaining baseline
performance. Such sensitivity mainly reflects redundancy differences; deeper causes are analyzed
later.

This gap highlights the urgent need to
advance pruning research specifically tai-
lored for SLMs. The primary motivation
for pruning SLMs stems from their fre-
quent deployment in resource-constrained
environments, where even marginal reduc-
tions in model size can yield substantial
improvements in computational efficiency
and accessibility.

SparseGPT 028 023 027 019

Wanda 024 022 025 031

o
S
Relative PPL Increase (APPL / PPLo)

Pruner-Zero - 022 017 022 024

To address these limitations, we pro-
pose X-Pruner, a layer-wise adaptive prun-
ing framework that jointly optimizes both
pruning criteria and pruning path to en-
Figure 1: Relative perplexity (ppl) increase of differ- hance post-pruning performance, particu-
ent pruning methods at 50% sparsity. The darker the larly for SLMs. As illustrated in the left
colour, the greater the decline in performance. half of Figure [2] each transformer layer

undergoes pruning based on a parameter-
ized importance score formulated as W x GY, where exponents (x,y) are adaptively searched via
a reinforcement learning agent. This agent, depicted in the Figure [2]'s upper right part, explores
the parameter space in a three-phase process: random exploration, strategy search, and local refine-
ment—guided by perplexity feedback to identify optimal exponent configurations without retrain-
ing. Beyond this, X-Pruner introduces a novel insight: the pruning path significantly impacts final
model quality due to a self-compensating effect among layers, which implies that pruning at each
layer inherently incorporates an offset or elimination of cumulative errors introduced by preceding-
layer pruning. Amarin in the figure above represents the marginal cost, which is defined as the net
increase in loss induced by, under the current pruned state. A precise definition and detailed expla-
nation of this concept will be provided in later sections. To quantify the performance of different
paths, we develop a unified path scoring function that balances local pruning cost and compensa-
tion potential, thereby enabling the selection of the globally optimal pruning path. This fine-grained
unified optimization of ‘what to prune’ and ‘when to prune’ endows X-Pruner with superior scal-
ability and adaptability across diverse model architectures and data conditions. Notably, Pruning
SLMs is, in a sense, analogous to pruning LL.Ms at a much higher sparsity rate. This suggests that
our method not only advances SLM pruning but also provides a promising framework for pursuing
high sparsity regimes in LLMs. Our principal contributions include: (i) Adaptive pruning metric:
We propose a variable-exponent weight-gradient formulation, offering greater flexibility to trigger
compensation effects; (ii) Error compensation mechanism: We exploit an inherent compensation
mechanism, where pruning actions spontaneously offset part of the accumulated error; (iii) Fine-
grained RL controller: Our reinforcement learning framework locally maximizes compensation
at each layer without retraining; (iv) Optimized pruning path: A unified scoring strategy selects
paths that globally maximize compensation via inter-layer coupling.

o o 2 e o o
W W & & &
RS R \

Further clarification is needed regarding the interplay of these components. The adaptive pruning
metric serves as the framework’s core, while the error compensation mechanism provides the theo-
retical basis for its superior performance. The RL-based search ensures local optimality at the layer
level, and the pruning path achieves global performance optimization.

2 METHOD

In this section, we provide a detailed explanation of the components and design principles of the
X-Pruner framework, including the adaptive pruning metric (Section[2.T), the error propagation and
compensation mechanism (Section[2.2), the reinforcement learning-based search algorithm (Section
2.3), and the layer-wise optimization of the pruning path (Section[2.4).

Under review as a conference paper at ICLR 2026

Reinforcement Learning Search

Layer-wise Adaptive Pruning Metric [Xmins Xmax] X Vmins Yimaz) Experience :

V Buffer |

| el , |
Qo i i |
" Latin ve | [Setect Top-k Strategy Next Update Network(Actor | Fine-grained | |

ypereuve Candidates | Network(Actor) | Action and Criticor) Fine-tuning | |
Sampling & i

v -
(u)
Layerl (x1,y1) @ rL“’ H
1Amargin ! :
Layer2 (xz,y2) \)‘A") | Phase 1: Random exploration Phase 2: Multi-start guided search Phase 3: Local reﬁnementi
nnnnnn N /
Layer3 (x3,y3) @
1A,,.u gin SR I NI EIEEIENIEIREIIEIIEIIiIIiIIISIIIISIiiiziizzizil
Layerd (x4, ¥4) ’,/ Optimized Layer-wise Pruning Path

v /’ —————— Unified Path-scoring Function:
Dense _g'==~ 7" P T 7
model \\‘~\\\ l._a.],+B. i

\
o i
0 D ne” = @
AN . M
- .

Figure 2: Overview of X-Pruner framework. The framework integrates a flexible pruning metric
W?* . GY, an inherent error compensation mechanism (manifested as Aparin), @ RL-based exponent
search and a globally optimized pruning path selected via a unified scoring function.

2.1 ADAPTIVE PRUNING METRIC

Consider a model with £ layers (transformer blocks). For the kth layer, W, € R%ut*din represents
the original weight matrix and Gy, is its corresponding gradient matrix. We define a new scoring
matrix as:

Sk =Wk oG (1
where xy,y;, are adjustable power exponents; o represents the Hadamard product (element-by-
element multiplication). All operations are performed element by element. Based on the scoring
matrix Sy, a gating matrix M, € {0, 1}%u>dn i constructed by retaining the top (1 —) proportion
of elements (where r is the pruning rate). The pruned weight matrix is obtained by element-wise
multiplication of M}, and the original weight matrix W},. The single-layer pruning error is defined

as the difference between the pruned and original weights, which equals the element-wise product
of (M — 1) and W,

2.2 ERROR PROPAGATION AND COMPENSATION MECHANISM

We will analyze the error propagation and compensation mechanism in the layer-by-layer pruning
process through a rigorous mathematical framework.

Forward Error Propagation. When weights in layer k are pruned, the change can be modeled as a
small perturbation AW}, to the original weight matrix W},. This perturbation interacts with the layer
input hj, € R%, modifying the pre-activation Wy hy, + by, where by, is the bias vector. The resulting
output error can be approximated using a first-order Taylor expansion as

Ahk+1 ~ Jf(thk + bk) AW - hk, 2)

where J¢(-) € R?*? denotes the Jacobian matrix of the activation function evaluated at the pre-
activation point. This formulation captures how the pruning-induced perturbation AW}, - hy, is
further transformed by the local slope of the activation, resulting in a variation in the output. The
expression reveals that pruning errors propagate anisotropically, as they are jointly influenced by the
direction and magnitude of the input i, and by the local sensitivity of the activation encoded in J.

First- and Second-Order Expansion of the Total Loss Function. The foundational work, known
as Optimal Brain Damage [LeCun et al.| (1989), introduced a second-order pruning framework that
approximates loss change using only the diagonal of the Hessian for efficiency. Later, Optimal Brain
Surgeon [Hassibi et al.| (1993) improved upon this by incorporating off-diagonal terms for greater
accuracy. Although we refer to these two papers to obtain Formula[3] the Hessian matrix was only

Under review as a conference paper at ICLR 2026

used for mathematical derivation in our work. By incorporating pruning-induced perturbations, the
total loss function can be approximated as:

a4

—— A
OWLoW,, W)

Y 1 <
XY — AW, + = AW,
O+;8Wk k+2 Z k

k,m=1

Here, the symbol “:” denotes the Frobenius inner product (tensor contraction). The first term £
represents the baseline loss. The second term captures the first-order linear contribution from
pruning-induced perturbations and local gradients. The final term reflects the second-order contri-
bution under the influence of the Hessian matrix, that is, the second-order partial derivatives of the
loss with respect to the weights in the formula.

