
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MODULAR ADDITION WITHOUT BLACK-BOXES:
COMPRESSING EXPLANATIONS OF MLPS THAT
COMPUTE NUMERICAL INTEGRATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The goal of mechanistic interpretability is discovering a simple, low-rank al-
gorithm implemented by models. While we can compress activations into fea-
tures, compressing nonlinear feature-maps—like MLP layers—is an open prob-
lem. In this work, we present the first case study in rigorously compressing
nonlinear feature-maps. We work in the classic setting of the modular addi-
tion models (Nanda et al., 2023), and target a non-vacuous bound on the be-
havior of the ReLU MLP in time linear in the parameter-count of the circuit. To
study the ReLU MLP analytically, we use the infinite-width lens, which turns
post-activation matrix multiplications into approximate integrals. We discover
a novel interpretation of the MLP layer in one-layer transformers implementing
the “pizza” algorithm (Zhong et al., 2023): the MLP can be understood as evalu-
ating a quadrature scheme, where each neuron computes the area of a rectangle
under the curve of a trigonometric integral identity. Our code is available at
https://tinyurl.com/mod-add-integration.

1 INTRODUCTION

Neural networks’ ability to generalize suggests they implement simpler, low-rank algorithms despite
performing high-dimensional computations (Olah et al., 2020). The field of mechanistic interperability
has made tremendous progress in finding low-rank approximations of activations—for example,
discovering interpretable features (Bricken et al., 2023; Cunningham et al., 2023). However, finding
low-rank approximations of feature-maps—particularly MLP layers—is still an open problem (Elhage
et al., 2022).

Finding low-rank approximations of nonlinear feature-maps becomes particularly important in light of
recent work that found evidence that sparse linear features do not fully capture the structure of frontier
models (Marks et al., 2024; Engels et al., 2024). Interpretations that lack analyses of feature-maps
may not be usable for ambitious applications of mechanistic interpretability, like anomaly detection
and worst-case guarantees. The expressivity of MLPs constitutes a large attack surface for perturbing
the model, so not compressing feature-maps leaves a lot of free parameters in the interpretation.
These free parameters diminish our ability to detect anomolous behavior, or make strong guarantees.

To illustrate the difficulty of compressing MLPs, consider the following toy model comparing the
effective parameter count of deep nonlinear networks and deep linear networks: adding or multiplying
k matrices of shapem×m. For linear operations, we need onlym2 parameters to completely describe
the input-output behavior, regardless of the depth of network. However, introducing nonlinearities like
ReLU between these operations increases the effective parameter count to km2, with the complexity
growing exponentially with depth. While deep linear networks can be compressed to shallow networks
of equivalent width without loss of expressivity, nonlinear networks resist such compression.

Even in the classical toy setting of modular addition models, the MLP layer is treated as a black box.
Nanda et al. (2023) finds sparse features to describe the input and output to the MLP layer, however,
they do not tell us how the MLP layer processes the input features to generate the output features.

In this work, we present a case study in compressing nonlinear feature-maps. We extend the analysis
in Nanda et al. (2023); Zhong et al. (2023); Gromov (2023) to the MLP layer, opening up the final

1

https://tinyurl.com/mod-add-integration

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

∑
i

fx(ξi)gc(ξi)wi

∫
fx(ξ)gc(ξ) dξ

i

fx(ξi)

gc(ξi)wi

x

c

Figure 1: (left) There are finitely many neurons in the model (indexed by i). The function fx(ξi)
is ReLU applied to the inputs x. The weight of the connection to each output c is gc(ξi) times a
neuron-specific output-independent normalization factor wi. (right) Taking the limit as the number
of neurons goes to infinity turns the sum over neurons into an integral. Compressing the resulting
analytic expression allows us to compress the MLP.

black box remaining in the modular addition models (§2). To demonstrate that compressing the
feature-map is essential for reducing free parameters, we use the formal compression metric from
Gross et al. (2024). We measure compression by the computational complexity of verifying the
interpretation, where proving the same bound with a lower complexity budget would correspond to
finding an interpretation with fewer free parameters (§3).

We apply an infinite-width lens, wherein we treat densely connected MLPs as finite approximations to
an infinite-MLP-width limit (Appendix K). The infinite-width lens permits us to turn post-activation
matrix multiplications into approximate integrals and study the remaining operations of the network
– including nonlinear operations – analytically. We find a low-rank approximation of the nonlinear
function implemented by the MLPs of the “pizza” transformers (Zhong et al., 2023): doubling
the frequencies of the input representations, that is, mapping from representations of the form
cos(k2 (a+ b)), sin(k2 (a+ b)) to cos(k(a+ b)), sin(k(a+ b)). Building on surprising patterns in the
phase-amplitude representation of the MLP pre-activations and neuron-logit map, we find that the
MLP can be understood as implementing a quadrature scheme for integrals of the form∫ π

−π

ReLU[cos(k2 (a+ b) + ϕ)] cos(kc+ 2ϕ) dϕ =
2

3
cos(k(a+ b− c)),

for a handful of key frequencies k where the integral can be seen as the limiting case of the MLP’s
summation as the number of neurons increases (§4).

We confirm this interpretation by creating non-vacuous bounds for the outputs of these MLPs in time
linear in the number of parameters, i.e. without evaluating it on all P 2 possible inputs (§5). Finally,
we resolve the puzzling observation that the logits of supposedly “pizza” models are closer of those
of Nanda et al. (2023)’s “clock” algorithm, by explaining how the model uses secondary frequencies
equal to twice of each key frequency in order to compensate for how the pizza algorithm fails in cases
when k(a− b) ≈ π (§6).

2 BACKGROUND

2.1 MECHANISTIC INTERPRETABILITY OF MODULAR ADDITION MODELS

Models trained on the modular addition task have become a classic testbed in the mechanistic
interpretability literature. Originally, Nanda et al. (2023) studied a one-layer transformer model. They
found low-rank features to describe all components of the model, and analyzed the feature-map of
the final linear layer. While they generated a human-intuitive algorithm of how the model works, they
did not explain how the MLP layers compute logits that fit with the form required by this algorithm.
Despite the tremendous progress in analyzing the non-MLP layers of the model, the ReLU MLP is
still treated as a black-box.

Zhong et al. (2023) extended the analysis to a family of architectures parameterized by attention
rate. The architecture from Nanda et al. (2023) corresponds to attention rate 0, while attention rate
1 corresponds to a ReLU MLP-only model, i.e. a transformer with constant attention. Depending
on attention rate, they showed that models may learn the “clock” or “pizza” algorithm. They

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

exhaustively enumerated inputs to MLP-only model and found a description of the feature-map.
However, exhaustive enumeration is not feasible for larger input sizes, and does not constitute an
insight-rich explanation. Thus, their approximation of the feature-map is equal to the feature-map
itself, failing to provide any compression.

Gromov (2023) considered a cleaner version of the MLP-only architecture considered by Zhong
et al. (2023), and used quadratic activations instead of ReLU activations. They presented a formula
corresponding to a compressed feature-map. However, they did not present sufficient evidence to
show that the trained models follow the formula as suggested. They only showed that the weights
are roughly “single-frequency”, i.e. they are well approximated by the largest Fourier component.
Establishing that the model in fact uses the stated algorithm as opposed to a different algorithm would
require significantly more validation.

In this work, we analyze the ReLU MLP with the goal of demonstrating how it computes the functions
described in prior work, and establish this with rigorous evidence and a formal proof.

2.2 EXPERIMENTAL SETUP

We study models which implement the ‘pizza’ algorithm from Zhong et al. (2023): a one-layer
ReLU transformer with four heads and constant attention = 1

2 for all tokens, trained to compute
M : (a, b, ‘=’) 7→ (a + b) mod p. As in Zhong et al. (2023), we take p = 59. The model takes
input (a, b, ‘=’) encoded as one-hot vectors, and we read off the logits logit(a, b, c) for all possible
values (mod p) above the final sequence position ‘=’, with the largest logit representing its predicted
answer.

Since the attention is constant, the logits of the model given input a, b are calculated as:

x
(0)
i =WEti + pi Embedding

x(1) = x
(0)
2 +

1

2

4∑
j=1

W j
OW

j
V

(
x(0)a + x

(0)
b

)
Post attention residual stream

N = ReLU(Winx
(1)) Post ReLU neuron activations

x(2) = x(1) +WoutN

logits =WUx
(2) =WU

(
x(1) +Wout ReLU(Winx

(1))
)

As such, the model architecture considered has constant attention = 1
2 throughout, so the model

consists of linear embeddings, followed by ReLU, followed by a further linear layer.

