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ABSTRACT

Existing simulation environments in the field of multi-agent reinforcement learn-
ing (MARL) either lack authenticity or complexity. The data generated by these
environments significantly deviate from the requirements of the real world, hinder-
ing the practical application of MARL. To address this issue, we propose Unreal
Multi-Agent Playground (UMAP), a highly extensible, physics-based 3D simula-
tion environment implemented on the Unreal Engine. UMAP is user-friendly in
terms of deployment, modification, and visualization, and all its components are
open-sourced'. Based on UMAP, we design a series of MARL tasks featuring het-
erogeneous agents, large-scale agents, multiple teams, and sparse team rewards.
We also develop an experimental framework compatible with algorithms rang-
ing from rule-based to MARL-based provided by third-party frameworks. In the
experimental section, we utilize the designed tasks to test several state-of-the-art
algorithms. Additionally, We also conduct a physical experiment to demonstrate
UMAP’s potential in sim-to-real applications, which is a significant advantage due
to the high extensibility and authenticity of UMAP. We believe UMAP can play
an important role in the MARL field by evaluating existing algorithms and helping
them apply to real-world scenarios, thus advancing the field of MARL.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has demonstrated remarkable potential in many practi-
cal fields, including swarm robotic control (Kalashnikov et al.; 2018} |Chen et al.||2020), autonomous
vehicles (Peng et al.l2021b), and video games (Vinyals et al., |2019; Chen et al.,|2022). However, a
peculiar phenomenon can be observed in the field of MARL (Oroojlooy & Hajinezhad, 2023)): al-
though numerous new algorithms are claimed to achieve state-of-the-art (SOTA) performance every
year, algorithms actually utilized in real-world applications tend to be classic MARL algorithms or
extensions of single-agent reinforcement learning (SARL) algorithms, such as IQL (Tan,|1993)) and
IPPO (Schulman et al.;, 2017). Some studies even find that the performance of SARL algorithms
in certain multi-agent scenarios outperforms that of some MARL algorithms (Papoudakis et al.).
This indicates that the development of MARL has encountered a bottleneck, with many algorithms
performing well only in specific simulated tasks but struggling to be applied in real-world scenarios.

One of the keys to breaking through this bottleneck lies in the data of MARL. As a data-driven ap-
proach, MARL depends on high-quality data for the design and evaluation of its algorithms. How-
ever, if the data distribution is far from that of real-world problems, current developments fail to
align with practical needs. As a learning approach driven by rewards, the data of MARL originates
from various simulation environments, and that’s where the problem lies.

The existing simulation environments of MARL are either overly simplistic and lack authenticity,
or limited to low-complexity decision-making, thereby failing to fully reflect the unique challenges
of MARL. For instance, MAgent (Zheng et all [2018) and GoBigger (Zhang et al.| [2022) have
the capability to support large-scale multi-agent and multi-team training respectively, but the state
transitions in these environments are simply achieved through interaction rules among particle-like

"During the review phase, we put the main codes in the supplementary material, and details of open source
statement can be found in Appendix @
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agents, which prevents them from fully simulating real-world conditions. Other examples include
the widely used environments like Starcraft Multi-Agent Challenge (SMAC) (Samvelyan et al.,
2019) and Google Research Football (GRF) (Kurach et al., |2020), which can simulate scenarios
of video game and soccer respectively, offering a certain level of authenticity but with decision-
making complexity far below real-world requirements (Zhang et al., [2022). To address this issue, it
is unrealistic to develop an all-inclusive environment, but developing an environment which is both
extensible and authentic holds significant value.

1. Select or Customize Tasks

Map-Level

Agent-Level

Observation Observation Function

Transition Function Reward Function

2. Deploy Algorithms 3. Visualize Results

Rule-Based Algorithm
Single/Multi Agent(s) Training Real-Time Cross-Platform Rendering
Multi-Team Training Controllable Speed Rendering

Real-Time Training Curve Visualization

Third-party Framework Training Real-World Scene Deploying

Figure 1: The research workflow for using UMAP. For novice users, UMAP provides direct access
to built-in maps and tasks, and offers comprehensive result visualization capabilities. For advanced
users, UMAP enables the modification of built-in tasks or the creation of new tasks to test research
ideas, and even the deployment of trained algorithms in real-world settings.