Compensation Mechanism. In order to maximize the absorption of existing errors at this level,
the goal is to construct a compensatory mask M, at layer ¢ + 1 by selecting a suitable data point
(Zi+1, Yi+1). We then aim to minimize the propagated error through the following formula:

i o OM; 41
d(it1,yiv1) OWPY O(@ig1,Yit

) o Wit 4

The two derivatives on the right represent, respectively, the residual error propagated from the up-
per layers and the “movement direction” in the x,y space that influences the pruning mask. The
ingenuity of formula E] lies in mapping the pruning error to the (x,y) space, which gives us more
freedom to handle error. As long as (x,y) is not a constant input, we can use the gradient direction
to adjust pruning and cancel out the residual error from upper layers (i.e., make the inner product
tend to zero).

Suppose that there exists a layer j that can compensate for the error induced by pruning at a previous
layer k, the second-order compensation can be expressed as:

) . 82["’ .
OW,;0W,

0*L
o2

AWE™ = — AW 5)

If we explicitly solve the Hessian and accurately update layer j along the above equation, we can
completely offset the pruning error of layer k. But this is challenging for models with hundreds
of billions of parameters. We have customized a reinforcement learning search algorithm as an
alternative to the Hessian matrix.

2.3 REINFORCEMENT LEARNING SEARCH ALGORITHM

While prior work (Zhang et al., |2022a) also employed RL for pruning, their controller operated at
a coarse layer-level granularity. In contrast, our approach leverages a fine-grained RL controller to
adaptively optimize the pruning metric itself (x, y exponents), thereby directly influencing intra-
layer sensitivity.

The proposed RL algorithm efficiently searches for optimal pruning parameters per layer through
online policy optimization, thereby avoiding the computational cost associated with Hessian-based
methods. Notably, pruning and searching occur simultaneously without requiring the training of a
separate policy network.

As shown in Algorithm I} it proceeds in three phases: (1) Exploration uses Latin Hypercube Sam-
pling and policy/value networks (actor-critic) to evaluate diverse candidates, storing experiences in a
replay buffer; (2) Exploitation refines top candidates using e-greedy search with simulated anneal-
ing to avoid local minima; (3) Fine-tuning reduces step size to converge precisely. This structured
process reduces computational overhead while maintaining accuracy in selecting effective pruning
parameters.

2.4 OPTIMIZATION OF PRUNING PATH

The pruning path—that is, the order in which layers are pruned—plays a critical role in determining
the model’s final performance. This is primarily due to the cumulative nature of error propagation
and the existence of a layer-wise compensation mechanism.

Under review as a conference paper at ICLR 2026

Algorithm 1 RL Search Algorithm for Layer-wise Pruning.

Input: Pruning layer k, sparsity p, search range © € [Zmin, Tmax)> ¥ € [Ymin, Ymax)
Parameter: Step size J, exploration steps N, exploitation steps IV, refinement steps IV,
Output: Optimal pruning parameters (z*, y*), minimizing perplexity (PPL)
1: Define basic action space A = {up, down, left, right}
2: Initialize Strategic Network: actor 7, Value Network: critic v, Replay Buffer B
3: Generate initial search starting points set S via Latin Hypercube Sampling
4: for all exploration point (z,y) in S do
5: fort =1to N, do
6: Select random or 7-guided action
7 Evaluate new parameters; store experience in B
8: Periodically update 7, v from B
9: end for
10: end for
11: Select top-performing points as candidate set)
12: for all (z,y) € Q do
13: fort =1to N, do

14: Perform e-greedy and simulated annealing guided search
15: Evaluate, store in BB, and periodically update 7, v

16: end for

17: end for

18: Fine-grained local refinement around best (x*, y*) for N,. steps
19: return optimal parameters (z*, y*)

Importance of Pruning Path. Downstream layers can correct upstream pruning errors, but pruning
them too early disrupts this compensation, causing irreversible degradation. Second-order analysis
reveals that error correction depends on cross-layer dependencies. Hence, pruning should consider
not just what to remove, but when, preserving compensation capacity to maintain performance under
high sparsity.

How to Determine the Optimal Pruning Path. Define the pruning sequence as a permutation

m = (71,...,7r). For each pruning step, in the context of considering path effects, rewrite formula
L
1
(m)=to+> <v,<;:<t>7 AWm> + 53 AWy, Her, - AW, ©)
t=1 s<t
First-order local cost Second-order cross-layer compensation

The first-order term captures the immediate impact of pruning on the loss through the conditioned

gradient vﬁr’{“), which represents the gradient of the loss with respect to the weights of layer m; un-

der the influence of previously pruned layers 7. The second-order term reflects the compensatory
interactions between layers via the conditioned Hessian matrix H_,, encoding how the perturba-
tion in layer 75 influences the loss sensitivity to changes in layer ;. This formulation leads to two
fundamental principles for pruning path: (i) prune layers with minimal local cost first, and (ii)
preserve layers with high compensatory potential until the end.

By adhering to these principles, we can minimize the cumulative pruning loss £(7) along the pruning
path. The ideal strategy first removes layers that incur negligible loss while preserving the flexibility
of more influential layers. This sequential approach yields a smoother perplexity curve and improved
final performance.

Unified Scoring Function for Pruning Path. To determine the optimal pruning order, we propose a
unified scoring function that integrates three essential factors: local pruning cost, interlayer compen-
sation capability, and layer depth. L layers are indexed by j € {0, 1, ..., L—1}. For each layer j, we
define: (i) Cost;, the local performance cost caused by pruning the current layer j; (ii) Comp,, the

L —
compensation ability of layer j for prior layers’ pruning errors; (iii) Reach(j) = ﬁ’ the relative

remaining depth of layer j; and (iv) A (j) = PPL(SU{j}) — PPL(S) = Cost; — Comp,, the

margin

Under review as a conference paper at ICLR 2026

marginal perplexity increase when pruning layer j conditioned on the already pruned set .S, which
reflects the joint contribution of the layer-wise local cost and the compensatory effect.

35

Layer depth influences both local cost propaga-
tion and the reach of compensation. We thus
re-weight the raw cost and compensation as

230 Reach(j) -Cost; and Reach(j) -Comp;, respec-
2 Model tively. To ensure comparability across layers,
€ 5 T omem we normalize both the local cost and compensa-
g ~ opras tion scores by dividing them by their respective
= % maximum values across all layers. The normal-
e ized results, C; and P;, are scaled to a com-
(L1 [— e mon range for use in the unified scoring func-
0 5 10 15 2 tion. We compute a linear combination of the
Layer Index : .
normalized components:
s Sj=a-Cj+p5-P)
é where « and [control the relative importance
Ti . S of local cost and compensation ability. We sort
3 [oprazsm layers in ascending order of S; and prune ac-
5 i orrasom cordingly.

