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ABSTRACT
Metapopulation models capture the spatial interactions in disease
dynamics through mobility and mixing matrices among regions
of interest. However, the impact of seeding (initialization) in such
networks is not well understood. We have constructed and open-
sourced metapopulation networks for countries around the world
(PatchFlow) and we use them to study the effect of seeding using an
extension of a discrete-time SEIR simulator, PatchSim. The impact
of initialization is studied by looking at the resulting epidemic
curves. We use various metrics to characterize the epidemic curves,
including those based on epidemic intensity entropy. Using these,
we study the impact of various levels of connectivity, skewness in
seeding and spatial resolution at the national scale. We find that
these effects vary across countries and are more pronounced at
certain transmissibility levels. This study provides early insights
into the impact of model initialization and demonstrates the use of
PatchFlow networks.
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1 INTRODUCTION
The COVID-19 pandemic has brought the need for diverse mathe-
matical models for planning, response and course of action analysis.
Mechanistic models based on classical theory and known as SEIR
(Susceptible-Exposed-Infected-Recovered) models were used ex-
tensively throughout the COVID-19 response. Depending on the
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group and use, these models ranged from simple ODE style models
to more complex agent-based models. The simple models were use-
ful and easier to calibrate but often lacked sub-national structure
to effectively capture the spatial, temporal and variation in pop-
ulation density, mobility patterns and population demographics.
Metapopulation models can capture the traditional SEIR dynamics
within a network context, and can thereby represent sub-national
spread. Metapopulation models provide valuable insights into indi-
vidual regions as well as overall disease spread without significant
computational cost. Spread of the disease within a country is dic-
tated by many factors, such as population mixing across regions,
intervention levels or vaccine uptake. Under no interventions, in
a population with limited prior immunity, seeding and popula-
tion structure dictate how quickly a disease can spread through
the population, given disease transmissibility. Recent studies [3]
have investigated this phenomenon and have observed significant
differences based on the seeding conditions.

In this study, we use an open-source metapopulation simulation
engine, PatchSim[6] to study the effect of seeding in metapop-
ulation networks. In order to realistically represent the effect of
population distribution and geography of various countries, we
leverage an open-source dataset, PatchFlow [4], to provide Patch-
Sim compatible metapopulation networks at admin1 and admin2
(equivalent to states and counties for the US) resolution. These
networks are generated under various parameterizations of the ra-
diation model [5]. The goal of this research is to better characterize
the role of initial seeding on disease spread using various metrics,
and also to demonstrate the utility of such open frameworks and
datasets for pandemic preparedness. The key contributions of this
paper are open-source datasets for analysis of disease dynamics by
spatial seeding; the analysis of spatial distributions and their rela-
tion to temporal disease spread; and using metrics such as epidemic
entropy to study the impact of seeding strategies.

2 EXPERIMENTAL DESIGN
The overall experiment design is shown in Figure 1. Below we
briefly describe the simulation framework and the networks being
used for the study.

2.1 PatchSim Description
PatchSim is a discrete-time metapopulation SEIR simulation engine
with the ability to use various mobility and mixing networks along
with fine-grained spatio-temporal control of seeding, vaccinations
and interventions [6]. For the individual regions represented within
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Figure 1: Overview of experimental design

the network, difference equations determine the disease dynamics
within the region. Each step of the simulation proceeds by: (a)
computing the effective population in each patch through mobility,
(b) updating the disease state using proportions of the effective
populations, (c) back-calculating the updated disease states for each
patch. More details on the dynamics including exact equations can
be found in [6, 7].