In this paper, we propose Unreal Multi-Agent Playground (UMAP) to fill this gap. UMAP is a
highly extensible, physics-based 3D simulation environment implemented on the Unreal Engine
(UE). Compared to existing commonly used environments, UMAP offers four primary advantages:
(1) Support for diversified multi-agent tasks, UMAP includes a variety of built-in tasks such as
heterogeneous-agent tasks, large-scale multi-agent tasks, and multi-team tasks, providing users with
a broad selection of tasks to choose from. (2) Customizable multi-agent task design, UMAP pro-
vides interfaces that allow users to conveniently customize all task properties, such as observations,
actions, and state transitions. (3) Controllable simulation time flow, users can control the simula-
tion speeds, enabling them to accelerate simulations to expedite training or decelerate simulations
for slow-motion analysis. (4) Rich rendering mechanisms, UMAP supports controllable-speed
rendering and cross-platform real-time rendering (e.g., training on Linux and rendering on Win-
dows simultaneously). The detailed comparison of UMAP and other related works can be found in
TableT)and Appendix [B]

To fully utilize the capabilities of UM AP, we also develop an MARL experimental framework known
as the Hybrid Multi-Agent Playground (HMAP). This framework includes implementations of rule-
based algorithms, built-in MARL algorithms, and algorithms from third-party frameworks such as
PyMARL2 (Hu et al.| [2021) and HARL (Zhong et al., 2024). By leveraging UMAP and HMAP,
users can rapidly customize and deploy environments and algorithms, validate new research ideas,
and even apply them in practical scenarios. The overview of the research workflow for using UMAP
is depicted in Figure[T}

Our contributions can be summarized as four main parts: firstly, a fully open-source and highly ex-
tensible UE-based MARL environment; secondly, an accompanying modular MARL experimental
framework; thirdly, a collection of typical multi-agent tasks (covering heterogeneous, large-scale,
multi-team, sparse team rewards tasks, and a sim-to-real demo); fourthly, pre-deployed basic algo-
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rithms along with experimental analysis based on the above tasks. We believe UMAP can serve as a
comprehensive tool to advance the development of MARL and ultimately facilitate their application
in real-world scenarios.

Table 1: Comparison of UMAP with other related MARL simulation environments.
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2 BACKGROUND

To accommodate various interaction relationships among multi-agent and multi-team scenarios (Fu
et al., 2024), we use Partially Observable Markov Game (POMG) (Littman, 1994} (Gronauer
& Diepold, 2022) to model the MARL problem. A POMG can be represented by an 8-tuple
(N, {5 }ien {0 ien , {Q Vien, {A Vien, {T }ien, m,y). N is the set of all agents, {S"};en
is the global state space which can be factored as {S’}icny = x;en S x S¥, where S is the
state space of an agent i, and S is the environmental state space, corresponding to all the non-
agent entities. {O'}ieny = XxienO® is the joint observation space and {Q'};cy is the set of
observation functions. Similarly, {A?};c is the joint action space of all agents. {7};cn is the
collection of all agents’ transitions and the environmental transition. Finally, y is the discount factor
and 7 : {S}ien X {A}ien X N — R is the agent-level reward function.

We define team as a collection of agents, which all share the same overall goal in a purely cooperative
form. Agents within the same team aim to find an optimal joint policy that maximizes the cumulative
reward for the whole team. Denoting the joint policy of a certain team A C N as 74, the optimal
policy 7 can be represented as:

o0

_ k ; _ _

wzzargrr%rixE,—rA E ~ E Tk | 5t =35, (D
k=0 €A

where § is the initial global state, v* >, , f,, is the discounted return of team A, r}, . is the
reward of an agent 7 € A at timestep t + k.

*In this paper, we refer to scenarios involving more than 100 agents (excluding non-agent entities) as large-
scale scenarios.

3Mixed-game support refers to the simulation environment’s capability to support competitive, cooperative,
and mixed interaction relationships among agents in scenarios.

4 All simulation components are open source. Using SMAC as a counterexample, its back-end Starcraft II,
cannot be accessed or modified by researchers.

