
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MODULAR ADDITION WITHOUT BLACK-BOXES:
COMPRESSING EXPLANATIONS OF MLPS THAT
COMPUTE NUMERICAL INTEGRATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The goal of mechanistic interpretability is discovering a simple, low-rank al-
gorithm implemented by models. While we can compress activations into fea-
tures, compressing nonlinear feature-maps—like MLP layers—is an open prob-
lem. In this work, we present the first case study in rigorously compressing
nonlinear feature-maps. We work in the classic setting of the modular addi-
tion models (Nanda et al., 2023), and target a non-vacuous bound on the be-
havior of the ReLU MLP in time linear in the parameter-count of the circuit. To
study the ReLU MLP analytically, we use the infinite-width lens, which turns
post-activation matrix multiplications into approximate integrals. We discover
a novel interpretation of the MLP layer in one-layer transformers implementing
the “pizza” algorithm (Zhong et al., 2023): the MLP can be understood as evalu-
ating a quadrature scheme, where each neuron computes the area of a rectangle
under the curve of a trigonometric integral identity. Our code is available at
https://tinyurl.com/mod-add-integration.

1 INTRODUCTION

Neural networks’ ability to generalize suggests they implement simpler, low-rank algorithms despite
performing high-dimensional computations (Olah et al., 2020). The field of mechanistic interperability
has made tremendous progress in finding low-rank approximations of activations—for example,
discovering interpretable features (Bricken et al., 2023; Cunningham et al., 2023). However, finding
low-rank approximations of feature-maps—particularly MLP layers—is still an open problem (Elhage
et al., 2022).

Finding low-rank approximations of nonlinear feature-maps becomes particularly important in light of
recent work that found evidence that sparse linear features do not fully capture the structure of frontier
models (Marks et al., 2024; Engels et al., 2024). Interpretations that lack analyses of feature-maps
may not be usable for ambitious applications of mechanistic interpretability, like anomaly detection
and worst-case guarantees. The expressivity of MLPs constitutes a large attack surface for perturbing
the model, so not compressing feature-maps leaves a lot of free parameters in the interpretation.
These free parameters diminish our ability to detect anomolous behavior, or make strong guarantees.

To illustrate the difficulty of compressing MLPs, consider the following toy model comparing the
effective parameter count of deep nonlinear networks and deep linear networks: adding or multiplying
k matrices of shapem×m. For linear operations, we need onlym2 parameters to completely describe
the input-output behavior, regardless of the depth of network. However, introducing nonlinearities like
ReLU between these operations increases the effective parameter count to km2, with the complexity
growing exponentially with depth. While deep linear networks can be compressed to shallow networks
of equivalent width without loss of expressivity, nonlinear networks resist such compression.

Even in the classical toy setting of modular addition models, the MLP layer is treated as a black box.
Nanda et al. (2023) finds sparse features to describe the input and output to the MLP layer, however,
they do not tell us how the MLP layer processes the input features to generate the output features.

In this work, we present a case study in compressing nonlinear feature-maps. We extend the analysis
in Nanda et al. (2023); Zhong et al. (2023); Gromov (2023) to the MLP layer, opening up the final
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∑
i

fx(ξi)gc(ξi)wi

∫
fx(ξ)gc(ξ) dξ
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fx(ξi)

gc(ξi)wi

x

c

Figure 1: (left) There are finitely many neurons in the model (indexed by i). The function fx(ξi)
is ReLU applied to the inputs x. The weight of the connection to each output c is gc(ξi) times a
neuron-specific output-independent normalization factor wi. (right) Taking the limit as the number
of neurons goes to infinity turns the sum over neurons into an integral. Compressing the resulting
analytic expression allows us to compress the MLP.

black box remaining in the modular addition models (§2). To demonstrate that compressing the
feature-map is essential for reducing free parameters, we use the formal compression metric from
Gross et al. (2024). We measure compression by the computational complexity of verifying the
interpretation, where proving the same bound with a lower complexity budget would correspond to
finding an interpretation with fewer free parameters (§3).

We apply an infinite-width lens, wherein we treat densely connected MLPs as finite approximations to
an infinite-MLP-width limit (Appendix K). The infinite-width lens permits us to turn post-activation
matrix multiplications into approximate integrals and study the remaining operations of the network
– including nonlinear operations – analytically. We find a low-rank approximation of the nonlinear
function implemented by the MLPs of the “pizza” transformers (Zhong et al., 2023): doubling
the frequencies of the input representations, that is, mapping from representations of the form
cos(k2 (a+ b)), sin(k2 (a+ b)) to cos(k(a+ b)), sin(k(a+ b)). Building on surprising patterns in the
phase-amplitude representation of the MLP pre-activations and neuron-logit map, we find that the
MLP can be understood as implementing a quadrature scheme for integrals of the form∫ π

−π

ReLU[cos(k2 (a+ b) + ϕ)] cos(kc+ 2ϕ) dϕ =
2

3
cos(k(a+ b− c)),

for a handful of key frequencies k where the integral can be seen as the limiting case of the MLP’s
summation as the number of neurons increases (§4).

We confirm this interpretation by creating non-vacuous bounds for the outputs of these MLPs in time
linear in the number of parameters, i.e. without evaluating it on all P 2 possible inputs (§5). Finally,
we resolve the puzzling observation that the logits of supposedly “pizza” models are closer of those
of Nanda et al. (2023)’s “clock” algorithm, by explaining how the model uses secondary frequencies
equal to twice of each key frequency in order to compensate for how the pizza algorithm fails in cases
when k(a− b) ≈ π (§6).

2 BACKGROUND

2.1 MECHANISTIC INTERPRETABILITY OF MODULAR ADDITION MODELS

Models trained on the modular addition task have become a classic testbed in the mechanistic
interpretability literature. Originally, Nanda et al. (2023) studied a one-layer transformer model. They
found low-rank features to describe all components of the model, and analyzed the feature-map of
the final linear layer. While they generated a human-intuitive algorithm of how the model works, they
did not explain how the MLP layers compute logits that fit with the form required by this algorithm.
Despite the tremendous progress in analyzing the non-MLP layers of the model, the ReLU MLP is
still treated as a black-box.

Zhong et al. (2023) extended the analysis to a family of architectures parameterized by attention
rate. The architecture from Nanda et al. (2023) corresponds to attention rate 0, while attention rate
1 corresponds to a ReLU MLP-only model, i.e. a transformer with constant attention. Depending
on attention rate, they showed that models may learn the “clock” or “pizza” algorithm. They
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exhaustively enumerated inputs to MLP-only model and found a description of the feature-map.
However, exhaustive enumeration is not feasible for larger input sizes, and does not constitute an
insight-rich explanation. Thus, their approximation of the feature-map is equal to the feature-map
itself, failing to provide any compression.

Gromov (2023) considered a cleaner version of the MLP-only architecture considered by Zhong
et al. (2023), and used quadratic activations instead of ReLU activations. They presented a formula
corresponding to a compressed feature-map. However, they did not present sufficient evidence to
show that the trained models follow the formula as suggested. They only showed that the weights
are roughly “single-frequency”, i.e. they are well approximated by the largest Fourier component.
Establishing that the model in fact uses the stated algorithm as opposed to a different algorithm would
require significantly more validation.

In this work, we analyze the ReLU MLP with the goal of demonstrating how it computes the functions
described in prior work, and establish this with rigorous evidence and a formal proof.

2.2 EXPERIMENTAL SETUP

We study models which implement the ‘pizza’ algorithm from Zhong et al. (2023): a one-layer
ReLU transformer with four heads and constant attention = 1

2 for all tokens, trained to compute
M : (a, b, ‘=’) 7→ (a + b) mod p. As in Zhong et al. (2023), we take p = 59. The model takes
input (a, b, ‘=’) encoded as one-hot vectors, and we read off the logits logit(a, b, c) for all possible
values (mod p) above the final sequence position ‘=’, with the largest logit representing its predicted
answer.