As noted in both Nanda et al. (2023) and Zhong et al. (2023), the contribution from the skip connection
around the MLP to the logits is small. Combining this with the fact that the attention is uniform
across a, b, and using WL = WUWout for the neuron-logit map, the logits can approximately be
written as the sum of the contributions of each of the dmlp neurons:

logit(a, b, c) =
∑dmlp

i=1 (WL)ci · ReLU(12OV(a)i +
1
2OV(b)i)

2.3 THE “PIZZA” ALGORITHM

Zhong et al. (2023) demonstrated that small transformers using constant attention implement modular
arithmetic using the following algorithm, which they call the “pizza” algorithm:

1. OV (a), OV (b) embed the one-hot encoded tokens a, b as (cos(ka), sin(ka)) and
(cos(kb), sin(kb)) for a small handful of key frequencies k

2. Before the MLP layer, the representation of the two tokens are averaged:

(cos(ka) + cos(ka), sin(ka) + sin(ka))/2 = cos(k(a− b)/2)(cos(k(a+ b)/2), sin(k(a+ b)/2))

3. The network then uses the MLP layer to “double the frequencies”:

N = |cos(k(a− b)/2)| (cos(k(a+ b)), sin(k(a+ b)))

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4. Finally, WL scores possible outputs by taking the dot product with (cos(kc), sin(kc)):

logit(a, b, c) = |cos(k(a− b)/2)| (cos(k(a+ b)) cos(kc) + sin(k(a+ b)) sin(kc))

= | cos(k(a− b)/2)| cos(k(a+ b− c))

They distinguish this from the “clock” algorithm of Nanda et al. (2023), whose logits have no
dependence on |cos(k(a− b)/2)|, and where the MLP layer instead multiplies together its inputs.

Note that Zhong et al. (2023) check that the MLP layer doubles frequencies empirically (i.e. by brute
force), by treating the MLP as a black box and enumerating the MLP’s outputs for all possible inputs.
In this work, we seek to understand how the MLP performs its role.

3 COMPRESSING MLPS

Post-hoc mechanistic interpretability (Olah et al., 2020; Elhage et al., 2021; Black et al., 2022) can
be formalized as finding a compact explanation (Gross et al., 2024) of how the model computes its
outputs on the entire input distribution. Gross et al. (2024) demonstrated that finding non-trivial
compact explanations, i.e. proving a meaningful bound instead of a null bound, necessarily requires
more mechanistic information about the model behavior. Moreover, if some marginal mechanistic
analysis does not result in compression, then it does not reduce the free parameters of that component.

−π −2π

3
−π
3

0 π

3
2π

3

π

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

ϕ

h(ϕ)

Figure 2: We argue that the MLP approximately
computes integrals. We plot the computed integral
for frequency k = 12 when a + b = c = 0. The
widths and heights of rectangles are generated by
the actual weights in a trained model.

Gross et al. (2024) conduct a limited empirical
study of models trained to compute the max-
imum of k integers, which are attention-only
transformers with no MLP layers. Our work can
be seen as applying this rigorous formalization
to a more challenging case study.

Formally, we consider the computational com-
plexity needed to check the behavior of the MLP
on all inputs. The lower the complexity is, the
better we have understood the MLP and the bet-
ter we can compress our description of how the
MLP computes the function that it does.

The naive baseline (as provided by both Nanda
et al. (2023) and Zhong et al. (2023)) is to de-
scribe the MLP’s behavior by evaluating it on
every possible input. For n such inputs and an
MLP with width dmlp and input/output dimen-
sion dmodel, this requires checking the result of
O(n dmlpdmodel) operations. This corresponds
to a null interpretation providing zero under-
standing of how the MLP internally functions.

Ideally, we hope that we can bound the MLP’s behaviour by referencing only the model weights,
without evaluating it on all inputs – in time O(dmlpdmodel + n), linear in the parameter count of the
MLP. As this is the information-theoretic limit, we target interpretations that formally bound MLP
behaviour in time linear in parameter count.

4 INTERPRETING “PIZZA” MLPS AS PERFORMING NUMERICAL INTEGRATION

Following Nanda et al. (2023), we focus on a particular (“mainline”) model in the main body of the
work. We confirm that our results generalize to another 150 transformers in Appendix C. First, we
identify new structure in the model by using the amplitude-phase form of the Fourier series. Then we
describe how to leverage this structure to explain how the MLP approximates an integral to double
the frequency of the preactivations.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0.945 0.951 0.958 0.964 0.970 0.976 0.982 0.989 0.995
0

10

20

30

40

50

60

70

|Key frequency component|2 / |ReLU input|2

C
ou

nt
(n

um
be

ro
fn

eu
ro

ns
)

% variance explained by key frequency for ReLU input

(a) For most neurons, above 96% of the variance of
the ReLU input is explained by the largest Fourier fre-
quency component. We compute the square of the
largest Fourier coefficient divided by the sum of the
squares of all Fourier coefficients and the square of the
residual contributions.

0.980 0.985 0.990 0.995 1.000
0

25

50

75

100

125

150

175

200

|Key frequency component|2/|WUWout|2

C
ou

nt
(n

um
be

ro
fn

eu
ro

ns
)

% variance explained by key frequency for WUWout

(b) For most neurons, above 98% of the variance of
the matrix Wout is explained by the largest Fourier
frequency component. We compute the square of the
largest Fourier coefficient divided by the sum of the
squares of all Fourier coefficients.

Figure 4: Histograms of the variance explained by the largest Fourier frequency component for the
pre-activations and neuron-logit map WL for each of the 512 neurons in the mainline model.

4.1 STUDYING THE MODEL IN THE AMPLITUDE-PHASE FOURIER FORM

We first note that OV (a), OV (b) do not actually embed all inputs to sine and cosine representations
of equal magnitude. In general, for each neuron i, taking s = k(a + b)/2 and s′ = k(a − b)/2,
we can write the representation of the the neuron-i preactivation for an input as cos s′(αi cos s +
βi sin s) for coefficients αi, βi. If we rewrite this expression into the amplitude-phase form of
the Fourier series, by putting (αi, βi) into polar coordinates, our preactivation expression becomes
ri cos s

′(cosϕi cos s− sinϕi sin s) = ri cos s
′ cos(s+ ϕi).

−π −π
2

0 π

2

π

−π

−π
2

0

π

2

π

ϕi

ψi

Primary frequency
Non-primary frequency
ψ ≡ 2ϕ (mod 2π)

Figure 3: We plot the input and output phase shift
angles for frequency k = 12, where ψi ≈ 2ϕi
(mod 2π) for the primary frequency of each neu-
ron. The line has R2 = 0.9999 and the intervals
between angles have mean width 0.054, and stan-
dard deviation 0.049. This shows that the angles
are roughly uniform.

Similarly,WL does not take the dot product with
(cos t, sin t) but actually multiplies by α′

i cos t+
β′
i sin t. Taking t = kc, we can again put this ex-

pression into the amplitude-phase Fourier form
by putting (α′

i, β
′
i) into polar coordinates, giving

r′i(cosψi cos t− sinψi sin t) = r′i cos(t+ ψi).

The contribution to the logits from neuron i is
then r′iri ReLU[cos s′ cos(s+ ϕi)] cos(t+ ψi).

We find that each neuron has a primary fre-
quency for both input and output. As seen in
Figure 4, the majority of pre-activations for each
neuron consist of terms from a single key fre-
quency, as does the neuron-logit map WL. The
largest frequency component for the ReLU pre-
activation is almost always equal to the largest
frequency component for the corresponding row
of WL. This allows us to divide the neurons
into clusters Ik, each of which correspond to a
single frequency k.

Furthermore, the output phase is double the
input phase. In Figure 3, we plot the input and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

output phase shift angles ϕi and ψi for the largest two frequencies. For each neuron’s primary
frequency, the neuron’s output phase shift ψi is almost exactly twice its input phase shift ϕi.

4.2 FREQUENCY DOUBLING USING A TRIGONOMETRIC INTEGRAL IDENTITY

Treating the MLP layer as approximately performing numerical integration allows us to make sense
of the previous observations. Recall that we can write the logits of the model as

logit(a, b, c) ≈ ∑dmlp

i=1 (WL)ci · ReLU
(
1
2OV(a)i +

1
2OV(b)i

)
≈ ∑

k∈K
∑

i∈Ik
cos (k(c+ 2ϕi))ReLU

(
cos

(
k
2 (a− b)

)
cos

(
k
2 (a+ b+ ϕi)

))
For each frequency k, we can write the contributions to the logits from neurons of frequency k as :

logit(k)(a, b, c) =
∣∣cos (k

2 (a− b)
)∣∣∑

i∈Ik
cos (k(c+ 2ϕi))ReLU

(
σk cos

(
k
2 (a+ b+ ϕi)

))
where σk = 1 if

∣∣cos (k
2 (a− b)

)∣∣ ≥ 0 and -1 otherwise.

Ignoring the |cos(k(a− b)/2)| scaling factor (which does not vary per neuron), we claim that the
normalized MLP outputs∑

i∈Ik

wi ReLU[σkcos(
k
2 (a+ b) + ϕi)] cos(kc+ 2ϕi) (1)

can we well-thought of as approximating the integral (see Appendix E):∫ π

−π

ReLU[σkcos(
k
2 (a+ b) + ϕ)] cos(kc+ 2ϕ) dϕ =

2

3
cos(k(a+ b− c)). (2)

Note that the above integral is valid for both σk = −1, 1.