3 All elements of the POMG (see details in Section related to the environment can be modified.

SRemotely connecting to non-render client running inside a server via network, and rendering the on-going
training process locally via TCP&UDP.
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3 UMAP

3.1 BASsic CONCEPTS IN UMAP

Multi-agent simulation can demonstrate great diversity in different domains. In order to break the
limitations of existing environments, it is necessary to introduce a few new concepts that align with
human intuition as well as the requirements of multi-agent simulation.

Agents and Teams: Agents are the basic decision-making units in the environments. UMAP intro-
duces a new concept “team” to distinguish agents with different goals. UMAP supports numbers
of teams, where teams may engage in competition or cooperation. Each team possesses its own
independent goal and is equipped with a separate learning-based (or rule-based) algorithm.

Tasks and Scenarios: Tasks corresponds to POMGs defined in Section[2} The properties of tasks
in UMAP include the types and numbers of agents, their team affiliations, as well as each agent’s
state, observations, reward functions, etc. A scenario can give rise to a series of tasks, which typi-
cally share similar reward functions, implying that the objectives to be achieved by the multi-agent
systems are the same.

Maps: Maps in UMAP determine where the task takes place. A map can be a small room, or a city
full of buildings. Tt is a great advantage that UMAP decouples the concept of tasks and maps, as
users can conveniently deploy a task in new maps (as long as the agent has the appropriate size and
a suitable position initialization function).

Entities: Entities are objects in simulation that do not make decisions but still has important func-
tionality. For instance a street lamp or a dynamic obstacle. A shared characteristic of these objects
is that they must be removed or reinitialized when an episode ends or a new episode starts.

Events: We define an event system to simplify the reward crafting procedure. For instance, an event
will be generated when an agent is destroyed or an episode is ended. When it is time to compute
next-step reward, these events will provide convenient reference.

Level 5 (Interface Layer) 1 70 Agent Set
4 7 T Agent Selection Map Selection o 6 2¢

g State Space

2'3'4'5'6 34 7
Agent_init() Make_obs() Make_reward() ) Observation Space
Multi-Agent Reinforcement Learning Gym Specification 3 Observation Function
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Agent Component Agent Perceptlon Agent Action Agent Controller
ﬂ Transition Function
m Map Construction Entity Construction Reward Function

Level 3 (Base Class Layer) UMAP Agent

Level 2 (Specification Layer)
UMAP Time Control System UMARP Task System
f UMAP Base Class Specification UMAP Communication Interface UMAP Debugging Interface
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Figure 2: Architecture of UMAP. UMAP employs a hierarchical, five-layered architecture, all of

which are open source. Users can modify all elements within POMG by configuring parameters
through the Python-based interface layer. For more advanced development requirements, users can
conveniently adjust scenario elements using graphical programming through the advanced module
layer.

UMAP Abstract Actor UMAP Entity Actor
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3.2 UTILIZING UMAP TO CUSTOMIZE TASKS

UMAP employs a hierarchical five-layer architecture, where each layer builds upon the previous one.
From bottom to top, the five layers are: native layer, specification layer, base class layer, advanced
module layer, and interface layer. Users only need to focus on the advanced module layer and
the interface layer. In most cases, modifying the basic functions and configuration parameters in
the interface layer is sufficient to alter all elements of tasks.

Figure [2| shows the internal structure of each layer of UMAP and the task elements affected by each
submodule. Specifically, the native layer includes 3D assets from the Unreal community and the
Unreal Engine, some part of which have been optimized for MARL compatibility. The specification
layer consists of UMAP’s underlying systems and programming specifications, all implemented in
C++. The base class layer includes all basic classes implemented using Blueprints’. These three
layers form the foundation of UMAP.

The advanced module layer, also based on Blueprints, allows for the modification of agents’ phys-
ical properties such as appearances, perceptions and kinematics, thereby enabling the development
of various agents. This layer also facilitates the development of environmental entities and maps.
The top layer is the interface layer, implemented in Python and compliant with the gym standard. It
includes basic functions like reset, step, and done. Additionally, it supports customizable observa-
tions and reward functions. This layer also allows for the selection of maps and agents. More details
about the UMAP architecture can be found in Appendix [C|

Thanks to the hierarchical architecture of UMAP, users can easily customize tasks through simple
operations via top layers. Here we provide a detailed explanation of how each element of a task® is
customized within UMAP.

