
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UMAP: A HIGHLY EXTENSIBLE AND PHYSICS-
BASED SIMULATION ENVIRONMENT FOR MULTI-
AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing simulation environments in the field of multi-agent reinforcement learn-
ing (MARL) either lack authenticity or complexity. The data generated by these
environments significantly deviate from the requirements of the real world, hinder-
ing the practical application of MARL. To address this issue, we propose Unreal
Multi-Agent Playground (UMAP), a highly extensible, physics-based 3D simula-
tion environment implemented on the Unreal Engine. UMAP is user-friendly in
terms of deployment, modification, and visualization, and all its components are
open-sourced1. Based on UMAP, we design a series of MARL tasks featuring het-
erogeneous agents, large-scale agents, multiple teams, and sparse team rewards.
We also develop an experimental framework compatible with algorithms rang-
ing from rule-based to MARL-based provided by third-party frameworks. In the
experimental section, we utilize the designed tasks to test several state-of-the-art
algorithms. Additionally, We also conduct a physical experiment to demonstrate
UMAP’s potential in sim-to-real applications, which is a significant advantage due
to the high extensibility and authenticity of UMAP. We believe UMAP can play
an important role in the MARL field by evaluating existing algorithms and helping
them apply to real-world scenarios, thus advancing the field of MARL.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has demonstrated remarkable potential in many practi-
cal fields, including swarm robotic control (Kalashnikov et al., 2018; Chen et al., 2020), autonomous
vehicles (Peng et al., 2021b), and video games (Vinyals et al., 2019; Chen et al., 2022). However, a
peculiar phenomenon can be observed in the field of MARL (Oroojlooy & Hajinezhad, 2023): al-
though numerous new algorithms are claimed to achieve state-of-the-art (SOTA) performance every
year, algorithms actually utilized in real-world applications tend to be classic MARL algorithms or
extensions of single-agent reinforcement learning (SARL) algorithms, such as IQL (Tan, 1993) and
IPPO (Schulman et al., 2017). Some studies even find that the performance of SARL algorithms
in certain multi-agent scenarios outperforms that of some MARL algorithms (Papoudakis et al.).
This indicates that the development of MARL has encountered a bottleneck, with many algorithms
performing well only in specific simulated tasks but struggling to be applied in real-world scenarios.

One of the keys to breaking through this bottleneck lies in the data of MARL. As a data-driven ap-
proach, MARL depends on high-quality data for the design and evaluation of its algorithms. How-
ever, if the data distribution is far from that of real-world problems, current developments fail to
align with practical needs. As a learning approach driven by rewards, the data of MARL originates
from various simulation environments, and that’s where the problem lies.

The existing simulation environments of MARL are either overly simplistic and lack authenticity,
or limited to low-complexity decision-making, thereby failing to fully reflect the unique challenges
of MARL. For instance, MAgent (Zheng et al., 2018) and GoBigger (Zhang et al., 2022) have
the capability to support large-scale multi-agent and multi-team training respectively, but the state
transitions in these environments are simply achieved through interaction rules among particle-like

1During the review phase, we put the main codes in the supplementary material, and details of open source
statement can be found in Appendix A.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

agents, which prevents them from fully simulating real-world conditions. Other examples include
the widely used environments like Starcraft Multi-Agent Challenge (SMAC) (Samvelyan et al.,
2019) and Google Research Football (GRF) (Kurach et al., 2020), which can simulate scenarios
of video game and soccer respectively, offering a certain level of authenticity but with decision-
making complexity far below real-world requirements (Zhang et al., 2022). To address this issue, it
is unrealistic to develop an all-inclusive environment, but developing an environment which is both
extensible and authentic holds significant value.

1. Select or Customize Tasks

Map-Level Agent-Level

State Action

Observation Observation Function

Transition Function Reward Function

2. Deploy Algorithms

Rule-Based Algorithm

3. Visualize Results

Single/Multi Agent(s) Training

Multi-Team Training

Third-party Framework Training

Real-Time Cross-Platform Rendering

Real-Time Training Curve Visualization

Controllable Speed Rendering

Real-World Scene Deploying

Figure 1: The research workflow for using UMAP. For novice users, UMAP provides direct access
to built-in maps and tasks, and offers comprehensive result visualization capabilities. For advanced
users, UMAP enables the modification of built-in tasks or the creation of new tasks to test research
ideas, and even the deployment of trained algorithms in real-world settings.

In this paper, we propose Unreal Multi-Agent Playground (UMAP) to fill this gap. UMAP is a
highly extensible, physics-based 3D simulation environment implemented on the Unreal Engine
(UE). Compared to existing commonly used environments, UMAP offers four primary advantages:
(1) Support for diversified multi-agent tasks, UMAP includes a variety of built-in tasks such as
heterogeneous-agent tasks, large-scale multi-agent tasks, and multi-team tasks, providing users with
a broad selection of tasks to choose from. (2) Customizable multi-agent task design, UMAP pro-
vides interfaces that allow users to conveniently customize all task properties, such as observations,
actions, and state transitions. (3) Controllable simulation time flow, users can control the simula-
tion speeds, enabling them to accelerate simulations to expedite training or decelerate simulations
for slow-motion analysis. (4) Rich rendering mechanisms, UMAP supports controllable-speed
rendering and cross-platform real-time rendering (e.g., training on Linux and rendering on Win-
dows simultaneously). The detailed comparison of UMAP and other related works can be found in
Table 1 and Appendix B.

To fully utilize the capabilities of UMAP, we also develop an MARL experimental framework known
as the Hybrid Multi-Agent Playground (HMAP). This framework includes implementations of rule-
based algorithms, built-in MARL algorithms, and algorithms from third-party frameworks such as
PyMARL2 (Hu et al., 2021) and HARL (Zhong et al., 2024). By leveraging UMAP and HMAP,
users can rapidly customize and deploy environments and algorithms, validate new research ideas,
and even apply them in practical scenarios. The overview of the research workflow for using UMAP
is depicted in Figure 1.

Our contributions can be summarized as four main parts: firstly, a fully open-source and highly ex-
tensible UE-based MARL environment; secondly, an accompanying modular MARL experimental
framework; thirdly, a collection of typical multi-agent tasks (covering heterogeneous, large-scale,
multi-team, sparse team rewards tasks, and a sim-to-real demo); fourthly, pre-deployed basic algo-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

rithms along with experimental analysis based on the above tasks. We believe UMAP can serve as a
comprehensive tool to advance the development of MARL and ultimately facilitate their application
in real-world scenarios.

Table 1: Comparison of UMAP with other related MARL simulation environments.

UMAP(Ours) MPE MAgent Hanabi NeuralMMO GoBigger JaxMARL

Heterogenous Support ✓ ✓ ✓ – ✓ – ✓

Large-Scale Support2 ✓ – ✓ – ✓ ✓ ✓
Multi-Team Support ✓ – – – – ✓ –

Mixed-Game Support3 ✓ ✓ ✓ – ✓ ✓ ✓
3D Physics Engine ✓ – – – – – –
Fully Open Source4 ✓ ✓ ✓ ✓ – – ✓

All Elements Customizable5 ✓ ✓ ✓ ✓ – – ✓
Controllable Time-flow Speed ✓ – – – – – –

Rendering Training6 ✓ – – – ✓ – –

GRF SMAC SMACv2 Hide-and-Seek HoK3v3 MAMuJoCo Marathon

Heterogenous Support ✓ ✓ ✓ – ✓ ✓ ✓
Large-Scale Support – – – – – ✓ –
Multi-Team Support – – – – – – –

Mixed-Game Support – ✓ ✓ – – – –
3D Physics Engine ✓ ✓ ✓ ✓ ✓ ✓ ✓
Fully Open Source ✓ – – ✓ – ✓ –

All Elements Customizable – – – – – – –
Controllable Time-flow Speed – – – – – – –

Rendering Training – – – – – – ✓

2 BACKGROUND

To accommodate various interaction relationships among multi-agent and multi-team scenarios (Fu
et al., 2024), we use Partially Observable Markov Game (POMG) (Littman, 1994; Gronauer
& Diepold, 2022) to model the MARL problem. A POMG can be represented by an 8-tuple
⟨N, {Si}i∈N , {Oi}i∈N , {Ωi}i∈N , {Ai}i∈N , {T i}i∈N , r, γ⟩. N is the set of all agents, {Si}i∈N

is the global state space which can be factored as {Si}i∈N = ×i∈NS(i) × SE , where S(i) is the
state space of an agent i, and SE is the environmental state space, corresponding to all the non-
agent entities. {Oi}i∈N = ×i∈NO(i) is the joint observation space and {Ωi}i∈N is the set of
observation functions. Similarly, {Ai}i∈N is the joint action space of all agents. {T i}i∈N is the
collection of all agents’ transitions and the environmental transition. Finally, γ is the discount factor
and r : {Si}i∈N × {Ai}i∈N ×N → R is the agent-level reward function.

We define team as a collection of agents, which all share the same overall goal in a purely cooperative
form. Agents within the same team aim to find an optimal joint policy that maximizes the cumulative
reward for the whole team. Denoting the joint policy of a certain team A ⊆ N as π̄A, the optimal
policy π̄∗

A can be represented as:

π̄∗
A = argmax

π̄A

Eπ̄A

[∞∑
k=0

γk
∑
i∈A

rit+k | s̄t = s̄

]
, (1)

where s̄ is the initial global state, γk
∑

i∈A rit+k is the discounted return of team A, rit+k is the
reward of an agent i ∈ A at timestep t+ k.

