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ABSTRACT

Contemporary video editing methods have achieved remarkable visual fidelity for
custom subject integration, yet they fundamentally lack the capability to model
causally realistic interactions between inserted objects and their environments.
This limitation results in physically implausible editing outcomes, violating basic
physical laws. In this work, we present ThinkPlace, an end-to-end framework that
addresses these challenges by leveraging Vision-Language Models (VLM) as a
reasoning brain to guide physically-aware video editing without explicit physics
simulation. Our approach introduces three key innovations: First, we develop
a VLM-guided chain-of-thought reasoning pipeline that generates environment-
aware guidance tokens while providing physically plausible editing regions for
the downstream video diffusion model. Second, we introduce a Spatial Direct
Preference Optimization post-training which also employs VLM for enhancing
visual naturalness of editing results. Third, we leverage VLM for post-evaluation,
triggering corrective refinement cycles that progressively improves integration qual-
ity. Extensive experiments demonstrate ThinkPlace achieves physically-coherent
custom subject integration compared with State-of-the-art solutions. Our work
represents a significant step toward bridging the gap between visual quality and
physical realism in video editing applications.

1 INTRODUCTION

Custom subject integration is fundamental to video editing (Bai et al.} 2024} Saini et al., [2024; |Zhao
et al., 2025). While powerful diffusion transformer (DiT) (Peebles & Xiel [2023)) based methods
have recently emerged, there remains substantial room for improvement. In particular, these methods
directly obey user instructions for visual modifications often resulting in physically implausible
outcomes, ignoring environmental constraints, or lacking proper interaction with the environment (Tu
et al.l 2025}, [Zhuang et al., 2025). For example, as shown in the left part of Figure[I] when a user
requests to place a mug on a still lake surface, current models like VACE (Jiang et al.| 2025 may
satisfy the placement requirement by directly positioning the cup on the water. However, when users
further demand physical realism, these methods fail fundamentally, as they cannot reason that ceramic
mugs should sink rather than float on water. Beyond physical plausibility, extraordinary video editing
requires visual naturalness: inserted objects must exhibit contextually appropriate scale and surface
properties, including accurate environmental reflections and lighting responses. This motivates us to
address two critical challenge: physical plausibility and visual naturalness.

Although retraining foundation models with extensive physics-oriented datasets could potentially
address these limitations, such an approach would incur substantial costs in human annotation and
computational resources. Moreover, as illustrated in the right part of Figure [T} requiring users to
manually specify object trajectories frame-by-frame is impractical. For instance, in a ball-dropping
scenario, expecting users to accurately draw the parabolic trajectory for each frame (third row) as a
condition for diffusion-based editing is both tedious and technically demanding. These constraints
motivate our search for a more efficient solution that leverages existing Vision-Language Models’
capabilities (Bai et al.,|2025)), particularly Chain-of-Thought reasoning (Wei et al., 2022), to achieve
environment-aware editing without expensive retraining or burdensome user input. As shown
in Figure [1| our method initially interprets user instructions to conceive potential environmental
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Figure 1: Thinkplace handling environment-aware custom subject integration with automatic spatial
planning.

interactions within video frames, then generates semantic editing directives and physically-valid
spatial regions that jointly condition downstream diffusion models (Wan et al., [2025) through an
end-to-end pipeline. Crucially, we find that physical realism, unlike visual naturalness, cannot
be achieved through object modifications alone: it requires adaptive environmental changes. For
instance, adding supporting platforms in the lake scenario. This insight distinguishes our approach
from traditional ID insertion methods, which maintain strict background invariance. We argue that
physics-driven background modifications within editing regions are essential for achieving truly
realistic video editing.