Agent Set. Within the interface level of UMAP, the agent selection module enables users to specify
the types, numbers, and associated teams of agents.

State Space. The global state is composed of the states of individual agents and the environmental
state. Customization of the environmental state can be achieved by selecting different maps and
modifying them along with related entities. The state of the agents can be customized through the
agent_init function in the advanced module layer and the agent component module in the interface
layer.

Observation Space and Observation Function. UMAP transmits global information from the UE
side to the Python side, where the make_obs function in the interface layer is used to construct
the agents’ observations. Direct modification of this function allows for the customization of each
agent’s observation space and function. Moreover, modifying agents’ properties, such as the obser-
vation range, can also change their observations. Additionally, UMAP supports more sophisticated
agent observation simulation mechanisms, such as masking entities blocked by walls, which can be
implemented through the agent perception module in the advanced module layer.

Action Space. UMAP supports continuous actions, discrete actions, and hybrid actions. Users can
assign a built-in action set to each agent via the agent_init function in the interface layer. Fur-
thermore, a deeper customization of agent actions can be achieved through the agent action-related
modules in the advanced module layer.

Transition Function. Similar to the state space, the transition function in UMAP is comprised
of local transitions of all agents and environmental transitions. The latter can be modified through
map-related and entity-related modules. Local transitions of agents can be customized by modifying
the agent_init function and the step function, or more deeply through the agent component modules
and agent controller modules, such as agent kinematics.

Reward Function. UMAP constructs rewards using global information and an event system. Users
can customize the agents’ rewards by modifying the make_reward function, which supports team
and individual rewards, as well as sparse and dense reward structures.

"Blueprint is a graphical programming language widely used in the UE editor.
8Excluding the discount factor, which can be easily specified on the algorithm side.
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4 HMAP

To facilitate the deployment of algorithms for UMAP and fully utilize its capabilities, we also open-
source our experimental framework HMAP. HMAP is a multi-agent experimental framework with
decoupled Core-Task-Algorithm components. Currently, HMAP integrates environments such as
UMAP, SMAC (Samvelyan et al., 2019), MPE (Mordatch & Abbeel, 2017), DCA 2022),
and OpenAI Gym (Brockman, 2016), and supports a wide range of algorithms. This includes rule-
based algorithms (most of them are opponent policies for UMAP tasks), single-agent reinforcement
learning algorithms like DQN (Mnih et al.} 2015)) and SAC (Haarnoja et al., 2018), as well as MARL
algorithms such as MAPPO (Yu et al.,[2022) and HAPPO (Zhong et al., 2024). Furthermore, HMAP
is compatible with third-party frameworks, supporting all algorithms from PyMARL2

202T) and HARL (Zhong et al.| [2024).

The unique feature of HMAP is its support for multi-team training. By thoroughly decoupling
algorithms from tasks, HMAP employs its core as a “glue module”, enabling any algorithm module
to control teams within any task module. Moreover, the observations, actions, and reward data
for each algorithm are processed separately and efficiently, ensuring that the policy executing and
training for each team are independent. HMAP accommodates sequential and parallel updates of
multiple team policy according to hardware performance variations, with the update sequence having
no adverse impact on the effectiveness of algorithm training.

HMAP’s highly modular design presents three key benefits. Firstly, it enables modification of script-
based opponent policies, which are treated as algorithm modules, in contrast to SMAC and GRF
where such policies are hardcoded and immutable. Secondly, it enables teams controlled by multiple
algorithms to interact within the same scenario, facilitating the evolution and training of algorithms
from different frameworks under the same task. Thirdly, it is user-friendly, as all experimental
configurations based on HMAP can be implemented through a single JSON file. Upon completing
the configuration, users can initiate the training task with just one line of code. More details of
HMAP can be found in Appendix [D]

5 SCENARIOS AND TASKS

UMAP includes a variety of basic scenarios for multi-agent systems, each of which is extensible
and can be used to create numerous tasks. This section describes 4 primary scenarios, and 15 tasks
applied in Section |6 generated from these scenarios. These primary scenarios incorporate both
cooperative and competitive elements, including features as heterogeneous multi-agent, large-scale
multi-agent, sparse team rewards, multi-team gaming, along with a sim-to-real demonstration.