Since the attention is constant, the logits of the model given input a, b are calculated as:

x
(0)
i =WEti + pi Embedding

x(1) = x
(0)
2 +

1

2

4∑
j=1

W j
OW

j
V

(
x(0)a + x

(0)
b

)
Post attention residual stream

N = ReLU(Winx
(1)) Post ReLU neuron activations

x(2) = x(1) +WoutN

logits =WUx
(2) =WU

(
x(1) +Wout ReLU(Winx

(1))
)

As such, the model architecture considered has constant attention = 1
2 throughout, so the model

consists of linear embeddings, followed by ReLU, followed by a further linear layer.

As noted in both Nanda et al. (2023) and Zhong et al. (2023), the contribution from the skip connection
around the MLP to the logits is small. Combining this with the fact that the attention is uniform
across a, b, and using WL = WUWout for the neuron-logit map, the logits can approximately be
written as the sum of the contributions of each of the dmlp neurons:

logit(a, b, c) =
∑dmlp

i=1 (WL)ci · ReLU( 12OV(a)i +
1
2OV(b)i)

2.3 THE “PIZZA” ALGORITHM

Zhong et al. (2023) demonstrated that small transformers using constant attention implement modular
arithmetic using the following algorithm, which they call the “pizza” algorithm:

1. OV (a), OV (b) embed the one-hot encoded tokens a, b as (cos(ka), sin(ka)) and
(cos(kb), sin(kb)) for a small handful of key frequencies k

2. Before the MLP layer, the representation of the two tokens are averaged:

(cos(ka) + cos(ka), sin(ka) + sin(ka))/2 = cos(k(a− b)/2)(cos(k(a+ b)/2), sin(k(a+ b)/2))

3. The network then uses the MLP layer to “double the frequencies”:

N = |cos(k(a− b)/2)| (cos(k(a+ b)), sin(k(a+ b)))

3
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4. Finally, WL scores possible outputs by taking the dot product with (cos(kc), sin(kc)):

logit(a, b, c) = |cos(k(a− b)/2)| (cos(k(a+ b)) cos(kc) + sin(k(a+ b)) sin(kc))

= | cos(k(a− b)/2)| cos(k(a+ b− c))

They distinguish this from the “clock” algorithm of Nanda et al. (2023), whose logits have no
dependence on |cos(k(a− b)/2)|, and where the MLP layer instead multiplies together its inputs.

Note that Zhong et al. (2023) check that the MLP layer doubles frequencies empirically (i.e. by brute
force), by treating the MLP as a black box and enumerating the MLP’s outputs for all possible inputs.
In this work, we seek to understand how the MLP performs its role.

3 COMPRESSING MLPS

Post-hoc mechanistic interpretability (Olah et al., 2020; Elhage et al., 2021; Black et al., 2022) can
be formalized as finding a compact explanation (Gross et al., 2024) of how the model computes its
outputs on the entire input distribution. Gross et al. (2024) demonstrated that finding non-trivial
compact explanations, i.e. proving a meaningful bound instead of a null bound, necessarily requires
more mechanistic information about the model behavior. Moreover, if some marginal mechanistic
analysis does not result in compression, then it does not reduce the free parameters of that component.
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Figure 2: We argue that the MLP approximately
computes integrals. We plot the computed integral
for frequency k = 12 when a + b = c = 0. The
widths and heights of rectangles are generated by
the actual weights in a trained model.

Gross et al. (2024) conduct a limited empirical
study of models trained to compute the max-
imum of k integers, which are attention-only
transformers with no MLP layers. Our work can
be seen as applying this rigorous formalization
to a more challenging case study.

Formally, we consider the computational com-
plexity needed to check the behavior of the MLP
on all inputs. The lower the complexity is, the
better we have understood the MLP and the bet-
ter we can compress our description of how the
MLP computes the function that it does.

The naive baseline (as provided by both Nanda
et al. (2023) and Zhong et al. (2023)) is to de-
scribe the MLP’s behavior by evaluating it on
every possible input. For n such inputs and an
MLP with width dmlp and input/output dimen-
sion dmodel, this requires checking the result of
O(n dmlpdmodel) operations. This corresponds
to a null interpretation providing zero under-
standing of how the MLP internally functions.

Ideally, we hope that we can bound the MLP’s behaviour by referencing only the model weights,
without evaluating it on all inputs – in time O(dmlpdmodel + n), linear in the parameter count of the
MLP. As this is the information-theoretic limit, we target interpretations that formally bound MLP
behaviour in time linear in parameter count.

4 INTERPRETING “PIZZA” MLPS AS PERFORMING NUMERICAL INTEGRATION

Following Nanda et al. (2023), we focus on a particular (“mainline”) model in the main body of the
work. We confirm that our results generalize to another 150 transformers in Appendix C. First, we
identify new structure in the model by using the amplitude-phase form of the Fourier series. Then we
describe how to leverage this structure to explain how the MLP approximates an integral to double
the frequency of the preactivations.

4
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(a) For most neurons, above 96% of the variance of
the ReLU input is explained by the largest Fourier fre-
quency component. We compute the square of the
largest Fourier coefficient divided by the sum of the
squares of all Fourier coefficients and the square of the
residual contributions.
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(b) For most neurons, above 98% of the variance of
the matrix Wout is explained by the largest Fourier
frequency component. We compute the square of the
largest Fourier coefficient divided by the sum of the
squares of all Fourier coefficients.

Figure 4: Histograms of the variance explained by the largest Fourier frequency component for the
pre-activations and neuron-logit map WL for each of the 512 neurons in the mainline model.

4.1 STUDYING THE MODEL IN THE AMPLITUDE-PHASE FOURIER FORM

We first note that OV (a), OV (b) do not actually embed all inputs to sine and cosine representations
of equal magnitude. In general, for each neuron i, taking s = k(a + b)/2 and s′ = k(a − b)/2,
we can write the representation of the the neuron-i preactivation for an input as cos s′(αi cos s +
βi sin s) for coefficients αi, βi. If we rewrite this expression into the amplitude-phase form of
the Fourier series, by putting (αi, βi) into polar coordinates, our preactivation expression becomes
ri cos s

′(cosϕi cos s− sinϕi sin s) = ri cos s
′ cos(s+ ϕi).

−π −π
2

0 π

2

π

−π

−π
2

0

π

2

π

ϕi

ψi

Primary frequency
Non-primary frequency
ψ ≡ 2ϕ (mod 2π)

Figure 3: We plot the input and output phase shift
angles for frequency k = 12, where ψi ≈ 2ϕi
(mod 2π) for the primary frequency of each neu-
ron. The line has R2 = 0.9999 and the intervals
between angles have mean width 0.054, and stan-
dard deviation 0.049. This shows that the angles
are roughly uniform.

Similarly,WL does not take the dot product with
(cos t, sin t) but actually multiplies by α′

i cos t+
β′
i sin t. Taking t = kc, we can again put this ex-

pression into the amplitude-phase Fourier form
by putting (α′

i, β
′
i) into polar coordinates, giving

r′i(cosψi cos t− sinψi sin t) = r′i cos(t+ ψi).

The contribution to the logits from neuron i is
then r′iri ReLU[cos s′ cos(s+ ϕi)] cos(t+ ψi).

We find that each neuron has a primary fre-
quency for both input and output. As seen in
Figure 4, the majority of pre-activations for each
neuron consist of terms from a single key fre-
quency, as does the neuron-logit map WL. The
largest frequency component for the ReLU pre-
activation is almost always equal to the largest
frequency component for the corresponding row
of WL. This allows us to divide the neurons
into clusters Ik, each of which correspond to a
single frequency k.