This gives us the desired form for the output logits:

logit(a, b, c) =
∑
k

|cos(k(a− b)/2)| cos(k(a+ b− c)) (3)

5 VALIDATION VIA COMPACT GUARANTEES ON MLP PERFORMANCE

As evidence for the usefulness of the numerical integration interpretation, we use it to derive non-
vacuous bounds on the output of the MLP on all inputs in time linear in the parameters.

5.1 COMPUTING NUMERICAL INTEGRATION ERROR

The validation of our interpretation as an integral then becomes a mathematical question of evaluating
the efficiency of the quadrature scheme∫ π

−π

ha,b,c(ϕ) dϕ ≈
∑
i

w′
iha,b,c(ϕi)

where ha,b,c(ϕi) = ReLU[σkcos(
k
2 (a+ b) + ϕi)] cos(kc+ 2ϕi). The absolute error is given by

ε∫ :=

∣∣∣∣∣
∫ π

−π

ha,b,c(ϕ) dϕ−
∑
i

w′
iha,b,c(ϕi)

∣∣∣∣∣ (4)

and we can compute relative error by computing (the average value over a, b, c of)

ε0 :=

∣∣∣∣∫ π

−π

ha,b,c(ϕ) dϕ

∣∣∣∣ (5)

and then dividing Equation 4 by Equation 5 to give the relative error εr := ε∫ /ε0.

Following Gross et al. (2024), if we can compute a non-vacuous error bound (i.e. a relative error
that is strictly less than 1) in time linear in the number of parameters of the computation, we can be

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 π

4

π

2
3π

4

π
−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

ϕ

h(ϕ)

Figure 5: We plot the error bound, which is depicted in red, for frequency k = 12. We observe
that the red area includes both the actual curve and the numerical integration approximation. The
Lipschitz constant is 2, so we bound h′(ϕ) by +2 and −2,

assured that our interpretation has some validity. Since there are dmlp neurons and p points to evaluate
our target is to compute an error bound in time O(dmlp + p). Thus, this part of the computation is
sublinear in the number of parameters as desired.

Recall the neuron contributions to the logits from Equation 2:

ReLU[σkcos(
k
2 (a+ b) + ϕ)] cos(kc+ 2ϕ)

We can split ReLU as ReLU(x) = (x + |x|)/2. We shall see below that the x/2 part integrates
to 0. As a result, a relative error bound would not give a meaningful result for this part. However,
this part of the network is linear, thus, we can still effectively compress the network behaviour here.
For example, we can compute a matrix A ∈ Rp×p such that the logit contribution of this part is
A[:, a] + A[:, b] for inputs a and b. Thus, in the below section, we can restrict our attention to the
absolute value part, |x| /2.

This turns ReLU[σkcos(
k
2 (a+ b) + ϕ)] cos(kc+ 2ϕ) into

1
2

∣∣σkcos(k2 (a+ b) + ϕ)
∣∣ cos(kc+ 2ϕ)︸ ︷︷ ︸

ha+b,c,σk

+ 1
2σkcos(

k
2 (a+ b) + ϕ) cos(kc+ 2ϕ)

We sort the phases ϕi for each neuron, and turn the weights wi into widths of the rectangles, and the
function calls h(ϕi) into the heights of the rectangles corresponding to the function evaluated at ϕi.
This gives a picture similar to Figure 2. The absolute error is

εh :=
∣∣∣∫ π

−π
h(x)− h(ϕi) dx

∣∣∣ . (6)

A crude bound is:

≤
∫ π

−π
|h(x)− h(ϕi)|dx (7)

≤
∫ π

−π
|x− ϕi| · supx |h′(x)|dx (8)

≤ supx |h′(x)|
∑

i

(∫ vi−ϕi

vi−1−ϕi
|x|dx

)
(9)

= sup
x

|h′(x)|
∑
i

1

2

{∣∣(vi − ϕi)
2 − (vi−1 − ϕi)

2
∣∣ if ϕi ∈ [vi−1, vi]

(vi − ϕi)
2 + (vi−1 − ϕi)

2 otherwise
(10)

where the rectangle width goes from vi−1 to vi and the function is evaluated at ϕi.

For h = ha+b,c,σk
, we can bound

supx |h′(x)| ≤ 2

analytically, and the remaining sum can be evaluated easily in O(dmlp) time; call this ε≈∫ .

Notice that this upper bound has no dependency on h, and therefore is a valid upper bound, for all
possible a, b, c triplets. In other words, we can bound the error of the quadrature approximation for
any a, b, c by evaluating an expression that takes time linear in the number of neurons.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

This bound is represented visually in Figure 5. Note that the figure is produced by analysing the
trained model weights.

We must also include approximation error from ψi ≈ 2ϕi, which we call the “angle approxi-
mation error,” εϕ: we have

∑
i w

′
j |cos(ki(a+ b)/2− ϕi)| · (cos(kc + ψi) − cos(kc + 2ϕi)) ≤∑

i w
′
j |cos(ki(a+ b)/2− ϕi)| · |ψi − 2ϕi| ≤

∑
i w

′
j |ψi − 2ϕi|.

5.2 EMPIRICAL VALIDATION

−π −2π

3
−π
3

0 π

3
2π

3

π

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

ϕ

h(ϕ)

Figure 6: Numerical integration with boxes cen-
tered at ϕi for frequency k = 12.

We now provide empirical validation of our in-
terpretation.

The network is well-approximated as doing
numerical integration. We can compute the
actual error ε∫ /ε0 empirically, by evaluating
the expression over all possible inputs, giving
numbers between 0.03 and 0.05, see Table 1.

The interpretation gives useful compres-
sion because integral explanation gives com-
pact non-vacuous bounds. Our relative error
bounds range from 0.48 to 0.7 (i.e. less than 1),
see Table 1.

The bounds are far away from actual error
because we don’t completely understand nu-
merical integration. Intuitively, we’d like to
center each box at its corresponding ϕi and com-
pute the error that results from having box density above or below 1 at various points of the curve (Fig-
ure 6). We’d also like to take into account the fact that if one region has a box density above 1 and is
adjacent to a region with a box density below one, these density errors partially cancel out. However,
we don’t know how to efficiently compute these effects, and the bounds we’re able to give using
non-uniform box densities instead of non-uniform angle locations is too crude.

6 THE ROLE OF SECONDARY FREQUENCIES

6.1 REGRESSING MODEL LOGITS VERSUS “CLOCK” AND “PIZZA” LOGITS

As noted above, Nanda et al. (2023) claim that logits are of the form (“clock logits”)

logit(a, b, c) ∝ cos(k(a+ b− c))

while Zhong et al. (2023) suggests that logits can also be of the form (“pizza logits”)

logit(a, b, c) ∝ |cos(k(a− b)/2)| cos(k(a+ b− c))

Interestingly, if we regress the logits against the factors |cos(k(a− b)/2)| cos(k(a+ b− c)), which
gives an R2 of 0.86, while if we regress them against just cos(k(a + b − c)), we obtain an R2 of
0.98 – substantially higher. So overall, the “clock logits” give a more accurate expression, suggesting
that the analysis above is importantly incomplete. Interestingly, if we only consider the contribution

Error Bound Equation \ Freq. 12 18 21 22

ε∫ /ε0 (actual error computed by brute force) 0.05 0.03 0.05 0.03
(ε≈

∫ + εϕ)/ε0 (error bound computed in linear time) 0.70 0.49 0.54 0.48

Table 1: Relative error bounds by splitting ReLU into absolute value and identity components

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

−π −2π

3
−π
3

0 π

3
2π

3

π

−π

−2π

3

−π
3

0

π

3

2π

3

π

1st frequency angle

2n
d

fr
eq

ue
nc

y
an

gl
e

1st: 12, 2nd: 24 (116 neurons) ∆ϕ1 ≈ 0.05± 0.05

1st: 18, 2nd: 36 (110 neurons) ∆ϕ1 ≈ 0.06± 0.05

1st: 21, 2nd: 42 (138 neurons) ∆ϕ1 ≈ 0.04± 0.04

1st: 22, 2nd: 44 (148 neurons) ∆ϕ1 ≈ 0.04± 0.04

ϕ2 ∼= 2ϕ1 + π (mod 2π), R2 = 0.9932

ϕ2 ∼= 2ϕ1 + π (mod 2π), R2 = 0.9993

ϕ2 ∼= 2ϕ1 + π (mod 2π), R2 = 0.9997

ϕ2 ∼= 2ϕ1 + π (mod 2π), R2 = 0.9995

Figure 7: We plot the input phase shifts of the two frequencies. We observe that not only are the
secondary frequencies of neurons approximately double the primary frequencies, the input phase
shift of the secondary frequencies are approximately twice the primary frequency phase shift plus π.

to the logits from only the absolute value component of ReLU (Appendix I), the R2 values become
0.99 and 0.85 respectively.