To this end, we propose ThinkPlace, a VLM-guided chain-of-thought reasoning pipeline built on
diffusion transformers for custom subject integration. Our key insight is to reformulate custom
subject integration from direct synthesis to a deliberate think-then-place paradigm. Unlike existing
methods that directly execute user instructions, we introduce an intermediate reasoning stage where
VLMs analyze environmental constraints and conceive physically-valid integration strategies before
generation. This reasoning produces structured guidance through an Interaction Chain-of-Thought,
determining not only where objects should be placed but also what environmental modifications are
necessary for physical plausibility. To enhance the visual naturalness of generated results, we develop
Spatial-DPO post-training with automated VLM-based preference evaluation, eliminating the need
for manual annotation. We also establish iterative refinement through corrective editing, where VLM
feedback progressively eliminates physical inconsistencies. We make three key contributions:

1. Physics-aware Reasoning: We introduce structured environmental analysis through VLM-
based Chain-of-Thought reasoning, generating both semantic guidance and spatial con-
straints that ensure realistic object-scene interactions.

2. Automated Spatial-DPO: We eliminate manual preference annotation through VLM-based
evaluation, enabling scalable preference optimization for enhanced physical plausibility.

3. Automated Corrective Editing: We employ VLM post-evaluation to trigger corrective
refinement cycles that progressively enhance both insertion quality and physical plausibility.

2 RELATED WORK

2.1 VIDEO EDITING AND CUSTOM SUBJECT INTEGRATION

Video editing has witnessed rapid progress fueled by diffusion models (Ho et al.l [2020; [Song
et al.|, [2021). Early efforts explored training-free (Ceylan et al., 2023} |Geyer et al., [2024) or one-
shot tuning (Wu et al., [2023)) strategies, while subsequent methods have pursued more structured
designs (Liew et al.,|2023; Mou et al., 2024) to better address temporal coherence. Recently, unified
and scalable frameworks have emerged: AnyV2V (Ku et al) 2024) performs first-frame editing
followed by 12V propagation; VACE (Jiang et al., 2025) consolidates diverse editing tasks within
a single system using Video Condition Units and context adapters; and UNIC (Ye et al., [2025)
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advances task unification by representing heterogeneous inputs as tokenized sequences, enabling in-
context learning without task-specific adapters. Additionally, WAN (Wan et al.,|2025)), a foundational
diffusion transformer for text-to-video generation, has established the groundwork for diverse editing
applications. While these methods demonstrate impressive versatility across multiple editing tasks,
they lack specialized mechanisms for custom subject integration, particularly in modeling physically
plausible object-environment interactions.

Custom subject integration, which seeks to seamlessly integrate objects from reference images
into target videos, has recently attracted growing attention (Bai et al., 2024 [Saini et al., [2024).
VideoAnydoor (Tu et al.,|2025)) enhances fidelity and motion control through a pixel warper, while
DreamlInsert (Zhao et al.l [2025) introduces a training-free paradigm for image-to-video object
insertion. Moreover, [Zhuang et al.| (2025) substitute the conventional U-Net (Ronneberger et al.,
2015) with a diffusion transformer architecture (Peebles & Xie), |2023)) that leverages 3D full attention
for stronger temporal modeling. Despite these advances, most existing methods overlook real-world
physical constraints, often resulting in unrealistic composites. By contrast, our approach incorporates
Chain-of-Thought (CoT) (Wei et al.} 2022) reasoning to pre-plan insertion, leading to more natural
and physically consistent results.

2.2 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

RLHF (Reinforcement Learning from Human Feedback) (Bai et al.,|2022)) has become a prevalent
post-training paradigm for improving large language models (Casper et al.| [2023) and diffusion
models through human feedback (Black et al., [2023)). A notable approach under this paradigm is
Direct Preference Optimization (DPO) (Rafailov et al.,|2023)), which directly learns from pairs of
preferred and non-preferred outputs, encouraging the model to assign higher likelihoods to human-
preferred results. Inspired by DPO, several methods have extended its principles to diffusion models.
For instance, Diffusion-DPO (Wallace et al., 2023) introduced this framework to image generation,
VideoDPO (Liu et al.| 2025) adapted it to video diffusion to enhance motion fidelity and temporal
coherence, and DenseDPO (Wu et al.,2025)) further improved scoring by segmenting sequences for
finer-grained temporal alignment. Despite these advances, current efforts have predominantly focused
on video generation, with video editing remaining largely unexplored, particularly the integration
of custom subjects. Moreover, existing reward formulations are limited in their ability to assess
realism. To address these gaps, we propose Spatial-DPO, a variant that emphasizes the edited
region and leverages vision-language models (VLMs) to provide realism-aware preference signals
for optimization.