2In this paper, we refer to scenarios involving more than 100 agents (excluding non-agent entities) as large-
scale scenarios.

3Mixed-game support refers to the simulation environment’s capability to support competitive, cooperative,
and mixed interaction relationships among agents in scenarios.

4All simulation components are open source. Using SMAC as a counterexample, its back-end Starcraft II,
cannot be accessed or modified by researchers.

5All elements of the POMG (see details in Section 2) related to the environment can be modified.
6Remotely connecting to non-render client running inside a server via network, and rendering the on-going

training process locally via TCP&UDP.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 UMAP

3.1 BASIC CONCEPTS IN UMAP

Multi-agent simulation can demonstrate great diversity in different domains. In order to break the
limitations of existing environments, it is necessary to introduce a few new concepts that align with
human intuition as well as the requirements of multi-agent simulation.

Agents and Teams: Agents are the basic decision-making units in the environments. UMAP intro-
duces a new concept “team” to distinguish agents with different goals. UMAP supports numbers
of teams, where teams may engage in competition or cooperation. Each team possesses its own
independent goal and is equipped with a separate learning-based (or rule-based) algorithm.

Tasks and Scenarios: Tasks corresponds to POMGs defined in Section 2. The properties of tasks
in UMAP include the types and numbers of agents, their team affiliations, as well as each agent’s
state, observations, reward functions, etc. A scenario can give rise to a series of tasks, which typi-
cally share similar reward functions, implying that the objectives to be achieved by the multi-agent
systems are the same.

Maps: Maps in UMAP determine where the task takes place. A map can be a small room, or a city
full of buildings. It is a great advantage that UMAP decouples the concept of tasks and maps, as
users can conveniently deploy a task in new maps (as long as the agent has the appropriate size and
a suitable position initialization function).

Entities: Entities are objects in simulation that do not make decisions but still has important func-
tionality. For instance a street lamp or a dynamic obstacle. A shared characteristic of these objects
is that they must be removed or reinitialized when an episode ends or a new episode starts.

Events: We define an event system to simplify the reward crafting procedure. For instance, an event
will be generated when an agent is destroyed or an episode is ended. When it is time to compute
next-step reward, these events will provide convenient reference.

1 Agent Set

2 State Space

3 Observation Space

4 Observation Function

5 Action Space

6 Transition Function

7 Reward Function

Figure 2: Architecture of UMAP. UMAP employs a hierarchical, five-layered architecture, all of
which are open source. Users can modify all elements within POMG by configuring parameters
through the Python-based interface layer. For more advanced development requirements, users can
conveniently adjust scenario elements using graphical programming through the advanced module
layer.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 UTILIZING UMAP TO CUSTOMIZE TASKS

UMAP employs a hierarchical five-layer architecture, where each layer builds upon the previous one.
From bottom to top, the five layers are: native layer, specification layer, base class layer, advanced
module layer, and interface layer. Users only need to focus on the advanced module layer and
the interface layer. In most cases, modifying the basic functions and configuration parameters in
the interface layer is sufficient to alter all elements of tasks.

Figure 2 shows the internal structure of each layer of UMAP and the task elements affected by each
submodule. Specifically, the native layer includes 3D assets from the Unreal community and the
Unreal Engine, some part of which have been optimized for MARL compatibility. The specification
layer consists of UMAP’s underlying systems and programming specifications, all implemented in
C++. The base class layer includes all basic classes implemented using Blueprints7. These three
layers form the foundation of UMAP.

The advanced module layer, also based on Blueprints, allows for the modification of agents’ phys-
ical properties such as appearances, perceptions and kinematics, thereby enabling the development
of various agents. This layer also facilitates the development of environmental entities and maps.
The top layer is the interface layer, implemented in Python and compliant with the gym standard. It
includes basic functions like reset, step, and done. Additionally, it supports customizable observa-
tions and reward functions. This layer also allows for the selection of maps and agents. More details
about the UMAP architecture can be found in Appendix C.

Thanks to the hierarchical architecture of UMAP, users can easily customize tasks through simple
operations via top layers. Here we provide a detailed explanation of how each element of a task8 is
customized within UMAP.

Agent Set. Within the interface level of UMAP, the agent selection module enables users to specify
the types, numbers, and associated teams of agents.

State Space. The global state is composed of the states of individual agents and the environmental
state. Customization of the environmental state can be achieved by selecting different maps and
modifying them along with related entities. The state of the agents can be customized through the
agent init function in the advanced module layer and the agent component module in the interface
layer.

Observation Space and Observation Function. UMAP transmits global information from the UE
side to the Python side, where the make obs function in the interface layer is used to construct
the agents’ observations. Direct modification of this function allows for the customization of each
agent’s observation space and function. Moreover, modifying agents’ properties, such as the obser-
vation range, can also change their observations. Additionally, UMAP supports more sophisticated
agent observation simulation mechanisms, such as masking entities blocked by walls, which can be
implemented through the agent perception module in the advanced module layer.

Action Space. UMAP supports continuous actions, discrete actions, and hybrid actions. Users can
assign a built-in action set to each agent via the agent init function in the interface layer. Fur-
thermore, a deeper customization of agent actions can be achieved through the agent action-related
modules in the advanced module layer.

Transition Function. Similar to the state space, the transition function in UMAP is comprised
of local transitions of all agents and environmental transitions. The latter can be modified through
map-related and entity-related modules. Local transitions of agents can be customized by modifying
the agent init function and the step function, or more deeply through the agent component modules
and agent controller modules, such as agent kinematics.

Reward Function. UMAP constructs rewards using global information and an event system. Users
can customize the agents’ rewards by modifying the make reward function, which supports team
and individual rewards, as well as sparse and dense reward structures.

7Blueprint is a graphical programming language widely used in the UE editor.
8Excluding the discount factor, which can be easily specified on the algorithm side.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 HMAP

To facilitate the deployment of algorithms for UMAP and fully utilize its capabilities, we also open-
source our experimental framework HMAP. HMAP is a multi-agent experimental framework with
decoupled Core-Task-Algorithm components. Currently, HMAP integrates environments such as
UMAP, SMAC (Samvelyan et al., 2019), MPE (Mordatch & Abbeel, 2017), DCA (Fu et al., 2022),
and OpenAI Gym (Brockman, 2016), and supports a wide range of algorithms. This includes rule-
based algorithms (most of them are opponent policies for UMAP tasks), single-agent reinforcement
learning algorithms like DQN (Mnih et al., 2015) and SAC (Haarnoja et al., 2018), as well as MARL
algorithms such as MAPPO (Yu et al., 2022) and HAPPO (Zhong et al., 2024). Furthermore, HMAP
is compatible with third-party frameworks, supporting all algorithms from PyMARL2 (Hu et al.,
2021) and HARL (Zhong et al., 2024).

The unique feature of HMAP is its support for multi-team training. By thoroughly decoupling
algorithms from tasks, HMAP employs its core as a “glue module”, enabling any algorithm module
to control teams within any task module. Moreover, the observations, actions, and reward data
for each algorithm are processed separately and efficiently, ensuring that the policy executing and
training for each team are independent. HMAP accommodates sequential and parallel updates of
multiple team policy according to hardware performance variations, with the update sequence having
no adverse impact on the effectiveness of algorithm training.

HMAP’s highly modular design presents three key benefits. Firstly, it enables modification of script-
based opponent policies, which are treated as algorithm modules, in contrast to SMAC and GRF
where such policies are hardcoded and immutable. Secondly, it enables teams controlled by multiple
algorithms to interact within the same scenario, facilitating the evolution and training of algorithms
from different frameworks under the same task. Thirdly, it is user-friendly, as all experimental
configurations based on HMAP can be implemented through a single JSON file. Upon completing
the configuration, users can initiate the training task with just one line of code. More details of
HMAP can be found in Appendix D.

5 SCENARIOS AND TASKS

UMAP includes a variety of basic scenarios for multi-agent systems, each of which is extensible
and can be used to create numerous tasks. This section describes 4 primary scenarios, and 15 tasks
applied in Section 6 generated from these scenarios. These primary scenarios incorporate both
cooperative and competitive elements, including features as heterogeneous multi-agent, large-scale
multi-agent, sparse team rewards, multi-team gaming, along with a sim-to-real demonstration.

Figure 3: Four primary built-in scenarios of UMAP.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Metal Clash. This scenario is designed for heterogeneous and large-scale multi-agent tasks. As
illustrated in Figure 3(a), the scenario involves a competition between two teams of agents. Each
team can be controlled by either rule-based or learning-based algorithms. Metal Clash provides
three types of basic agents: missile cars, laser cars, and support drones. The properties of each basic
agent, such as maximum speed and health points (HP), are encapsulated as configurable parameters.
Users can easily modify these parameters, creating a variety of heterogeneous agent types beyond
the original three. Additionally, the number and types of agents in each team can be freely changed,
altering the characteristics and difficulty of the tasks.