2.2 PatchFlow Description
PatchFlow is a set of pre-calculated networks for simulating the
metapopulation SEIR model at the national scale for most countries
of the world [4]. These are generated by first aligning the Gridded
Populations of the World (GPWv4) [2] with the administrative re-
gion boundaries from the Database of Global Administrative Areas
(GADM), by extracting the population covered by the GADM de-
fined regions (patches) from the raster data provided by the GPWv4 .
These regions at specified administrative levels were then connected
using a radiation model [5]. Since the level of connectivity could
vary from country to country, across spatial resolutions, as well
as during different interventions (travel restrictions, lockdowns,
etc.), the repository contains networks at various levels of connec-
tivity, parameterized by the outflow parameter – the percent of
the population that travels in the network. The datasets within the
repository are designed to be compatible to be run with PatchSim
by providing the required network and population files. Although
we have PatchFlow networks at admin1 and admin2 resolutions for

220 countries, for this study we restricted to countries with a popu-
lation of over 1 million. To test the effect of different characteristics
incorporated into the PatchSim disease models, 4 parameters were
varied: the admin level (a), radiation parameter (rad), seeding scaler
(skew) and exposure rate (𝛽). The three admin levels analyzed were
admin 0, 1, and 2. Admin 0 represented a homogeneous SEIR model
with one region for the entire country, which was used as compari-
son against the metapopulation model. The other three parameters
were varied as follows: rad ∈ {1%, 5%, 10%} representing the fraction
of mobile population, skew ∈ {1, 2, 3} used to modulate the seeding
across patches, 𝛽 ∈ {0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7} representing
the transmissibility. Infectious and incubation periods were fixed
throughout the simulation. The total number of initial cases 𝑆 was
set as a proportion of the national population (P), in this study 10
per 100,000 people (i.e., 𝑆 = 0.01%𝑃 ). Initial cases within the regions
were allocated as a proportion relative to the patch’s population (p)
exponentiated by the skew parameter:

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐶𝑎𝑠𝑒𝑠 =
𝑝𝑠𝑘𝑒𝑤∑
𝑝𝑠𝑘𝑒𝑤

· 𝑆 (1)

As seen in Figure 2 higher skew parameter lead to more initial
cases concentrated in higher populated patches as shown below
(blue:skew=1, orange:skew=2, green:skew=3).

Generated from the parameter variation was a dataset containing
the parameter values of the simulation and metrics of the disease
curve for each country.
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Figure 2: Seeding proportion based on population size and
skew parameter

2.3 Metrics
To evaluate the effect of the changed parameters we used the num-
ber of days to cross 1%, 50%, and 99% of total cases and the Shannon
Entropy measurements of the normalized epidemic curve. The epi-
demic entropy measurement was calculated as follows:

𝐻 (𝑋 ) = −
𝑛∑︁
𝑡=1

𝑃 (𝑥𝑡 )𝑙𝑜𝑔(𝑃 (𝑥𝑡 )) (2)

where 𝑃 (𝑥𝑡 ) = 𝐼 (𝑡 )
𝐶𝑇

is the fraction of cases on day 𝑡 of the epidemic,
with 𝐼𝑡 the incident epidemic curve, and 𝐶𝑇 the cumulative cases
by the end of simulation on day𝑇 . This metric has been used in the
past to characterize the intensity of seasonal influenza epidemics
and the role of urban-ness and humidity in shaping the disease
dynamics across various cities [1]. In addition to the epidemic
entropy, the population entropy of an admin level was calculated
to provide context to the population distribution of the admin level.
Using the same equation for entropy, 𝑃 (𝑥𝑖 ) = 𝑝𝑖

𝑃
, the fraction of

the population of a region to the total population.

3 RESULTS
Different disease curves resulting from the parameter variation
illustrated features unique to a metapopulation model. Regions and
seeding strategies that would have had similar epidemic character-
istics under a simple SEIR model instead produced distinct curves
with characteristics only present in a metapopulation model.

3.1 Relationship between spatial and temporal
entropy

The epidemic entropy was analyzed in conjunction with the popu-
lation entropy to characterize patterns emerging from the spatial
distribution of a population. Displayed in Figure 3 are the scatter
plots of the population entropy values of each country for selected
parameters shown in relation to the corresponding epidemic en-
tropy for the country. Shown is a positive relationship between the
population entropy and the epidemic entropy which becomes more
positive with increases in the skew parameter. This indicates that
higher spatial entropy tends to lead to higher temporal entropy.
This could be due to cases spreading in more populated areas ear-
lier with higher skew values. In countries with large differences
in population by region and thus low population entropy values,
skew leads to rapid disease spread in the highest populated regions
which could lead to a sharper peak and lower epidemic entropy.
Otherwise for countries with uniform populations and thus higher

Figure 3: Epidemic entropy and population entropy regres-
sion plot. .

population entropy values, the disease will need to spread to many
regions to infect a sizable percentage of the population. From this,
seeding more cases in slightly more populated regions leads to a
longer time to peak and thus a higher epidemic entropy value.