What this suggests is that the absolute value component of ReLU indeed carries out the “pizza”
algorithm and produces those logits. As we will demonstrate below, the discrepancy for the overall
logits is due to the effects of the substantially smaller non-primary frequencies. In particular, it is
explained by the action of the “secondary frequency” – the second largest Fourier component.

6.2 USING SECONDARY FREQUENCIES TO BETTER APPROXIMATE CLOCK LOGITS

For each of the neurons, the largest secondary frequency is almost always twice the primary frequency.
For example, for neurons of frequency 12, the largest secondary frequency is 24, while for neurons of
frequency 22, the largest secondary frequency is 15 (= 59 − 22 · 2, note that cosine is symmetric
about 0).

Note that the input phase shift of the secondary frequency is approximately twice the input phase
shift of the primary frequency plus π (Figure 7).

The contribution of the doubled secondary frequency to the logits can thus be written as (compare to
Equation 2, note we lose the 1

2 factor in the pre-ReLU expression because the secondary frequency is
double the primary frequency)

logit(2k)(a, b, c) =
∑
i∈Ik

cos (kc+ 2ϕi)ReLU [cos (k(a− b)) cos (k(a+ b) + 2ϕi + π)]

≈
∫ π

−π

cos(kc+ 2ϕ)ReLU[− cos (k(a− b)) cos(k(a+ b) + 2ϕ)] dϕ

Letting θ = ϕ+ k(a+ b)/2, we get

=

∫ k(a+b)/2+π

k(a+b)/2−π

cos(k(c− (a+ b)) + 2θ)ReLU[− cos (k(a− b)) cos(2θ)] dθ

Because the integrand is 2π-periodic, the shift on the limits of integration is irrelevant:

=

∫ π

−π

cos(k(c− (a+ b)) + 2θ)ReLU[− cos (k(a− b)) cos(2θ)] dθ

By the law of cosine addition:

=

∫ π

−π

[
cos(k(c− (a+ b))) cos(2θ)− sin(k(c− (a+ b))) sin(2θ)

]
· ReLU[− cos (k(a− b)) cos(2θ)] dθ

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Because sin is odd and ReLU[cos] is even, the sin term integrates to 0.

= cos(k(c− (a+ b)))

∫ π

−π

cos(2θ)ReLU[− cos (k(a− b)) cos(2θ)] dθ

= −π
2 cos (k(a− b)) cos(k(a+ b− c))

This logit contribution helps make the model more robust. Note that in the expression for “pizza logits”
(Equation 3), the model works by having that cos(k(a+ b− c)) is largest when c = a+ b (mod p),
and choosing the largest logit as output. However, this logit difference has a factor of

∣∣cos (k
2 (a− b)

)∣∣.
As a result, when

∣∣cos (k
2 (a− b)

)∣∣ ≈ 0, the logit difference is small and may not distinguish the
correct output. However, from the above expression, we have that (by cos(2x) = 2 cos2(x) − 1)
cos (k(a− b)) ≈ −1 so this term contributes positively to the correct logit cos(k(a+ b− c)). This
compensates for the weakness of the pizza logits in cases where

∣∣cos (k
2 (a− b)

)∣∣ ≈ 0.

7 DISCUSSION

We provide a first case study in rigorously compressing nonlinear feature-maps. We demonstrate
that interpreting feature-maps reveals additional insight about the model mechanism, even in models
that the research community assumes that we understand quite well. Our hope is that this work will
inspire additional study of feature-maps in mechanistic interpretability.

The key steps in our derivation of efficient bounds were: splitting the input into orthogonal output-
relevant and output-irrelevant directions; decomposing the pre-activations as a product of functions
of these axes; reindexing the neurons by the output-relevant direction so that the reindexed post-
activations depend only on the output-irrelevant directions; and compressing independently over the
output-relevant direction term and the output-irrelevant direction term. We believe that some of these
steps could be adapted to interpret other MLPs, even those where we cannot derive closed-form
analytic representations. At the same time, the bounds we derive in Appendix H could be improved
to understand how the network is allocating boxes under the curve, which we hope to address with
future work.

REFERENCES

Sid Black, Lee Sharkey, Leo Grinsztajn, Eric Winsor, Dan Braun, Jacob Merizian, Kip Parker,
Carlos Ramón Guevara, Beren Millidge, Gabriel Alfour, and Connor Leahy. Interpreting neural
networks through the polytope lens, 2022.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
learning. Transformer Circuits Thread, 2023. URL https://transformer-circuits.
pub/2023/monosemantic-features/index.html.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models, 2023. URL https://arxiv.
org/abs/2309.08600.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A
mathematical framework for transformer circuits. Transformer Circuits Thread, 2021. URL
https://transformer-circuits.pub/2021/framework/index.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,

10

https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://transformer-circuits.pub/2021/framework/index.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of superposi-
tion. Transformer Circuits Thread, 2022. URL https://transformer-circuits.pub/
2022/toy_model/index.html.

Joshua Engels, Isaac Liao, Eric J. Michaud, Wes Gurnee, and Max Tegmark. Not all language model
features are linear, 2024. URL https://arxiv.org/abs/2405.14860.

Andrey Gromov. Grokking modular arithmetic, 2023. URL https://arxiv.org/abs/2301.
02679.

Jason Gross, Rajashree Agrawal, Thomas Kwa, Euan Ong, Chun Hei Yip, Alex Gibson, Soufiane
Noubir, and Lawrence Chan. Compact proofs of model performance via mechanistic intepretability,
June 2024. URL https://arxiv.org/abs/2406.11779.

Samuel Marks, Can Rager, Eric J. Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language models,
2024. URL https://arxiv.org/abs/2403.19647.

Neel Nanda and Joseph Bloom. Transformerlens. https://github.com/
TransformerLensOrg/TransformerLens, 2022.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. arXiv preprint, 2023. doi: 10.48550/arXiv.2301.05217.
URL https://arxiv.org/abs/2301.05217.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001. URL
https://distill.pub/2020/circuits/zoom-in.

Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two stories in
mechanistic explanation of neural networks, 2023. URL https://arxiv.org/abs/2306.
17844.

11

https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://arxiv.org/abs/2405.14860
https://arxiv.org/abs/2301.02679
https://arxiv.org/abs/2301.02679
https://arxiv.org/abs/2406.11779
https://arxiv.org/abs/2403.19647
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://arxiv.org/abs/2301.05217
https://distill.pub/2020/circuits/zoom-in
https://arxiv.org/abs/2306.17844
https://arxiv.org/abs/2306.17844

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A MODEL TRAINING DETAILS

We train 1-layer transformers with constant attention = 1
2 (equivalently, with QK clamped to 0), as

implemented by TransformerLens (Nanda & Bloom, 2022) with the following parameters

d vocab = p+ 1 = 59 + 1

n ctx = 2 + 1

d model = 128

d mlp = 512

d head = 32

n heads = 4

n layers = 1

act fn = ’relu’

We take 80% of all (a, b) pairs mod p as the training set, and the rest as the validation set. We set
the loss function to be the mean log probabilities of the correct logit positions, and train for 10000
epochs using the AdamW optimizer with the default weight decay = 0.01. The large number of
epochs is such that the resulting model achieves 100% accuracy on all possible input pairs. We chose
151 random seeds which are pseudorandomly deterministically derived 0, along with 150 values read
from /dev/urandom.

Each training run takes approximately 11–12 GPU-minutes to complete on an NVIDIA GeForce
RTX 3090. In total, the experiments in this paper took less than 1000 GPU-hours.

B MORE FIGURES AND RESULTS FOR MAINLINE MODEL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

20

40

60

80

100

120

140

Key frequencies

C
ou

nt
(n

um
be

ro
fn

eu
ro

ns
)

Key frequency counts

count

Figure 8: The key frequencies for this model are 12, 18, 21, and 22 (multiplied by 2π/p)

C RESULTS FOR OTHER RANDOM SEEDS

To ensure that this phenomenon is not specific to the model we looked at, we trained 151 models with
the same setup and different random seeds (leading to different weight initialization and train-test
split). We replicate some of the analysis above to show that a significant proportion of these models
follow the above explanation.

For our second observation, we notice that most neurons are single frequency, with the largest
frequency explaining more than 90% of the variance of the ReLU input, see Figure 13. The same
is true for the Wout matrix, see Figure 14. For our third observation, we check that (disregarding
neurons where the largest frequency is the constant term) 100 out of 151 models (‘good models’)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

−π
− 2π

3 −π3 0 π
3 2π

3 π
φ 0

10
20

30
40

50
60

a
+
b

cos(k(a+ b)/2 + φ)

ReLU
====⇒

cos(2ϕ)
=====⇒

−π
− 2π

3 −π3 0 π
3 2π

3 π
φ 0

10
20

30
40

50
60

a
+
b

ReLU[cos(k(a+ b)/2 + φ)] cos(2φ)

sin(2ϕ)
====⇒

−π
− 2π

3 −π3 0 π
3 2π

3 π
φ 0

10
20

30
40

50
60

a
+
b

ReLU[cos(k(a+ b)/2 + φ)] sin(2φ)

∫
dϕ

===⇒
0 10 20 30 40 50 60

−0.50

−0.25

0.00

0.25

0.50

2
3 cos(a+ b)

0 10 20 30 40 50 60

−0.50

−0.25

0.00

0.25

0.50

2
3 sin(a+ b)

Figure 9: The network computes logits by approximate numerical integration.

