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Abstract

The influence maximization (IM) problem aims to identify a budgeted set of nodes
with the highest potential to influence the largest number of users in a cascade
model, a key challenge in viral marketing. Traditional IM approaches consider
each user/node independently as a potential target customer. However, in many
scenarios, the target customers comprise motifs, where activating only one or a few
users within a motif is insufficient for effective viral marketing, which, nevertheless,
receives little attention. For instance, if a motif of three friends planning to dine
together, targeting all three simultaneously is crucial for a restaurant advertisement
to succeed. In this paper, we address the motif-oriented influence maximization
problem under the linear threshold model. We prove that the motif-oriented IM
problem is NP-hard and that the influence function is neither supermodular nor
submodular, in contrast to the classical IM setting. To simplify the problem, we
establish the submodular upper and lower bounds for the influence function. By
leveraging the submodular property, we propose a natural greedy strategy that
simultaneously maximizes both bounds. Our algorithm has an approximation ratio
of τ ·(1−1/e−ε) and a near-linear time complexity of O((k+l)(m+η) log η/ε2).
Experimental results on diverse datasets confirm the effectiveness of our approach
in motif maximization.

1 Introduction

The utilization of “word-of-mouth" and “viral marketing” techniques has become prevalent in the
promotion of new products. In social networks, “viral marketing” is implemented by selecting highly
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influential users as initial adopters [1, 2]. The ultimate goal of this strategy is to trigger widespread
adoption of products along social connections, i.e., “influence maximization (IM)” problem [3]. IM
serves as a key research problem in network analysis and has received significant attention due to
its commercial applications [4, 5, 6]. While most studies perceive each user as a potential target
consumer, our paper aims to explore a more general IM problem where the target consumers are
represented as motifs, each motif consisting of multiple users [7, 8]. In this scenario, activating only
one (or a few) users within a motif may prove ineffective for viral marketing.

Consider the following scenario: A restaurant seeks to attract customers through viral marketing
on social networks. In this scenario, a motif of k friends plans to dine together, and they have
three different underlying mechanisms for choosing a restaurant: (a) One user already knows a
restaurant and recommends it to others in the motif. Therefore, targeting only one user is sufficient
for advertising the restaurant. (b) All users in the group must agree on the restaurant choice, requiring
the advertisement to activate every member in the motif. (c) The decision is made through voting,
with the restaurant chosen if more than half users in the motif agree. To maximize restaurant profits,
advertisements should target entire motifs rather than individual users in social networks. Similar
situations arise in other group decision-making scenarios, such as anonymous voting, family parties,
and group tours [9, 10, 11]. When it comes to viral marketing aimed at motif consumers, maximizing
the number of ultimate activated motifs is the explicit purpose for the IM, called motif-oriented IM.

The motif-oriented IM model differs from the classical IM in two key aspects: (a) A user can belong
to multiple motifs and consume a product multiple times. (b) Activating the most users in the classical
IM may only trigger a few motifs, while activating most motifs might require fewer users than that
of the classical IM. These factors present challenges in designing an effective strategy to determine
the seed nodes. Note that some works investigate the group-oriented IM [9], which is different from
our motif-based IM. Motifs are the function units of a graph [7, 8] and users are mutually connected
within a motif. Whereas users may be not connected (or partially reachable) in groups. In the paper,
we provide an efficient solution for motif-based IM with a guaranteed approximation ratio.

This paper introduces an algorithm by optimizing the lower and upper bound of the motif-oriented
influence maximization (LBMOIM) to determine a budget set of seed nodes, aiming to maximize
the number of activated motifs in social networks under the linear threshold model. In our model,
each motif is associated with a threshold number ri, and if the number of activated nodes in the motif
exceeds ri, the motif is called activated; otherwise, it remains inactive. Particularly, ri = {1, k, k/2}
represents the three different restaurant determination scenarios introduced above. We define the
target motif influence as the count of activated motifs. We find that the influence function is monotone,
but is neither submodular nor supermodular, making direct optimization challenging. To address
this, we establish the lower and upper bounds for the influence function for different ri. The two
bounds represent the weighted node-level influence function and both are monotone and submodular.
We use a greedy algorithm to optimize the two bounds simultaneously to select the best seed nodes.
Experiments in various datasets demonstrate the effectiveness and efficiency of our algorithm. In
addition, our study demonstrates that LBMOIM can be expanded to accommodate various diffusion
models [3].We introduce a modified version of LBMOIM for the independent cascade model. We
provide evidence to confirm the applicability of LBMOIM in different cascade models.

2 Related work

Node-level influence maximization. Kempe et al. [3] first introduced an algorithmic study on the IM
problem, demonstrating its NP-hardness in general cases. They proposed a greedy algorithm that
can approximate an approximation ratio of 1− 1/e with time complexity of O(knmr). The major
time-consuming step is the generation of Monte Carlo samples. To address this, various methods
have been proposed to utilize reverse reachable (RR) sets rather than Monte Carlo simulation to
reduce the time complexity without sacrificing the performance accuracy. These include the IMM
[12], SSA [13], TIM [14], and OPTIM-C [15] techniques. More recently, Guo et al. [16] devised
an efficient RR set generation approach that decreases the sampling time for each RR set. Hao et
al. [17] propose a novel and effective framework for popularity maximization, designed to address
the challenges of advertising competition. In the last few years, deep learning-based methods have
emerged as alternative solutions. Fan et al. [18] introduced a deep reinforcement learning framework
that learns the graph representation and sequentially selects key nodes one at each step. Ling et al.
[4] developed a novel framework to generate latent representations of node sets and determine the

2



best node set only in a single step, in which the complex interactions among key nodes are encoded
in the latent representations. Besides, there exist some other IM variants, such as time-critical IM
[19], robustness IM [20, 21], online IM [22], and so on [23, 24].