These trends between spatial distribution and epidemic entropy
can be analyzed at a country level. Displayed in Figure 4 is a heat
map comparing entropy values between Mongolia, Slovakia, and
the United States of America, each with different population sizes,
density and distribution. Slovakia has a fairly uniform population
distribution at both the admin 1 level and admin 2 level. Meanwhile,
Mongolia has an uneven distribution. Nearly 50 percent of Mon-
golia’s population lives in the capital city of Ulaanbaatar. It can be

Figure 4: Entropy values for Mongolia, Slovakia, and the
United States of America.

seen that a higher skew seemed to contribute to higher epidemic
entropy values, since this led to more concentrated seeding, and
hence longer for the epidemic to reach all patches. The United
States and Slovakia had the greatest epidemic entropy value when
in admin 2 with a skew value of 3 while Mongolia had its greatest
when in admin 1 with a skew value of 3. Compared to Mongolia and
Slovakia, the absolute increase in epidemic entropy was much more
apparent for the United States of America. Slovakia and Mongolia
on the other hand had only slight deviations in epidemic entropy.
Slovakia seemed to have a greater epidemic entropy change when
the skew was varied while Mongolia had a greater change with vari-
ation in the admin level. Slovakia’s epidemic entropy measurements
seemed to be more dependent on the skewing parameter because it
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resulted in a disproportional initial case distribution. Meanwhile,
Mongolia’s epidemic entropy seemed to be more dependent on the
admin level because the population distribution was already so
skewed. Therefore, regardless of the skewing value, Ulaanbaatar
always represented a high proportion of initial cases.

3.2 Entropy and timings variations for a given
country

Figure 5 displays the variation of the disease spread parameters
and the resulting epidemic entropy values for the United States. In

Figure 5: Entropy heat map of the United States.

the range of 𝛽 explored, the impact of transmissibility on epidemic
entropy is monotonic, i.e., a higher 𝛽 led to sharper epidemics, and
thus lower epidemic entropy. However, it is to be noted that, for
much lower 𝛽 , it could lead to faster extinction of the epidemic
process (and hence also lower epidemic entropy). Thus, in general,
the impact of transmissibility can be non-monotonic. With regards
to admin level, with a fixed 𝛽 , as admin level increased, epidemic
entropy increased due to localized mixing within the regions, and
fewer long-range connections. This was further accentuated by
the skew in seeding and the rad parameter of the network. Finally,
uniform seeding (skew=1) did not significantly change peak times,
whereas for higher skew, the effect of the rad parameter was more
pronounced. This effect is better visualized in Figure 6. In admin 1,
increasing the skew and varying the radiation parameter did not
have as strong effect on the peak timing. This is likely due to more
comparable population sizes at admin1 resolution than at admin2
resolution.

4 CONCLUSIONS AND FUTUREWORKS
We have used open-source framework and datasets for pilot studies
on the impact of seeding on disease dynamics over metapopula-
tion networks. We note that the seeding impact results from the

Figure 6: Peak timing of cases varying skewing and radiation
parameter per admin resolution.

subnational population distribution, as demonstrated by the cor-
relation of population entropy to the epidemic entropy. The study
also highlights the role played by the level of connectivity between
the regions. While we observe general trends across parameters,
we also note that these trends may not be universal, and could vary
based on country-specific conditions. The seeding strategy can be
expanded to test the impact of central or peripheral node seeding
as done in [3] for real-world metapopulation models. While we
have begun with seeding as a case study, one can observe a vari-
ety of dynamics when interventions[8] and vaccinations [9] are
introduced in a spatially heterogeneous fashion. Future work will
focus on improving understanding of such modeling frameworks
for better pandemic preparedness.
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