Furthermore, the output phase is double the
input phase. In Figure 3, we plot the input and

5
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output phase shift angles ϕi and ψi for the largest two frequencies. For each neuron’s primary
frequency, the neuron’s output phase shift ψi is almost exactly twice its input phase shift ϕi.

4.2 FREQUENCY DOUBLING USING A TRIGONOMETRIC INTEGRAL IDENTITY

Treating the MLP layer as approximately performing numerical integration allows us to make sense
of the previous observations. Recall that we can write the logits of the model as

logit(a, b, c) ≈ ∑dmlp

i=1 (WL)ci · ReLU
(
1
2OV(a)i +

1
2OV(b)i

)
≈ ∑

k∈K
∑

i∈Ik
cos (k(c+ 2ϕi))ReLU

(
cos

(
k
2 (a− b)

)
cos

(
k
2 (a+ b+ ϕi)

))
For each frequency k, we can write the contributions to the logits from neurons of frequency k as :

logit(k)(a, b, c) =
∣∣cos (k

2 (a− b)
)∣∣∑

i∈Ik
cos (k(c+ 2ϕi))ReLU

(
σk cos

(
k
2 (a+ b+ ϕi)

))
where σk = 1 if

∣∣cos (k
2 (a− b)

)∣∣ ≥ 0 and -1 otherwise.

Ignoring the |cos(k(a− b)/2)| scaling factor (which does not vary per neuron), we claim that the
normalized MLP outputs∑

i∈Ik

wi ReLU[σkcos(
k
2 (a+ b) + ϕi)] cos(kc+ 2ϕi) (1)

can we well-thought of as approximating the integral (see Appendix E):∫ π

−π

ReLU[σkcos(
k
2 (a+ b) + ϕ)] cos(kc+ 2ϕ) dϕ =

2

3
cos(k(a+ b− c)). (2)

Note that the above integral is valid for both σk = −1, 1.

This gives us the desired form for the output logits:

logit(a, b, c) =
∑
k

|cos(k(a− b)/2)| cos(k(a+ b− c)) (3)

5 VALIDATION VIA COMPACT GUARANTEES ON MLP PERFORMANCE

As evidence for the usefulness of the numerical integration interpretation, we use it to derive non-
vacuous bounds on the output of the MLP on all inputs in time linear in the parameters.

5.1 COMPUTING NUMERICAL INTEGRATION ERROR

The validation of our interpretation as an integral then becomes a mathematical question of evaluating
the efficiency of the quadrature scheme∫ π

−π

ha,b,c(ϕ) dϕ ≈
∑
i

w′
iha,b,c(ϕi)

where ha,b,c(ϕi) = ReLU[σkcos(
k
2 (a+ b) + ϕi)] cos(kc+ 2ϕi). The absolute error is given by

ε∫ :=

∣∣∣∣∣
∫ π

−π

ha,b,c(ϕ) dϕ−
∑
i

w′
iha,b,c(ϕi)

∣∣∣∣∣ (4)

and we can compute relative error by computing (the average value over a, b, c of)

ε0 :=

∣∣∣∣∫ π

−π

ha,b,c(ϕ) dϕ

∣∣∣∣ (5)

and then dividing Equation 4 by Equation 5 to give the relative error εr := ε∫ /ε0.

Following Gross et al. (2024), if we can compute a non-vacuous error bound (i.e. a relative error
that is strictly less than 1) in time linear in the number of parameters of the computation, we can be

6
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Figure 5: We plot the error bound, which is depicted in red, for frequency k = 12. We observe
that the red area includes both the actual curve and the numerical integration approximation. The
Lipschitz constant is 2, so we bound h′(ϕ) by +2 and −2,

assured that our interpretation has some validity. Since there are dmlp neurons and p points to evaluate
our target is to compute an error bound in time O(dmlp + p). Thus, this part of the computation is
sublinear in the number of parameters as desired.

Recall the neuron contributions to the logits from Equation 2:

ReLU[σkcos(
k
2 (a+ b) + ϕ)] cos(kc+ 2ϕ)

We can split ReLU as ReLU(x) = (x + |x|)/2. We shall see below that the x/2 part integrates
to 0. As a result, a relative error bound would not give a meaningful result for this part. However,
this part of the network is linear, thus, we can still effectively compress the network behaviour here.
For example, we can compute a matrix A ∈ Rp×p such that the logit contribution of this part is
A[:, a] + A[:, b] for inputs a and b. Thus, in the below section, we can restrict our attention to the
absolute value part, |x| /2.

This turns ReLU[σkcos(
k
2 (a+ b) + ϕ)] cos(kc+ 2ϕ) into

1
2

∣∣σkcos(k2 (a+ b) + ϕ)
∣∣ cos(kc+ 2ϕ)︸ ︷︷ ︸

ha+b,c,σk

+ 1
2σkcos(

k
2 (a+ b) + ϕ) cos(kc+ 2ϕ)

We sort the phases ϕi for each neuron, and turn the weights wi into widths of the rectangles, and the
function calls h(ϕi) into the heights of the rectangles corresponding to the function evaluated at ϕi.
This gives a picture similar to Figure 2. The absolute error is

εh :=
∣∣∣∫ π

−π
h(x)− h(ϕi) dx

∣∣∣ . (6)

A crude bound is:

≤
∫ π

−π
|h(x)− h(ϕi)|dx (7)

≤
∫ π

−π
|x− ϕi| · supx |h′(x)|dx (8)

≤ supx |h′(x)|
∑

i

(∫ vi−ϕi

vi−1−ϕi
|x|dx

)
(9)

= sup
x

|h′(x)|
∑
i

1

2

{∣∣(vi − ϕi)
2 − (vi−1 − ϕi)

2
∣∣ if ϕi ∈ [vi−1, vi]

(vi − ϕi)
2 + (vi−1 − ϕi)

2 otherwise
(10)

where the rectangle width goes from vi−1 to vi and the function is evaluated at ϕi.

For h = ha+b,c,σk
, we can bound

supx |h′(x)| ≤ 2

analytically, and the remaining sum can be evaluated easily in O(dmlp) time; call this ε≈∫ .

Notice that this upper bound has no dependency on h, and therefore is a valid upper bound, for all
possible a, b, c triplets. In other words, we can bound the error of the quadrature approximation for
any a, b, c by evaluating an expression that takes time linear in the number of neurons.

7
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This bound is represented visually in Figure 5. Note that the figure is produced by analysing the
trained model weights.

We must also include approximation error from ψi ≈ 2ϕi, which we call the “angle approxi-
mation error,” εϕ: we have

∑
i w

′
j |cos(ki(a+ b)/2− ϕi)| · (cos(kc + ψi) − cos(kc + 2ϕi)) ≤∑

i w
′
j |cos(ki(a+ b)/2− ϕi)| · |ψi − 2ϕi| ≤

∑
i w

′
j |ψi − 2ϕi|.

5.2 EMPIRICAL VALIDATION

−π −2π

3
−π
3

0 π

3
2π

3

π

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

ϕ

h(ϕ)

Figure 6: Numerical integration with boxes cen-
tered at ϕi for frequency k = 12.

We now provide empirical validation of our in-
terpretation.

The network is well-approximated as doing
numerical integration. We can compute the
actual error ε∫ /ε0 empirically, by evaluating
the expression over all possible inputs, giving
numbers between 0.03 and 0.05, see Table 1.

The interpretation gives useful compres-
sion because integral explanation gives com-
pact non-vacuous bounds. Our relative error
bounds range from 0.48 to 0.7 (i.e. less than 1),
see Table 1.