5 05 : = OPT-1.3b . L . .
8 ; Based on our analysis and empirical validation,
_‘—é» ey TN Formula[7]typically leads to three distinct prun-
N S S ing paths across different models in most cases:
3 3 T = 5 (i) Layer-Index Sweep (Position factor dom-
Layer Index inant). For the shallow model like OPT-125m

illustrated by the red curves in Figures |3} the
compensation window is short and interlayer
coupling is weak; consequently, pruning in
layer-index order preserves the original com-
pensation chain and is therefore the safest strat-
egy. (ii) Amargin Ascending (Cost factor dom-
inant). For models like OPT-350m, where the
compensation chain is sufficiently long and relatively uniform, pruning layers in ascending order of
marginal cost resembles a greedy strategy, in which each step selects the least costly option, leading
to minimal overall loss. (iii) Amargin Descending (Compensation factor dominant). As shown by
the green curves in Figures 3] models like OPT-1.3b exhibit strong compensation potential and pro-
nounced heavy-tail phenomenon |Lu et al.|(2024), where a small number of tail-end layers accounts
for the majority of the error. In such cases, it is preferable to preserve as many compensation-capable
layers as possible to mitigate the impact of pruning these high-error layers. The rigorous mathemat-
ical derivation, which illustrates how the three general pruning paths can be obtained, follows.

Figure 3: (Top) Perplexity trend during layer-by-
layer search. (Bottom) Layer-wise distribution of
marginal cost, where the vertical axis represents
the net perplexity increment of each individual
layer, which corresponds to its marginal cost.

2.5 MATHEMATICAL JUSTIFICATION OF ORDER RATIONALE

I: Layer-index sweep. Assuming that Comp; ~ 0, Cost; varies slowly and correlates with depth,

and 8 — 0, the score satisfies S; o éj, which is approximately monotone in the layer index j.
Consequently, the order reduces to

Sjl < SjQ Aand jl < j2~ ®)
Thus, sorting S in ascending order corresponds to layer-index ascending.

II: Apargin ascending. If the layer-wise compensation scores are nearly constant (Comp ,; A const)
and their variance is negligible compared to that of the costs (Var(Cost;) > Var(Comp;)), then we
canset 3 = 0, leading to .S; ~ aéj. In this case, .S; is proportional to ﬁmargin(j) =~ Cost; — const,
so the ordering becomes

Sj1 < Sj2 — Amargin(jl) < Amargin(jZ)' (9)

Hence, sorting S; ascending appears as Apargin ascending.

Under review as a conference paper at ICLR 2026

Table 1: Perplexity results on WikiText2 of unstructured 50% sparse models. Our X-Pruner outper-
forms Wanda and Pruner-Zero. For perplexity, the lower the better.

Method OPT Pythia Qwen2 Qwen3 Llama3.2
125m 350m 1.3B 160m 410m 1B 14B 05B 1.5B 06B 1.7B 1B
Dense 27.66 22.00 14.62 2688 1631 13.16 11.79 17.61 1237 28.63 21.60 12.96
Magnitude 7e3 6e3 le4 69e3 1.2e3 49e2 3.1e2 1.6e2 31.79 1.1e3 3.4e2 1.5e3
Wanda 3896 3592 19.12 2750 7437 5203 2241 30.03 1796 5048 29.28 30.88

Pruner-Zero 37.69 3591 18.19 2395 61.06 36.63 20.15 2842 1644 49.14 27.25 30.04
X-Pruner 36.67 3425 17.80 168.3 53.24 26.87 19.20 26.44 16.01 45.63 26.47 26.31

III: Apargin descending. When a small tail subset of layers exhibits significantly larger Apargin

values (heavy tail) and the compensation term P; consistently dominates the unified score despite
shrinking over pruning (3 > «), the unified score is effectively dominated by compensation, S; o
Comp,. Since Amargin(j) ~ Cost; — Comp;, fixing Cost; yields the relation

Sj, < 8j, <= Comp, < Comp;, <= Anargin(j1) > Amargin(j2)- (10)

Thus, sorting S; ascending manifests as Apargin descending.

3 EXPERIMENT

3.1 EXPERIMENT SETUP

Models and Evaluation. We assess X-Pruner using several prominent families of SMLs: OPT
125m/350m/1.3B [Zhang et al.|(2022b)) and Pythia 160m/410m/1B/1.4B [Biderman et al.|(2023). To
further explore the generalizability of X-Pruner, we apply the developed adaptive pruning metric to
some LLM families, such as Qwen2 0.5B/1.5B |Yang et al.|(2024), Qwen3 0.6B/1.7B |Yang et al.
(2025), and Llama3.2 1B |Grattafiori et al.| (2024). The effectiveness of the pruned models is eval-
uated based on their language modeling performance. Following prior work [Xiao et al.| (2024);
Frantar & Alistarh| (2023)), we use WikiText validation perplexity (Merity et al.| 2016).

Table 2: Per-layer perplexity (PPL) and margin Baselines. We benchmark X-Pruner against
cost (A) under three pruning paths. four existing pruning methods, including mag-

Path® Path() Path(iD) nitude pruning Han et al.| (2015), SparseGPT
Frantar & Alistarh| (2023), Wanda [Sun et al.
(2024), and Pruner-ZeroDong et al.|(2024). All
of them rely on calibration data to estimate in-

Layer PPL A Layer PPL A Layer PPL A

dense 14.62 - dense 14.62 - dense 14.62 -
14.58 -0.03 2 1440 -0.21 23 1548 +0.86

I 1449 -008 1 1430 009 15 1564 +0.16 put statistics. To ensure a fair comparison, we
2 1437 042 4 1431 4000 11 1586 +024 yge the same calibration dataset as SparseGPT
31436 -001 5 1425 -005 21 1612 +0.23 d Wanda—128 ith a fixed

4 1440 4003 3 1425 000 17 1626 +0.14 4and yanda— sequences with a fixed con-
5 1436 -003 6 1424 000 16 1645 +0.18 textlength, drawn from the C4 training set Raf-
6 1436 -000 9 1425 +001 19 1658 +0.12 : : e

7 1444 2008 4 1429 1003 20 1682 +024 fel et al..(2023)to estimate input statistics, such
§ 1451 +007 8 1436 +006 13 1691 +00s as Gradients (G).

9 1454 4002 7 1447 +0.11 22 17.16 +0.25) . .

10 1464 +0.10 10 1445 +0.11 11 1722 +0.06 Sparsity. We adopt a uniform sparsity level
I 1476 +0.11 14 1466 +008 12 1731 +0.09 zcross all linear layers under unstructured prun-

12 1487 +0.11 13 1477 +0.11 14 1750 +0.19 . .
13 1502 +015 11 1493 +016 10 1764 +014 1ng, following the methodology of Wanda

14 1513 +0.10 22 1511 +0.17 7 1768 +0.03 and Pruner-Zero. Our experiments focus on

151537 4024 131530 +0.18 8 17.74 4005 Jinear layers, as unstructured pruning offers
16 1561 +023 20 1543 +0.13 4 1780 +0.05 . - .

17 1581 +020 19 1554 +0.01 9 17.83 +0.03 1ner granularity and flexibility, enabling ef-
18 1601 +020 18 1570 +0.16 6 1778 -004 fective compression with minimal performance
19 1616 +020 15 1592 +021 3 17.82 +0.04

loss—critical for SLM deployment in resource-

20 1635 +0.16 17 1603 +0.11 18 17.85 +0.02 X i -
21 1658 +022 21 1637 +023 0 17.86 +0.06 constrained environments. All implementa-
221673 4014 16 1673 +041 1 1785 -0.01 tjons build on Wanda’s codebase to ensure com-
23 1797 +123 23 1812 +133 2 17.80 -0.09

parability across pruning approaches.