Group-level influence maximization. Group-level influence maximization is an emerging field within
social network analysis [9, 25, 11]. Groups refer to communities, cliques, and motifs, other kinds
of subgraphs. The group-level influence maximization is to pinpoint influential nodes capable of
triggering the most groups. Zhu et al. [9, 26, 27] have introduced the problem aimed at selecting key
nodes to maximize the number of activated groups. They have also proven the NP-hardness of this
problem and provided upper and lower bounds for the objective function. However, it is important to
note that the lower bounds are dependent on the graph structure. Nguyen et al. [28] have proposed a
method for identifying key nodes that exert influence over the largest number of communities. Zhong
et al. [29, 30] have developed a heuristic approach to maximize the number of activated groups and
have empirically demonstrated its effectiveness. Phuong et al. [31, 32] have minimized the cost
of group influence maximization in social networks. However, we still lack an effective method to
guarantee the approximation ratio of motif influence maximization.

Our study draws parallels with the group influence optimization in references [9] and [31]. However,
our work stands out from prior studies through the following innovative contributions: (a) We first
propose the motif-oriented influence maximization under the linear threshold model and explore the
unique properties of this problem, which differ from traditional groups in a graph. (b) We propose
both upper and lower bounds for the motif-oriented objective function. The two bounds share the
same formalisms and can be optimized simultaneously, unlike previous solutions of group-oriented
IM where the two bounds are different and cannot achieve the optimal solution simultaneously. (c)
In contrast to previous heuristic approaches that cannot guarantee performance, we present a rapid
algorithm that guarantees an approximation ratio. Therefore, our paper provides a viable approach to
maximize motif-oriented influence in large graphs.

3 Problem definition

Let G = (V,E) be a directed graph G with n nodes and m edges, where a node v ∈ V represents a
user and an edge (u, v) ∈ E represents the connection between users. (u, v) ∈ E means that there is
a directed edge from node u to v. Each edge (u, v) ∈ E is associated with a weight p(u, v). Given a
subset of nodes S ∈ V , denoted as initial activated seeds, we consider the following cascade process
C that allows for both the Linear Threshold (LT) and Independent Cascade (IC) models:

• Initially, all nodes in set S are activated and the other nodes are inactive.
• At each time step, when a node is activated, it has the opportunity to activate its out-neighbors

in the following time step: Each node can activate its out-neighbors only once; Once a node
is activated, it will remain active in the subsequent time steps.

• The cascade process terminates when there are no further nodes that can be activated.

Let IC(S) be the number of activated nodes for an instance C of the above cascade process C on
condition that S is the initial seed node set. We denote IC(S) = EC[IC(S)] as the expected influence
of S under C. The traditional IM aims to find the best S to maximize IC(S). Here, we use motifs as
the targeted customers for advertisements. We define a motif as a strongly connected subgraph:

Definition 1(Motif definition). Given a subset of nodes g in a graph, if there exist mutual paths
between any pair of nodes in g, such that the paths only traverse the nodes within g, we denote g as a
motif(strongly connected group).

Roughly speaking, a motif refers to a small, strongly connected set of nodes, distinct from the strongly
connected giant component of a graph. Motifs are commonly regarded as the fundamental functional
units within graphs, a concept widely studied in the field of network science [? 8]. In order to
facilitate group decision-making, it is essential that nodes within a motif have mutual accessibility,
i.e., strongly connected. This requirement aligns well with various real-life scenarios. Establishing
an acquaintance chain becomes indispensable to coordinate the activity occurring within the group.

Let g = {g1, g2, ..., gh} be the targeted motifs set. Let µ(v) = 1(0) denote whether node v is
activated or not and µ(gi, ri) = 1(0) denote whether motif gi is activated or not. Specifically,
µ(gi, ri) = 1 indicates that there are more than ri activated nodes within motif gi (i.e., the motif
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is activated), while µ(gi, ri) = 0 indicates that the number of activated nodes in motif gi is less
than ri. Now, let’s define Ig

′

C (S) as the number of activated motifs resulting from an instance C,
given that S represents the initial seed nodes, Ig

′

C (S) =
∑h

i=1 µ(gi, ri). In viral marketing, motifs
of different sizes bring about different profits, hence a general motif-oriented influence function is
the weighted number of activated motifs, IgC(S) =

∑h
i=1 wiµ(gi, ri), where wi ≥ 0 is the weight of

motif i. Additionally, we denote ICg(S) = EC[I
g
C(S)] as the expected weighted influence of seed

nodes S under the cascade process C. Hence the problem in the paper is formalized as:

Problem Definition 1(Motif-oriented influence maximization). Given a graph G, a cascade model
C, and an integer k, the Motif-Oriented Influence Maximization (MOIM) asks for a size-k seed set
with the largest expected activated motifs, i.e.,

Sk = argmaxS:|S|=kICg(S). (1)

Cascade Models: Our paper primarily focuses on the analysis of the LT model. The LT model
requires that

∑
u p(u, v) ≤ 1. In the LT model, each node is associated with a uniformly random

threshold λv ∈ [0, 1]. When a node v is inactive at time t, it will become active at time t + 1 on
condition that

∑
u∈Av

p(u, v) · µ(u) ≥ λv , where Av represents the activated in-neighbors of node v.
Notably, our findings are not limited to the LT model and can be extended to the IC model and the
triggering model, which will be discussed in Section 5.