4 3 5 2 6

0

10

20

30

40

50

60

70

Number of key frequencies

C
ou

nt
(n

um
be

ro
fm

od
el

s)

count

Figure 10: Most models have 3 to 5 key frequencies, which is in line with what we would expect to
make the above argument work.

0 5 10 15 20 25

0

500

1000

1500

2000

2500

3000

3500

4000

Key frequencies

C
ou

nt
(n

um
be

ro
fn

eu
ro

ns
)

count

Figure 11: Key frequencies for the models are roughly uniformly distributed across all possible
values.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0

200

400

600

800

1000

|resid attn|2/|logits|2

C
ou

nt
(n

um
be

ro
fi

np
ut

pa
ir

s)

Variance of residual attention stream compared to logits

Figure 12: Residual connection from the attention stream causes mostly less than 3% of the variance
of the logits.

0.2 0.4 0.6 0.8 1.0
0

5000

10000

15000

20000

25000

|Key frequency component|2/|ReLU input|2

C
ou

nt
(n

um
be

ro
fn

eu
ro

ns
)

Figure 13: For most neurons, above 90% of the variance of the ReLU input is explained by the largest
Fourier frequency component.

0.4 0.5 0.6 0.7 0.8 0.9 1
0

10,000

20,000

30,000

40,000

|Key frequency component|2/|WUWout|2

C
ou

nt
(n

um
be

ro
fn

eu
ro

ns
)

% variance explained by key frequency for WUWout

Figure 14: For most neurons in ‘good’ models, above 98% of the variance of the Wout matrix is
explained by the largest Fourier frequency component.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0.2 0.4 0.6 0.8 1.0 1.2
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Normalised abs integral bound

C
ou

nt
(n

um
be

ro
f(

m
od

el
,f

re
q)

pa
ir

s)

Figure 15: Most of the pairs have normalised abs integral bounds less than 0.6, compared to the naive
abs error bound of 0.85.

0 10 20

0

10

20

30

40

50

Primary frequency

Se
co

nd
ar

y
fr

eq
ue

nc
y

0

500

1000

1500

2000

2500

3000

3500

Figure 16: The second largest non-zero Fourier component is 2 times the primary frequency for 83%
of the neurons.

have the frequencies matching for all neurons, with a further 27 models where the frequencies don’t
match for less than 10 (out of 512 neurons). For our fourth observation, we look at the 100 good
models and see that for 78 of them, we have R2 > 0.9 between the angles for all key frequencies.
For our fifth observation, we look at the 100 good models and see that for 54 of them, we have
mean width of intervals > standard deviation of width, showing that angles are roughly uniformly
distributed.

Finally, we carry out the error bound calculations for the 100 good models. For each (model, freq)
pair, we can calculate the error bounds as in Table 1. We see that for 295 out of 358 such pairs (82%),
the empirical errors (normalised abs cos error, normalised abs sin error, normalised id cos error,
normalised id sin error) are all less than 0.1. For these pairs, the normalised abs integral bound has
a median of 0.40, which is 47% of the naive abs bound of 0.85. Also, 99% of the normalised abs
integral bounds are less than the naive abs bound (see Figure 15. Hence, the numerical integration
phenomenon explained above indeed appears in most trained models, and our method of proof is able
to produce a non-vacuous error bound whenever this phenomenon occurs.

For the relationship observed between primary and secondary frequencies, we see that it still holds
when we use different random seeds. In particular, around 84% of the neurons have the second largest
non-zero Fourier component being 2 times the primary frequency (see Figure 16). Also, amongst

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0 0.2 0.4 0.6 0.8 1
0

100

200

300

R2 value

C
ou

nt
(n

um
be

ro
f(

m
od

el
,f

re
q)

pa
ir

s)

Figure 17: Most of the (model, freq) pairs have the angle for the secondary frequency closely
resembling 2 times the primary frequency plus π.

these neurons, the angle for the secondary frequency is approximate 2 times the angle for the primary
frequency +π, with R2 > 0.9 for most (model, freq) pairs.

D TRIGONOMETRIC IDENTITIES

We use the following trigonometric identities throughout the paper:

sinα+ sinβ = 2 sin
α+ β

2
cos

α− β

2
(11)

cosα+ cosβ = 2 cos
α+ β

2
cos

α− β

2
(12)

cosα cosβ =
cos(α+ β) + cos(α− β)

2
(13)

cos(α+ β) = cosα cosβ − sinα sinβ (14)
cos(α− β) = cosα cosβ + sinα sinβ (15)
cos(α+ π) = − cosα (16)

E DERIVATION OF TRIG INTEGRAL

Instead of splitting the summation into two chunks, converting each into an integral, and evaluating
each integral, we can replace the summand with an integral directly and evaluate that. Also, we use
the corrected phase shift ψi = 2ϕi:

logit(a, b, c)

≈
∑
k∈K

∑
i∈Ik

wi ReLU
(
σk cos(k

a+b
2 + ϕi)

)
cos(kc+ 2ϕi)

≈
∑
k∈K

Zk

∫ π

−π

ReLU
(
σk cos(k

a+b
2 + ϕ)

)
cos(kc+ 2ϕ) dϕ

Using F± to denote the integral

F± =

∫ π

−π

ReLU
(
± cos(k

a+ b

2
+ ϕ)

)
cos(kc+ 2ϕ) dϕ ,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

let s = k a+b
2 and t = kc. Using the periodicity of cosine (Equation 16), we have

F− =

∫ π

−π

ReLU
(
− cos(k

a+ b

2
+ ϕ)

)
cos(kc+ 2ϕ) dϕ

=

∫ π

−π

ReLU
(
cos(k

a+ b

2
+ ϕ+ π)

)
cos(kc+ 2ϕ+ 2π) dϕ

=

∫ 2π

0

ReLU
(
cos(k

a+ b

2
+ ϕ′)

)
cos(kc+ 2ϕ′) dϕ′

=

∫ π

−π

ReLU
(
cos(k

a+ b

2
+ ϕ)

)
cos(kc+ 2ϕ) dϕ

= F+ .

So we may write F := F+ = F−. Note that the integrand is non-zero only when ϕ ∈ [−π/2 −
s, π/2− s]. Applying the cosine product-sum identity (Equation 13) and doing some algebra:

F =

∫ π/2−s

−π/2−s

cos(s+ ϕ) cos(t+ 2ϕ) dϕ

=
1

2

∫ π/2−s

−π/2−s

cos(s− t− ϕ) + cos(s+ t+ 3ϕ) dϕ

=
1

2

[
sin(ϕ− s+ t) +

1

3
sin(s+ t+ 3ϕ)

]π/2−s

−π/2−s

=
1

2

[
sin(π/2− 2s+ t) +

1

3
sin(3π/2− 2s+ t)

]
− 1

2

[
sin(−π/2− 2s+ t) +

1

3
sin(−3π/2− 2s+ t)

]
Using the periodicity of sine and cosine, we have

F =
1

2

[
sin(π/2− 2s+ t) +

1

3
sin(3π/2− 2s+ t)

]
− 1

2

[
sin(−π/2− 2s+ t) +

1

3
sin(−3π/2− 2s+ t)

]
=

1

3
sin(π/2− 2s+ t) +

1

3
sin(π/2 + 2s− t)

=
1

3
cos(2s− t) +

1

3
cos(−2s+ t)

=
2

3
cos(2s− t)

=
2

3
cos(k(a+ b− c)) ,

as desired.

That is, the pizza model computes its logits using the trigonometric integral identity:∫ π

−π

ReLU
(
cos(k(a+ b)/2 + ϕ)

)
cos(kc+ 2ϕ) dϕ

=
2

3
cos(k(a+ b− c))

Or equivalently:

cos(k(a+ b− c))

=
3

2

∫ π

−π

ReLU
(
cos(k(a+ b)/2 + ϕ)

)
cos(kc+ 2ϕ) dϕ

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

F DERIVATION OF TRIG INTEGRAL INCLUDING SECONDARY FREQUENCIES

Let

sk = k a+b
2 uk = k a−b

2 vk = cos(uk) tk = kc

and let βi be the coefficient of the secondary frequency term and γi be the constant term.