Search Settings. Online RL framework searches for optimal pruning-score exponents (z,y) €
[0.5,2.5] for each transformer layer. The action space adjusts = or y by 0.1, and the policy is
parameterized by a two-layer MLP. Actor and critic networks are respectively trained using Adam

Under review as a conference paper at ICLR 2026

with learning rates 3 x 107 and 1 x 10~3. Additional implementation details are provided in
Appendix [B]

3.2 EXPERIMENT RESULTS

Perplexity Advantage. As shown in Table[I] X-Pruner consistently achieves the lowest perplexity
across nearly all model scales and families under the same 50% unstructured sparsity without weight
update. Our method significantly outperforms fixed-metric baselines with the maximum observed
improvement reaching 30%, which strongly validates the efficacy of our adaptive pruning criterion
in maintaining model expressiveness even under aggressive compression.

No weight update. SparseGPT alleviates
pruning-induced degradation through weight
updates. In contrast, X-Pruner operates under
a strictly no-tuning regime. Remarkably, even
without weight updates, X-Pruner achieves per-
- lexity comparable to SparseGPT (with up-
Method | OPT Pythia Others gates)yon OI?T and signiﬁlc)antly outperformspit
SparseGPT | 29.76+£9.59 114.1£148.4 29.76x112.1 on Pythia (Table @) This highlights the effec-
X-Pruner |29.57+8.36 66.90+59.89 28.52+91.69 tiveness of our metric—path co-design in offset-

ting the lack of fine-tuning.

Table 3: Comparison with the SparseGPT method
in terms of mean and standard deviation of per-
plexity. The values in the table represent the mean
+ standard.

Stability. In addition to improved performance, X-Pruner also shows superior robustness. As re-
ported in Table [3] the standard deviation of perplexity across checkpoints is markedly lower than
that of SparseGPT and the static-metric baselines. This indicates that our framework maintains con-
sistent effectiveness across different model sizes and architectures, thereby offering a more reliable
solution in practical deployment scenarios.

3.3 EFFECTIVENESS OF OPTIMIZED PRUNING PATH

Under the same no-weight-update setting, the
incorporation of dynamic scoring metric and
search algorithm enables our method to con-
sistently outperform static approaches (e.g.,
Wanda and Pruner-Zero), as reflected by the
blue bars being overall lower than the red bars
in Figure [d With optimal pruning-path strat-
egy, we further depress post-pruning perplex-
ity, reaching levels comparable to SparseGPT—
which performs weight fine-tuning—and even
surpassing it on OPT-125m and OPT-350m.

Wikitext Perplexity

OPT-125m OPT-350m OPT-1.3b
Model

In Table [2] we report the layer-wise perplex-

Figure 4: Comparison of three simplified layer ity (PPL) and marginal cost A under the three
pruning paths: (i) layer-index sweep; (ii) Apargin Pruning paths for OPT-1.3B. The symbols “-~
ascending; (iil) Amarein descending. and “+” mark the sign of A: a negative value in-

dicates that the layer’s compensatory effect out-
weighs local-error propagation, thereby reducing overall model perplexity. All three paths exhibit
compensation to varying degrees. We argue that such compensatory capacity is an inherent property
of the model architecture; static criteria tend to suppress it, whereas dynamic metrics can elicit it,
and a well-chosen pruning path amplifies it. This is the fundamental reason for the success of the
X-Pruner framework.

3.4 ABLATION STUDY

To quantify the contribution of each design choice in X-Pruner, we conduct a series of controlled
ablation experiments on OPT-125m under the default 50 % unstructured sparsity. Table [reports
validation perplexity. Additional experimental results can be found in the Appendix [C]

Under review as a conference paper at ICLR 2026

Table 4: Ablation study of key components in X-Pruner.

Variant Adaptive metric RL search Comp-aware order ppl] Appl
Full X-Pruner v v v 36.67 -

(a) Fixed exponent X v v 37.44 +0.77
(b) Grid/random search v X v 36.82 +0.15
(c) Random layer order v v X 37.16 +0.49

RL Search Grid Search Random Search

o Individual PPL « Individual PPL o2 o Individual PPL
—— Pareto front * —— Pareto front 1 —— Pareto front
s e

R R L P X e
Loider T Rttt

0 25 50 75 100 125 150 175 200 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Iterations Iterations Iterations

Figure 5: Comparison between RL Search, Grid and Random Search Processes. Individual PPL
denotes the individual solution obtained at each iteration. The pareto front represents the curve of
historically best results within the current iteration (i.e., the “optimal convergence trajectory”).

Adaptive exponent vs. Fixed exponent. We conducted extensive random generation tests with
fixed exponents (i.e., pruning metric remained unchanged across all transformer layers). Experi-
mental results indicate that the optimal fixed points lie near = 1.6 and y = 1, although they
exhibit a certain performance gap compared to the dynamic exponents.

RL Search vs. Grid/Random search. In terms of both the final convergence outcome and con-
vergence speed, RL search comprehensively outperforms other search methods. As can be read-
ily observed from Figure [5] RL search achieves comparable pruning performance to Grid/Random
search with only half the number of iterations, and even lower perplexity. Upon closer inspection,
the individual PPL values in RL search remain consistently close to the Pareto front, suggesting that
most iterations contribute to progressive optimization rather than random fluctuation. This reflects
the stability and efficiency of the RL-based search process.

Comp-Aware Order vs. Random layer order. Among the pruning paths generated through multi-
ple random sequences, even the best-performing random path fails to match the optimal path identi-
fied by our unified scoring function.

4 CONCLUSION

We propose X-Pruner, a complete adaptive pruning framework for small language models (SLMs),
featuring a parameterized adaptive importance metric, a reinforcement learning-based search algo-
rithm, and a unified pruning path scoring function. We also reveal a layer-wise error compensation
mechanism inherent in the pruning process. X-Pruner addresses the limitations of existing Large
Language Models (LLMs) pruning methods, which often suffer from weak adaptability and poor
generalization when applied to smaller models. Experimental results show that, under comparable
conditions, our method consistently outperforms state-of-the-art pruning techniques. Although X-
Pruner is designed with SLMs in mind, it retains the potential to generalize to LLMs. Particularly,
in light of the performance degradation commonly observed in LLMs pruning under high sparsity
regimes, our strategy of pruning compact models as a means to achieve extreme sparsity offers a
novel perspective.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our X-Pruner framework provides a powerful tool for adaptively pruning small and large language
models, enabling substantial efficiency gains and facilitating deployment in resource-constrained
environments. While such compression techniques can democratize access to language technolo-
gies, they also pose potential ethical risks. For instance, overly aggressive pruning or misuse of
pruning strategies may degrade model reliability, amplify hidden biases, or compromise safety in
downstream applications. Moreover, the ability to prune models without retraining could inadver-
tently be exploited to deploy lightweight but insufficiently validated systems in sensitive domains.
We therefore urge researchers and practitioners to apply strict validation, fairness assessment, and
oversight when adopting X-Pruner in practice. Ultimately, our framework is designed with positive
intent: to advance responsible and sustainable Al by making models more efficient, transparent, and
accessible. We strongly encourage the community to leverage these benefits responsibly and with
care.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our work. The proposed pruning
framework and reinforcement learning search algorithm are fully described in Section [2] with im-
plementation details and hyperparameter settings provided in Appendix [B] All experimental setups,
including datasets and preprocessing steps, are reported in Section[3] while extended results and ab-
lation studies are presented in Appendix[C| A complete theoretical justification of the compensation
effect is included in Appendix [2] To facilitate further verification, we provide the source code and
scripts in the supplementary materials.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, et al. Phi-3 technical report: A
highly capable language model locally on your phone, 2024. URL https://arxiv.org/
abs/2404.142109.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya
Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language
models across training and scaling, 2023. URL https://arxiv.org/abs/2304.01373.