The bounds are far away from actual error
because we don’t completely understand nu-
merical integration. Intuitively, we’d like to
center each box at its corresponding ϕi and com-
pute the error that results from having box density above or below 1 at various points of the curve (Fig-
ure 6). We’d also like to take into account the fact that if one region has a box density above 1 and is
adjacent to a region with a box density below one, these density errors partially cancel out. However,
we don’t know how to efficiently compute these effects, and the bounds we’re able to give using
non-uniform box densities instead of non-uniform angle locations is too crude.

6 THE ROLE OF SECONDARY FREQUENCIES

6.1 REGRESSING MODEL LOGITS VERSUS “CLOCK” AND “PIZZA” LOGITS

As noted above, Nanda et al. (2023) claim that logits are of the form (“clock logits”)

logit(a, b, c) ∝ cos(k(a+ b− c))

while Zhong et al. (2023) suggests that logits can also be of the form (“pizza logits”)

logit(a, b, c) ∝ |cos(k(a− b)/2)| cos(k(a+ b− c))

Interestingly, if we regress the logits against the factors |cos(k(a− b)/2)| cos(k(a+ b− c)), which
gives an R2 of 0.86, while if we regress them against just cos(k(a + b − c)), we obtain an R2 of
0.98 – substantially higher. So overall, the “clock logits” give a more accurate expression, suggesting
that the analysis above is importantly incomplete. Interestingly, if we only consider the contribution

Error Bound Equation \ Freq. 12 18 21 22

ε∫ /ε0 (actual error computed by brute force) 0.05 0.03 0.05 0.03
(ε≈

∫ + εϕ)/ε0 (error bound computed in linear time) 0.70 0.49 0.54 0.48

Table 1: Relative error bounds by splitting ReLU into absolute value and identity components

8
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Figure 7: We plot the input phase shifts of the two frequencies. We observe that not only are the
secondary frequencies of neurons approximately double the primary frequencies, the input phase
shift of the secondary frequencies are approximately twice the primary frequency phase shift plus π.

to the logits from only the absolute value component of ReLU (Appendix I), the R2 values become
0.99 and 0.85 respectively.

What this suggests is that the absolute value component of ReLU indeed carries out the “pizza”
algorithm and produces those logits. As we will demonstrate below, the discrepancy for the overall
logits is due to the effects of the substantially smaller non-primary frequencies. In particular, it is
explained by the action of the “secondary frequency” – the second largest Fourier component.

6.2 USING SECONDARY FREQUENCIES TO BETTER APPROXIMATE CLOCK LOGITS

For each of the neurons, the largest secondary frequency is almost always twice the primary frequency.
For example, for neurons of frequency 12, the largest secondary frequency is 24, while for neurons of
frequency 22, the largest secondary frequency is 15 (= 59 − 22 · 2, note that cosine is symmetric
about 0).

Note that the input phase shift of the secondary frequency is approximately twice the input phase
shift of the primary frequency plus π (Figure 7).

The contribution of the doubled secondary frequency to the logits can thus be written as (compare to
Equation 2, note we lose the 1

2 factor in the pre-ReLU expression because the secondary frequency is
double the primary frequency)

logit(2k)(a, b, c) =
∑
i∈Ik

cos (kc+ 2ϕi)ReLU [cos (k(a− b)) cos (k(a+ b) + 2ϕi + π)]

≈
∫ π

−π

cos(kc+ 2ϕ)ReLU[− cos (k(a− b)) cos(k(a+ b) + 2ϕ)] dϕ

Letting θ = ϕ+ k(a+ b)/2, we get

=

∫ k(a+b)/2+π

k(a+b)/2−π

cos(k(c− (a+ b)) + 2θ)ReLU[− cos (k(a− b)) cos(2θ)] dθ

Because the integrand is 2π-periodic, the shift on the limits of integration is irrelevant:

=

∫ π

−π

cos(k(c− (a+ b)) + 2θ)ReLU[− cos (k(a− b)) cos(2θ)] dθ

By the law of cosine addition:

=

∫ π

−π

[
cos(k(c− (a+ b))) cos(2θ)− sin(k(c− (a+ b))) sin(2θ)

]
· ReLU[− cos (k(a− b)) cos(2θ)] dθ

9
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Because sin is odd and ReLU[cos] is even, the sin term integrates to 0.

= cos(k(c− (a+ b)))

∫ π

−π

cos(2θ)ReLU[− cos (k(a− b)) cos(2θ)] dθ

= −π
2 cos (k(a− b)) cos(k(a+ b− c))

This logit contribution helps make the model more robust. Note that in the expression for “pizza logits”
(Equation 3), the model works by having that cos(k(a+ b− c)) is largest when c = a+ b (mod p),
and choosing the largest logit as output. However, this logit difference has a factor of

∣∣cos (k
2 (a− b)

)∣∣.
As a result, when

∣∣cos (k
2 (a− b)

)∣∣ ≈ 0, the logit difference is small and may not distinguish the
correct output. However, from the above expression, we have that (by cos(2x) = 2 cos2(x) − 1)
cos (k(a− b)) ≈ −1 so this term contributes positively to the correct logit cos(k(a+ b− c)). This
compensates for the weakness of the pizza logits in cases where

∣∣cos (k
2 (a− b)

)∣∣ ≈ 0.

7 DISCUSSION

We provide a first case study in rigorously compressing nonlinear feature-maps. We demonstrate
that interpreting feature-maps reveals additional insight about the model mechanism, even in models
that the research community assumes that we understand quite well. Our hope is that this work will
inspire additional study of feature-maps in mechanistic interpretability.

The key steps in our derivation of efficient bounds were: splitting the input into orthogonal output-
relevant and output-irrelevant directions; decomposing the pre-activations as a product of functions
of these axes; reindexing the neurons by the output-relevant direction so that the reindexed post-
activations depend only on the output-irrelevant directions; and compressing independently over the
output-relevant direction term and the output-irrelevant direction term. We believe that some of these
steps could be adapted to interpret other MLPs, even those where we cannot derive closed-form
analytic representations. At the same time, the bounds we derive in Appendix H could be improved
to understand how the network is allocating boxes under the curve, which we hope to address with
future work.
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A MODEL TRAINING DETAILS

We train 1-layer transformers with constant attention = 1
2 (equivalently, with QK clamped to 0), as

implemented by TransformerLens (Nanda & Bloom, 2022) with the following parameters

d vocab = p+ 1 = 59 + 1

n ctx = 2 + 1

d model = 128

d mlp = 512

d head = 32

n heads = 4

n layers = 1

act fn = ’relu’

We take 80% of all (a, b) pairs mod p as the training set, and the rest as the validation set. We set
the loss function to be the mean log probabilities of the correct logit positions, and train for 10000
epochs using the AdamW optimizer with the default weight decay = 0.01. The large number of
epochs is such that the resulting model achieves 100% accuracy on all possible input pairs. We chose
151 random seeds which are pseudorandomly deterministically derived 0, along with 150 values read
from /dev/urandom.

Each training run takes approximately 11–12 GPU-minutes to complete on an NVIDIA GeForce
RTX 3090. In total, the experiments in this paper took less than 1000 GPU-hours.

B MORE FIGURES AND RESULTS FOR MAINLINE MODEL
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Figure 8: The key frequencies for this model are 12, 18, 21, and 22 (multiplied by 2π/p)

C RESULTS FOR OTHER RANDOM SEEDS

To ensure that this phenomenon is not specific to the model we looked at, we trained 151 models with
the same setup and different random seeds (leading to different weight initialization and train-test
split). We replicate some of the analysis above to show that a significant proportion of these models
follow the above explanation.