Consider a network of the form

logit(a, b, c) ≈
∑
k∈K

∑
i∈Ik

wi ReLU
[
f(ka+ ϕi, kb+ ϕi)

]
cos(kc+ 2ϕi)

for some symmetric even function f which is 2π-periodic – that is, f(x, y) = f(y, x) = f(−x, y) =
f(x,−y) = f(x+ 2π, y) = f(x, y + 2π).

Then we have

logit(a, b, c)

≈
∑
k∈K

∑
i∈Ik

wi ReLU
[
f(ka+ ϕi, kb+ ϕi)

]
cos(kc+ 2ϕi)

≈
∑
k∈K

Zk

∫ π

−π

ReLU
[
f(ka+ ϕ, kb+ ϕ)

]
cos(kc+ 2ϕ) dϕ

Reindexing with θ = ϕ+ k a+b
2 = ϕ+ sk:

≈
∑
k∈K

Zk

∫ k a+b
2 +π

k a+b
2 −π

ReLU
[
f(k a−b

2 + θ,−k a−b
2 + θ)

]
cos(k(c− (a+ b)) + 2θ) dθ

=
∑
k∈K

Zk

∫ sk+π

sk−π

ReLU
[
f(uk + θ,−uk + θ)

]
cos(tk − 2sk + 2θ) dθ

Using the fact that the integrand is 2π-periodic and hence we can arbitrarily shift the limits of
integration:

=
∑
k∈K

Zk

∫ π

−π

ReLU
[
f(uk + θ,−uk + θ)

]
cos(tk − 2sk + 2θ) dθ

Define
gk(θ) = ReLU

[
f(uk + θ,−uk + θ)

]
and note that gk is even1 and use the cosine addition formula (Equation 14) to get:

=
∑
k∈K

Zk

∫ π

−π

gk(θ)(cos(tk − 2sk) cos(2θ)− sin(tk − 2sk) sin(2θ)) dθ

=
∑
k∈K

Zk cos(tk − 2sk)

∫ π

−π

gk(θ) cos(2θ) dθ − Zk sin(tk − 2sk)

∫ π

−π

gk(θ) sin(2θ) dθ

Since gk is even and sin is odd, the second integral evaluates to zero, giving

=
∑
k∈K

Zk cos(tk − 2sk)

∫ π

−π

gk(θ) cos(2θ) dθ

1Because gk(−θ) = ReLU
[
f(uk − θ,−uk − θ)

]
= ReLU

[
f(−(−uk + θ),−(uk + θ))

]
=

ReLU
[
f(−uk + θ, uk + θ)

]
= ReLU

[
f(uk + θ,−uk + θ)

]
= gk(θ)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

In the particular case of secondary frequencies which are double the primary frequencies, with phases
also double the primary phases, we have:

logit(a, b, c)

≈
∑
k∈K

∑
i∈Ik

wi ReLU
[
cos(k a−b

2) cos(k a+b
2 + ϕi) + βi cos(k(a− b)) cos(k(a+ b) + 2ϕi) + γi

]
cos(kc+ 2ϕi)

≈
∑
k∈K

Zk

∫ π

−π

ReLU
[
cos(k a−b

2) cos(k a+b
2 + ϕ) + β̄k cos(k(a− b)) cos(k(a+ b) + 2ϕ) + γ̄k

]
cos(kc+ 2ϕ) dϕ

=
∑
k∈K

Zk

∫ π

−π

ReLU
[
cos(uk) cos(sk + ϕ) + β̄k cos(2uk) cos(2sk + 2ϕ) + γ̄k

]
cos(tk + 2ϕ) dϕ

=
∑
k∈K

Zk

∫ π

−π

ReLU
[
vk cos(sk + ϕ) + β̄k(2v

2
k − 1) cos(2sk + 2ϕ) + γ̄k

]
cos(tk + 2ϕ) dϕ

Reindexing with θ = ϕ+ sk:

=
∑
k∈K

Zk

∫ sk+π

sk−π

ReLU
[
vk cos(θ) + β̄k(2v

2
k − 1) cos(2θ) + γ̄k

]
cos(tk − 2sk + 2θ) dθ

Using the fact that the integrand is 2π-periodic:

=
∑
k∈K

Zk

∫ π

−π

ReLU
[
vk cos(θ) + β̄k(2v

2
k − 1) cos(2θ) + γ̄k

]
cos(tk − 2sk + 2θ) dθ

Define
fk(θ) = ReLU

[
vk cos(θ) + β̄k(2v

2
k − 1) cos(2θ) + γ̄k

]
and use the cosine addition formula to get:

=
∑
k∈K

Zk

∫ π

−π

fk(θ)(cos(tk − 2sk) cos(2θ)− sin(tk − 2sk) sin(2θ)) dθ

=
∑
k∈K

Zk cos(tk − 2sk)

∫ π

−π

fk(θ) cos(2θ) dθ − Zk sin(tk − 2sk)

∫ π

−π

fk(θ) sin(2θ) dθ

Since fk is even and sin is odd, the second integral evaluates to zero, giving

=
∑
k∈K

Zk cos(tk − 2sk)

∫ π

−π

fk(θ) cos(2θ) dθ

G NUMERICAL INTEGRATION ERROR BOUND FOR RELU FUNCTION

Recall that in subsection 5.2, we computed the error bound for integrating the absolute value function
rather than the ReLU function in the network. This is because we can break down

ReLU(x) =
x

2
+

|x|
2

and the identity part of ReLU integrates to zero. Hence, the baseline result (of approximating the
integral to zero) makes more sense when we only consider the absolute value part of ReLU.

However, using the general form of our error bound (Equation 6), it is simple to replicate the analysis
for the whole ReLU function. We have the same bound

supx |h′(x)| ≤ 2

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Error Bound Type \ Freq. 12 18 21 22 Equation

Normalised ReLU cos error 0.05 0.04 0.04 0.03 (4)/(6)
Normalised ReLU sin error 0.03 0.05 0.04 0.03 (4)/(6)
Angle approximation error 0.13 0.07 0.06 0.05 (18)
Numerical ReLU

∫ π

−π
bound 0.55 0.44 0.42 0.37 (19)

Numerical ReLU
∫ π

0
bound 0.21 0.15 0.17 0.15 (20)

Total numerical ReLU
∫ π

−π
bound 0.68 0.50 0.48 0.42 (19) + (18)

Total numerical ReLU
∫ π

0
bound 0.55 0.37 0.40 0.34 2 · (20) + (18)

Naive ReLU cos baseline 0.42 0.42 0.42 0.42 (5), (17)
Naive ReLU sin baseline 0.42 0.42 0.42 0.42 (5), (17)

Table 2: Error bounds for the ReLU function

Moreover, utilising the fact that ReLU evaluates to 0 on half the range of integration, we can reduce
our error bound by only considering the largest half of the boxes (with some boundary effects). This
gives us the following error bounds:

Note the baseline is halved because the identity component of ReLU yields a zero integral.

H DETAILED COMPUTATION OF NUMERCAL INTEGRATION ERROR

The maximum empirical error (obtained by evaluating the expression for each value of a+ b mod p)
is shown below:

Error Bound Type \ Freq. 12 18 21 22 Equation

Normalised abs cos error 0.04 0.03 0.04 0.03 (4)/(6)
Normalised abs sin error 0.05 0.05 0.03 0.02 (4)/(6)
Normalised id cos error 0.06 0.05 0.04 0.04 (4)/(6)
Normalised id sin error 0.02 0.05 0.04 0.04 (4)/(6)
Angle approximation error 0.14 0.07 0.06 0.06 (18)
Numerical abs

∫ π

−π
bound 0.59 0.52 0.50 0.44 (19)

Numerical abs
∫ π

0
bound 0.23 0.17 0.20 0.17 (20)

Total numerical abs
∫ π

−π
bound 0.73 0.59 0.56 0.50 (19) + (18)

Total numerical abs
∫ π

0
bound 0.59 0.41 0.46 0.40 2 · (20) + (18)

Naive abs cos baseline 0.85 0.85 0.85 0.85 (5), (17)
Naive abs sin baseline 0.85 0.85 0.85 0.85 (5), (17)

Table 3: Error bounds by splitting ReLU into absolute value and identity components

The first four rows (normalised abs & id cos & sin error) compute the error by brute force exactly:∣∣∣∫ π

−π
h(x)− h(ϕi) dx

∣∣∣ for h ∈ {ha+b,|C|, ha+b,|S|, ha+b,C , ha+b,S}. Rows ten and eleven compute

the baseline for the error
∣∣∣∫ π

−π
h(x) dx

∣∣∣ for h ∈ {ha+b,|C|, ha+b,|S|}, which is given by

E0<a+b≤p

∣∣ 4
3 cos(2πk(a+ b)/p)

∣∣ ≈ E0<a+b≤p

∣∣ 4
3 sin(2πk(a+ b)/p)

∣∣ (17)

Note that the baseline for h ∈ {ha+b,C , ha+b,S} is 0. Line five (angle discrepancy) computes the
error from ψ ≈ 2ϕ: ∑

i w
′
j |ψi − 2ϕi|. (18)