Based on this scenario, we develop a series of tasks with heterogeneous or large-scale features.
In each task, the ally team, controlled by MARL algorithms, competes against an opponent team
controlled by rule-based algorithms. Both teams have the same types and numbers of agents (in
the following part, we only describe the composition of the ally team). We denote a task where
the team consists of x support drones, y laser cars, and z missile cars as metal clash xsd ylc zmc.
Accordingly, we develop four heterogeneous tasks: metal clash 5sd 5lc, metal clash 5sd 5mc,
metal clash 5lc 5mc, and metal clash 2sd 4lc 4mc.

For large-scale tasks, we develop two homogeneous tasks, metal clash homo 50 and
metal clash homo 100, which include 50 and 100 laser cars, respectively. In addition, there
are two large-scale heterogeneous tasks, metal clash hete 50 and metal clash hete 100. In
metal clash hete 50, each team has 10 support drones, 20 laser cars, and 20 missile cars. In
metal clash hete 100, the number of each type of agent is doubled compared to metal clash hete 50.

Tower Challenge. This scenario is designed for sparse team rewards in a multi-agent cooperative
setting. As shown in Figure 3(b), it includes a defense tower and several agents. The goal of all the
agents is to destroy the tower cooperatively. The tower’s defenses cover a much larger area than any
single agent can attack, making individual efforts ineffective. The entire team receives a positive
reward only if the they destroy the tower, there are no rewards or penalties in other cases.

Users can adjust the difficulty by modifying the tower’s HP and the number of agents. Based on this
scenario, we design two tasks named tower challenge easy and tower challenge hard. Each task
involves eight agents, with the harder task featuring a tower HP which is twice that of the easy one.

Flag Capture. This scenario is designed for multi-team gaming. As depicted in Figure 3(c), it
involves several teams competing to capture a flag. The closest agent can pick up the flag, and
their teammates must defend it from other teams. At the end of each episode, the team that held
the flag the longest wins. Since all teams start with the same number of agents, capturing the
flag first doesn’t guarantee victory. Success requires balancing power and strategic cooperation
among all teams. We develop 4 tasks based on this scenario. The first two tasks, flag capture script
and flag capture double script, correspond to two-team and three-team tasks, respectively. In each
of these tasks, only one team is controlled by the tested MARL algorithm, while the remain-
ing teams are controlled by scripts. Similarly, for the last two tasks, flag capture mappo and
flag capture double mappo, the script-based algorithms are replaced with MAPPO. Both the tested
algorithm and the MAPPO algorithm(s) start training from scratch.

Landmark Conquer. This scenario is specifically developed to demonstrate the potential of sim-to-
real transfer using UMAP. As illustrated in Figure 3(d), all agents and entities are derived from repli-
cas of the physical environment described in Section 6.4. In this scenario, the challengers, consisting
of two unmanned ground vehicles (UGVs) and one unmanned aerial vehicle (UAV), are tasked with
capturing any landmark protected by guardians. Compared to the challengers, the guardians possess
higher attack power and HP. The scenario includes several obstacles and walls, as well as two target
locations. If the UAV remains above any landmark for a specified duration, the capture is considered
successful, resulting in a victory for the challengers.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTING

Based on the 15 tasks developed in Section 5, we test 7 widely-used SOTA MARL algorithms.
These include the actor-critic-based algorithms as MAPPO (Yu et al., 2022), HATRPO, and
HAPPO (Zhong et al., 2024), as well as the value-based algorithms as QMIX (Rashid et al., 2020b),

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

QTRAN (Son et al., 2019), QPLEX (Wang et al., 2020), and WQMIX (Rashid et al., 2020a). To
ensure a fair comparison, the main network structure of each algorithm is preserved uniform, and
hyperparameters are standardized across all algorithms (refer to Appendix I for details).

The effectiveness of the training is tested after every 1280 episodes. The average win rates and
rewards of the algorithms are calculated based on 512 episodes per test, across 5 or more random
seeds. The results for the first 12 tasks are illustrated in Figure 4, where the lines represent the
mean values and the shadowed areas indicate the 95% confidence interval. Table 2 details the per-
formance of the 7 algorithms in flag capture mappo and flag capture double mappo. Results for
landmark conquer are presented in Appendix G.

6.2 INTERPRETATION OF RESULT

Heterogeneous Tasks. The result plotted in Figure 4 reveals several trends. Apart from QPLEX,
actor-critic-based algorithms generally outperform value-based algorithms. In actor-critic-based al-
gorithms, MAPPO performs better, even being the best algorithm in the most difficult task, and
HAPPO is weaker than MAPPO across all four tasks, which is different from previous research. In
value-based algorithms, QPLEX is the best, which outperforms all actor-critic-based algorithms in
metal clash 5mc 5lc. However, it is discovered that the effectiveness of QPLEX significantly de-
clines as the level of heterogeneity in the task increases. Furthermore, experiments without param-
eter sharing are conducted, and it has been found that actor-critic-based algorithms with parameter
sharing outperform those without parameter sharing. Since the agent ID is already included in the
observations, this enables differentiation among the trained policies.

metal_clash_5sd_5mc

Te
st

W
in

R
at

e

EpisodeEpisode

Te
st

W
in

R
at

e

metal_clash_5sd_5lc

Te
st

W
in

R
at

e

Episode

metal_clash_5lc_5mc

Episode

Te
st

W
in

R
at

e

metal_clash_2sd_4lc_4mc

metal_clash_homo_50

Episode

Te
st

W
in

R
at

e

Episode

Te
st

W
in

R
at

e

metal_clash_homo_100

Episode

Te
st

W
in

R
at

e

metal_clash_hete_50

Episode

Te
st

W
in

R
at

e

metal_clash_hete_100

Te
st

W
in

R
at

e

Episode

tower_challenge_easy

Te
st

W
in

R
at

e

Episode

tower_challenge_hard

Episode

Te
st

W
in

R
at

e

flag_capture_double_script

Episode

Te
st

W
in

R
at

e

flag_capture_script

MAPPO HAPPO HATRPO QMIX QTRAN QPLEX WQMIX

Figure 4: The comparison of test win rate for all evaluated algorithms across 12 tasks. The shadowed
area depicts the 95% confidence interval.

Large-Scale Tasks. Similar to heterogeneous tasks, actor-critic-based algorithms still outperform
value-based algorithms. MAPPO is the most outstanding algorithm due to its superior capability
for parameter sharing, which is primarily reflected in its faster and more stable training perfor-
mance. This advantage is particularly evident in metal clash homo 100 and the highly heteroge-
neous metal clash hete 100, where MAPPO demonstrates a significant lead. For value-based al-
gorithms, the performance of QPLEX is the best, but it also deteriorates rapidly with the increase
in scale and heterogeneity. Furthermore, the training of HAPPO is very unstable, which may be
related to its updating of policies in a random order. In tasks with 100 agents in the team, HA-
TRPO freezes up and fails to produce results, because the computational burden of HATRPO is
so large that it exceeds the computing capacity of the server. Apart from MAPPO and QPLEX in

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

metal clash homo 50, the performance of other algorithms is not satisfactory, urgently requiring
more advanced algorithms.

Sparse Team Reward Tasks. In these tasks, value-based algorithms generally outperform actor-
critic-based algorithms. In the tower challenge easy task, only QPLEX trains relatively quickly and
stably. Other value-based algorithms require a larger number of episodes to exceed a win rate of 0.8
and do not perform well in the first 100,000 episodes. In tower challenge hard, some algorithms
do not perform well, but as a actor-critic-based algorithm, HATRPO performs better than expected.
The limitation of the performance of HATRPO in this task may lie in its inability to explore the
entire space, thus failing to ensure monotonic improvement. Therefore, in tower challenge hard,
there is an urgent need for more advanced algorithms.

Multi-Team Gaming Tasks. In the tasks where the engaging teams are driven by scripts, apart
from the poor performance of MAPPO in all tasks, actor-critic-based algorithms are superior to
value-based algorithms. Within actor-critic-based algorithms, HATRPO, as the algorithm with the
most precise monotonic improvement, performs the best. It can stably learn the superior policies
in both flag capture script and flag capture double script. This indicates that in these tasks, com-
puting only the first-order approximation or using clip clipping like HAPPO is not the optimal
solution. Among value-based algorithms, QPLEX and WQMIX are the two best performing algo-
rithms. Among them, QPLEX trains slightly faster, indicating that in simple tasks with fewer agents,
QPLEX is the fastest learning algorithm among its value-based counterparts.

In flag capture mappo, actor-critic-based algorithms train relatively quickly and can achieve the
high win rate within 50,000 episodes. On the contrary, value-based algorithms can achieve the high
win rate only after 50,000 episodes. Except for QMIX, which performed poorly, the other algorithms
performed well. In flag capture double mappo, all actor-critic-based algorithms perform well. In
value-based algorithms, only QPLEX can achieve the high win rate after a large number of episodes.

Table 2: The result of engaging with teams driven by MAPPO. The data represents the average win
rate within the corresponding range of episodes.