4 Complexity analysis of MOIM

Theorem 1. The MOIM problem is NP-hard for the linear threshold model.

Proof. Given that the classical IM problem can be treated as a particular case of MOIM where each
motif consists of a single node, since the classical IM problem is NP-hard [3], MOIM is also an
NP-hard problem. Strict proof details are shown in the appendix C. □

Theorem 2. The MOIM problem is neither submodular nor supermodular.

Proof. We present two illustrative examples to demonstrate the non-submodular and non-supermodular
properties. The submodular property states that the marginal gain of adding a node to a set of more
seed nodes should decrease. More formally, for any two sets of nodes S, T (S ⊆ T ), and a node
v(v /∈ T ), the inequality IC(S ∪ {v})− IC(S) ≥ IC(T ∪ {v})− IC(T ) should hold.

Case 1: We consider a graph with four nodes and a target motif as shown in Fig. 1(a). When the seed
nodes are S1 = {1} (or {2}), the expected activated motif is IC(S1) = p(1− p). On the other hand,
when the seed nodes are T = {1, 2}, the expected activated motif is IC(T ) = 2p(1− p) + (1− p)3.
As p → 0, we observe that IC(∅ ∪ {1})− IC(∅) = IC(S1) < IC({1, 2})− IC({2}). Consequently,
the MOIM model fails to satisfy the submodular property.

Case 2: We examine the MOIM problem under the specific scenario where a node represents a motif.
In this case, the MOIM problem is degenerated into the classical IM problem. Notably, the marginal
gain of seed nodes in the IM problem satisfies the submodular property. However, as a result of this
reduction, the general MOIM model no longer adheres to the supermodular property.

Combining the two cases, we arrive at the theorem. □

5 The proposed solution

5.1 The upper and lower bounds of the objective function

Given that the objective function of ICg(S) does not exhibit submodular or supermodular properties,
a feasible approach is to optimize the upper and lower bounds of ICg(S), i.e., the sandwich strategy.
The central issue of the sandwich strategy is to obtain the upper and lower bounds. Thus, in the
subsequent sections, we consider two cases and derive the upper and lower bounds of ICg(S).

Case 1 (ri = 1): We first consider the IM example in Fig. 1(a) and the scenario where ri = 1,∀i =
1, 2, ..., h. In this case, a motif will be activated if at least one node within the motif is activated. To
account for this, we introduce a super node for each motif, as shown in Fig. 1(b). Every node within
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a motif is then connected to its corresponding super node with an activation probability of p = 1 in
Fig. 1(b). The activation of the super node follows the independent cascade model, meaning that
the super node is activated if at least one node within the motif is activated. Let T represent the set
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Figure 1: (a) An example of a graph containing only one motif. Nodes 1 and 2 are the candidate seed
nodes. (b) A super node example(labeled a) for a motif, which connects to two nodes labeled 2 and 4.
(c) 5-spanning tree example (see blue edges).

of super nodes, |T | = h, and define f̄(S) = EC[
∑

a∈T wiµ(a)] as the expected number of activated
super nodes weighted by the respective weights wi, given the initially activated seeds S (S /∈ T ).
The expectation of activated motifs can then be represented as ICg(S) = f̄(S).

Remark 1. When ri = 1, the MOIM problem can be reformulated as the modified IM problem,
which seeks to determine the optimal seed set S for maximizing the activation of the designated super
node set T . Besides, one node may connect to equal or more than two supper nodes.

Case 2 (ri > 1): We divide the cascade process into two stages for the convenience of analysis:
Given a motif gi, the cascade first occurs along the edges outside the motif gi, and then the cascade
occurs between nodes within the motif gi. Let Pout(S, gi, A) be the joint distribution of the activated
node subset A (A ⊆ gi, A ̸= ∅) in the cascade stage. In the first stage, when the number of activated
nodes |A| is less than ri, in order to ensure the activation of motif gi, there must be at least ri − |A|
active edges connecting the activated nodes in A and the inactive nodes in gi \A.