Line six (numerical abs
∫ π

−π
bound) computes the error bound from the integral:

minθ
∑

i

{∣∣(vi − (ϕi − θ))2 − (vi−1 − (ϕi − θ))2
∣∣ if ϕi ∈ [vi−1, vi]

(vi − (ϕi − θ))2 + (vi−1 − (ϕi − θ))2 otherwise
(19)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Shifting by θ is permitted because our functions are periodic with period π; it does not matter where
we start the integral. Line seven (numerical abs

∫ π

0
bound) takes advantage of the fact that h is

π-periodic to integrate from 0 to π: taking ŵi := w′
i/2, v̂i := vi/2, and ϕ̂i := ϕi for ϕi ≥ 0 and

ϕ̂i := ϕi + π for ϕi < 0, and we compute

minθ
∑

i

{∣∣∣(v̂i − (ϕ̂i − θ))2 − (v̂i−1 − (ϕ̂i − θ))2
∣∣∣ if ϕ̂i ∈ [v̂i−1, v̂i]

(v̂i − (ϕ̂i − θ))2 + (v̂i−1 − (ϕ̂i − θ))2 otherwise
(20)

Line eight (total numerical abs
∫ π

−π
bound) computes the combined error bound from the integral

and angle discrepancy. Line nine (total numerical abs
∫ π

0
bound) takes advantage of the fact that h is

π-periodic to integrate from 0 to π. This allows us to overlap the two halves of sampled points to try
and reduce the error of integration. (In this way, the rectangles in the approximation are narrower and
so the error would be smaller.)

Lines six and seven (numerical abs
∫

bound) also both take advantage of the fact that the function
is 2π-periodic, allowing us to shift the intervals formed above by any constant. When bounding
approximation error, we use the shift that gives the lowest bound.

The exact error is much smaller than the size of the integral, and the mathematical error bound is
also smaller than the size of the integral. This gives convincing evidence that the model is indeed
performing numerical integration.

I ANALYSIS OF THE ‘IDENTITY’ COMPONENT OF RELU

We can break down ReLU into two parts,

ReLU(x) =
x

2
+

|x|
2

The integrals then split into ∫ π

−π
cos(−2ϕ) 12cos(

k
2 + ϕ) dϕ = 2

3 cos(k)∫ π

−π
sin(−2ϕ) 12cos(

k
2 + ϕ) dϕ = 2

3 sin(k)∫ π

−π
cos(−2ϕ) 12 | cos(k2 + ϕ)|dϕ = 0∫ π

−π
sin(−2ϕ) 12 | cos(k2 + ϕ)|dϕ = 0

We see that the ‘identity’ part of the ReLU yields a zero integral. So does this part of the model
contribute to the logits? It turns out that the answer is yes. To resolve this issue, we look at the
discrepancy between the results suggested by previous work: Zhong et al. (2023) claim that logits are
of the form

logit(a, b, c) ∝ |cos(k(a− b)/2)| cos(k(a+ b− c))

while Nanda et al. (2023) claim that logits are of the form

logit(a, b, c) ∝ cos(k(a+ b− c))

To check which is correct, we regress the logits against the factors |cos(k(a− b)/2)| cos(k(a+b−c)),
which gives an R2 of 0.86, while if we regress them against just cos(k(a+ b− c)), we obtain an R2

of 0.98. So overall, Nanda et al. (2023) give a more accurate expression, but this seems to go against
the analysis we did above, which led to the expression in Zhong et al. (2023). (A similar value is
obtained if we just use the MLP output and drop the residual streams.) However, if we only consider
the contribution to the logits from the absolute value component of ReLU, the R2 values become 0.99
and 0.85 respectively. Therefore, although the contribution from the identity component of ReLU
is small, it does make a difference towards reducing the logit dependence on a − b, in particular
|cos(k(a− b)/2)|. This is a good thing because when cos(k(a− b)/2) is small, the logit difference
between the correct logit (a+ b) and other logits will also be small, which will lead to a higher loss.
The identity component slightly counters this effect. We can rewrite the identity component as:

WoutOV(a)/2 +WoutOV(b)/2 +Woutembed(b)/2

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Thus, we can store the matrices logit id1[:, a] = WoutOV(a)/2 and logit id2[:, a] =
Woutembed(a)/2, then we have

F2(a, b)c = residual stream + absolute value terms
+ logit id1[c, a] + logit id1[c, b] + logit id2[c, b]

We carry out a 2D Fourier transform to find out the decomposition of the logit id1 and logit id2
matrices (because Wout and OV(a) are sparse in the (1D) Fourier basis, so their product will
naturally be sparse in the 2D Fourier basis). We get logit id1[c, a] ≈ 2ℜ(∑k ake

i(kc−2ka)), where
the frequencies k here are the same as subsection 2.3. Hence, the output from the identity component
of ReLU is (ignoring logit id2 for now, which comes from the residual stream and is smaller):∑

kDk(cos(kc− 2ka) + cos(kc− 2kb)) +Ek(sin(kc− 2ka) + sin(kc− 2kb)) =
∑

k cos(k(b−
a))(Dk cos(k(c− a− b)) + Ek sin(k(c− a− b))).

The imaginary component of the FT is very small, ck ≈ 0; so the contribution is
∑

k bk cos(k(b−
a)) cos(k(a+ b− c)).

Why does this happen, and why does it help explain the R2 values we got above? We first list the
approximate coefficients ak:

Frequency 12 18 21 22

abs coefs (Ck) 13.9 15.1 12.1 11.2
id coefs (Dk) -3.7 -3.9 -3.2 -3.3

Thus, the overall expression for the logits is

F2(a, b)c ≈
∑

k(Ck |cos(k(b− a)/2)|
+Dk cos(k(b− a))) cos(k(a+ b− c))

=
∑

k(2D
2
k |cos(k(b− a)/2)|2

+ Ck |cos(k(b− a)/2)|) cos(k(a+ b− c))

−Dk cos(k(a+ b− c))

using double angle formula. Since Dk < 0, the
∑

k −Dk cos(k(a+ b− c)) term gives some cushion
for the base performance of the model (since as we discussed, the cos(k(a + b − c)) term is why
the model gives the highest logit when c = a+ b). Moreover, the 2D2

k| cos(k(b− a)/2)|2 term also
further improves the model since it is always non-negative. Hence, the contribution of the identity
term evens out parts of the model and improves the logit difference when |cos(k(b− a)/2)| is small
(where the absolute value part doesn’t do well). Note that the model would work on its own if we
only use the absolute value part, but since ReLU is composed of both the absolute value and identity
part and the coefficients combine both parts in a way that improve model performance.

J OTHER PLOTS

In this section we display variants of Figure 2, Figure 3, and Figure 5 for the other frequencies.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

−π −π
2

0 π

2

π

−π

−π
2

0

π

2

π

ϕi

ψi

Primary frequency
Non-primary frequency
ψ ≡ 2ϕ (mod 2π)

Figure 18: Angles for frequency k = 12. ψi ≈ 2ϕi (mod 2π) for the primary frequency of each
neuron but not in general.

−π −π
2

0 π

2

π

−π

−π
2

0

π

2

π

ϕi

ψi

Primary frequency
Non-primary frequency
ψ ≡ 2ϕ (mod 2π)

Figure 19: Angles for frequency k = 18. ψi ≈ 2ϕi (mod 2π) for the primary frequency of each
neuron but not in general.

−π −π
2

0 π

2

π

−π

−π
2

0

π

2

π

ϕi

ψi

Primary frequency
Non-primary frequency
ψ ≡ 2ϕ (mod 2π)

Figure 20: Angles for frequency k = 21. ψi ≈ 2ϕi (mod 2π) for the primary frequency of each
neuron but not in general.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

−π −π
2

0 π

2

π

−π

−π
2

0

π

2

π

ϕi

ψi

Primary frequency
Non-primary frequency
ψ ≡ 2ϕ (mod 2π)

Figure 21: Angles for frequency k = 22. ψi ≈ 2ϕi (mod 2π) for the primary frequency of each
neuron but not in general.

−π −2π

3
−π
3

0 π

3
2π

3

π

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

ϕ

h(ϕ)

Figure 22: Converting the weighted sum into rectangles to estimate an integral (for frequency k = 12).
h(ϕ) = |cos(ϕ)| cos(2ϕ).

−π −2π

3
−π
3

0 π

3
2π

3

π

−0.50
−0.25
0.00
0.25
0.50
0.75
1.00
1.25

ϕ

h(ϕ)

Figure 23: Error bound is the red area (for frequency k = 12). Note how the red area includes both
the actual curve and the numerical integration approximation.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0 π

4

π

2
3π

4

π

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

ϕ

h(ϕ)

Figure 24: Converting the weighted sum into rectangles to estimate an integral (for frequency k = 12).
h(ϕ) = |cos(ϕ)| cos(2ϕ).