ALGORITHM flag capture mappo flag capture double mappo
0k∼50k 50k∼100k 100k∼150k 0k∼50k 50k∼100k 100k∼150k

MAPPO 0.52±0.25 0.56±0.09 0.50±0.17 0.71±0.12 0.71±0.08 0.78±0.17
HAPPO 0.65±0.20 0.67±0.17 0.77±0.11 0.67±0.08 0.68±0.18 0.71±0.17

HATRPO 0.54±0.28 0.67±0.16 0.51±0.29 0.61±0.26 0.65±0.34 0.77±0.12
QMIX 0.11±0.07 0.02±0.03 0.01±0.02 0.07±0.02 0.65±0.34 0.77±0.12

QTRAN 0.71±0.06 0.73±0.13 0.78±0.06 0.25±0.28 0.17±0.24 0.13±0.13
QPLEX 0.66±0.21 0.96±0.03 0.97±0.02 0.29±0.20 0.73±0.09 0.87±0.14
WQMIX 0.39±0.18 0.79±0.08 0.76±0.19 0.27±0.13 0.07±0.05 0.10±0.10

6.3 EVERY TASK HAS ITS OWN SOTA ALGORITHM

Each task has its unique characteristics, which necessitate different suitable algorithms. In fact, no
single algorithm currently dominates across all tasks, which implies the need for more advanced
algorithms. Meanwhile, we summarize the above-mentioned algorithms as follows.

MAPPO. With strong parameter sharing capabilities, it is suitable for large-scale and simple tasks.

HAPPO. Compared to HATRPO, HAPPO has a lower computational burden but performs incon-
sistently in large-scale tasks. It performs better in simpler tasks such as multi-team tasks.

HATRPO. HATRPO has a significant computational burden, making it suitable for small-scale
tasks, where it often performs better. Additionally, it tends to perform well in the early stages of
multi-team tasks. However, it is difficult to run this algorithm for large-scale tasks.

QMIX. With the most classic mixing network, QMIX is suitable for the later stages of multi-team
tasks, where it can stably suppress MAPPO.

QTRAN. The performance of QTRAN is relatively mediocre in the first 12 tasks. QTRAN exhibits
better performance in flag capture mappo, with relatively stable training results. However, it still
performs poorly in flag capture double mappo.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

QPLEX. QPLEX has strong performance capabilities, suitable for small-scale tasks with sparse
team rewards.

WQMIX. As a relatively new algorithm, it outperforms QMIX in many tasks. It shows potential in
tasks with sparse team rewards.

6.4 PHYSICAL EXPERIMENT

We conduct this experiment to demonstrate the potential of UMAP in bridging the sim-to-real gap.
Firstly, we construct a real-world experimental setup, which consists of a motion capture system,
a communication system, several autonomous UGVs and UAVs, and a number of physical entities.
Subsequently, we develop the landmark conquer scenario through UMAP, wherein the entities are
proportionally replicated from the physical setup, and the kinematics of the unmanned units are also
recreated. Ultimately, we develop an algorithm-UMAP-hardware framework, with details presented
in Appendix G.

During the training phase, the algorithmic side, represented by HMAP, interact with UMAP to train
policies within the simulated scenarios. In the execution phase, the physical system relay global
information captured by the motion capture system and first-person view data from the vehicles’
cameras to UMAP. UMAP then update its internal environment with this information and transmit
the filtered observational data to HMAP. The algorithm within HMAP generate action commands
based on these observations, which are conveyed to UMAP. UMAP execute virtual state transitions
based on these commands, and concurrently transmit the decomposed action information to the
real-world setup for execution by the autonomous vehicles/drones.

Figure 5 presents snapshots from both the virtual and the real-world scenarios. The experimental re-
sults indicate that the whole system can successfully replicate the policies of the multi-agent system
from the virtual environment within the physical setup.

Figure 5: Snapshots from UMAP-simulated and real-world scenarios. The top four subfigures shows
snapshots of multiple agents deploying well-trained policies only in virtual scenarios. The bottom
four subfigures shows deployed policies in real-world scenarios at the same timesteps.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduce UMAP, a powerful, highly extensible UE-based MARL simulation en-
vironment. Utilizing UMAP, we design a series of base tasks which include features such as het-
erogeneity, large scale, sparse team rewards, and multi-team. Additionally, we develop a multi-
agent experimental framework compatible with UMAP, named HMAP. With the tasks developed on
UMAP and the algorithm modules within HMAP, we provide a thorough report and discussion on
several SOTA MARL algorithms, encompassing both value-based and actor-critic-based methods.
Finally, we replicate a task in a real-world setting, demonstrating UMAP’s potential to bridge virtual
algorithms with real-world applications.

However, UMAP is not perfect. One limitation is that the sim-to-real demonstration so far is rela-
tively simple and requires global real-world information to construct pretended local information. In
the future, we plan to develop a comprehensive, plug-and-play sim-to-real toolkit based on UMAP.
This toolkit will help map real-world requirements into UMAP’s virtual environment, thereby ad-
vancing the practical application of MARL to the next level.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor
Mordatch. Emergent tool use from multi-agent autocurricula. arXiv preprint arXiv:1909.07528,
2019.

Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song, Emilio
Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The hanabi challenge: A
new frontier for ai research. Artificial Intelligence, 280:103216, 2020.

Joe Booth and Jackson Booth. Marathon environments: Multi-agent continuous control benchmarks
in a modern video game engine. arXiv preprint arXiv:1902.09097, 2019.

G Brockman. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Yanjiao Chen, Zhicong Zheng, and Xueluan Gong. Marnet: Backdoor attacks against cooperative
multi-agent reinforcement learning. IEEE Transactions on Dependable and Secure Computing,
2022.

Yu-Jia Chen, Deng-Kai Chang, and Cheng Zhang. Autonomous tracking using a swarm of uavs:
A constrained multi-agent reinforcement learning approach. IEEE Transactions on Vehicular
Technology, 69(11):13702–13717, 2020.

Benjamin Ellis, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan, Jakob N Fo-
erster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative multi-agent
reinforcement learning. arXiv preprint arXiv:2212.07489, 2022.

Qingxu Fu, Tenghai Qiu, Jianqiang Yi, Zhiqiang Pu, and Shiguang Wu. Concentration network for
reinforcement learning of large-scale multi-agent systems. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 9341–9349, 2022.

Qingxu Fu, Zhiqiang Pu, Yi Pan, Tenghai Qiu, and Jianqiang Yi. Fuzzy feedback multi-agent
reinforcement learning for adversarial dynamic multi-team competitions. IEEE Transactions on
Fuzzy Systems, 2024.

Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: a survey. Artificial
Intelligence Review, 55:895–943, 2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Jian Hu, Siyang Jiang, Seth Austin Harding, Haibin Wu, and Shih-wei Liao. Rethinking the imple-
mentation tricks and monotonicity constraint in cooperative multi-agent reinforcement learning.
arXiv preprint arXiv:2102.03479, 2021.

Lucie-Aimée Kaffee, Arnav Arora, Zeerak Talat, and Isabelle Augenstein. Thorny roses: Investi-
gating the dual use dilemma in natural language processing. arXiv preprint arXiv:2304.08315,
2023.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforce-
ment learning for vision-based robotic manipulation. In Conference on robot learning, pp. 651–
673. PMLR, 2018.

Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zajac, Olivier Bachem, Lasse Espeholt, Car-
los Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research
football: A novel reinforcement learning environment. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 4501–4510, 2020.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157–163. Elsevier, 1994.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Lin Liu, Jianzhun Shao, Xinkai Chen, Yun Qu, Boyuan Wang, Zhenbin Ye, Yuexuan Tu, Hongyang
Qin, Yang Jun Feng, Lin Lai, et al. Hok3v3: an environment for generalization in heterogeneous
multi-agent reinforcement learning. 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
populations. arXiv preprint arXiv:1703.04908, 2017.

Afshin Oroojlooy and Davood Hajinezhad. A review of cooperative multi-agent deep reinforcement
learning. Applied Intelligence, 53(11):13677–13722, 2023.

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Benchmarking
multi-agent deep reinforcement learning algorithms in cooperative tasks.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy gra-
dients. Advances in Neural Information Processing Systems, 34:12208–12221, 2021a.

Zhenghao Peng, Quanyi Li, Ka Ming Hui, Chunxiao Liu, and Bolei Zhou. Learning to simulate
self-driven particles system with coordinated policy optimization. volume 34, pp. 10784–10797,
2021b.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation for deep multi-agent reinforcement learning. Advances in
neural information processing systems, 33:10199–10210, 2020a.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. The Journal of Machine Learning Research, 21(1):7234–7284, 2020b.

Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Garar Ing-
varsson, Timon Willi, Ravi Hammond, Akbir Khan, Christian Schroeder de Witt, et al. Jaxmarl:
Multi-agent rl environments and algorithms in jax. In The Thirty-eight Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2024.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon
Whiteson. The StarCraft Multi-Agent Challenge. CoRR, abs/1902.04043, 2019.

B. K. Schuiling. Gameplayfootball. https://github.com/BazkieBumpercar/
GameplayFootball/, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning
to factorize with transformation for cooperative multi-agent reinforcement learning. In Interna-
tional conference on machine learning, pp. 5887–5896. PMLR, 2019.

Joseph Suarez, Yilun Du, Clare Zhu, Igor Mordatch, and Phillip Isola. The neural mmo platform for
massively multiagent research. arXiv preprint arXiv:2110.07594, 2021.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings
of the tenth international conference on machine learning, pp. 330–337, 1993.