Michael Bommarito and Daniel Martin Katz. Gpt takes the bar exam, 2022. URL https://
arxiv.org/abs/2212.14402.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi,
Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments
with gpt-4, 2023. URL https://arxiv.org/abs/2303.12712.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions, 2019. URL
https://arxiv.org/abs/1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness, 2022. URL https://arxiv.org/abs/
2205.14135.

Rocktim Jyoti Das, Mingjie Sun, Liqun Ma, and Zhigiang Shen. Beyond size: How gradients shape

pruning decisions in large language models, 2024. URL https://arxiv.org/abs/2311.
04902.

10

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2212.14402
https://arxiv.org/abs/2212.14402
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2311.04902
https://arxiv.org/abs/2311.04902

Under review as a conference paper at ICLR 2026

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen Chu.
Pruner-zero: Evolving symbolic pruning metric from scratch for large language models, 2024.
URLhttps://arxiv.org/abs/2406.02924.

Mengnan Du, Subhabrata Mukherjee, Yu Cheng, Milad Shokouhi, Xia Hu, and Ahmed Hassan
Awadallah. Robustness challenges in model distillation and pruning for natural language under-
standing, 2023. URL https://arxiv.org/abs/2110.08419\

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning, 2023. URL https://arxiv.org/abs/2301.12900.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Stabilizing the
lottery ticket hypothesis, 2020. URL https://arxiv.org/abs/1903.01611,

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot, 2023. URL https://arxiv.org/abs/2301.00774.

Advait Gadhikar, Sohom Mukherjee, and Rebekka Burkholz. Why random pruning is all we need
to start sparse, 2023. URL https://arxiv.org/abs/2210.02412|

Sanjay Surendranath Girija, Shashank Kapoor, Lakshit Arora, Dipen Pradhan, Aman Raj, and Ankit
Shetgaonkar. Optimizing 1lms for resource-constrained environments: A survey of model com-
pression techniques, 2025. URL https://arxiv.org/abs/2505.023009,

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, et al. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.
21783.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural networks, 2015. URL https://arxiv.org/abs/1506.02626.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding, 2016. URL https://arxiv.org/
abs/1510.001409.

B. Hassibi, D.G. Stork, and G.J. Wolff. Optimal brain surgeon and general network pruning. In
IEEE International Conference on Neural Networks, pp. 293-299 vol.1, 1993. doi: 10.1109/
ICNN.1993.298572.

Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures, 2016. URL https://arxiv.
org/abs/1607.03250.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding, 2020. URL https://arxiv.
org/abs/1909.10351.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham
Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity, 2020.
URLhttps://arxiv.org/abs/2002.03231.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touretzky
(ed.), Advances in Neural Information Processing Systems, volume 2. Morgan-Kaufmann,
1989. URL https://proceedings.neurips.cc/paper_files/paper/1989/
file/6c9882bbaclc7093bd25041881277658-Paper.pdfl

11

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2406.02924
https://arxiv.org/abs/2110.08419
https://arxiv.org/abs/2301.12900
https://arxiv.org/abs/1903.01611
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2210.02412
https://arxiv.org/abs/2505.02309
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1607.03250
https://arxiv.org/abs/1607.03250
https://arxiv.org/abs/1909.10351
https://arxiv.org/abs/1909.10351
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2002.03231
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf

Under review as a conference paper at ICLR 2026

Shiwei Liu, Tianlong Chen, Zhenyu Zhang, Xuxi Chen, Tianjin Huang, Ajay Jaiswal, and
Zhangyang Wang. Sparsity may cry: Let us fail (current) sparse neural networks together!, 2023.
URL https://arxiv.org/abs/2303.02141.

Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, Liangzhen Lai, and Vikas
Chandra. Mobilellm: Optimizing sub-billion parameter language models for on-device use cases,
2024. URLhttps://arxiv.org/abs/2402.14905.

Haiquan Lu, Yefan Zhou, Shiwei Liu, Zhangyang Wang, Michael W. Mahoney, and Yaoqing Yang.
Alphapruning: Using heavy-tailed self regularization theory for improved layer-wise pruning of
large language models, 2024. URL https://arxiv.org/abs/2410.10912.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models, 2023. URL https://arxiv.org/abs/2305.11627,

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016. URL https://arxiv.org/abs/1609.07843.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering, 2018. URL https://arxiv.
org/abs/1809.02789.

Azade Nova, Hanjun Dai, and Dale Schuurmans. Gradient-free structured pruning with unlabeled
data, 2023. URL https://arxiv.org/abs/2303.04185.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, et al. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774l

Alec Radford, Karthik Narasimhan, Tim Salimans, [lya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023. URL https://arxiv.org/abs/1910.10683.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale, 2019. URL https://arxiv.org/abs/1907.
10641.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter, 2020a. URL https://arxiv.org/abs/1910.
01108.

Victor Sanh, Thomas Wolf, and Alexander M. Rush. Movement pruning: Adaptive sparsity by
fine-tuning, 2020b. URL https://arxiv.org/abs/2005.07683.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models, 2024. URL https://arxiv.org/abs/2306.11695|

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. Mobilebert:
a compact task-agnostic bert for resource-limited devices, 2020. URL https://arxiv.org/
abs/2004.02984.

Jean-Loup Tastet and Inar Timiryasov. Babyllama-2: Ensemble-distilled models consistently out-
perform teachers with limited data, 2024. URL https://arxiv.org/abs/2409.17312,

Omkar Thawakar, Ashmal Vayani, Salman Khan, Hisham Cholakal, Rao M. Anwer, Michael Fels-
berg, Tim Baldwin, Eric P. Xing, and Fahad Shahbaz Khan. Mobillama: Towards accurate and
lightweight fully transparent gpt, 2024. URL https://arxiv.org/abs/2402.16840,

Inar Timiryasov and Jean-Loup Tastet. Baby llama: knowledge distillation from an ensemble of
teachers trained on a small dataset with no performance penalty, 2023. URL https://arxiv.
org/abs/2308.020109.

12

https://arxiv.org/abs/2303.02141
https://arxiv.org/abs/2402.14905
https://arxiv.org/abs/2410.10912
https://arxiv.org/abs/2305.11627
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/2303.04185
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/2005.07683
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2004.02984
https://arxiv.org/abs/2004.02984
https://arxiv.org/abs/2409.17312
https://arxiv.org/abs/2402.16840
https://arxiv.org/abs/2308.02019
https://arxiv.org/abs/2308.02019

Under review as a conference paper at ICLR 2026

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971,

Elena Voita, Javier Ferrando, and Christoforos Nalmpantis. Neurons in large language models:
Dead, n-gram, positional, 2023. URL https://arxiv.org/abs/2309.04827.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding, 2019.
URL https://arxiv.org/abs/1804.07461.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models,
2022. URL https://arxiv.org/abs/2206.07682.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate
models, 2022. URL https://arxiv.org/abs/2204.00408.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming lan-
guage models with attention sinks, 2024. URL https://arxiv.org/abs/2309.17453|

Mengwei Xu, Donggqi Cai, Yaozong Wu, Xiang Li, and Shangguang Wang. Fwdllm: Efficient fedllm
using forward gradient, 2024. URL https://arxiv.org/abs/2308.13894,

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, et al. Qwen?2 technical report, 2024. URL https://arxiv.org/abs/
2407.10671.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, et al. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388l

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluis Marquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 47914800, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.
18653/v1/P19-1472. URL https://aclanthology.org/P19-1472/.