We define a “semi d-spanning tree starting from node set A” as a subset of edges within the motif
gi that connect nodes in A and d other nodes in gi without forming any cycles, denoted as Ed(A).
Fig. 1(c) illustrates an example of a semi 5-spanning tree starting from the node set A = {7}.
Let P (Ed(A)) =

∏
(u,v)∈Ed(A) p(u, v), and P (Ed(A)) represents the realization probability that

the edges in set Ed(A) are concurrently activated in the cascade. If Ed(A) is empty, we then set
P (Ed(A)) = 1. Let P (E

(i)
d )min represent the minimal value of P (Ed(A)) for semi d-spanning tree

in the motif gi. The activation probability of motif gi is given by:

Pr[µ(gi, ri) = 1] =
∑
A̸=∅

∑
d,d≥ri−|A|

Pout(S, gi, A) · P (Ed(A))

≥
∑
A ̸=∅

∑
d,d≥ri−|A|

Pout(S, gi, A) · P (E
(i)
d )min. (2)

Since A ̸= ∅ and d ≤ ri − 1, we have P (E
(i)
d )min ≥ P (E

(i)
ri−1)min. Additionally, it is worth noting

that Pr[µ(gi, 1) = 1] =
∑

A̸=∅ Pout(S, gi, A) represents the probability that at least one node in
motif gi is activated by the outside nodes of gi. Thus, we have:

Pr[µ(gi, ri) = 1] ≥
∑
A ̸=∅

∑
d,d≥ri−|A|

Pout(S, gi, A) · P (E
(i)
ri−1)min

≥ P (E
(i)
ri−1)min · Pr[µ(gi, 1) = 1]. (3)

Recalling that f̄(S) = EC[
∑

a∈T wiµ(a)] represents the expected number of activated super nodes
weighted by the weights wi, i = 1, 2, ..., h. let w′

i = wi ·P (E
(i)
ri−1)min, τ = min{P (E

(i)
ri−1)min, i =

1, 2, ..., h}, f
1
(S) = EC[

∑
a∈T w′

iµ(a)], and f
2
(S) = τ · f̄(S). we have the following theorem:
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Theorem 3(Upper and lower bounds). f̄(S) is the upper bound of ICg(S); f
1
(S) and f

2
(S) are

two lower bounds of ICg(S), f
2
(S) ≤ f

1
(S) ≤ ICg(S) ≤ f̄(S). Besides, f

2
(S) = τ · f̄(S).

Proof : Since Pr[µ(gi, ri)] ≤ Pr[µ(gi, 1)] and wi ∈ [0, 1], ICg(S) = EC[
∑

i wiµ(gi, ri)] ≤
EC[

∑
i wiµ(gi, 1)] = f̄(S). Hence, f̄(S) is the upper bound of ICg(S).

Based on Eq. 3, ICg(S) = EC[
∑

i wiµ(gi, ri)] ≥
∑

i wi(P (E
(i)
ri−1)min · Pr[µ(gi, 1) = 1]) ≥

f
1
(S) ≥

∑
i wi(τ · Pr[µ(gi, 1) = 1]) = f

2
(S).□

5.2 The proposed algorithm LBMOIM

It is noticed that f̄(S), f
1
(S), and f

2
(S) share the similar formalism. In the section, we focus on

optimizing f̄(S) to calculate the best seeds, which is also capable for f
1
(S) and f

2
(S).

Node selection based on RR set: In Algorithm 1, we determine the optimal seeds by optimizing the
upper and lower bounds. Initially, a certain number θ of RR sets are generated (lines 2-6), followed by
the standard greedy algorithm to generate a set S∗

k of size-k nodes that covers the maximum number
of RR sets in R (lines 7-10). The method is similar to the node-level IM solution (see Appendix A).
The only difference is the probability of choosing root nodes in the generation of RR set. The key
problem of Algorithm 1 is determining the number θ. Let R denote the set of all RR sets generated
by randomly selecting a super node v with a probability of wv

η , where η =
∑

j wj . Let FR(S) be the
fraction of RR sets in R covered by S. We have the following lemma:

Lemma 1. Assume that θ follows

θ ≥ (8 + 2ε)η ·
l log η + log

(
η
k

)
+ log2

OPT · ε2
. (4)

Then, for any size-k set of seeds, the following inequality holds with at least probability 1− ηl/
(
η
k

)
:

|η · FR(S)− f̄(S)| < ε

2
·OPT, (5)

where OPT means the best-activated motif expectation of size-k seeds.

Proof : Comparing to Eq. 7, the only difference is replacing n by η in Eq. 4 because we have η
weighted target motifs in our task. Since the modification doesn’t influence the proof derivation in
reference [14], please see reference [14] for the details. □

Theorem 4 [14]. Given a θ that satisfies Eq. 4, Algorithm 1 returns a (1− 1/e− ε)-approximate
solution with at least probability 1− η−l.

Proof : Please see reference [14] for the details. □

Parameter estimation: The major problem lies in the prior evaluation of OPT . To differentiate
it from classical IM, we denote the optimal value as OPTf̄ = max{f̄(S), |S| = k}. In this part,
we evaluate the parameters θ and OPTf̄ . We generalize the estimation of OPT in TIM [14] to
weighted influence function to estimate a lower bound of OPTf̄ , denoted as KPT (see Algorithm
3 in appendix B). We could estimate KPT in Algorithm 3 KPT ∗ ∈ [KPT/4, OPTf̄ ] with a
probability of at least 1− η−l and expected time complexity of O(l(m+ η)logη) (see the proof in
appendix B).

We present Algorithm 2, which optimizes the Lower Bound of MOIM objective function (LBMOIM)
to calculate the best nodes. In Algorithm 2, we initially assess the value of θ (lines 1–2) and
subsequently compute the best nodes (line 3). Optimizing the lower bound f

2
(S) also is equivalent

to the optimization of the upper bound f̄(S), and hence we do not differentiate them and omit them.

Lemma 2(time complexity). The time complexity of Algorithm 2 is O((k + l)(m+ η) log η/ε2).