For our second observation, we notice that most neurons are single frequency, with the largest
frequency explaining more than 90% of the variance of the ReLU input, see Figure 13. The same
is true for the Wout matrix, see Figure 14. For our third observation, we check that (disregarding
neurons where the largest frequency is the constant term) 100 out of 151 models (‘good models’)

12
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Figure 9: The network computes logits by approximate numerical integration.
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Figure 10: Most models have 3 to 5 key frequencies, which is in line with what we would expect to
make the above argument work.
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Figure 11: Key frequencies for the models are roughly uniformly distributed across all possible
values.
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Figure 12: Residual connection from the attention stream causes mostly less than 3% of the variance
of the logits.

0.2 0.4 0.6 0.8 1.0
0

5000

10000

15000

20000

25000

|Key frequency component|2/|ReLU input|2

C
ou

nt
(n

um
be

ro
fn

eu
ro

ns
)

Figure 13: For most neurons, above 90% of the variance of the ReLU input is explained by the largest
Fourier frequency component.
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Figure 14: For most neurons in ‘good’ models, above 98% of the variance of the Wout matrix is
explained by the largest Fourier frequency component.
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Figure 15: Most of the pairs have normalised abs integral bounds less than 0.6, compared to the naive
abs error bound of 0.85.
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Figure 16: The second largest non-zero Fourier component is 2 times the primary frequency for 83%
of the neurons.

have the frequencies matching for all neurons, with a further 27 models where the frequencies don’t
match for less than 10 (out of 512 neurons). For our fourth observation, we look at the 100 good
models and see that for 78 of them, we have R2 > 0.9 between the angles for all key frequencies.
For our fifth observation, we look at the 100 good models and see that for 54 of them, we have
mean width of intervals > standard deviation of width, showing that angles are roughly uniformly
distributed.

Finally, we carry out the error bound calculations for the 100 good models. For each (model, freq)
pair, we can calculate the error bounds as in Table 1. We see that for 295 out of 358 such pairs (82%),
the empirical errors (normalised abs cos error, normalised abs sin error, normalised id cos error,
normalised id sin error) are all less than 0.1. For these pairs, the normalised abs integral bound has
a median of 0.40, which is 47% of the naive abs bound of 0.85. Also, 99% of the normalised abs
integral bounds are less than the naive abs bound (see Figure 15. Hence, the numerical integration
phenomenon explained above indeed appears in most trained models, and our method of proof is able
to produce a non-vacuous error bound whenever this phenomenon occurs.

For the relationship observed between primary and secondary frequencies, we see that it still holds
when we use different random seeds. In particular, around 84% of the neurons have the second largest
non-zero Fourier component being 2 times the primary frequency (see Figure 16). Also, amongst
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Figure 17: Most of the (model, freq) pairs have the angle for the secondary frequency closely
resembling 2 times the primary frequency plus π.

these neurons, the angle for the secondary frequency is approximate 2 times the angle for the primary
frequency +π, with R2 > 0.9 for most (model, freq) pairs.

D TRIGONOMETRIC IDENTITIES

We use the following trigonometric identities throughout the paper:

sinα+ sinβ = 2 sin
α+ β

2
cos

α− β

2
(11)

cosα+ cosβ = 2 cos
α+ β

2
cos

α− β

2
(12)

cosα cosβ =
cos(α+ β) + cos(α− β)

2
(13)

cos(α+ β) = cosα cosβ − sinα sinβ (14)
cos(α− β) = cosα cosβ + sinα sinβ (15)
cos(α+ π) = − cosα (16)

E DERIVATION OF TRIG INTEGRAL

Instead of splitting the summation into two chunks, converting each into an integral, and evaluating
each integral, we can replace the summand with an integral directly and evaluate that. Also, we use
the corrected phase shift ψi = 2ϕi:

logit(a, b, c)

≈
∑
k∈K

∑
i∈Ik

wi ReLU
(
σk cos(k

a+b
2 + ϕi)

)
cos(kc+ 2ϕi)

≈
∑
k∈K

Zk

∫ π

−π

ReLU
(
σk cos(k

a+b
2 + ϕ)

)
cos(kc+ 2ϕ) dϕ

Using F± to denote the integral

F± =

∫ π

−π

ReLU
(
± cos(k

a+ b

2
+ ϕ)

)
cos(kc+ 2ϕ) dϕ ,

16
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let s = k a+b
2 and t = kc. Using the periodicity of cosine (Equation 16), we have

F− =

∫ π

−π

ReLU
(
− cos(k

a+ b

2
+ ϕ)

)
cos(kc+ 2ϕ) dϕ

=

∫ π

−π

ReLU
(
cos(k

a+ b

2
+ ϕ+ π)

)
cos(kc+ 2ϕ+ 2π) dϕ

=

∫ 2π

0

ReLU
(
cos(k

a+ b

2
+ ϕ′)

)
cos(kc+ 2ϕ′) dϕ′

=

∫ π

−π

ReLU
(
cos(k

a+ b

2
+ ϕ)

)
cos(kc+ 2ϕ) dϕ

= F+ .

So we may write F := F+ = F−. Note that the integrand is non-zero only when ϕ ∈ [−π/2 −
s, π/2− s]. Applying the cosine product-sum identity (Equation 13) and doing some algebra:

F =

∫ π/2−s

−π/2−s

cos(s+ ϕ) cos(t+ 2ϕ) dϕ

=
1

2

∫ π/2−s

−π/2−s

cos(s− t− ϕ) + cos(s+ t+ 3ϕ) dϕ

=
1

2

[
sin(ϕ− s+ t) +

1

3
sin(s+ t+ 3ϕ)

]π/2−s

−π/2−s

=
1

2

[
sin(π/2− 2s+ t) +

1

3
sin(3π/2− 2s+ t)

]
− 1

2

[
sin(−π/2− 2s+ t) +

1

3
sin(−3π/2− 2s+ t)

]
Using the periodicity of sine and cosine, we have

F =
1

2

[
sin(π/2− 2s+ t) +

1

3
sin(3π/2− 2s+ t)

]
− 1

2

[
sin(−π/2− 2s+ t) +

1

3
sin(−3π/2− 2s+ t)

]
=

1

3
sin(π/2− 2s+ t) +

1

3
sin(π/2 + 2s− t)

=
1

3
cos(2s− t) +

1

3
cos(−2s+ t)

=
2

3
cos(2s− t)

=
2

3
cos(k(a+ b− c)) ,

as desired.

That is, the pizza model computes its logits using the trigonometric integral identity:∫ π

−π

ReLU
(
cos(k(a+ b)/2 + ϕ)

)
cos(kc+ 2ϕ) dϕ

=
2

3
cos(k(a+ b− c))

Or equivalently:

cos(k(a+ b− c))

=
3

2

∫ π

−π

ReLU
(
cos(k(a+ b)/2 + ϕ)

)
cos(kc+ 2ϕ) dϕ

17
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F DERIVATION OF TRIG INTEGRAL INCLUDING SECONDARY FREQUENCIES

Let

sk = k a+b
2 uk = k a−b

2 vk = cos(uk) tk = kc

and let βi be the coefficient of the secondary frequency term and γi be the constant term.

Consider a network of the form

logit(a, b, c) ≈
∑
k∈K

∑
i∈Ik

wi ReLU
[
f(ka+ ϕi, kb+ ϕi)

]
cos(kc+ 2ϕi)

for some symmetric even function f which is 2π-periodic – that is, f(x, y) = f(y, x) = f(−x, y) =
f(x,−y) = f(x+ 2π, y) = f(x, y + 2π).