Li Lyna Zhang, Youkow Homma, Yujing Wang, Min Wu, Mao Yang, Ruofei Zhang, Ting Cao, and
Wei Shen. Swiftpruner: Reinforced evolutionary pruning for efficient ad relevance, 2022a. URL
https://arxiv.org/abs/2209.00625.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model, 2024. URL https://arxiv.org/abs/2401.02385,

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, et al. Opt: Open pre-trained transformer language models, 2022b. URL https:
//arxiv.org/abs/2205.01068.

Yue Zheng, Yuhao Chen, Bin Qian, Xiufang Shi, Yuanchao Shu, and Jiming Chen. A review on
edge large language models: Design, execution, and applications. ACM Comput. Surv., 57(8),
March 2025. ISSN 0360-0300. doi: 10.1145/3719664. URL https://doi.org/10.1145/
3719664.

Yefan Zhou, Yaoqing Yang, Arin Chang, and Michael W. Mahoney. A three-regime model of net-
work pruning, 2023. URL https://arxiv.org/abs/2305.18383|

13

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2309.04827
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2204.00408
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2308.13894
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2505.09388
https://aclanthology.org/P19-1472/
https://arxiv.org/abs/2209.00625
https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://doi.org/10.1145/3719664
https://doi.org/10.1145/3719664
https://arxiv.org/abs/2305.18383

Under review as a conference paper at ICLR 2026

A RELATED WORK

Recent advances in language modeling have bifurcated into two principal trajectories. On the one
hand, large language models (LLMs) continue to scale in accordance with established scaling laws,
pursuing increasingly complex linguistic tasks with the overarching goal of progressing toward arti-
ficial general intelligence (Kaplan et al., 2020; Xu et al., [2024)). On the other hand, small language
models (SLMs) emphasize computational efficiency and are explicitly optimized for deployment in
resource-constrained environments such as smartphones, edge devices, and wearables. These com-
pact models aim to democratize machine intelligence by reducing costs, improving accessibility,
and enabling practical applications across diverse platforms.

SLMs typically adopt either encoder-only or decoder-only architectures. Encoder-only models, gen-
erally derived from BERT Devlin et al.[|(2019), achieve compression and acceleration through struc-
tural modifications. For instance, MobileBERT [Sun et al.| (2020) employs an inverted bottleneck
design to reduce parameters and computation, while DistilBERT |Sanh et al.| (2020a) and TinyBERT
Jiao et al.[(2020) compress the BERT architecture while retaining over 96% of its accuracy. Decoder-
only variants, following autoregressive designs such as GPT Radford et al.| (2018) and LLaMA
Touvron et al.|(2023), leverage techniques including knowledge distillation, parameter sharing, and
memory optimization. Notable examples include BabyLLaMA |Timiryasov & Tastet| (2023)) and
BabyLLaMA-2 Tastet & Timiryasov|(2024), which distill multiple teacher models into compact ar-
chitectures, TinyLLaMA [Zhang et al.| (2024)), which incorporates FlashAttention Dao et al.| (2022)
for memory efficiency, MobilLLaMA [Thawakar et al.[(2024)), which introduces parameter sharing
to lower both pretraining and inference costs, and MobileLLM |Liu et al.| (2024), which combines
embedding-sharing, grouped-query attention, and block-wise weight sharing to minimize latency.

In parallel with architectural innovation, network pruning has emerged as a central compression
paradigm for both LLMs and SLMs. By removing redundant parameters while preserving core
functionality, pruning enables the creation of efficient sparse networks (LeCun et al.| [1989; Hassibi
et al., |1993). Pruning approaches are broadly divided into structured and unstructured meth-
ods. Structured pruning eliminates entire components—such as neurons, channels, or attention
heads—thereby enhancing GPU efficiency (Xia et al.| [2022}; Fang et al., 2023; |[Nova et al., [2023)).
Recent work has explored task- and prompt-specific sparsity within attention and MLP layers (Hu
et al.| [2016; [Voita et al., 2023)), with LLM-Pruner Ma et al.|(2023)) demonstrating the effectiveness
of gradient-based importance measures combined with low-rank approximations. By contrast, un-
structured pruning|Han et al.[(2015}/2016); |Gadhikar et al.|(2023);|Liu et al.[(2023)) removes individ-
ual weights (e.g., via magnitude pruning), often preserving accuracy without structural constraints.
However, many unstructured methods rely on modified training Sanh et al.| (2020b); Kusupati et al.
(2020), retraining [Zhou et al.| (2023), or iterative pruning |[Frankle et al.| (2020), which impose sig-
nificant computational costs for large models (Zhang et al., [2022b)).

To mitigate these costs, recent research emphasizes post-training pruning, which dispenses with
retraining phases and is particularly advantageous for scaling to LLMs. SparseGPT |Frantar & Al-
istarh| (2023)) leverages second-order Hessian information and calibration data for efficient weight
updates, while Wanda [Sun et al.| (2024) combines weight magnitudes with activation norms to re-
duce computational overhead. GBLM-Pruner Das et al.| (2024) prioritizes gradient importance using
first-order Taylor expansion, enabling pruning under compute-constrained scenarios. Most recently,
Pruner-Zero |Dong et al.[(2024)) introduced a symbolic evolution framework that automates the dis-
covery of pruning metrics through genetic algorithms, thereby advancing the frontier of pruning
research.

B IMPLEMENTATION OF REINFORCEMENT LEARNING SEARCH
FRAMEWORK

To optimize the pruning exponents (z, y) for each transformer layer, we design a customized online
reinforcement learning (RL) framework. This section details its implementation and search strategy.
We provide the required parameter settings and corresponding functional descriptions in the table[3}

Actor-Critic Architecture with Noisy Exploration. We adopt a lightweight actor-critic architec-
ture. The actor network predicts a probability distribution over four discrete actions: up (+y), down
(—y), left (—x), and right (+x). Noise-injection layers are incorporated to promote early ex-

14

Under review as a conference paper at ICLR 2026

ploration. The critic is a feedforward network estimating the state value. Both networks are trained
using Adam optimizers with different learning rates.

Action Space and State Representation. Each pruning state is encoded as a 2D vector [z, y],
representing the current exponents. Actions are predefined directional moves in this space. The
actor produces a softmax probability over actions, and the agent follows an e-greedy or stochastic
policy based on the training phase.

Experience Replay and Network Updates. We maintain an experience replay buffer containing
transitions (s¢, at, S¢+1, 7't), Where:

* s; denotes the current state (e.g., the current pruning exponents (z,y));

* a, is the action taken (e.g., up indicates increasing y);

* s.41 is the next state after executing ay;

* r, is the reward received (e.g., the reduction in perplexity).

Network updates are conducted using minibatches, applying temporal difference learning to com-
pute the advantage. To stabilize training, we clip gradients during backpropagation.

Three-Phase Search Strategy. Our RL search comprises three sequential stages:

* Phase 1: Enhanced Exploration. Initial search points are generated via Latin Hypercube Sam-
pling (LHS). From each point, the agent explores for 10 steps using a hybrid of random and
noisy-policy actions to broadly sample the compensation landscape.

* Phase 2: Multi-Start Policy Search. The top 10% of explored configurations (ranked by per-
plexity) are used as new anchors for deeper policy-guided search. A simulated annealing strategy
is applied to escape local minima, and we periodically reset to the best global configuration.