Proof : Please see the appendix C for the proof details. □

Lemma 3(Approximation confidence). In Algorithm 2, the S∗ is (1−1/e−ε)-approximate solution
with a probability of at least 1− 2 · η−l.

Proof: Given that the objective function f̄(S) is a weighted version of the IM problem that satisfies
the submodular property, the greedy algorithm is capable of producing a (1− 1/e− ε)-approximate
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Algorithm 1: NodeSelection (G, θ, k).
1 Initialize a node set S∗

k = ∅;
2 for i = 1 : θ do
3 Randomly choose a super node v with probability wv

η ;
4 Generate a RR set Ri starting from node v;
5 Insert Ri to R;
6 end
7 for i = 1 : k do
8 Identify the node v that maximizes the marginal coverage of R, FR(S

∗
k ∪ {v})− FR(S

∗
k);

9 Insert v into S∗
k ;

10 end
11 return S∗

k ;

solution for the submodular function. Additionally, by combining Eq. 5 with Theorem 4, we can
deduce the probability of at least 1− 2 · η−l.

Lemma 4(Approximation ratio). Let S∗ be the optimal solution that maximizes ICg(S), and S̄∗ be
the solution returned by Algorithm 2 that maximizes f̄(S). Algorithm 3 achieves an approximation
ratio γ = f(S̄∗)

ICg(S∗) ≥ τ · (1− 1/e− ε).

Proof: Based on Theorem 3, we have τ · f̄(S∗) ≤ ICg(S∗) ≤ f̄(S∗). Furthermore, based on Lemma
3, S̄∗ can achieve a (1− 1/e− ε) approximation ratio. Therefore, we can deduce that ICg(S∗) ≤
f̄(S∗) ≤ f̄(S̄∗)/(1 − 1/e − ε). The approximation ratio γ = f(S̄∗)

ICg(S∗) ≥ τ ·f̄(S̄∗)

f̄(S̄∗)/(1−1/e−ε)
=

τ · (1− 1/e− ε). □

Algorithm 2: (LBMOIM)summarization (G, k).
1 KPT = KptEstimation(G, k)f̄ ;

2 θ = (8 + 2ε)η · l log η+log (ηk)+log2

KPT ·ε2 ;
3 S∗ = NodeSelection(G, θ, k);
4 return S∗;

Improved MOIM solution: In the optimization, we only optimize f̄(S) (f
2
(S)). For the optimiza-

tion of f
1
(S), we could use Algorithms 1–3 to calculate the best node set that maximizes f

1
(S)

with minor modification: replacing wi and η =
∑

i wi with w′
i and η′ =

∑
i w

′
i in Algorithms 1–3.

Suppose that S∗
1 and S∗

2 are the returns of Algorithm 3 and correspond to the best f
1
(S) and f

2
(S).

Let S∗ = argmaxS{f(S)|S ∈ {S∗
1, S

∗
2}}. We bear the conception that S∗ performs better(at least

equal to) S∗
2. Besides, calculating S∗ has the same time complexity and approximation ratio, which

is omitted due to space limitation.

Remark 2: Our algorithm could also be generalized to the independent cascade (IC) model and
triggering model [3]. Please see Appendix D for the generalization.

6 Experiments

6.1 Experimental setup

Datasets. We use five real social networks in Table 1 in our experiments. All datasets are available in
KonectCollection 2.

Baseline methods. We perform a comparative analysis of our proposed method against five existing
algorithms: TIM+SIGMOD2014 [14], OPIMICMD2018 [15], DeepIMICML2023 [4], GIMTCSS2019

[9], and GIACC2023 [31]. TIM, OPIM, and IMM are among the most advanced techniques in the

2http://konect.cc/networks/
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Table 1: Dataset characteristics.
Name n m Type Average degree
Flickr 2M 33.1M directed 28.8

Amazon 334K 925.8K undirected 5.5
Catster 623K 14.0M undirected 44.9

Youtube 1M 3.0M undirected 5.3
Douban 154K 327.2K undirected 4.2

node-level IM problem, with a high approximation ratio (1 − 1/e − ε). On the other hand, GIM
and GIA are specifically designed to address the MOIM problem under the IC model. While GIM
and EGI achieve a similar approximation ratio (1− 1/e− ε) in terms of the objective functions, the
objective functions are slightly different from the targeted influence function.

Parameter Settings. For our method, we set the default parameters as follows: ε = 0.3, l = 1,
wi = 1 by default. We randomly choose 2000 strongly connected subgraphs as target motifs
with motif size being 3 unless otherwise stated. As for the other methods, we have employed the
recommended parameters from their original references. Two cascade models, namely the LT and
IC models, have been considered. To ensure reliability, each method has been executed 10 times,
and the average results have been reported. Furthermore, we have estimated the expected influence
of any given seed set S by averaging the results from 100 independent cascade simulations. Our
experiments run on a computer with one i7 CPU, 32GB memory and C++ development environment.
The code is available at https://anonymous.4open.science/r/motifinfluencemax-7863.

Evaluation metrics. The primary criterion for evaluation is the motif influence function IC(S), and
larger IC(S) is better. The second metric is the time cost. The secondary criterion pertains to the time
incurred during the process. In the case where different methods exhibit identical IC(S) values, the
preference is given to the method with a smaller time cost.