Then we have

logit(a, b, c)

≈
∑
k∈K

∑
i∈Ik

wi ReLU
[
f(ka+ ϕi, kb+ ϕi)

]
cos(kc+ 2ϕi)

≈
∑
k∈K

Zk

∫ π

−π

ReLU
[
f(ka+ ϕ, kb+ ϕ)

]
cos(kc+ 2ϕ) dϕ

Reindexing with θ = ϕ+ k a+b
2 = ϕ+ sk:

≈
∑
k∈K

Zk

∫ k a+b
2 +π

k a+b
2 −π

ReLU
[
f(k a−b

2 + θ,−k a−b
2 + θ)

]
cos(k(c− (a+ b)) + 2θ) dθ

=
∑
k∈K

Zk

∫ sk+π

sk−π

ReLU
[
f(uk + θ,−uk + θ)

]
cos(tk − 2sk + 2θ) dθ

Using the fact that the integrand is 2π-periodic and hence we can arbitrarily shift the limits of
integration:

=
∑
k∈K

Zk

∫ π

−π

ReLU
[
f(uk + θ,−uk + θ)

]
cos(tk − 2sk + 2θ) dθ

Define
gk(θ) = ReLU

[
f(uk + θ,−uk + θ)

]
and note that gk is even1 and use the cosine addition formula (Equation 14) to get:

=
∑
k∈K

Zk

∫ π

−π

gk(θ)(cos(tk − 2sk) cos(2θ)− sin(tk − 2sk) sin(2θ)) dθ

=
∑
k∈K

Zk cos(tk − 2sk)

∫ π

−π

gk(θ) cos(2θ) dθ − Zk sin(tk − 2sk)

∫ π

−π

gk(θ) sin(2θ) dθ

Since gk is even and sin is odd, the second integral evaluates to zero, giving

=
∑
k∈K

Zk cos(tk − 2sk)

∫ π

−π

gk(θ) cos(2θ) dθ

1Because gk(−θ) = ReLU
[
f(uk − θ,−uk − θ)

]
= ReLU

[
f(−(−uk + θ),−(uk + θ))

]
=

ReLU
[
f(−uk + θ, uk + θ)

]
= ReLU

[
f(uk + θ,−uk + θ)

]
= gk(θ)

18
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In the particular case of secondary frequencies which are double the primary frequencies, with phases
also double the primary phases, we have:

logit(a, b, c)

≈
∑
k∈K

∑
i∈Ik

wi ReLU
[
cos(k a−b

2 ) cos(k a+b
2 + ϕi) + βi cos(k(a− b)) cos(k(a+ b) + 2ϕi) + γi

]
cos(kc+ 2ϕi)

≈
∑
k∈K

Zk

∫ π

−π

ReLU
[
cos(k a−b

2 ) cos(k a+b
2 + ϕ) + β̄k cos(k(a− b)) cos(k(a+ b) + 2ϕ) + γ̄k

]
cos(kc+ 2ϕ) dϕ

=
∑
k∈K

Zk

∫ π

−π

ReLU
[
cos(uk) cos(sk + ϕ) + β̄k cos(2uk) cos(2sk + 2ϕ) + γ̄k

]
cos(tk + 2ϕ) dϕ

=
∑
k∈K

Zk

∫ π

−π

ReLU
[
vk cos(sk + ϕ) + β̄k(2v

2
k − 1) cos(2sk + 2ϕ) + γ̄k

]
cos(tk + 2ϕ) dϕ

Reindexing with θ = ϕ+ sk:

=
∑
k∈K

Zk

∫ sk+π

sk−π

ReLU
[
vk cos(θ) + β̄k(2v

2
k − 1) cos(2θ) + γ̄k

]
cos(tk − 2sk + 2θ) dθ

Using the fact that the integrand is 2π-periodic:

=
∑
k∈K

Zk

∫ π

−π

ReLU
[
vk cos(θ) + β̄k(2v

2
k − 1) cos(2θ) + γ̄k

]
cos(tk − 2sk + 2θ) dθ

Define
fk(θ) = ReLU

[
vk cos(θ) + β̄k(2v

2
k − 1) cos(2θ) + γ̄k

]
and use the cosine addition formula to get:

=
∑
k∈K

Zk

∫ π

−π

fk(θ)(cos(tk − 2sk) cos(2θ)− sin(tk − 2sk) sin(2θ)) dθ

=
∑
k∈K

Zk cos(tk − 2sk)

∫ π

−π

fk(θ) cos(2θ) dθ − Zk sin(tk − 2sk)

∫ π

−π

fk(θ) sin(2θ) dθ

Since fk is even and sin is odd, the second integral evaluates to zero, giving

=
∑
k∈K

Zk cos(tk − 2sk)

∫ π

−π

fk(θ) cos(2θ) dθ

G NUMERICAL INTEGRATION ERROR BOUND FOR RELU FUNCTION

Recall that in subsection 5.2, we computed the error bound for integrating the absolute value function
rather than the ReLU function in the network. This is because we can break down

ReLU(x) =
x

2
+

|x|
2

and the identity part of ReLU integrates to zero. Hence, the baseline result (of approximating the
integral to zero) makes more sense when we only consider the absolute value part of ReLU.

However, using the general form of our error bound (Equation 6), it is simple to replicate the analysis
for the whole ReLU function. We have the same bound

supx |h′(x)| ≤ 2
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Error Bound Type \ Freq. 12 18 21 22 Equation

Normalised ReLU cos error 0.05 0.04 0.04 0.03 (4)/(6)
Normalised ReLU sin error 0.03 0.05 0.04 0.03 (4)/(6)
Angle approximation error 0.13 0.07 0.06 0.05 (18)
Numerical ReLU

∫ π

−π
bound 0.55 0.44 0.42 0.37 (19)

Numerical ReLU
∫ π

0
bound 0.21 0.15 0.17 0.15 (20)

Total numerical ReLU
∫ π

−π
bound 0.68 0.50 0.48 0.42 (19) + (18)

Total numerical ReLU
∫ π

0
bound 0.55 0.37 0.40 0.34 2 · (20) + (18)

Naive ReLU cos baseline 0.42 0.42 0.42 0.42 (5), (17)
Naive ReLU sin baseline 0.42 0.42 0.42 0.42 (5), (17)

Table 2: Error bounds for the ReLU function

Moreover, utilising the fact that ReLU evaluates to 0 on half the range of integration, we can reduce
our error bound by only considering the largest half of the boxes (with some boundary effects). This
gives us the following error bounds:

Note the baseline is halved because the identity component of ReLU yields a zero integral.

H DETAILED COMPUTATION OF NUMERCAL INTEGRATION ERROR

The maximum empirical error (obtained by evaluating the expression for each value of a+ b mod p)
is shown below:

Error Bound Type \ Freq. 12 18 21 22 Equation

Normalised abs cos error 0.04 0.03 0.04 0.03 (4)/(6)
Normalised abs sin error 0.05 0.05 0.03 0.02 (4)/(6)
Normalised id cos error 0.06 0.05 0.04 0.04 (4)/(6)
Normalised id sin error 0.02 0.05 0.04 0.04 (4)/(6)
Angle approximation error 0.14 0.07 0.06 0.06 (18)
Numerical abs

∫ π

−π
bound 0.59 0.52 0.50 0.44 (19)

Numerical abs
∫ π

0
bound 0.23 0.17 0.20 0.17 (20)

Total numerical abs
∫ π

−π
bound 0.73 0.59 0.56 0.50 (19) + (18)

Total numerical abs
∫ π

0
bound 0.59 0.41 0.46 0.40 2 · (20) + (18)

Naive abs cos baseline 0.85 0.85 0.85 0.85 (5), (17)
Naive abs sin baseline 0.85 0.85 0.85 0.85 (5), (17)

Table 3: Error bounds by splitting ReLU into absolute value and identity components

The first four rows (normalised abs & id cos & sin error) compute the error by brute force exactly:∣∣∣∫ π

−π
h(x)− h(ϕi) dx

∣∣∣ for h ∈ {ha+b,|C|, ha+b,|S|, ha+b,C , ha+b,S}. Rows ten and eleven compute

the baseline for the error
∣∣∣∫ π

−π
h(x) dx

∣∣∣ for h ∈ {ha+b,|C|, ha+b,|S|}, which is given by

E0<a+b≤p

∣∣ 4
3 cos(2πk(a+ b)/p)