0 π

4

π

2
3π

4

π
−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

ϕ

h(ϕ)

Figure 25: Error bound is the red area (for frequency k = 12). Note how the red area includes both
the actual curve and the numerical integration approximation.

−π −2π

3
−π
3

0 π

3
2π

3

π

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

ϕ

h(ϕ)

Figure 26: Converting the weighted sum into rectangles to estimate an integral (for frequency k = 18).
h(ϕ) = |cos(ϕ)| cos(2ϕ).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

−π −2π

3
−π
3

0 π

3
2π

3

π

−0.50

−0.25
0.00

0.25

0.50

0.75

1.00

1.25

ϕ

h(ϕ)

Figure 27: Error bound is the red area (for frequency k = 18). Note how the red area includes both
the actual curve and the numerical integration approximation.

0 π

4

π

2
3π

4

π

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

ϕ

h(ϕ)

Figure 28: Converting the weighted sum into rectangles to estimate an integral (for frequency k = 18).
h(ϕ) = |cos(ϕ)| cos(2ϕ).

0 π

4

π

2
3π

4

π

−0.4
−0.2
0.0
0.2
0.4
0.6
0.8
1.0

ϕ

h(ϕ)

Figure 29: Error bound is the red area (for frequency k = 18). Note how the red area includes both
the actual curve and the numerical integration approximation.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

−π −2π

3
−π
3

0 π

3
2π

3

π

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

ϕ

h(ϕ)

Figure 30: Converting the weighted sum into rectangles to estimate an integral (for frequency k = 21).
h(ϕ) = |cos(ϕ)| cos(2ϕ).

−π −2π

3
−π
3

0 π

3
2π

3

π
−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

ϕ

h(ϕ)

Figure 31: Error bound is the red area (for frequency k = 21). Note how the red area includes both
the actual curve and the numerical integration approximation.

0 π

4

π

2
3π

4

π

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

ϕ

h(ϕ)

Figure 32: Converting the weighted sum into rectangles to estimate an integral (for frequency k = 21).
h(ϕ) = |cos(ϕ)| cos(2ϕ).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 π

4

π

2
3π

4

π

−0.4
−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

ϕ

h(ϕ)

Figure 33: Error bound is the red area (for frequency k = 21). Note how the red area includes both
the actual curve and the numerical integration approximation.

−π −2π

3
−π
3

0 π

3
2π

3

π

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

ϕ

h(ϕ)

Figure 34: Converting the weighted sum into rectangles to estimate an integral (for frequency k = 22).
h(ϕ) = |cos(ϕ)| cos(2ϕ).

−π −2π

3
−π
3

0 π

3
2π

3

π
−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

ϕ

h(ϕ)

Figure 35: Error bound is the red area (for frequency k = 22). Note how the red area includes both
the actual curve and the numerical integration approximation.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0 π

4

π

2
3π

4

π

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

ϕ

h(ϕ)

Figure 36: Converting the weighted sum into rectangles to estimate an integral (for frequency k = 22).
h(ϕ) = |cos(ϕ)| cos(2ϕ).

0 π

4

π

2
3π

4

π

−0.4
−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

ϕ

h(ϕ)

Figure 37: Error bound is the red area (for frequency k = 22). Note how the red area includes both
the actual curve and the numerical integration approximation.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

K THE INFINITE-WIDTH LENS

Suppose you have some linear layer:

MLP(l)
(
a⃗(l−1)

)
=W

(l)
out ReLU

(
W

(l)
in a⃗

(l−1)
)

The activations of the ith neuron is given by

n
(l)
i = ReLU

(
(W

(l)
in)i a⃗

(l−1)
)

where (W
(l)
in)i the row vector of weights that feeds into neuron i.

The jth dimension of the output MLP can be rewritten as

MLP
(l)
j

(
a⃗(l−1)

)
=

∑
i

(W
(l)
out)ji ReLU

(
(W

(l)
in)i a⃗

(l−1)
)

We want to interpret this as an integral by doing something like:

MLP
(l)
j

(
a⃗(l−1)

)
=

∑
i

wif (⃗a
(l−1); ξi)

≈ Z

∫ ξn

ξ0

f (⃗a(l−1); ξ) dξ

= F (⃗a(l−1))

Assume without loss of generality that ξi is one-dimensional and ξi < ξi+1 for all ξ.

Note that we might have F (⃗a(l−1)) = MLP
(l)
j

(
a⃗(l−1)

)
, which would make this trivial.

What does it mean for this fact to be nontrivial?

We need:

1. A “locally one-dimensional” neuron-indexed variable of integration

2. Analytically described f(a, ξi)

3. wi should be approximately linear in (ξi+1 − ξi−1)/2

4. f (⃗a(l−1); ξi)− f (⃗a(l−1); ξi−1) is uniformly small over a⃗(l−1)s (that is, f is “continuous” in
ξ for all a+ b).

5. We can analytically evaluate the integral∫ ξn

ξ0

f (⃗a(l−1); ξ) dξ = F (⃗a(l−1))

independent of a⃗(l−1)

6. We can bound the error of the numerical approximation of f at each ξi, independent of a.
(e.g. lipschitz constant × size of box)

Ordinarily, we might check this approximation by empirically validating that∣∣∣MLP
(l)
j

(
a⃗(l−1)

)
− F (⃗a(l−1))

∣∣∣ < ε

for some small ε, over all a⃗(l−1)s

The reason this is non-trivial is you might be able to evaluate the error in the integral uniformly across
all possible a⃗(l−1)s.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

L FURTHER WORK

There are several hurdles to replicating this approach to interpreting other neural networks. It is highly
labor intensive, and requires extensive mathematical exploration. Thus, in order for the approach
to have any practical use, we need to develop automated tools to make these approximations and
interpretations.

For example, we may want to use the first few terms of the Fourier expansion (or other low-rank
approximations) to approximate the action of various layers in a neural network, and then combine
those to get algebraic expressions for certain neuron outputs of interest. Such algebraic expressions
will natural admit phenomena like the numerical integration we described above. This sort of method
may be particularly fruitful on problems which Fourier transforms play a large role, such as signal
processing and solutions to partial differential equations.

M FUTURE TECHNICAL WORK

To complete the technical work laid out in section 7, we must accomplish two tasks which we discuss
in this appendix section: constructing a parameterisation of the MLP which is checkable in less than
O(p · dmlp) time, and more generally constructing a parameterisation of the entire ‘pizza’ model that
is checkable in time that is linear in the number of parameters; and establishing a bound on the error
in the model’s logits that does not neglect any terms.

M.1 LINEAR PARAMETERISATION

Constructing a parameterisation of the model which is checkable in less than O(p · dmlp) time is a
relatively straightforward task, given the interpretation in the body of the paper. We expect that the
parameters are:

• A choice of nfreq frequencies ki.
• A splitting of the neurons into groups by frequency, and an ordering of the neurons within

each group.
• An assignment of widths wi to each neuron, and an assignment of angles ϕi to each neuron.
• An assignment of orthogonal planes into which each frequency is embedded by the embed-

ding matrix, and by the unembedding matrix.
• Rotations and scaling of the low-rank subset of the hidden model dimension for each of the

O and V matrices.

M.2 BOUNDING THE ERROR OF THE MLP

To bound the error of our interpretation of the MLP precisely, we’d need to include a bound on the
primary frequency contribution of the identity component (which integrates to 0 symbolically), and
include bounds on the residual components – OVE on x and y, the MLP bias, and the embed of y, as
inputs to ReLU; and UOVE on x and y and UE on y as output logits.

We could decompose every matrix in our model as a sum of the corresponding matrix from our
parameterized model and a noise term. Expanding out the resulting expression for the logits (and
expanding |x+ ε| as |x|+ (|x+ ε| − |x|)), we will have an expression which is at top-level a sum
of our parameterized model result and a noise term which is expressed recursively as the difference
between the actual model and the parameterized model. We can then ask two questions:

1. What worst-case bounds can we prove on the error terms at various complexities?
2. What are the empirical worst-case bounds on the relevant error terms?

31

	Introduction
	Background
	Mechanistic Interpretability of Modular Addition Models
	Experimental setup
	The ``Pizza'' algorithm

	Compressing MLPs
	Interpreting ``pizza'' MLPs as performing numerical integration
	Studying the model in the amplitude-phase Fourier form
	Frequency doubling using a trigonometric integral identity

	Validation via compact guarantees on MLP performance
	Computing numerical integration error
	Empirical validation

	The role of secondary frequencies
	Regressing model logits versus ``clock'' and ``pizza'' logits
	Using secondary frequencies to better approximate clock logits

	Discussion
	Model training details
	More figures and results for mainline model
	Results for other random seeds
	Trigonometric identities
	Derivation of trig integral
	Derivation of trig integral including secondary frequencies
	Numerical integration error bound for ReLU function
	Detailed computation of numercal integration error
	Analysis of the `identity' component of ReLU
	Other plots
	The Infinite-Width Lens
	Further work
	Future technical work
	Linear parameterisation
	Bounding the error of the MLP