3 METHODS

As illustrated in Figure [2] our framework consists of three key components. We first introduce a
reasoning-guided architecture that leverages VLMs to perform structured environmental analysis and
spatial grounding, producing both semantic and spatial guidance for integration (Section 3.1). We
then present a spatial-DPO post-training approach that decomposes preference learning into local
refinement and global consistency optimization, enhancing physical realism through reinforcement
learning (Section 3.2). Finally, we describe our data curation pipeline that transforms real-world
videos into training data through reverse engineering, enabling both connector training and DPO
optimization (Section 3.3).

3.1 MODEL ARCHITECTURE

3.1.1 REASONING-GUIDED FRAMEWORK

Our framework leverages Qwen-VL2.5 (Bai et al} 2025) as Multi-Modal-Language-Model (MMLM
or VLM) to perform structured reasoning over interleaved multimodal inputs comprising user instruc-
tions, reference object images, and target video sequences. This interleaved input format enables
comprehensive scene understanding by establishing explicit relationships between the insertion
request, object properties, and environmental constraints. As shown in Figure [2] the reasoning
architecture operates through two hierarchical stages that progressively refine the integration strategy.
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Figure 2: Inference pipeline of ThinkPlace. VLM-guided reasoning (left) which produces semantic
and spatial guidance that conditions the diffusion-based generation (right).
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Global Semantic Reasoning. In the first step, the VLM generates an Interaction Chain-of-Thought
(Interaction CoT) by systematically analyzing real-world interactions within the video context. This
reasoning process examines object-environment relationships to establish physically-grounded in-
tegration strategies through four key aspects: (i) scene overview for comprehensive environmental
understanding, (ii) physical analysis for evaluating integration constraints and inferring auxiliary
structures when needed, (iii) motion description for temporal dynamics, and (iv) lighting and shadow
analysis for photometric consistency. These analyses synthesize into structured token representa-
tions encoding both interaction protocols and rich contextual information, providing the semantic
foundation for downstream generation. The detailed reasoning process is provided in Appendix [A.T]

Local Spatial Grounding. Following semantic reasoning, the second step grounds abstract inter-
action strategies into concrete spatial locations. The VLM takes the generated Interaction CoT as
additional context alongside the original video inputs, enabling spatially-aware decision making.
This two-stage design is crucial: the first stage determines what needs to happen (e.g., "add floating
platform for mug"), while the second stage determines where it should occur within the frame.
The VLM outputs precise bounding boxes [x1, y1, T2, y2] that specify not only the target object’s
placement but also regions that may require environmental modifications. These coordinates are
converted into binary masks that provide pixel-level guidance for the subsequent generation process.

3.1.2 ENVIRONMENT-AWARE CUSTOM SUBJECT INTEGRATION

Our generative pipeline builds upon the VACE (Jiang et al.| [2025) framework, extending Wan2.1 (Wan
et al., 2025) with enhanced multi-modal conditioning for environment-aware video editing. As
illustrated in Figure 2] we integrate the reasoning outputs through two complementary conditioning
pathways that work in tandem to achieve physically plausible integration with an end-to-end manner.