Russell M Templet. Game Physics: An Analysis of Physics Engines for First-Time Physics Devel-
opers. PhD thesis, California State University, Northridge, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

12

https://github.com/BazkieBumpercar/GameplayFootball/
https://github.com/BazkieBumpercar/GameplayFootball/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Chaitya Vohera, Heet Chheda, Dhruveel Chouhan, Ayush Desai, and Vijal Jain. Game engine archi-
tecture and comparative study of different game engines. In 2021 12th International Conference
on Computing Communication and Networking Technologies (ICCCNT), pp. 1–6. IEEE, 2021.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611–24624, 2022.

Ming Zhang, Shenghan Zhang, Zhenjie Yang, Lekai Chen, Jinliang Zheng, Chao Yang, Chuming Li,
Hang Zhou, Yazhe Niu, and Yu Liu. Gobigger: A scalable platform for cooperative-competitive
multi-agent interactive simulation. In The Eleventh International Conference on Learning Repre-
sentations, 2022.

Lianmin Zheng, Jiacheng Yang, Han Cai, Ming Zhou, Weinan Zhang, Jun Wang, and Yong Yu.
Magent: A many-agent reinforcement learning platform for artificial collective intelligence. In
Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Yifan Zhong, Jakub Grudzien Kuba, Xidong Feng, Siyi Hu, Jiaming Ji, and Yaodong Yang.
Heterogeneous-agent reinforcement learning. Journal of Machine Learning Research, 25(1-67):
1, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A OPEN SOURCE STATEMENT

We are willing to open source all the components of UMAP and HMAP to benefit the MARL
community. Due to the constraints of the paper review rules and the file size limitations for supple-
mentary materials, we temporarily include only the most crucial components in the supplementary
material. These components comprise a lightweight version of the HMAP framework and the Python
interface for UMAP.

In fact, we have a detailed plan for open-sourcing, which will be executed after the review process.
The open-source plan is as follows:

1. Regarding code environment configuration: We will release a Docker image supporting
UMAP and HMAP services on Docker Hub. This image will include the HMAP frame-
work, a default version of UMAP’s compiled binary files, and a series of environment
configurations.

2. Regarding UMAP: We will publish UMAP’s usage tutorials and one-click deployment
scripts on GitHub. These scripts facilitate the compilation of rendering/training-only binary
files for various platforms and automate the downloading of large files. The Unreal project
and the modified Unreal Engine of UMAP will be available on a cloud drive, accessible for
automatic download via Python scripts.

3. Regarding HMAP: We will publish HMAP’s usage tutorials and its entire content to
GitHub. This content includes the core of HMAP, wrappers for all supported environments,
built-in algorithms, and algorithms from third-party frameworks.

4. Future Plans for Open Source Work: We will continue to maintain all GitHub reposi-
tories, develop new scenarios, incorporate more algorithms from third-party frameworks,
and develop sim-to-real related toolkits.

B RELATED WORK

The simulation environments for MARL can be broadly categorized into two types: those with
physics engines and those without. Here, physics engines refer to a suite of tools capable of simulat-
ing the physical laws inherent in real-world tasks (Templet, 2021). Given that game engines also aim
at reincarnating the real-world elements into the digital world (Vohera et al., 2021), environments
leveraging game engines are classified under the physics engine category.

Among the environments without physics engines, MPE (Mordatch & Abbeel, 2017) utilizes a sim-
ple rule-based particle world to simulate multi-agent tasks such as predator-prey and cooperative
navigation. MAgent (Zheng et al., 2018), grounded in a grid world, facilitates simulations involv-
ing the aggregation and combat of pixel-block agents, notable for its ability to support large-scale
multi-agent settings. The two environments mentioned above are based on the state transition laws
of particle worlds and particle interactions. Although they are completely open-source and their task
elements are relatively easy to modify, their scenarios are overly simplistic and lack realism.

Hanabi (Bard et al., 2020) provides a multiplayer card game scenario, which is commonly used
in MARL research based on opponent modeling. However, the overly narrow theme prevents it
from further simulating tasks involving heterogeneity, large scale, and mixed strategies. Neural
MMO (Suarez et al., 2021) is developed in a 3D grid world derived from massively multiplayer
online games, supporting large-scale multi-agent simulations over long time horizons.

Gobigger (Zhang et al., 2022), based on a ball world concept, stands out for enabling simulations
involving collaboration and competition among multiple teams. However, similar to MPE and MA-
gent, their particle-based 2D environments fall significantly short of simulating the real-world com-
plexities of 3D scens.

JaxMARL (Rutherford et al., 2024) integrates numerous MARL environments together and has re-
implemented these environments using JAX technology, enabling them to support efficient, GPU-
based parallel computing. However, to support pure GPU parallelism, some environments in JAX-
MARL have lost their original CPU-based underlying physical engines. Moreover, as a collection
of environments that integrates multiple basic environments, it does not support multi-team multi-

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

algorithm training, nor does it support controllable time-flow simulation and cross-platform real-
time rendering.

As for the environments with physics engines, GRF (Kurach et al., 2020) is built upon the Gameplay-
Football simulator (Schuiling, 2017), creating a highly realistic football match setting that allows
agents to simulate the behaviors of human players. However, it does not support large-scale sce-
narios, multi-team training, and mixed multi-agent gameplay. Moreover, although its environment
interface and underlying engine are open-source, the underlying engine is not suitable.

SMAC (Samvelyan et al., 2019) and SMACv2 (Ellis et al., 2022) are developed based on the popu-
lar video game StarCraft II, constructing a multi-agent micromanagement environment where each
agent controls individual units to complete adversarial tasks. Despite their widespread use, the fact
that their underlying games and engines are not fully open-source limits further expansion, confining
their built-in tasks to battle-type game scenarios only.

Hide-and-Seek (Baker et al., 2019) has set up a series of multi-agent curriculum learning scenarios,
such as hide and seek, based on a 3D engine. However, its theme is too singular, making it im-
possible to simulate tasks involving heterogeneity, large scale, multiple teams, etc., and it does not
allow for customization of all task elements. Hok3v3 (Liu et al., 2023), specifically designed for
heterogeneous multi-agent tasks, is based on the Honor of Kings engine, with agent action spaces
consistent with those of human players engaging in the real game. However, it only supports het-
erogeneous multi-agent scenarios (3VS3) and does not have an open-source underlying game and
related engine.

MAMuJoCo (Peng et al., 2021a) is developed using the Mujoco physics engine (Todorov et al.,
2012), where multiple agents each control different joints to collaboratively manage the movements
of a single robot. However, all of the multi-agent scenarios are fully cooperative and do not support
large-scale multi-agent tasks.

Marathon Environment (Booth & Booth, 2019) is developed using the Unity3D engine, support-
ing multiple agents learning complex movements such as running and backflipping. The built-in
tasks are relatively simple and are unable to simulate large-scale, multi-team, and mixed multi-agent
gameplay tasks. Moreover, its underlying engine, Unity3D, is not fully open-source, thus preventing
comprehensive modifications from the bottom to the top layer.

It is evident that environments without physics engines are adept at simulating challenging tasks
designed to push the limits of existing algorithms. In contrast, environments equipped with physics
engines offer greater potential for real-world applications but are constrained in terms of academic
flexibility. Our goal is to develop an environment that not only has practical application potential
but also fully leverages scalability, ultimately leading to the creation of UMAP.

C UMAP DETAILS

C.1 ARCHITECTURE OF UMAP

UMAP utilizes a hierarchical design that consists of five layers, all of which are open source. As
shown in Figure 2, the first layer of UMAP is the native part of the Unreal Engine, including the
physics engine, rendering engine, AI engine, and a range of 3D assets. We build the entire UMAP
based on the open-source version of UE, making modifications to some of the native modules.
For instance, the original AI detection system for agents in UE was very inefficient in large-scale
scenes. UMAP optimizes the detection of multiple entities by incorporating tensor operations and
eliminating redundant checks.

The second layer of UMAP comprises the underlying systems and programming specification, all
implemented in C++. The time control system and task system in this layer ensure the correct initia-
tion and termination of simulation episodes, guaranteeing the precision of simulation time steps and
the reproducibility of experimental results. Other components of this layer define the specification
for all base classes, communication, and debugging within UMAP.

The third layer consists of three fundamental classes implemented using Blueprints. The agent class
defines all entities that can be controlled by algorithms, while the entity actor corresponds to all
environmental entities that do not make decisions. Classes derived from these two form all the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

entity elements within a task scenario. The abstract class acts as a bridge, connecting the underlying
systems to the highest Python-based layer, facilitating communication, debugging, action updates,
and observation feedback.

The fourth layer of UMAP consists of advanced functional modules, implemented using Blueprints.
These modules allow for the modification of various attributes of agents, including appearance,
perception, action sets, movement, and navigation, enabling the development of diverse types of
agents. Moreover, leveraging the abundant resources in the Unreal community, the map construction
module facilitates the creation of new maps and even the importation of real-world maps. The
entity construction module aids in developing complex environmental entities, such as altering the
kinematic model of missiles launched by drones.