(b) Tower Challenge

(c) Flag Capture B Sisasdil (d) Landmark CoriqUier

N Challengers >
Team No.3 H 1% 4 e
\

Figure 3: Four primary built-in scenarios of UMAP.




Under review as a conference paper at ICLR 2025

Metal Clash. This scenario is designed for heterogeneous and large-scale multi-agent tasks. As
illustrated in Figure [3(a), the scenario involves a competition between two teams of agents. Each
team can be controlled by either rule-based or learning-based algorithms. Metal Clash provides
three types of basic agents: missile cars, laser cars, and support drones. The properties of each basic
agent, such as maximum speed and health points (HP), are encapsulated as configurable parameters.
Users can easily modify these parameters, creating a variety of heterogeneous agent types beyond
the original three. Additionally, the number and types of agents in each team can be freely changed,
altering the characteristics and difficulty of the tasks.

Based on this scenario, we develop a series of tasks with heterogeneous or large-scale features.
In each task, the ally team, controlled by MARL algorithms, competes against an opponent team
controlled by rule-based algorithms. Both teams have the same types and numbers of agents (in
the following part, we only describe the composition of the ally team). We denote a task where
the team consists of x support drones, y laser cars, and z missile cars as metal_clash_xsd_ylc_zmc.
Accordingly, we develop four heterogeneous tasks: metal_clash_5sd_5lc, metal_clash_5sd_Smc,
metal_clash_5lc_5mc, and metal_clash_2sd_4lc_4mec.

For large-scale tasks, we develop two homogeneous tasks, metal_clash_homo_50 and
metal_clash_homo_100, which include 50 and 100 laser cars, respectively. In addition, there
are two large-scale heterogeneous tasks, metal_clash_hete 50 and metal_clash_hete_100. In
metal_clash_hete_50, each team has 10 support drones, 20 laser cars, and 20 missile cars. In
metal_clash_hete_100, the number of each type of agent is doubled compared to metal_clash_hete_50.

Tower Challenge. This scenario is designed for sparse team rewards in a multi-agent cooperative
setting. As shown in Figure 3{b), it includes a defense tower and several agents. The goal of all the
agents is to destroy the tower cooperatively. The tower’s defenses cover a much larger area than any
single agent can attack, making individual efforts ineffective. The entire team receives a positive
reward only if the they destroy the tower, there are no rewards or penalties in other cases.

Users can adjust the difficulty by modifying the tower’s HP and the number of agents. Based on this
scenario, we design two tasks named tower_challenge_easy and tower_challenge_hard. Each task
involves eight agents, with the harder task featuring a tower HP which is twice that of the easy one.

Flag Capture. This scenario is designed for multi-team gaming. As depicted in Figure [3]c), it
involves several teams competing to capture a flag. The closest agent can pick up the flag, and
their teammates must defend it from other teams. At the end of each episode, the team that held
the flag the longest wins. Since all teams start with the same number of agents, capturing the
flag first doesn’t guarantee victory. Success requires balancing power and strategic cooperation
among all teams. We develop 4 tasks based on this scenario. The first two tasks, flag_capture_script
and flag_capture_double_script, correspond to two-team and three-team tasks, respectively. In each
of these tasks, only one team is controlled by the tested MARL algorithm, while the remain-
ing teams are controlled by scripts. Similarly, for the last two tasks, flag_capture_mappo and
flag_capture_double_mappo, the script-based algorithms are replaced with MAPPO. Both the tested
algorithm and the MAPPO algorithm(s) start training from scratch.