Semantic Conditioning Pathway. This pathway translates high-level reasoning into generation
guidance. We design a lightweight connector module that bridges the representation gap between the
VLM'’s reasoning space and the diffusion model’s conditioning space. Specifically, the connector
learns to project environment-aware Interaction CoT tokens into the T5 embedding space used by
Wan2.1. During training, the connector is optimized to preserve the semantic richness of reasoning
outputs while producing effective conditioning signals for the diffusion model. This allows the
generated video to faithfully reflect the VLM’s physical understanding, such as adding support
structures or adjusting object dynamics based on environmental constraints.

Spatial Conditioning Pathway. While semantic conditioning provides the "what" and "how,"
spatial conditioning specifies the "where." The bounding boxes from spatial grounding are rasterized
into binary masks that precisely delineate editing regions. These masks serve dual purposes: (i)
constraining modifications to relevant areas, preserving the rest of the scene, and (ii) indicating
regions where auxiliary structures or environmental changes should appear. The masks directly
interface with VACE’s spatial control mechanisms, ensuring that reasoning-determined modifications
occur exactly where intended. This spatial precision is essential for maintaining scene coherence
while enabling localized physics-aware edits.
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Figure 3: Pipeline of Spatial-DPO Post-training, where global and local optimization are combined.

3.2 SPATIAL-DPO POST-TRAINING

We employ reinforcement learning to enhance visual naturalness in video diffusion models, specif-
ically targeting physically plausible integration of custom subjects. Our approach introduces a
Spatial-DPO post-training framework that decomposes the preference learning objective into two
complementary components: local refinement and global consistency optimization. Following the
methodology of Diffusion-DPO (Wallace et al.,|2023)), we reformulate the preference learning ob-
jective to address the unique challenges of custom subject integration in video generation. Given
identical inputs comprising an object image, source video, and interaction prompt, we generate
multiple candidate outputs through stochastic sampling with varying random seeds. These outputs
form preference pairs for our optimization framework.

Local Refinement DPO. Operating across the entire video sequence, this component focuses on
fine-grained optimization within edit regions defined by bounding boxes from our reasoning pipeline.
By constraining DPO optimization to these localized interaction zones throughout all frames, it
specifically enhances critical details where physical accuracy matters most, ensuring physically
plausible object-environment interactions and natural contact dynamics at insertion boundaries. We
denote this localized loss as L1555,

Global Consistency DPO. Also operating across the entire video sequence, this component focuses
on scene-wide optimization across the entire frame. It ensures inserted objects remain consistent in
appearance throughout the video, preserves background stability in non-edited areas, and maintains
overall lighting and color harmony, guaranteeing that local modifications integrate seamlessly with

the full scene across all temporal frames. We denote this global loss as E%‘}_ﬁ’gl.

Following Diffusion-DPO (Wallace et al.,|2023)), the standard DPO loss is defined as:
Lppo = ~E(v, v [10g o (BAgref)] (D

where Ag e = (ng - Ly)— (Llref —
and f controls the preference strength.

LY ;) with L = |eg(v',t) — €|* being the denoising loss,

We extend this to spatial-aware optimization by combining both components:
lobal local
£total = )\global ' »CgD(}—)g + )\local : ﬁDO(];gO (2)

where the hyperparameters Agopq; and Ajocq; balance between maintaining scene-wide coherence
and achieving fine-grained interaction fidelity. This dual optimization strategy ensures comprehensive
quality improvement: global consistency preserves overall video coherence and temporal stability,
while local refinement precisely enhances object-environment interactions at critical contact points.

VLM-Guided Preference Ranking. The absence of reliable metrics for quantifying physical
realism in video editing motivates our use of VLM reasoning for preference assessment. We
again leverage Qwen-VL 2.5 to evaluate generated samples across multiple dimensions of physical
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plausibility, including gravitational consistency, surface contact naturalness, illumination coherence,
and motion trajectory validity. To address the inherent stochasticity in VLM-based evaluation, we
implement a consensus-based ranking protocol. For each set of generated candidates, we conduct
two independent ranking sessions with randomly permuted sample orderings. Preference pairs are
accepted only when both sessions produce consistent rankings, effectively reducing evaluation noise
and improving alignment with human judgments. This dual-ranking mechanism significantly reduces
false positives in preference identification while maintaining computational efficiency compared
to human annotation. Through this spatially-aware DPO framework guided by VLM reasoning,
we achieve substantial improvements in physical realism and environmental coherence of inserted
objects, as demonstrated in our experimental evaluations.