The fifth layer serves as the interface for interaction between UMAP and algorithms, all imple-
mented in Python. This interface adheres to the gym (Brockman, 2016) specification, encompassing
basic functions like reset, step, and done, and supports the customization of agent-level observation
and reward functions. Attributes such as agent size, initial position, detection range, and health are
directly encapsulated within the agent initialization function, allowing for easy modification. As
shown in Figure 6, the selection of agents, tasks, and maps in UMAP are independent. Users can
customize the types, numbers, and teams of agents in a task and switch maps flexibly.

From the perspective of designing and utilizing a MARL simulation environment, users need only
focus on the fourth and fifth layers of UMAP. In most cases, users can directly customize MARL
tasks by modifying the built-in scenarios and agent parameters through the fifth layer. If there is
a need to develop new scenarios or further develop existing ones, users can also easily develop
through the graphical programming approach provided in the fourth layer. UMAP’s hierarchical
design significantly reduces the burden of customizing tasks.

C.2 TIME IN UMAP

Time is the most important factor in simulations. There are two different type of time in UMAP:

1. Real World Time treal. The actual time of our world.

2. Simulation Time tsim. The time in the simulated virtual world.

It is inevitable that simulation speed (from the perspective of treal) will be influenced by factors
such as CPU frequency, GPU performance, policy neural network size, machine workload, etc. As a
result, UMAP decouples simulation time flow therefore has achieved flexible control of simulation
time

1. UMAP allows researchers to slow down simulation time by setting a time dilation factor,
extending a second in the simulation multiple times to render details of agents in slow
motion.

2. UMAP allows researchers to accelerate simulation time by setting the same time dilation
factor (before reaching the hardware limitation). Gathering large amount of samples is
necessary in most RL tasks. Accelerating computation is the primary ways to achieve this
goal.

UMAP guarantees that the simulation results will not be influenced by time dilation factor, hardware
or workload. For instance, as long as the random seed remains identical, same agent trajectories are
expected: 1) regardless of whether we choose to enable GPU to accelerate neural network compu-
tation. 2) regardless of whether we choose to simulate agents slowly or rapidly by setting different
time dilation factors.

There are three global time-related settings to adjust in UMAP.

Decision time interval. From the perspective of agents in the simulated environment, agents will
have a chance to act once every Alternatively, tstep

sim is also the time interval between each RL step.
tstep

sim is usually a short period with a default value 0.5s. Nevertheless, for tasks such as flights that
last hours in a episode, tstep

sim should be increased accordingly.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

tstep
sim does NOT has directly relationship with how long a RL step will actually take in the real

world. More specifically, a team can take as long as necessary to compute the next-step action after
receiving observation, meanwhile the simulation time flow freezes until all teams have committed
agent actions. In extreme situations, algorithms can spend hours to update large policy networks and
the simulated agents will not be influenced by this delay.

Baseline Frame Rate. Baseline Frame Rate tfr
sim determines how many frames to compute for each

simulation second in UMAP. As an example, when tfr
sim = 30, the simulation will proceed (tick)

1
30 s after each frame. Important computation such as collision detection and agent dynamic update
are performed in each of these frames. As an example, let tstep

sim = 0.5 and tfr
sim = 30, under this

circumstance 15 ticks will be performed between each RL step. Similarly, tfr
sim does NOT have

direct relationship with the real world time flow.

Time Dilation Factor. In UMAP, Time Dilation Factor tdf
real is the sole bridge between simulation

time flow and real world time flow. In reinforcement learning, there are three typical cases that
involves the control of time in simulation:

1. Task Development and Evaluation. In this case, it is demanded that simulation time flows
at a normal speed to observe the interaction of agents. A dilation factor tdf

real ≈ 1 will
synchronize simulation time flow with the real world time flow.

2. Slow Motion. In this case, it is required that the simulation runs slowly to allow human
observers to diagnose issues in multi-agent cooperation. Changing the dilation factor tdf

real <
1 will slow down the simulated world accordingly.

3. Training. In this case, it is demanded that simulation runs as fast as possible to collect train-
ing data. UMAP will attempt to accelerate the simulation until reaching the tdf

real threshold.
If not possible due to hardware, the simulation will still proceed at the fastest possible
simulation speed.

Task 1 Map 1

Task 1 Map 2

Task 1 Map 3

1. Easily Determing & Changing
Where a Task Should Take Place

Task 1 Map 1

Task 2 Map 1

Task 3 Map 1

2. Reusing Maps to Explore
More Possible Multiagent Operations

3. Reusing Previously Designed Agents
in New Competitions

Task 1

Task 2

Type 1 Agent

Type 2 Agent

Type .. Agent

Type n Agent

4. Sharing Action Design between
Different Agents

+ Additional Actions
Unique to Agent 2

Action Set of T1 Agent

Type 2 Agent
Action Set of T1 Agent
Reuse & Inherit

Choice 1 ✓

Choice 2 ✓

Action Set of T2 Agent

Choice 3 ✓

Fully Inherit

Fully Re-design

Type 1 Agent

Figure 6: One of the advantages of UMAP framework is the isolation of maps, task and agents, mak-
ing it possible to reusing existing modules to develop new environment for Reinforcement Learning
studies.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 7: Parameter configuration of HMAP. This is an example under the
flag capture double mappo task using the QMIX algorithm. To facilitate multi-team train-
ing, users only need to add teams and designate their respective algorithms in the mission config,
and append the corresponding algorithmic parameters in the Algorithm config.

D HMAP DETAILS

The utilization of HMAP is straightforward, necessitating only a Docker container, a configuration
of parameters, and execution of a single command to deploy a specified algorithm into a designated
scenario. The parameter configuration files of HMAP exemplify its modular design, including three
categories: core config, mission config, and algorithm config. Figure 7 illustrates a configuration file
for the QMIX algorithm under the flag capture double mappo task. Core config comprises basic
settings and experimental settings, where the former allows for the specification of file and path
for experiment storage, and the latter includes parameters relevant to the experiment such as the
number of parallel task environments, testing intervals, and random seeds. Mission config includes
selections for the simulation environment and deployed algorithm. Upon selecting UMAP as the
simulation environment, users can make further selections regarding maps, tasks, and teams, as
well as choose between training, rendering, or a mode that combines both training and real-time
rendering. Algorithm config is composed of the algorithmic parameters set for each team.

With HMAP, users can conveniently specify the number of teams and freely assign algorithms to
each team. For instance, Figure 7 demonstrates the setting of three teams, where Team-1 is assigned
QMIX from the PyMARL2 framework, and Team-2 and Team-3 are designated MAPPO from the
HARL framework. HMAP allows multiple teams to utilize the same algorithm module without
affecting the normal construction of buffers and network updates. It is achieved by adding a prefix
keyword like “TEMP.t2” to the additional configurations of the same algorithm. Theoretically, as
long as computational resources are sufficient, UMAP and HMAP can support an arbitrary number
of teams, each allocated with different algorithms in a same scenario, with the updates of different
algorithms not interfering with each other.

E SCENARIOS DETAILS

Metal Clash. This scenario is designed for heterogeneous multi-agent tasks and large-scale multi-
agent tasks. Within this scenario, an ally team need to confront an enemy team controlled by built-in
scripts or MARL policies. The objective of the ally team is to eliminate as many enemy agents as
possible while preserving more ally agents.

Metal Clash offers three types of basic agents: missile cars (for ground and air attacks), laser cars
(for ground attacks), and support drones (for attacks and supports). Missile cars can attack ground
or aerial units with missiles and have a long range, but they move slowly. Laser cars excel at close-
range combat, using lasers to damage ground units. Support drones, as aerial units, have a faster
movement speed and can restore the health points of allied missile cars and laser cars. They can also
attack opponents with smaller firepower but have lower HP.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The physical attributes of each basic agent, such as movement speed, size, HP, observation radius,
etc., are exposed as configurable parameters at the task construction interface. Users can conve-
niently modify all the parameters, thereby creating a variety of heterogeneous agent types that far
exceed the original three. Agents can sense their neighborhood allies and enemies within the per-
ception range, and the information of perceived agents is concatenated in the observation space.
Due to the height advantage, the flying agents have a much larger perception range than ground
agents. Agents have rich options of actions. Besides the idle and moving actions, agents can choose
a patrol-moving action to search enemies, select visible opponents to attack, or toggle their micro-
management strategy (such as whether agents are allowed to peruse opponents after receiving future
attack action). Furthermore, users can freely designate the types and corresponding numbers of
agents in both allied and enemy teams, thus controlling the nature and difficulty of the task.

• Observation

Three types of agents are intentionally designed differently to reflect the heterogeneity of this sce-
nario. We define the distance unit of the unreal engine as u. Missile car have a maximum movement
speed of 500u per second, an attack power of 1, an attack range of 1000u, and 150 HP. Laser cars
have a maximum movement speed of 800u per second, an attack power of 1, an attack range of
500u, and 100 HP. Support drones have a maximum movement speed of 1000u per second, an at-
tack power of 1/6, an attack range of 1700u, and 50 HP. The observation capabilities of three agents
are shown in Table 3. The observation structure refers to the composition of what an agent observes,
where the number 1 represents its own observation, and the subsequent two numbers indicate the
maximum number of allied agents and enemy agents that can be observed. For example, missile
cars have an observation range of 2500u, and their observation structure is [1,8,8]. This indicates
that missile cars can observe information about up to 10 ally agents and 10 foe agents within a range
of 2500u. Additionally, the information for each observed agent is a 20-dimensional vector, with
vectors for invalid entities filled with zeros. Therefore, the observation dimension for the missile
vehicle is (17)*20.