∣∣ ≈ E0<a+b≤p

∣∣ 4
3 sin(2πk(a+ b)/p)

∣∣ (17)

Note that the baseline for h ∈ {ha+b,C , ha+b,S} is 0. Line five (angle discrepancy) computes the
error from ψ ≈ 2ϕ: ∑

i w
′
j |ψi − 2ϕi|. (18)

Line six (numerical abs
∫ π

−π
bound) computes the error bound from the integral:

minθ
∑

i

{∣∣(vi − (ϕi − θ))2 − (vi−1 − (ϕi − θ))2
∣∣ if ϕi ∈ [vi−1, vi]

(vi − (ϕi − θ))2 + (vi−1 − (ϕi − θ))2 otherwise
(19)
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Shifting by θ is permitted because our functions are periodic with period π; it does not matter where
we start the integral. Line seven (numerical abs

∫ π

0
bound) takes advantage of the fact that h is

π-periodic to integrate from 0 to π: taking ŵi := w′
i/2, v̂i := vi/2, and ϕ̂i := ϕi for ϕi ≥ 0 and

ϕ̂i := ϕi + π for ϕi < 0, and we compute

minθ
∑

i

{∣∣∣(v̂i − (ϕ̂i − θ))2 − (v̂i−1 − (ϕ̂i − θ))2
∣∣∣ if ϕ̂i ∈ [v̂i−1, v̂i]

(v̂i − (ϕ̂i − θ))2 + (v̂i−1 − (ϕ̂i − θ))2 otherwise
(20)

Line eight (total numerical abs
∫ π

−π
bound) computes the combined error bound from the integral

and angle discrepancy. Line nine (total numerical abs
∫ π

0
bound) takes advantage of the fact that h is

π-periodic to integrate from 0 to π. This allows us to overlap the two halves of sampled points to try
and reduce the error of integration. (In this way, the rectangles in the approximation are narrower and
so the error would be smaller.)

Lines six and seven (numerical abs
∫

bound) also both take advantage of the fact that the function
is 2π-periodic, allowing us to shift the intervals formed above by any constant. When bounding
approximation error, we use the shift that gives the lowest bound.

The exact error is much smaller than the size of the integral, and the mathematical error bound is
also smaller than the size of the integral. This gives convincing evidence that the model is indeed
performing numerical integration.

I ANALYSIS OF THE ‘IDENTITY’ COMPONENT OF RELU

We can break down ReLU into two parts,

ReLU(x) =
x

2
+

|x|
2

The integrals then split into ∫ π

−π
cos(−2ϕ) 12cos(

k
2 + ϕ) dϕ = 2

3 cos(k)∫ π

−π
sin(−2ϕ) 12cos(

k
2 + ϕ) dϕ = 2

3 sin(k)∫ π

−π
cos(−2ϕ) 12 | cos(k2 + ϕ)|dϕ = 0∫ π

−π
sin(−2ϕ) 12 | cos(k2 + ϕ)|dϕ = 0

We see that the ‘identity’ part of the ReLU yields a zero integral. So does this part of the model
contribute to the logits? It turns out that the answer is yes. To resolve this issue, we look at the
discrepancy between the results suggested by previous work: Zhong et al. (2023) claim that logits are
of the form

logit(a, b, c) ∝ |cos(k(a− b)/2)| cos(k(a+ b− c))

while Nanda et al. (2023) claim that logits are of the form

logit(a, b, c) ∝ cos(k(a+ b− c))

To check which is correct, we regress the logits against the factors |cos(k(a− b)/2)| cos(k(a+b−c)),
which gives an R2 of 0.86, while if we regress them against just cos(k(a+ b− c)), we obtain an R2

of 0.98. So overall, Nanda et al. (2023) give a more accurate expression, but this seems to go against
the analysis we did above, which led to the expression in Zhong et al. (2023). (A similar value is
obtained if we just use the MLP output and drop the residual streams.) However, if we only consider
the contribution to the logits from the absolute value component of ReLU, the R2 values become 0.99
and 0.85 respectively. Therefore, although the contribution from the identity component of ReLU
is small, it does make a difference towards reducing the logit dependence on a − b, in particular
|cos(k(a− b)/2)|. This is a good thing because when cos(k(a− b)/2) is small, the logit difference
between the correct logit (a+ b) and other logits will also be small, which will lead to a higher loss.
The identity component slightly counters this effect. We can rewrite the identity component as:

WoutOV(a)/2 +WoutOV(b)/2 +Woutembed(b)/2
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Thus, we can store the matrices logit id1[:, a] = WoutOV(a)/2 and logit id2[:, a] =
Woutembed(a)/2, then we have

F2(a, b)c = residual stream + absolute value terms
+ logit id1[c, a] + logit id1[c, b] + logit id2[c, b]

We carry out a 2D Fourier transform to find out the decomposition of the logit id1 and logit id2
matrices (because Wout and OV(a) are sparse in the (1D) Fourier basis, so their product will
naturally be sparse in the 2D Fourier basis). We get logit id1[c, a] ≈ 2ℜ(∑k ake

i(kc−2ka)), where
the frequencies k here are the same as subsection 2.3. Hence, the output from the identity component
of ReLU is (ignoring logit id2 for now, which comes from the residual stream and is smaller):∑

kDk(cos(kc− 2ka) + cos(kc− 2kb)) +Ek(sin(kc− 2ka) + sin(kc− 2kb)) =
∑

k cos(k(b−
a))(Dk cos(k(c− a− b)) + Ek sin(k(c− a− b))).

The imaginary component of the FT is very small, ck ≈ 0; so the contribution is
∑

k bk cos(k(b−
a)) cos(k(a+ b− c)).

Why does this happen, and why does it help explain the R2 values we got above? We first list the
approximate coefficients ak:

Frequency 12 18 21 22

abs coefs (Ck) 13.9 15.1 12.1 11.2
id coefs (Dk) -3.7 -3.9 -3.2 -3.3

Thus, the overall expression for the logits is

F2(a, b)c ≈
∑

k(Ck |cos(k(b− a)/2)|
+Dk cos(k(b− a))) cos(k(a+ b− c))

=
∑

k(2D
2
k |cos(k(b− a)/2)|2

+ Ck |cos(k(b− a)/2)|) cos(k(a+ b− c))

−Dk cos(k(a+ b− c))

using double angle formula. Since Dk < 0, the
∑

k −Dk cos(k(a+ b− c)) term gives some cushion
for the base performance of the model (since as we discussed, the cos(k(a + b − c)) term is why
the model gives the highest logit when c = a+ b). Moreover, the 2D2

k| cos(k(b− a)/2)|2 term also
further improves the model since it is always non-negative. Hence, the contribution of the identity
term evens out parts of the model and improves the logit difference when |cos(k(b− a)/2)| is small
(where the absolute value part doesn’t do well). Note that the model would work on its own if we
only use the absolute value part, but since ReLU is composed of both the absolute value and identity
part and the coefficients combine both parts in a way that improve model performance.

J OTHER PLOTS

In this section we display variants of Figure 2, Figure 3, and Figure 5 for the other frequencies.
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Figure 18: Angles for frequency k = 12. ψi ≈ 2ϕi (mod 2π) for the primary frequency of each
neuron but not in general.