3.3 DATA CURATION

To train our connector module and enable DPO post-training, we construct a custom subject inte-
gration dataset. While synthetic trajectory generation using VLMs on background videos presents
an intuitive approach, it suffers from two critical limitations: prohibitive computational costs for
large-scale generation and the absence of ground truth for validation. We therefore adopt a reverse-
engineering approach using real-world videos. Our data collection encompasses two complementary
categories: (i) human-object interaction videos (10,000 samples) capturing natural manipulation and
handling behaviors, and (ii) physics-demonstration videos (4,000 samples) showcasing fundamental
physical phenomena including collisions, combustion, and gravitational dynamics. These raw videos
undergo systematic processing through our data curation pipeline that performs VLM-based subject
identification, DINO-SAM cascade for precise localization and segmentation, and Bagel-based com-
pletion to address natural occlusions. This approach transforms existing videos into paired training
data consisting of reference objects and corresponding videos with subject regions masked, while
also introducing beneficial appearance diversity to improve model robustness. The detailed pipeline
architecture and processing examples are provided in Appendix[A.2]

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

ThinkPlace is built upon QwenVL2.5-7B for vision-language reasoning and VACE (based on Wan2.1-
1.3B) for video generation. The connector module, consisting of a two-layer MLP, trained for S00K
iterations with a batch size of 16, while keeping other components frozen. For DPO post-training, we
perform full fine-tuning of VACE for 10K iterations with a batch size of 8. /3 is setting to 100, and
Aglobals Alocal are setting to 0.5. Notably, ThinkPlace supports flexible user interaction: users can
directly specify editing regions, bypassing the automatic region generation in Step 2. When provided
with user-defined masks, ThinkPlace focuses exclusively on maximizing insertion realism within the
specified constraints. This flexibility is leveraged during training, where we use pre-masked videos
from our dataset to eliminate Step 2 computation, improve training efficiency.

4.2 COMPARISONS

4.2.1 QUALITATIVE COMPARISONS.

We compare ThinkPlace with state-of-the-art video editing methods UNIC (Ye et al., 2025) and
VACE (Jiang et al.| 2025). Since UNIC is not open-source, we utilize their publicly available
demonstrations. For intuitive comparison, we initially adopt UNIC’s editing regions across all
methods to eliminate regional selection bias. Subsequently, we conduct experiments using our
VLM-guided editing regions to demonstrate the advantages of reasoning-based spatial guidance. For
VACE, we use GPT-40 generated video captions as input prompt for TS. We select test scenarios
that span varying complexity levels: from simple object placement to challenging physics-based
interactions involving combustion and fluid dynamics. Figure ff] demonstrats ThinkPlace’s superior
performance in both standard insertion tasks and complex physical scenarios.

Top Row Using UNIC’s editing regions, ThinkPlace achieves high-fidelity insertion while enabling
natural environmental interactions absent in baselines. In the donut example (red arrows), our method
generates physically plausible tilting responses to approaching waves, while UNIC produces static
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Figure 4: Qualitative Comparisons. The top tier shows comparisons using UNIC’s demo editing
regions. The middle and bottom tiers demonstrate methods using our VLM-guided editing regions,
including VACE and our ThinkPlace (UNIC use it’s own edit region for comparsions). Bottom tier:
ThinkPlace demonstrates physically realistic insertions, with the left example additionally showcasing
object replacement capability. The comparison illustrates ThinkPlace achieves physically plausible
object-environment interactions through its reasoning-based approach.