6.2 Experiment results

Results under the LT model: In Fig. 2, we present the performance of the motif influence function
under the LT model. The figure shows that our method LBMOIM surpasses existing methods across
various graphs. Additionally, comparing node-level methods (TIM+, OPIM, DeepIM) with motif-
targeted methods (GIM, GIA, LBMOIM), we find that the latter outperforms the former due to a slight
difference in the target objective function. Notably, for our method LBMOIM, we use a simplified
objective function that ensures both the approximation ratio and submodular property, resulting in the
best performance (Fig. 2). Furthermore, we consider the scenario of triangle subgraphs as motifs
and setting ri = 1. Fig. 3 shows the number of activated triangle motifs with a motif size of 3 and
ri = 1. Once again, the results reaffirm the superiority of our method, aligning with the findings
from Fig. 2. Additionally, we compare the number of activated motifs performance at ri = 2 in Fig.
4(a) and at ri = 3 in Fig. 4(b). In Fig. 4(c), we activate half of the motifs at ri = 2 and the other
half at ri = 3. In this scenario, we optimize the lower bound and upper bound of the motif influence
function. Considering only motif size 3, f

1
(S) degenerates into f

2
(S), and therefore, we do not

differentiate between the two lower bounds. Fig. 4 further confirms that our method outperforms
existing methods.

In Figs. 2 and 3, we have investigated the performance under different motif size. We have
also performed the case with a larger motif size. The results show that the performances of all
methods deteriorate with the increase of the motif size. However, our method still achieves the best
performance. Since the results are similar to Figs. 2 and 3, we omit them due to space limitation.

Results under the IC model: Our proposed method can be extended to the IC model and triggering
model. Fig. 5 illustrates the motif coverage performance under the IC model. Specifically, we
consider threesome motifs and set ri values equal to 1, 2, and 3 using the Douban dataset. Fig. 5
clearly demonstrates that our method consistently outperforms existing methods. It is important
to note that the GIA method exhibits a similar performance to our method in Fig. 5(b). However,
it is worth mentioning that GIA lacks an approximation ratio guarantee, resulting in fluctuating
performance as shown in Figs. 5(a) and 5(c). Furthermore, it is important to highlight that node-level
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Figure 2: Expected motif influence vs. k under LT model, ri = 1 and motif size being 2. (a) Flickr.
(b) Amazon. (c) Catster. (d) Youtube. Larger is better.
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Figure 3: Expected motif influence vs. k under LT model, ri = 1 and motif size being 3. (a) Flickr.
(b) Amazon. (c) Catster. (d) Youtube. Larger is better.
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Figure 4: Expected motif influence vs. k under LT model. (a) Flickr. Motif size is 2 and ri = 2. (b)
Amazon. Motif size is 3 and ri = 3. (c) Catster. Half motifs have size 2 and ri = 2, whereas the
other half motifs have size 3 and ri = 3. Larger is better.
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Figure 5: Expected motif influence vs. k under IC model in Douban dataset, ri = 1 and motif size
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methods such as TIM+, OPIM, and DeepIM, which have different target objective functions, also
cannot achieve the best performance under the IC model.

Results of time consumption: The time consumption of different approaches is compared in Fig.
6. Specifically, the comparison focuses on GIM, GIA, and LBMOIM, as these methods exclusively
optimize motif coverage. GIM exhibits the highest time consumption due to the need to optimize two
node-level objective functions, in contrast to the other two methods which only optimizes a single
objective function. Importantly, it should be noted that the time consumption of our proposed method
exhibits a minor increase with respect to k, demonstrating its scalability when applied to large graphs.
This observation aligns with the time complexity analysis in Lemma 2.

7 Conclusion

In this paper, we have addressed the motif-oriented influence maximization (MOIM) problem.
To tackle the non-supermodular and non-submodular MOIM objective function, we have derived
simplified submodular upper and lower bounds that make the problem more tractable. We further
propose an efficient algorithm capable of optimizing these bounds. The algorithm runs in expected
time of O((k + l)(m + η) log η/ε2) and achieves an approximation ratio of τ · (1 − 1/e − ε).
We experimentally evaluate our method against the state-of-the-art methods on large real-world
social networks using the LT and IC models. Our results consistently demonstrate that our method
outperforms state-of-the-art methods in terms of both motif influence and computational efficiency.
These findings highlight the potential value of motif-oriented approaches in viral marketing and
social influence scenarios.

In future work, we plan to delve deeper into the intricate structural properties of the motif influence
function, aiming to uncover new insights into its mathematical behavior and relationships. This
includes exploring more refined and tighter bounds that can guide the development of algorithms
with improved performance guarantees. Additionally, we intend to extend our investigation to handle
more complex motifs across diverse and heterogeneous network structures, where interactions are
dynamic or context-dependent.
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A Existing node-level IM

Most existing scalable IM solutions consist of two phases:

• Sampling. This phase iteratively generates a certain number of random reverse reachable(RR)
sets Ri, denoted as R = {R1,R2, ...,Rθ}.

• Node selection. This phase utilizes the standard greedy algorithm to derive a size-k node
set S∗

k that covers the most number of RR sets in R. The S∗
k is the output of the best node

seeds.