* Phase 3: Local Refinement. We conduct a fine-grained local search around the best point (z*, y*)
using reduced step sizes. All directions are probed to ensure optimality.

Evaluation and Caching. Each configuration is evaluated via perplexity on a held-out calibration

dataset. All evaluated points are cached to avoid redundancy. The globally best (z*,y*) pair is
reapplied to the corresponding layer for final pruning.

Table 5: Hyperparameters used in the reinforcement learning search algorithm.

Parameter Value Description

n_start_points 5 Number of initial points generated via Latin Hypercube
Sampling.

steps_per_point 10 RL steps per starting point during Phase 1.

replay-buffer.size 1000 Maximum capacity of the experience replay buffer.

epsilon.start 1.0 Initial exploration rate in e-greedy strategy.

epsilon.end 0.1 Minimum exploration rate allowed.

epsilon.decay 0.97 Exponential decay rate of € per step.

actor_lr 0.0003 Learning rate for the actor policy network.

critic.lr 0.001 Learning rate for the critic value network.

update_batch_size 10 Number of experience tuples per update step.

gamma 0.9 Discount factor for future rewards.

max_steps 20 Maximum search depth per trajectory in Phase 2.

max_depth 5 Reset interval to return to global best.

noise_factor 0.2 Strength of noise injected into actor network layers.

refinement_rounds 3 Number of rounds in local fine-tuning (Phase 3).

refinement_step_scale 1/5 Step size is scaled down by 5x in local search.

15

Under review as a conference paper at ICLR 2026

C ADDITIONAL EXPERIMENTS

C.1 FEW-SHOTS TASKS

To comprehensively assess model robustness under sparsity constraints, we report the performance
of several pruning methods across seven representative few-shot tasks. These tasks include BoolQ
Clark et al.|(2019), RTE|Wang et al.[(2019), HellaSwag Zellers et al.|(2019), WinoGrande Sakaguchi
et al.| (2019), ARC-e |Clark et al.| (2018), ARC-c |Clark et al.| (2018)), and OBQA Mihaylov et al.
(2018)), with Table [6| summarizing the accuracy under a fixed 50% unstructured sparsity.

Unlike zero-shot evaluation, which relies solely on model pretraining for task understanding, few-
shot settings inject limited in-context supervision, better reflecting practical deployment where
small-scale user feedback or prompts are available. Moreover, small and medium-sized models
typically underperform in zero-shot scenarios due to capacity limitations. The 3-shot setup thus al-
lows for a more realistic evaluation of a pruned model’s retained expressiveness and generalization
ability.

Among all methods, X-Pruner consistently ranks among the top performers, yielding the highest
mean accuracy across most models. SparseGPT also performs strongly, especially on larger models.
Notably, traditional baselines such as Wanda and Pruner-Zero remain competitive on certain tasks,
but their performance fluctuates more widely across architectures.

Tasks with strong lexical signals, such as BoolQ and WinoGrande, tend to exhibit smaller perfor-
mance gaps between pruned and dense models, indicating that surface-level features are relatively
well preserved under pruning. In contrast, reasoning-heavy benchmarks like ARC-c and OBQA re-
veal more pronounced differences among pruning strategies, where fine-tuning or adaptive methods
such as SparseGPT and X-Pruner consistently outperform magnitude-based baselines. This suggests
that advanced pruning criteria are more effective at preserving the deeper representational capacity
required for complex reasoning tasks.

C.2 OPTIMAL PRUNING PARAMETERS

Table|7|and reports the optimal pruning exponents (z, y) searched by our reinforcement learning-
based framework for each transformer layer across a wide range of models. These values correspond
to the exponents used in the pruning criterion |W|* - |G|Y, where W and G denote the weight and
gradient tensors, respectively. For each layer, the reported (z, y) pair achieves the lowest perplexity
under a fixed sparsity ratio of 50%. Dashes indicate layers that are absent in the corresponding
model. This layer-wise differentiation enables X-Pruner to adaptively tailor its pruning behavior
to the unique sensitivity of each layer, contributing to its superior overall performance under high
sparsity.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this paper, LLMs (specifically, OpenAI’s GPT-5) were used as a general-
purpose assist tool. Their role was limited to language polishing, LaTeX formatting suggestions, and
improving readability of the manuscript. All research ideas, theoretical developments, algorithmic
design, and experimental implementations were conceived, conducted, and validated solely by the
authors. The LLM was not involved in generating novel research ideas, designing experiments, or
interpreting results. Its contributions do not meet the criteria for authorship, and it should not be
regarded as a scientific contributor to this work.

16

Under review as a conference paper at ICLR 2026

Table 6: Accuracies (%) on 7 few-shot tasks under unstructured 50% sparsity.

Models Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean
Dense 56.94 51.99 32.15 52.01 46.09 21.25 18.40 39.83
Magnitude 53.82 53.07 27.76 51.70 35.61 18.52 10.80 35.90
OPT-350m SparseGPT 56.79 50.54 30.08 51.85 42.09 19.20 1580 38.05
Wanda 48.44 5343 29.48 49.72 39.23 17.83 1280 35.85
Pruner-Zero 55.63 51.26 29.18 50.99 39.44 16.89 1220 36.51
X-Pruner 56.01 52.90 30.13 51.59 43.18 19.98 1280 38.08
Dense 5749 51.62 37.54 52.80 59.64 25.60 19.60 43.47
Magnitude 37.83 47.65 26.48 50.04 31.52 20.48 11.80 32.26
Pythia-1B SparseGPT 5945 53.07 34.02 52.49 52.15 23.38 1740 4171
Wanda 61.53 53.43 32.20 51.46 51.09 21.67 17.60 41.28
Pruner-Zero 61.22 54.15 32.25 51.70 49.92 21.93 16.40 41.08
X-Pruner 61.38 54.09 34.08 52.30 52.28 23.18 1740 42.10
Dense 62.75 64.26 38.26 57.06 61.61 27.56 24.00 4793
Magnitude 4229 50.18 28.47 50.12 38.68 20.90 1420 34.98
Qwen2-0.5B SparseGPT 5991 58.84 34.53 55.41 53.28 22.95 20.00 43.56
Wanda 60.18 56.68 32.58 55.56 49.66 21.26 1640 41.76
Pruner-Zero 60.76 57.04 32.23 54.06 50.93 20.82 1620 41.72
X-Pruner 60.64 58.35 34.20 55.22 53.43 23.48 20.80 43.73
Dense 79.66 71.84 46.14 61.01 78.79 47.18 3040 59.29
Magnitude 51.28 51.99 26.87 49.33 30.68 18.77 16.40 35.05
Qwen3-1.7B SparseGPT 76.09 71.12 40.14 58.17 69.69 37.12 28.60 54.42
Wanda 75.78 72.56 38.38 55.33 67.72 33.79 2260 5231
Pruner-Zero 74.83 69.68 36.89 56.20 69.32 35.15 21.00 51.87
X-Pruner 76.53 7195 40.88 57.85 69.85 36.11 28.67 54.55
Dense 64.65 57.76 48.08 64.01 68.60 34.98 29.80 52.55
Magnitude 40.24 51.99 25.96 50.20 27.99 18.52 1440 3276
Llama3.2-1B SparseGPT 60.98 53.79 38.68 58.17 56.73 27.13 22.80 4547
Wanda 61.38 52.71 35.04 56.67 53.83 25.51 18.80 43.42
Pruner-Zero 61.22 5235 33.61 5391 52.44 22.70 17.00 41.89
X-Pruner 61.28 53.79 35.53 56.67 55.30 25.83 19.60 44.00

17

Under review as a conference paper at ICLR 2026

Table 7: Layer-wise optimal pruning parameters (z,y) for OPT, Qwen2, and LLaMA3.2. Dashes
indicate layers not present.