placement. The Samoyed example further demonstrates this capability: our inserted dog naturally
turns toward the person, exhibiting environmental awareness that UNIC lacks. Middle Row With our
VLM-guided editing regions, environment-aware reasoning reaches its full potential. The dragonfly
dynamically responds to the flower’s presence with natural attraction behavior. In the octopus
scene, our method captures ocean current dynamics, producing fluid tentacle movements that far
exceed UNIC’s static insertion in both realism and visual quality. Bottom Row The beer pouring
demonstrates our replacement capability with accurate physics: liquid level decreases realistically
and foam formation follows fluid dynamics, while VACE maintains static liquid volume. The
combustion example highlights our state-aware insertion: ThinkPlace renders the box in its burned
state with appropriate charring and deformation based on environmental context, whereas VACE fails
to adapt the object’s physical state, inserting the original intact box despite the fire context. These
results validate ThinkPlace’s extraordinary capability in achieving both visual fidelity and physical
plausibility in complex real-world scenarios.

4.2.2 QUANTITATIVE COMPARISONS.

We conduct comprehensive quantitative evaluation on 200 test videos comparing ThinkPlace with
the state-of-the-art VACE (UNIC not open-source) and our ablated variants, as
shown in Table [T} We evaluate across three dimensions: Identity Preservation (CLIP-I (Radford et al.|
[2021) and DINO-I (Caron et al.,[2021)), Video Quality (Huang et al.,[2024) (temporal smoothness
and aesthetics). Physical Realism measured using the state-of-the-art VideoPhY benchmark
2025)), which quantitatively assesses Physical Commonsense (PC) and Physical Rules (PR) ad-
herence, providing objective and reproducible evaluation of physical plausibility in generated videos.
ThinkPlace consistently achieves the best performance across all metrics. While improvements in
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Identity Video Quality Physics
CLIP-IT DINO-IT Smooth.T Aesth.?T PCT PR?T
VACE (Jiang et al.|[2025) ~ 0.7723 0.4454 0.9810 0.5281 4.035 0.802

Method

ThinkPlace-CoT 0.7718 0.4539 0.9911 0.5297 4.041 0.834
ThinkPlace-DPO 0.7765 0.4583 0.9898 0.5362 4.070 0.832
ThinkPlace 0.7778 0.4681 0.9925 0.5374 4.103 0.852

Table 1: Quantitative comparisons among 200 test pairs. VACE using GPT-40’s caption and keep
same edit region with ThinkPlace. PC: Physical Commonsense, PR: Physical Rule.

identity preservation and video quality are notable, the most significant gains appear in physical
realism metrics. Specifically, Physical Commonsense (PC) and Physical Rules (PR) scores show
substantial improvements over VACE, with PC exhibiting the largest relative gain among all metrics.
These results quantitatively confirm that our reasoning-guided approach successfully addresses the
physical plausibility challenges that plague existing video editing methods.

4.3 ABLATION STUDY

We investigate the individual contributions of interaction CoT reasoning and Spatial-DPO through
systematic ablation. These experiments confirm that CoT and Spatial DPO provide complementary
benefits: CoT enhance physical plausibility while Spatial DPO refines visual naturalness.

Quantitative Analysis. To validate the contribution of each component in ThinkPlace, we conduct
ablation studies by removing the Chain-of-Thought reasoning (ThinkPlace-CoT) and Direct Pref-
erence Optimization (ThinkPlace-DPO) modules separately. As shown in Table 1, removing either
component leads to performance degradation across all metrics. The complete model achieves the
best performance, validating the synergy between interaction CoT and Spatial-DPO.