In the sampling phase, an RR set is constructed through two steps: Firstly, the direction of each edge
in E is reversed. Secondly, a node v is randomly selected from V , and an instance of the cascade is
obtained by setting v as the initial activated node using the cascade model C. The resulting set of
activated nodes is denoted as an RR set. The RR set exhibits the following desirable properties:

Lemma 5 [33]. Consider a seed set S and a randomly generated RR set Ri under the diffusion model
C. The expected influence IC(S) can be expressed as:

IC(S) = n · Pr[S ∩Ri ̸= ∅]. (6)

Borgs et al. [33] initially examine the efficiency of the greedy algorithm based on the aforementioned
two phases. Tang et al. [14] introduce an improved algorithm called TIM, which has a time complexity
of O((k + l)(n+m) log n/ε2). TIM estimates θ as follows:

θ ≥ (8 + 2ε)n ·
l log n+ log

(
n
k

)
+ log2

OPT · ε2
, (7)

where l and OPT represent a factor coefficient and the best influence of size-k node set, respectively.
Let FR(S) denote the fraction of RR sets in R covered by S. Eq. 7 guarantees a probability of at
least 1− nl/

(
n
k

)
that the inequality holds:

|n · FR(S)− IC(S)| <
ε

2
·OPT. (8)

The lower bound of OPT is estimated based on the expected influence of size-k random node seeds.
In addition, Tang et al. [12] further minimize the number of RR sets. Nguyen et al. [13] propose SSA
and D-SSA to select seeds in the node selection phase, followed by the usage of a validation method
to verify the performance of the selected seeds.

B Parameter estimation of OPTf̄

In this part, we evaluate the parameters θ and OPTf̄ . Evaluating OPTf̄ directly is computationally
expensive when only a limited number of RR sets are generated. Instead, we calculate a lower bound.
Initially, we randomly sample k nodes as initially activated seeds, ensuring that any duplicates are
removed. The probability of choosing a node v is proportional to its in-degree within graph G. By
generating a sample of k nodes, we can estimate the expected spread, denoted as KPT , which serves
as the lower bound for OPTf̄ , KPT ≤ OPTf̄ . Let R denote the set of all RR sets generated by
randomly selecting a super node v with a probability of wv

η . Let EN be the expected number of coin
flips required to generate a random RR set. We have the following lemma:

Lemma 6. η
m ·EN = E[f̄(v∗)], where the expectation of f̄(v∗) is taken over the randomness of v∗

and the cascade process.

Proof : Let R be a RR set by randomly selecting a super node v with a probability of wv

η , pR be the
probability that a randomly selected edge from G points to a node in R. Then EN = E[pR ·m],
where the expectation is taken over the random choices of R.

Let v∗ be a random node that is sampled with probability proportional to its in-degree within graph
G, and b(v∗, R) be a boolean function that returns 1 if v∗ ∈ R, and 0 otherwise. Then, for a fixed R,
we have

pR =
∑
v∗

(Pr[v∗] · b(v∗, R)). (9)
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The probability that a seed node v∗ activates a randomly selected super node is

pv∗ =
∑
R

(Pr[R] · b(v∗, R)). (10)

Hence, we have E[pv∗ ] = E[f̄({v∗})]/η and

EN/m = E[pR] =
∑
R

(Pr[R] · pR)

=
∑
R

(Pr[R] ·
∑
v∗

(Pr[v∗] · b(v∗, R)))

=
∑
v∗

(Pr[v∗] ·
∑
R

(Pr[R] · b(v∗, R))

=
∑
v∗

(Pr[v∗] · pv∗)

= E[pv∗ ] = E[f̄({v∗})]/η,

(11)

which completes the proof. □

Lemma 6 represents the generation complexity of RR sets, which is degenerated into the TIM solution
[14] when wj = 1,∀j = 1, 2, .., h in the classical IM problem.

We then define the width of an RR set Ri, denoted as ϖ(Ri), to be the number of directed edges in
graph G that point to the nodes within Ri. Mathematically, this is expressed as:

ϖ(R) =
∑
v∈Ri

(the indegree of v). (12)

Lemma 7. Let Rv be a random RR set starting from a random super node v. The selection of the
super node v is based on the probability wv

η . We define κ(R) as follows:

κ(R) = 1− (1− ϖ(R)

m
)k. (13)

Then, KPT = η · ES [Ev∼wv
η
[κ(Rv)]], where the expectation is taken over the random choices of R.

Proof : Let S be a random set of nodes sampled based on their in-degree in G, excluding duplicates.
Let Rv be a random RR set starting from super node v, and αRv be the probability of overlap between
S and Rv . The KPT can be expressed as:

KPT = ES [
∑
v∈T

wv · Pr[µ(v) = 1]] = η · ES [Ev∼wv
η
[αRv

]]. (14)

Consider that we sample k times uniformly from the edges in G. Let E∗ be the set of sampled edges
without duplicates. Let α′

Rv
represent the probability that one of the edges in E∗ points to a node in

R. It can be observed that α′
Rv

= αRv
. Given that there are ϖ(Rv) edges pointing to nodes in Rv,

we have α′
Rv

= 1− (1−ϖ(R)/m)k = κ(Rv). Hence, the KPT can be further simplified as:

KPT = η · ES [Ev∼wv
η
[α′

Rv
]] = η · ES [Ev∼wv

η
[κ(Rv)]], (15)

which completes the proof. □

Based on Lemma 7, we present an efficient approach for evaluating KPT in Algorithm 2: We
first generate ci RR sets (lines 5–6) and accumulate the corresponding κ(Rv) (lines 7–8), and then
evaluate the quality of the estimated KPT ∗ (lines 10–12). If the estimated KPT ∗ is less than a
threshold, we repeat the process (lines 1–13). Algorithm 2 runs in at most log2 η − 1 iterations. Next,
we analyze the time complexity of Algorithm 2.