OPT Qwen2 LLaMA3.2

Layer
125m 350m 1.3B 0.5B 1.5B 1B

(2.40,1.50) (1.30,0.50) (2.00,1.20) (2.50,1.30) (1.70,1.00) (2.30,1.68)
(1.70,1.80) (1.20,2.20) (1.74,0.70) (1.90,1.20) (2.20,1.70) (2.00,2.40)
(224220) (2.40,1.90) (0.70,1.14) (1.90,2.44) (1.42,1.20) (2.10,1.30)
(130,2.48) (1.02,0.50) (0.902.32) (1.40,2.38) (1.90,1.02) (1.90,1.80)
(2.102.20) (2.10,1.60) (0.60,0.94) (1.10,1.20) (2.50,1.50) (1.50,1.24)
(192,1.10) (2.30,2.50) (0.50,1.54) (1.90,1.90) (1.76,0.70) (1.20,1.10)
(0.94,0.50) (2.20,1.16) (2.54,0.80) (1.56,1.60) (2.50,2.30) (1.60,1.42)
(1.70,1.10) (1.70,1.28) (0.80,2.18) (2.50,2.00) (0.90,1.60) (1.40,2.50)
(1.68,1.10) (2.20,1.60) (1.70,2.40) (0.90,1.18) (2.10,2.16) (2.30,1.90)
(2.402.10) (1.90,0.70) (1.30,046) (1.70,1.60) (2.20,1.30) (1.30,1.90)
(1.70,1.12) (1.60,0.70) (1.20,0.80) (1.98,0.80) (2.20,1.70) (1.90,1.88)
(1.80,1.12) (2.22,0.60) (2.40,0.70) (2.542.40) (2.40,0.50) (1.90,1.60)
(1.50,0.74) (1.82,1.10) (1.00,1.70) (1.30,2.40) (1.70,1.80)
— (2.00,1.20) (1.00,0.80) (1.30,1.90) (2.00,2.42) (1.80,2.00)
— (2.50,1.80) (1.32,0.50) (0.70,0.90) (1.62,0.50) (1.90,1.60)
- (120,1.20) (1.40,1.50) (2.202.10) (0.70,1.80) (0.82,0.50)
— (1.30,0.70) (1.10,0.80) (1.30,1.60) (1.50,1.40)
— (130,1.10) (2.40,0.94) (2.20,1.80) (1.12,1.50) —
— (250,2.10) (1.20,1.60) (1.30,1.00) (2.20,2.00) —
— (230,0.70) (2.50,0.50) (1.80,1.70) (2.40,1.52) —

0% A N PP m>00TIUN AW = O

20 — (2.30,1.30) (1.10,0.90) (2.482.10) (2.40,1.38) —
21 - (2.08,1.20) (1.20,1.60) (1.50,1.40) (1.80,2.50) —
22 - (2.40,1.54) (2.30,0.70) (1.60,1.60) (2.10,1.80) -
23 — (2.20,2.48) (1.50,1.00) (2.10,1.90) (1.60,1.40) —
24 — — — — (1.10,0.70) —
25 — — — — (1.20,0.64) —
26 — - — — (2.10,1.30) —
27 — — — — (1.40,1.20) -

18

Under review as a conference paper at ICLR 2026

Table 8: Layer-wise optimal pruning parameters (x,y) for Pythia and Qwen3. Dashes indicate
layers not present.

Layer Pythia Qwen3
160m 410m 1B 1.4B 0.6B 1.7B
0 (1.60,1.30) (1.50,1.10) (2.50,0.56) (2.50,0.48) (2.00,2.20) (1.00,1.90)
1 (1.80,1.40) (2.00,1.30) (2.54,0.60) (1.60,0.80) (1.72,1.60) (2.30,0.50)
2 (2.22,1.50) (1.70,0.72) (2.10,2.20) (2.52,2.00) (1.60,0.60) (1.60,0.68)
3 (2.02,2.00) (1.94,1.90) (2.40,2.24) (2.10,2.08) (1.50,0.60) (2.00,1.60)
4 (2.22,1.50) (1.86,2.00) (2.38,1.10) (2.10,1.16) (2.20,1.80) (1.10,2.04)
5 (1.30,1.32) (1.40,0.90) (1.80,0.80) (2.50,1.90) (2.18,0.50) (2.40,1.52)
6 (2.10,2.02) (1.90,0.96) (2.20,1.20) (1.98,1.60) (1.40,1.10) (2.50,1.20)
7 (1.90,2.52) (1.80,1.00) (2.42,0.80) (1.70,1.42) (2.50,1.00) (1.20,2.30)
8 (1.60,2.50) (1.90,0.90) (2.50,2.50) (2.30,1.80) (2.10,1.90) (2.20,0.80)
9 (1.50,1.50) (1.50,2.10) (2.22,2.50) (0.90,2.26) (2.08,1.20) (1.78,0.70)
10 (2.08,1.40) (1.60,1.50) (2.20,1.30) (2.50,1.78) (1.60,1.42) (1.88,1.00)
11 (1.98,0.60) (1.50,0.70) (2.30,2.00) (2.20,2.50) (2.00,1.70) (2.00,1.30)
12 (0.90,1.68) (1.90,1.30) (2.20,1.90) (2.30,0.70) (2.42,0.80)
13 — (1.50,1.98) (1.00,2.20) (1.92,0.80) (1.70,2.12) (1.86,0.50)
14 — (1.70,2.30) (1.06,1.50) (1.70,0.90) (2.14,2.20) (0.90,1.40)
15 — (1.20,0.50) (2.50,2.40) (1.70,1.40) (1.90,0.60) (1.90,1.08)
16 — (1.60,1.00) (2.50,1.30) (2.18,0.60) (1.16,0.50)
17 — (2.46,2.20) — (1.80,1.50) (2.30,1.20) (2.32,0.70)
18 — (2.40,2.20) — (1.60,1.10) (2.20,1.70) (2.46,1.60)
19 — (1.60,1.50) — (0.90,1.30) (2.00,1.30) (2.20,1.12)
20 — (1.90,2.10) — (2.30,0.74) (1.60,0.90) (2.40,1.60)
21 — (0.90,1.40) — (2.30,1.90) (2.00,2.40) (1.28,1.20)
22 — (2.40,2.20) — (2.20,0.80) (1.10,1.50) (2.10,1.60)
23 — (1.40,2.30) — (1.38,1.40) (1.80,1.40) (1.68,0.80)
24 — — (0.90,1.10) (1.10,0.90)
25 — — — — (2.40,1.50) (1.86,0.80)
26 — — — — (2.40,1.38) (1.80,0.80)
27 — — — — (2.42,2.50) (1.90,0.80)

19

	Introduction
	Method
	Adaptive Pruning Metric
	Error Propagation and Compensation Mechanism
	Reinforcement Learning Search Algorithm
	Optimization of Pruning Path
	Mathematical Justification of Order Rationale

	Experiment
	Experiment Setup
	Experiment Results
	Effectiveness of Optimized Pruning Path
	Ablation Study

	Conclusion
	Related Work
	Implementation of Reinforcement Learning Search Framework
	Additional Experiments
	Few-shots Tasks
	Optimal Pruning Parameters

	The Use of Large Language Models (LLMs)