Qualitative Analysis. To illustrate the importance of each component, we present a challenging
real-world scenario: inserting a test tube into a beaker containing water, as shown in Figure[5] This
task requires precise physical understanding and environment-aware reasoning. Left: CoT and DPO
Ablation. The baseline VACE (without CoT or DPO) produces physically implausible results with
severe artifacts: the tube unnaturally penetrates the water surface and exhibits temporal flickering.
Adding CoT alone reduces water artifacts but retains tube artifact issues and unrealistic water level
changes. Incorporating only DPO significantly reduces visual artifacts, yet the refracted background
through the liquid remains blurry and unconvincing. The complete ThinkPlace achieves physically
accurate insertion with proper water displacement, correct refraction, and temporal stability. Right:
Spatial-DPO Component Analysis. As demonstrated in the right panel of Figure[5] we analyze the

<think>

w/o CoT
w/o DPO

w/ CoT
w/o DPO

Global DPO  w/o DPO

Hand controls o
glass rod co ER
jquid re o3 ER

liguid refracts 5 S | k-]
through EE & £
transparency 2 <
Y aa
</think> = E - % T = §
SR = £
2z "1*, . L & &

Using interaction CoT

Figure 5: CoT and Spatial DPO demonstrate synergistic improvements in visual naturalness.
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Figure 6: Corrective editing is an iterative refinement mechanism that progressively improves editing
quality based on the VLM post-evaluation.

contribution of local versus global DPO optimization (all variants include CoT). Using only CoT
produces basic physical plausibility but lacks fine-grained interaction details. Adding global DPO
alone improves overall consistency but water-tube interaction boundaries remain blurry and imprecise.
When both local and global DPO are applied with imbalanced weights (Ajocar = 0.9, Agiopar = 0.1),
local details improve but insufficient global optimization causes background flickering. The full
model with balanced weights (Ajocar = 0.5, Agiopar = 0.5) achieves optimal results: sharp interaction
boundaries, stable backgrounds, and physically coherent water dynamics.

4.4  APPLICATION: ITERATIVE REFINEMENT THROUGH VLM POST-EVALUATION

We employ VLM post-evaluation to trigger corrective refinement cycles that progressively enhance
both insertion quality and physical plausibility. As illustrated in Figure [6] our post-evaluation
mechanism operates through systematic diagnostic-refinement loops. After each generation pass, the
VLM performs comprehensive post-evaluation to identify physical violations and visual artifacts. In
the cup insertion example, the initial generation exhibits deficiencies in photorealism and hand-object
dynamics. The VLM’s diagnostic evaluation quantifies these failure modes and automatically triggers
corrective refinement, reformulating both the interaction chain-of-thought and spatial guidance. The
post-evaluation continues iteratively: after the second generation improves interaction coherence, the
VLM detects remaining issues in scale consistency and lighting. Only when the VLM’s evaluation
confirms physical plausibility and visual coherence does the refinement cycle terminate, typically
achieving convergence within 2-3 iterations. This VLM-driven post-evaluation paradigm validates
that complex editing tasks benefit from iterative assessment and targeted correction rather than
single-pass generation. The detailed diagnostic-refinement protocol are described in Appendix [A.3]

5 CONCLUSION

We presented ThinkPlace, a novel framework that reformulates custom subject integration from
direct synthesis to a deliberate think-then-place paradigm. By introducing environment-aware VLM-
guided reasoning before generation, combined with Spatial-DPO post-training and iterative corrective
editing, our approach achieves both physical plausibility and visual naturalness in video editing.
This environment-aware paradigm eliminates the need for expensive model retraining or manual
trajectory specification, instead leveraging VLMSs’ understanding of physical laws to guide generation.
Extensive experiments confirm that ThinkPlace outperforms state-of-the-art methods, particularly in
scenarios requiring complex physical reasoning and adaptive environmental modifications.