Table 3: Observation Capabilities of three base agents in Metal Clash.

Agent Observation Range Observation Structure Observation Dimension

Missile Car 2500u [1,8,8] (17)*20
Laser Car 2000u [1,5,5] (11)*20

Support Drone 2500u [1,10,10] (21)*23

• Action

All three types of agents have nine common actions: moving in four directions, staying still, target-
ing foe agents within the defense circle, fleeing, etc. On this basis, each type of agent can perform
special actions. For example, support drones can choose to restore the health of ally agents within
their support range or choose to attack foe agents. Missile cars can choose to attack all units, while
laser cars can only choose to attack ground units.

• Reward

Regarding reward settings, when an agent from our team or the enemy team is destroyed, the entire
team receives a penalty of 0.05 and a reward of 0.1. At the end of an episode, the team with the
higher total remaining HP wins, receiving a reward of 1.0, while the losing team receives a penalty
of -1.0. In the event of a tie, both teams receive a penalty of -1.0.

Tower Challenge. This scenario consists of a defense tower and several agents. Users can adjust the
task’s difficulty by altering the tower’s defensive capabilities and the number of agents involved. In
the most challenging cases, agents must form a precise formation beyond the tower’s defense range
and launch a swift, simultaneous attack to just manage to destroy the tower.

Regarding reward settings, the entire team receives a positive reward only if the agents successfully
destroy the tower; there are no rewards or penalties in other cases. In this experiment, We develop a
simple cooperative task with the defense tower’s HP set to 400 and a difficult cooperative task with
the defense tower’s HP set to 800. Similar to the Metal Clash scenario, both the tower and the agents
have spherical perceptual space centered around themselves. Agents can choose from idle, move to
a certain direction, or attack in their action space.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

• Observation

In Tower Challenge, each agent has the same observation space. They can observe information such
as the ID, HP, position, and maximum speed of themselves and the position of the tower.

• Action

In Tower Challenge, agents have six possible actions to choose: moving in four directions, main-
taining the current action, and staying still. Additionally, each agent has an action to collide with
the tower.

• Reward

This scenario is set up for sparse team rewards. Rewards are given only when all agents cooperate
to destroy the defense tower. Specifically, agents can receive a reward of value 1 only when they
defeat the defense tower.

Flag Capture. This scenario allows for competition among more than two teams. At the end of an
episode, only the team that holds the flag for the longest duration wins. Since each team begins with
an equal number of agents, the first team to capture the flag does not guarantee victory, as teams
must carefully consider the balance of power and strategic play among multiple teams to receive the
most rewards. In this scenario, agents are not equipped with weapons and cannot eliminate other
agents. Consequently, agents do not have attack actions. Moreover, the agent’s perceptual space is
conical rather than spherical.

• Observation

In Tower Challenge, each agent has the same observation space. They can observe information such
as the ID, HP, position, and maximum speed of ally or foe agents within the observation range.

• Action

Each agent has a constant speed. In the two-dimensional plane, there are eight discrete actions to
choose from, each representing a direction spaced 45 degrees apart. When the team is close enough
to the flag, the agent nearest to the flag will pick it up. To prevent other teams from approaching and
capturing the flag, it is necessary to target the agent that are near the flag.

• Reward

When a flag is picked up by an agent, the team to which the agent belongs receives a reward of
0.005. At the end of the episode, the team that has held the flag for the longest time will receive a
reward of 1.0.

Landmark Conquer. This scenario is specifically developed to demonstrate the potential of
sim2real transfer using UMAP. It features a straightforward structure and components for easy
replication and setup. Within this environment, a MARL algorithm must control an offensive unit
consisting of two unmanned ground vehicles (UGVs) and one unmanned aerial vehicle (UAV) to
attempt to capture a strategic area defended by two UGVs with double the attack power and HP of
the offensive UGVs. The offensive UAV must seize control of the target area under the cover of
the UGVs. The scene includes various obstacles and walls, along with two strategic points. The
offensive team is deemed victorious if the UAV hovers above any strategic point undisturbed for 10
seconds. Failure occurs if the offensive team is eliminated or fails to capture any strategic point by
the end of an episode.

• Observation

In this scenario, agents can perceive the location and status of the target area regardless of the
distance, yet can only sense and attack opponents within agents’ perception range.

• Action

All three types of agents have nine common actions: moving in four directions, staying still, target-
ing foe agents within the defense circle, fleeing, etc. On this basis, each type of agent can perform
special actions. For example, support drones can choose to restore the health of ally agents within
their support range or choose to target foe agents.

• Reward

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Regarding reward settings, when an agent from our team or the enemy team is destroyed, the entire
team receives a penalty of 0.05 and a reward of 0.1. At the end of an episode, the team with the
higher total remaining HP wins, receiving a reward of 1.0, while the losing team receives a penalty
of -1.0. In the event of a tie, both teams receive a penalty of -1.0.

F UMAP’S EFFICIENCY AND COMPUTATIONAL RESOURCE CONSUMPTION

As a simulation environment based on a 3D physical engine, UMAP boasts high simulation effi-
ciency. It is well-designed to adapt to and fully utilize various types of computing resources. UMAP
can be deployed on computing systems entirely devoid of GPUs for algorithm training and sup-
ports the full utilization of uneven computing resources. It can operate in a single-threaded manner
as well as support multiple parallel environments. Additionally, with the feature of time dilation
factors, UMAP can not only improve simulation efficiency by increasing the number of parallel
processes but also control the simulation speed of each process to make full use of computing re-
sources (using more CPU utilization under the same memory and GPU memory), a functionality not
available in other simulation platforms.

In this section, to verify UMAP’s efficiency and adaptability to various computing resources, we
conducted a series of experiments on UMAP’s efficiency index and resource consumption indices.
The efficiency index adopted was FPS, i.e., the number of virtual timesteps run in a real second;
the resource consumption indices included CPU utilization, memory occupancy, and GPU memory
occupancy. All experiments were conducted on a Linux server equipped with an AMD7742 CPU
(maximum frequency 2.25GHz) and NVIDIA RTX3090 GPUs. To ensure fairness, all experiments
tested the QMIX algorithm on the metal clash 5sd 5mc task. The data points for all indices were
obtained by averaging the results of five experiments. At the beginning of each experiment, the
server was maintained in an idle state, executing only the essential system processes.

Figure X shows the indices under a fixed number of parallel environments at 8, with varying time
dilation factors. Figure Y shows the indices with a time dilation factor of 32, under varying numbers
of parallel environments. From these two figures, the following conclusions can be drawn:

1. With a constant number of parallel environments, FPS and CPU utilization are roughly
proportional to the time dilation factor, but this proportional relationship degrades into a
positive correlation when the time dilation factor reaches a certain threshold (limited by the
CPU’s clock speed).

2. With a constant number of parallel environments, changing the time dilation factor almost
does not affect memory occupancy and GPU memory occupancy.

3. With a constant time dilation factor, CPU utilization is roughly linearly related to the num-
ber of parallel environments, while FPS is roughly logarithmically related; memory and
GPU memory occupancy are positively correlated with the number of parallel environ-
ments.

The above conclusions mean that under limited memory resources, training efficiency can be im-
proved by increasing the time dilation factor to fully utilize CPU resources; similarly, under limited
CPU computing resources, reducing the time dilation factor and increasing the number of processes
can avoid the waste of computing resources.

In fact, when the number of processes is 8 and the time dilation factor is 32, training 1024 episodes
on the metal clash 5sd 5mc task takes less than 2 minutes. This means that under such parameter
settings, this server can simultaneously support 50 such tasks (each with 20 agents) and complete all
training tasks (100k episodes) within 3 hours. In special cases, the number of parallel processes can
be further increased to improve training efficiency. When the number of processes reaches 128 and
the time dilation factor is set to 32, the FPS can reach 1000+, and the training task can be completed
in about an hour.

It is important to emphasize that FPS here counts the number of virtual UMAP timesteps per real
second. Considering this is a simulation of 20 agents, and each timestep in UMAP undergoes 1280
frames of calculations for environmental dynamics and kinematics to maintain fine state transitions
(details in Appendix C.2), this is already highly efficient computation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 8: Efficiency index and resource consumption indices of running the QMIX algorithm with
different time dilation factors under 8 parallel environments in the metal clash 5sd 5mc task.

Figure 9: Efficiency index and resource consumption indices of running the QMIX algorithm with
different numbers of parallel environments at a time dilation factor of 32 in the metal clash 5sd 5mc
task.

G PHYSICAL EXPERIMENT DETAILS

As shown in Figure 11, the overall framework of the physical experiment includes three components:
the algorithm side represented by HMAP, the virtual environment side represented by UMAP, and
the hardware-based real environment side. During the training phase, HMAP and UMAP communi-
cate through the TCP protocol, exchanging observations and action information of the environment,
completing the training tasks on the same host server/computer. During the executing phase, UMAP
needs to maintain communication with not only HMAP but also with the communication system
in the real environment side through the TCP protocol, transmitting global observation information
and decoded action information. In addition to the communication system, the real environment
side also includes an action capture system, several UAVs and UGVs, landmarks and obstacles,
and a host computer. The motion capture system transmits global information (the position, speed
of all entities) to the host computer through a wired network, which receives local observation in-
formation (such as the first-person view from cameras) from UGVs and UAVs through a wireless
communication module and sends commands to them.