−π −π
2

0 π

2

π

−π

−π
2

0

π

2

π

ϕi

ψi

Primary frequency
Non-primary frequency
ψ ≡ 2ϕ (mod 2π)

Figure 19: Angles for frequency k = 18. ψi ≈ 2ϕi (mod 2π) for the primary frequency of each
neuron but not in general.
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Figure 20: Angles for frequency k = 21. ψi ≈ 2ϕi (mod 2π) for the primary frequency of each
neuron but not in general.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

−π −π
2

0 π

2

π

−π

−π
2

0

π

2

π

ϕi

ψi

Primary frequency
Non-primary frequency
ψ ≡ 2ϕ (mod 2π)

Figure 21: Angles for frequency k = 22. ψi ≈ 2ϕi (mod 2π) for the primary frequency of each
neuron but not in general.
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Figure 22: Converting the weighted sum into rectangles to estimate an integral (for frequency k = 12).
h(ϕ) = |cos(ϕ)| cos(2ϕ).
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Figure 23: Error bound is the red area (for frequency k = 12). Note how the red area includes both
the actual curve and the numerical integration approximation.
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Figure 24: Converting the weighted sum into rectangles to estimate an integral (for frequency k = 12).
h(ϕ) = |cos(ϕ)| cos(2ϕ).
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Figure 25: Error bound is the red area (for frequency k = 12). Note how the red area includes both
the actual curve and the numerical integration approximation.
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Figure 26: Converting the weighted sum into rectangles to estimate an integral (for frequency k = 18).
h(ϕ) = |cos(ϕ)| cos(2ϕ).
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Figure 27: Error bound is the red area (for frequency k = 18). Note how the red area includes both
the actual curve and the numerical integration approximation.
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Figure 28: Converting the weighted sum into rectangles to estimate an integral (for frequency k = 18).
h(ϕ) = |cos(ϕ)| cos(2ϕ).
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Figure 29: Error bound is the red area (for frequency k = 18). Note how the red area includes both
the actual curve and the numerical integration approximation.
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Figure 30: Converting the weighted sum into rectangles to estimate an integral (for frequency k = 21).
h(ϕ) = |cos(ϕ)| cos(2ϕ).
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Figure 31: Error bound is the red area (for frequency k = 21). Note how the red area includes both
the actual curve and the numerical integration approximation.
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Figure 32: Converting the weighted sum into rectangles to estimate an integral (for frequency k = 21).
h(ϕ) = |cos(ϕ)| cos(2ϕ).
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Figure 33: Error bound is the red area (for frequency k = 21). Note how the red area includes both
the actual curve and the numerical integration approximation.
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Figure 34: Converting the weighted sum into rectangles to estimate an integral (for frequency k = 22).
h(ϕ) = |cos(ϕ)| cos(2ϕ).
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Figure 35: Error bound is the red area (for frequency k = 22). Note how the red area includes both
the actual curve and the numerical integration approximation.
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Figure 36: Converting the weighted sum into rectangles to estimate an integral (for frequency k = 22).
h(ϕ) = |cos(ϕ)| cos(2ϕ).

0 π

4

π

2
3π

4

π

−0.4
−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

ϕ

h(ϕ)

Figure 37: Error bound is the red area (for frequency k = 22). Note how the red area includes both
the actual curve and the numerical integration approximation.
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K THE INFINITE-WIDTH LENS

Suppose you have some linear layer:

MLP(l)
(
a⃗(l−1)

)
=W

(l)
out ReLU

(
W

(l)
in a⃗

(l−1)
)

The activations of the ith neuron is given by

n
(l)
i = ReLU

(
(W

(l)
in )i a⃗

(l−1)
)

where (W
(l)
in )i the row vector of weights that feeds into neuron i.

The jth dimension of the output MLP can be rewritten as

MLP
(l)
j

(
a⃗(l−1)

)
=

∑
i

(W
(l)
out)ji ReLU

(
(W

(l)
in )i a⃗

(l−1)
)

We want to interpret this as an integral by doing something like:

MLP
(l)
j

(
a⃗(l−1)

)
=

∑
i

wif (⃗a
(l−1); ξi)

≈ Z

∫ ξn

ξ0

f (⃗a(l−1); ξ) dξ

= F (⃗a(l−1))

Assume without loss of generality that ξi is one-dimensional and ξi < ξi+1 for all ξ.

Note that we might have F (⃗a(l−1)) = MLP
(l)
j

(
a⃗(l−1)

)
, which would make this trivial.

What does it mean for this fact to be nontrivial?

We need:

1. A “locally one-dimensional” neuron-indexed variable of integration

2. Analytically described f(a, ξi)

3. wi should be approximately linear in (ξi+1 − ξi−1)/2

4. f (⃗a(l−1); ξi)− f (⃗a(l−1); ξi−1) is uniformly small over a⃗(l−1)s (that is, f is “continuous” in
ξ for all a+ b).

5. We can analytically evaluate the integral∫ ξn

ξ0

f (⃗a(l−1); ξ) dξ = F (⃗a(l−1))

independent of a⃗(l−1)

6. We can bound the error of the numerical approximation of f at each ξi, independent of a.
(e.g. lipschitz constant × size of box)

Ordinarily, we might check this approximation by empirically validating that∣∣∣MLP
(l)
j

(
a⃗(l−1)

)
− F (⃗a(l−1))

∣∣∣ < ε

for some small ε, over all a⃗(l−1)s

The reason this is non-trivial is you might be able to evaluate the error in the integral uniformly across
all possible a⃗(l−1)s.
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L FURTHER WORK

There are several hurdles to replicating this approach to interpreting other neural networks. It is highly
labor intensive, and requires extensive mathematical exploration. Thus, in order for the approach
to have any practical use, we need to develop automated tools to make these approximations and
interpretations.

For example, we may want to use the first few terms of the Fourier expansion (or other low-rank
approximations) to approximate the action of various layers in a neural network, and then combine
those to get algebraic expressions for certain neuron outputs of interest. Such algebraic expressions
will natural admit phenomena like the numerical integration we described above. This sort of method
may be particularly fruitful on problems which Fourier transforms play a large role, such as signal
processing and solutions to partial differential equations.

M FUTURE TECHNICAL WORK

To complete the technical work laid out in section 7, we must accomplish two tasks which we discuss
in this appendix section: constructing a parameterisation of the MLP which is checkable in less than
O(p · dmlp) time, and more generally constructing a parameterisation of the entire ‘pizza’ model that
is checkable in time that is linear in the number of parameters; and establishing a bound on the error
in the model’s logits that does not neglect any terms.

M.1 LINEAR PARAMETERISATION

Constructing a parameterisation of the model which is checkable in less than O(p · dmlp) time is a
relatively straightforward task, given the interpretation in the body of the paper. We expect that the
parameters are:

• A choice of nfreq frequencies ki.
• A splitting of the neurons into groups by frequency, and an ordering of the neurons within

each group.
• An assignment of widths wi to each neuron, and an assignment of angles ϕi to each neuron.
• An assignment of orthogonal planes into which each frequency is embedded by the embed-

ding matrix, and by the unembedding matrix.
• Rotations and scaling of the low-rank subset of the hidden model dimension for each of the

O and V matrices.

M.2 BOUNDING THE ERROR OF THE MLP

To bound the error of our interpretation of the MLP precisely, we’d need to include a bound on the
primary frequency contribution of the identity component (which integrates to 0 symbolically), and
include bounds on the residual components – OVE on x and y, the MLP bias, and the embed of y, as
inputs to ReLU; and UOVE on x and y and UE on y as output logits.

We could decompose every matrix in our model as a sum of the corresponding matrix from our
parameterized model and a noise term. Expanding out the resulting expression for the logits (and
expanding |x+ ε| as |x|+ (|x+ ε| − |x|)), we will have an expression which is at top-level a sum
of our parameterized model result and a noise term which is expressed recursively as the difference
between the actual model and the parameterized model. We can then ask two questions:

1. What worst-case bounds can we prove on the error terms at various complexities?
2. What are the empirical worst-case bounds on the relevant error terms?
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