Limitations and Future Work. While ThinkPlace achieves significant improvements in physical
plausibility, several limitations remain. The iterative refinement process increases inference time,
typically requiring 2-3 generation cycles for complex scenarios. The current framework relies on
VLM reasoning quality, which may occasionally produce suboptimal guidance for highly unusual
or abstract editing requests. Future work could explore several promising directions: (1) extending
the framework to handle multiple interacting objects simultaneously; (2) developing more efficient
architectures that reduce the memory consumption.
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A APPENDIX

A.1 REASONING PROCESS OF GLOBAL SEMANTIC ANALYSIS

The Global Semantic Reasoning component follows a structured reasoning process:

1. Scene Overview: The VLM-based agent first analyzes the video frames, identifying environmental
elements (surfaces, boundaries, existing objects) and their spatial relationships. Concurrently, it
examines the reference object’s properties (material, weight, physical state) and interprets user
requirements to establish a comprehensive understanding of both the scene context and integration
objectives.

2. Physical Constraint Evaluation: Based on scene understanding, the agent evaluates physical
constraints including surface properties, gravitational requirements, and contact mechanics.

3. Scene Modification (optional) : When direct placement violates physical laws, the agent in-
fers necessary auxiliary structures or environmental modifications to enable physically plausible
integration.

3. Motion Dynamics Analysis: The agent tracks camera movement and environmental dynamics
to plan coherent object trajectories, ensuring temporal consistency and natural motion patterns that
respond appropriately to environmental forces.

4. Lighting and Shadow Assessment: The agent analyzes illumination conditions, shadow patterns,
and reflection properties to ensure photometric consistency of the inserted object within the scene
context.

5. Interaction CoT Generation: Integrating outputs from the preceding reasoning steps, the agent
formulates structured token representations that encode both interaction protocols and rich contextual
information.

This process generates an Interaction Chain-of-Thought that serves as the semantic foundation for
the subsequent generation process.

A.2 DATA CURATION

Our data curation pipeline operates through three sequential stages as illustrated in Figure

1. VLM-based Subject Identification: We leverage VLM capabilities to identify and extract the
primary subject from each video, generating both semantic labels and reference images. For instance,
when processing a kitchen scene video, the VLM correctly identifies "pineapple” as the target object
and extracts its visual representation.

2. DINO-SAM Cascade Segmentation: We employ DINO for fine-grained localization followed by
SAM for precise segmentation. DINO provides accurate bounding boxes around the identified subject,
which serve as prompts for SAM to generate pixel-accurate masks. This process extracts the subject
from its original context, yielding training pairs consisting of reference objects and corresponding
videos with subject regions masked.

3. Bagel-based Completion and Augmentation: A critical challenge arises from natural occlusions
in real videos, resulting in partially visible reference objects. We employ Bagel to intelligently
complete occluded regions, generating multiple plausible variations of each reference object. This
augmentation strategy not only resolves the incompleteness issue but also introduces beneficial
appearance diversity.

A.3 VLM DIAGNOSTIC-REFINEMENT CYCLE

The corrective editing mechanism operates as a closed-loop system where VLM diagnostics drive
iterative improvements:

1. Output Analysis: The VLM examines the generated video across multiple dimensions including
physical consistency, visual coherence, lighting integration, and interaction dynamics. This analysis
produces a structured diagnostic report identifying specific failure modes.
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Figure 7: Data curation of ThinkPlace.

2. Failure Mode Ildentification: Based on the diagnostic analysis, the VLM categorizes issues into
primary violations (e.g., impossible physics, severe scale errors) and secondary refinements (e.g.,
shadow softness, reflection intensity). This prioritization ensures critical issues are addressed first.

3. Reasoning Reformulation: The VLM updates the Interaction Chain-of-Thought to address identi-
fied issues. This involves modifying physical constraints, adjusting spatial relationships, or adding
auxiliary elements to resolve violations.

4. Spatial Region Adjustment: Corresponding to the reasoning updates, the VLM refines bounding
boxes and editing masks to better capture areas

A.4 LLM USAGE
We used Claude for grammar checking and language polishing of the manuscript. All technical

content, experimental design, and scientific insights are original work by the authors. The LLM was
not involved in research ideation, experimental execution.
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