The UGVs and UAVs in the real environment have autonomous planning and control capabilities.
They can receive the information of target position or target speed from the communication module
and complete commands through two-dimensional and three-dimensional PID control. UMAP also
replicates their PID kinematics. UGVs are also equipped with cameras, which send the first-person
view information to UMAP. UMAP simulates their viewpoints, combined with the global informa-
tion from the motion capture system, to create simulated observation information under partially
observable conditions for HMAP. In the simulated environment training, the simulated UAVs also
have limited viewpoints, being able to observe entity information only within a specified range and
angle.

It is worth mentioning that landmark conquer itself is also a MARL task, on which we test the
performance of 7 algorithms, as shown in Figure 10. In the physical experiment, we transfer the
policy of the MAPPO algorithm to the real environment after 100k training episodes.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 10: Results of the landmark conquer task.

Figure 11: The algorithm-UMAP-hardware framework.

H CHECKLIST OF ETHICS

We have finished a checklist to facilitate discussions on the ethical considerations of artificial intel-
ligence involved in our work. This checklist (Kaffee et al., 2023) addresses the potential impacts of
various artefacts in the field of artificial intelligence.

C1 Did you explicitly outline the intended use of scientific artefacts you create?

Yes. The scientific artefacts we have created are UMAP and HMAP. The former is a extensible
simulation environment developed based on the Unreal Engine, designed with a layered architecture
to enable users to conveniently develop various realistic 3D multi-agent simulation environments.
The latter is an experimental framework that is highly compatible with UMAP, characterized by its
support for multi-team multi-algorithm training, and compatibility with existing classic simulation
environments and algorithms from third-party frameworks. The purpose of developing UMAP and
HMAP is to enable users to develop simulation environments that meet their needs (including sim-
to-real transfer and new research ideas) in the field of MARL, and to rapidly deploy algorithms to
validate ideas, thereby promoting the development of the MARL field.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C2 Can any scientific artefacts you create be used for surveillance by companies or govern-
mental institutions?

No. As a simulation environment and experimental framework in the MARL field, UMAP and
HMAP are unrelated to surveillance by companies or governmental institutions.

C3 Can any scientific artefacts you create be used for military application?

The motivation and details of creating UMAP and HMAP are unrelated to any military applications.
However, it must be emphasized that although the design inspirations, virtual materials, and physical
materials used in this work are unrelated to military applications, there is a risk if our work is applied
to MARL policy training for military purposes. Therefore, on one hand, we call on the open-
source community to strengthen the regulation of military application materials and urge users to
refrain from using UMAP for military purposes. On the other hand, we also plan to set up keyword
detection within the UE side, so that users with impure motives designing military application-
related scenarios will not be able to use the functions of UMAP.

C4 Can any scientific artefacts you create be used to harm or oppress any and particularly
marginalised groups of society?

The motivation and details of creating UMAP and HMAP are unrelated to harming or oppressing any
particularly marginalized groups of society. In fact, our environment and experimental framework
are suitable for users under various computing resources, and are compatible with various system
platforms.

C5 Can any scientific artefacts you create be used to intentionally manipulate, such as spread
disinformation or polarise people?

The motivation and details of creating UMAP and HMAP are unrelated to intentional manipula-
tion, such as spreading disinformation or polarising people. However, it must be emphasized that
although the experiments and demonstrations based on UMAP are unrelated to this. If the simula-
tion environments developed using UMAP can be used to generate realistic false scenarios, there is
a risk of being maliciously used to create and spread false information. Therefore, we call on the
open-source community to participate in regulation, establish a reporting mechanism, and we will
add educational materials for users in the usage tutorials, emphasizing the ethical responsibility of
using simulation environments and raising users’ ethical awareness.

C6 Did you access your institution’s or other available resources to ensure limiting the misuse
of your research?

Yes, we have accessed our institution to ensure limiting the misuse of our research, including but
not limited to the promotion, use, and modification of this work.

C7 have you been provided by your institution with ethics training that covered potential
mis-use of your research?

Yes, we are confident that our institution has provided sufficient ethics training.

C8 Were the scientific artefacts you created reviewed for dual use and approved by your
institution’s ethics board?

Yes, the scientific artefacts we created have been reviewed for dual use and approved by our institu-
tion’s ethics board.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

I HYPERPARAMETER DETAILS

In this part, the common hyperparameters used for algorithms and tasks are described. We present
the hyperparameters used for actor-critic-based algorithms in Table 4 and for value-based algorithms
in Table 5 across all tasks. Other unspecified hyperparameters of algorithms remain at their default
settings. The hyperparameters used for tasks are shown in Table 6.

Table 4: Common hyperparameters used for MAPPO, HAPPO, and HATRPO in UMAP.

MAPPO HAPPO HATRPO

share parameter True True True
hidden sizes 128 128 128

use feature normalization True True True
use naive recurrent policy False False False

actor learning rate 0.001 0.001 0.001
critic learning rate 0.0005 0.0005 0.0005
eps of optimizer 0.00001 0.00001 0.00001

weight decay 0 0 0
clip parameter 0.2 0.2 0.2

entropy coefficient 0.01 0.01 0.01
coefficient for value loss 1 1 1

gamma 0.99 0.99 0.99
GAE lambda 0.95 0.95 0.95

use a fixed optimisation order – False False
kl threshold – – 0.01

Table 5: Common hyperparameters used for QMIX, QTRAN, QPLE, and WQMIX in UMAP.

QMIX QTRAN QPLEX WQMIX

optimizer adam adam adam adam
learning rate 0.001 0.001 0.001 0.001
state compat mean observation mean observation mean observation mean observation
hidden sizes 128 128 128 128

hypernet-dimension 64 64 64 64
TD lambda 0.6 0.6 0.6 0.6

Table 6: Common hyperparameters used for the 15 tasks.

Metal Clash Flag Capture Tower Challenge Terrain Domination

simulation time step 1/2560 s 1/2560 s 1/2560 s 1/2560 s
simulation time interval 1/2 s 1/2 s 1/2 s 1/2 s

time dilation factor 64 64 64 64
parallel environment 32 32 64 32

maximum episode step 125 250 100 150

Then, supplementary experiments are conducted. The mean reward for the evaluated algorithms
across the first 12 tasks is plotted in Figure 12. Moreover, the result of experiments without param-
eter sharing is shown in Figure 13 across tasks. Generally speaking, actor-critic-based algorithms
without parameter sharing perform worse than those with parameter sharing.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

metal_clash_5sd_5mc

EpisodeEpisode

M
ea

n
R

ew
ar

d

metal_clash_5sd_5lc

Episode

metal_clash_5lc_5mc

Episode

metal_clash_2sd_4lc_4mc

metal_clash_homo_50

Episode Episode

metal_clash_homo_100

Episode

metal_clash_hete_50

Episode

metal_clash_hete_100

Episode

tower_challenge_easy

Episode

tower_challenge_hard

Episode

flag_capture_double_script

Episode

flag_capture_script

M
ea

n
R

ew
ar

d
M

ea
n

R
ew

ar
d

M
ea

n
R

ew
ar

d
M

ea
n

R
ew

ar
d

M
ea

n
R

ew
ar

d

M
ea

n
R

ew
ar

d
M

ea
n

R
ew

ar
d

M
ea

n
R

ew
ar

d

M
ea

n
R

ew
ar

d
M

ea
n

R
ew

ar
d

M
ea

n
R

ew
ar

d

MAPPO HAPPO HATRPO QMIX QTRAN QPLEX WQMIX

Figure 12: The comparison of reward for all evaluated algorithms across 12 tasks. The shadowed
area depicts the 95% confidence interval.

metal_clash_5sd_5mc

Te
st

W
in

R
at

e

EpisodeEpisode

Te
st

W
in

R
at

e

metal_clash_5sd_5lc

Te
st

W
in

R
at

e

Episode

metal_clash_5lc_5mc

Episode

Te
st

W
in

R
at

e

metal_clash_2sd_4lc_4mc

Episode

M
ea

n
R

ew
ar

d

Episode Episode Episode

metal_clash_5sd_5lc metal_clash_5sd_5mc metal_clash_5lc_5mc metal_clash_2sd_4lc_4mc

MAPPO HAPPO HATRPO

M
ea

n
R

ew
ar

d

M
ea

n
R

ew
ar

d

M
ea

n
R

ew
ar

d

Figure 13: The comparison of test win rate and reward for actor-critic-based algorithms without
parameter sharing.

26

	Introduction
	Background
	UMAP
	Basic Concepts in UMAP
	Utilizing UMAP to customize tasks

	HMAP
	Scenarios and Tasks
	Experiments
	experimental setting
	Interpretation of Result
	Every task has its own SOTA algorithm
	Physical Experiment

	Conclusion and Future Work
	Open Source Statement
	Related Work
	UMAP Details
	Architecture of UMAP
	Time in UMAP

	HMAP Details
	Scenarios Details
	UMAP's Efficiency and Computational Resource Consumption
	Physical Experiment Details
	Checklist of Ethics
	Hyperparameter Details