Theorem 5. For η ≥ 2 and l ≥ 1/2, Algorithm 2 returns a result KPT ∗ ∈ [KPT/4, OPTf̄ ] with a
probability of at least 1− η−l. Furthermore, the algorithm runs in the expected time complexity of
O(l(m+ η)logη).
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Algorithm 3: KptEstimation (G, k).
1 for i = 1 : log2 η − 1 do
2 Let ci = (6l log η + 6 log(log2 η)) · 2i;
3 Let sum = 0;
4 for j = 1 : ci do
5 Randomly choose a super node v with probability wv

η ;
6 Generate a random RR set Rv .
7 κ(Rv) = 1− (1− ϖ(R)

m )k;
8 sum = sum+ κ(Rv);
9 end

10 if sum/ci > 1/2i then
11 return KPT ∗ = η · ·sum/(2ci);
12 end
13 end
14 return KPT ∗ = 1;

Proof : Reference [14] has proved that for η ≥ 2 and l ≥ 1/2, Algorithm 2 returns a result
KPT ∗ ∈ [KPT/4, OPTf̄ ] with a probability of at least 1− η−l. The remaining problem is the time
complexity, because the generation of RR sets is slightly different from the TIM method [14].

Suppose that KPT/η ∈ [2−j , 2−j+1], the expected total number of RR sets generated by Algorithm
2 is less than 2cj+2 ∈ O(2j l log η) [14]. We have

O(2cj+2 · EN) = O(2j l log η · EN)

= O(2j l log η · (1 + m

η
) ·KPT )

= O(2j l log η · (η +m) · 2−j)

= O(l(η +m) log η),

(16)

which completes the proof. □

C Other Proofs

Proof of Theorem 1: Consider an instance of the NP-complete problem of Vertex Cover in an
undirected graph G = (V,E). Given an integer k, the goal is to determine whether there exists a set
S of size k in V such that every edge in E has at least one endpoint in S. We then show that the
Vertex Cover problem is a specific instance of the MOIM problem.

To establish this connection, we define a motif consisting of a pair of adjacent nodes, and hence
two adjacent nodes form a motif. We treat a motif is activated if all nodes in the motif are activated.
If there exists a vertex cover S of size k, it guarantees that every edge has at least one endpoint in
S, enabling the activation of all nodes in V using the linear threshold cascade model. This is the
only way that corresponds to get a set S with IC(S) = m, where m denotes the number of activated
motifs(i.e., the number of edges). Consequently, an instance of NP-complete Vertex Cover problem
can be viewed as a specific case of the MOIM problem, which arrives at Theorem 1. □

Proof of Lemma 5: In Theorem 5, the function KptEstimation costs expected time O(l(m +
η)logη). The time complexity of function NodeSelection in Algorithm 3 is O(θ · EN). Based on
Theorem 5, we have

O(θ · EN) = O((8 + 2ε)η ·
l log η + log

(
η
k

)
+ log2

ε2
EN

OPT
)

= O((8 + 2ε)η ·
l log η + log

(
η
k

)
+ log2

ε2
· m
η
)

= O((k + l)(m+ η) log η/ε2),

(17)

which completes the proof. □

15



D Generalization to other cascade models

We mainly discuss the generalization to the independent cascade (IC) model and triggering model
[3], since the two models are widely used in the IM problem.

In the IC model, when a node u is first activated at time t, for each directed edge (u, v) from node u
to v, u has a probability p(u, v) to activate v at time t+ 1. After time t+ 1, u cannot activate any
node. In the triggering model, for each node u, we take a sample from its in-neighbors based on some
prior distribution and define the sample as the triggering set of u. In the cascade process, when a
node u is activated at time t, if u appears in the triggering set of v, v will be activated at time t+ 1.
Note that the IC model and LT model are two particular cases of triggering model.

In our algorithms and the analysis, we do not rely on anything specific to the LT model. The only
difference is the generation of random RR sets. Reference [14] analyzed the complexity of generating
RR sets of the three models. Though the three models(LT, IC, and triggering models) have slightly
different processes to generate the RR sets, the time complexity of generating RR set is almost the
same. Hence, our method could be generalized to the IC model and triggering model. A similar
generalization in the classical IM has been shown in ref. [14], and our method follows almost the
same procedure to be extended to IC and triggering models.
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and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We have provided detailed proofs for all theorems and lemmas.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided the pseudocode and the detailed analysis of our algorithm in
the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We use open data (Konect Data Collection, http://konect.cc/networks/) and
have released the code on the anonymous website:
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided all the settings in section 4.3 and section 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our algorithm generates deterministic results. Hence, we don’t require to
evaluate the error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have discussed the computer resources at the beginning of section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research agrees with the ethics requirements.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed the societal impacts in the introduction.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited the assets used in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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