Landmark Conquer. This scenario is specifically developed to demonstrate the potential of sim-to-
real transfer using UMAP. As illustrated in Figure[3[(d), all agents and entities are derived from repli-
cas of the physical environment described in Section[6.4] In this scenario, the challengers, consisting
of two unmanned ground vehicles (UGVs) and one unmanned aerial vehicle (UAV), are tasked with
capturing any landmark protected by guardians. Compared to the challengers, the guardians possess
higher attack power and HP. The scenario includes several obstacles and walls, as well as two target
locations. If the UAV remains above any landmark for a specified duration, the capture is considered
successful, resulting in a victory for the challengers.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTING

Based on the 15 tasks developed in Section [5] we test 7 widely-used SOTA MARL algorithms.
These include the actor-critic-based algorithms as MAPPO (Yu et all 2022), HATRPO, and
HAPPO (Zhong et al., 2024), as well as the value-based algorithms as QMIX (Rashid et al.,2020b),
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QTRAN (Son et al., 2019), QPLEX (Wang et al., 2020), and WQMIX (Rashid et al., 2020a)). To
ensure a fair comparison, the main network structure of each algorithm is preserved uniform, and
hyperparameters are standardized across all algorithms (refer to Appendix [[|for details).

The effectiveness of the training is tested after every 1280 episodes. The average win rates and
rewards of the algorithms are calculated based on 512 episodes per test, across 5 or more random
seeds. The results for the first 12 tasks are illustrated in Figure 4] where the lines represent the
mean values and the shadowed areas indicate the 95% confidence interval. Table 2] details the per-
formance of the 7 algorithms in flag_capture_mappo and flag_capture_double_mappo. Results for
landmark_conquer are presented in Appendix

6.2 INTERPRETATION OF RESULT

Heterogeneous Tasks. The result plotted in Figure [ reveals several trends. Apart from QPLEX,
actor-critic-based algorithms generally outperform value-based algorithms. In actor-critic-based al-
gorithms, MAPPO performs better, even being the best algorithm in the most difficult task, and
HAPPO is weaker than MAPPO across all four tasks, which is different from previous research. In
value-based algorithms, QPLEX is the best, which outperforms all actor-critic-based algorithms in
metal_clash_5mc_5lc. However, it is discovered that the effectiveness of QPLEX significantly de-
clines as the level of heterogeneity in the task increases. Furthermore, experiments without param-
eter sharing are conducted, and it has been found that actor-critic-based algorithms with parameter
sharing outperform those without parameter sharing. Since the agent ID is already included in the
observations, this enables differentiation among the trained policies.
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Figure 4: The comparison of test win rate for all evaluated algorithms across 12 tasks. The shadowed
area depicts the 95% confidence interval.

Large-Scale Tasks. Similar to heterogeneous tasks, actor-critic-based algorithms still outperform
value-based algorithms. MAPPO is the most outstanding algorithm due to its superior capability
for parameter sharing, which is primarily reflected in its faster and more stable training perfor-
mance. This advantage is particularly evident in metal_clash_homo_100 and the highly heteroge-
neous metal_clash_hete_100, where MAPPO demonstrates a significant lead. For value-based al-
gorithms, the performance of QPLEX is the best, but it also deteriorates rapidly with the increase
in scale and heterogeneity. Furthermore, the training of HAPPO is very unstable, which may be
related to its updating of policies in a random order. In tasks with 100 agents in the team, HA-
TRPO freezes up and fails to produce results, because the computational burden of HATRPO is
so large that it exceeds the computing capacity of the server. Apart from MAPPO and QPLEX in
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metal_clash_homo_50, the performance of other algorithms is not satisfactory, urgently requiring
more advanced algorithms.

Sparse Team Reward Tasks. In these tasks, value-based algorithms generally outperform actor-
critic-based algorithms. In the fower_challenge_easy task, only QPLEX trains relatively quickly and
stably. Other value-based algorithms require a larger number of episodes to exceed a win rate of 0.8
and do not perform well in the first 100,000 episodes. In fower_challenge_hard, some algorithms
do not perform well, but as a actor-critic-based algorithm, HATRPO performs better than expected.
The limitation of the performance of HATRPO in this task may lie in its inability to explore the
entire space, thus failing to ensure monotonic improvement. Therefore, in tower_challenge_hard,
there is an urgent need for more advanced algorithms.

Multi-Team Gaming Tasks. In the tasks where the engaging teams are driven by scripts, apart
from the poor performance of MAPPO in all tasks, actor-critic-based algorithms are superior to
value-based algorithms. Within actor-critic-based algorithms, HATRPO, as the algorithm with the
most precise monotonic improvement, performs the best. It can stably learn the superior policies
in both flag_capture_script and flag_capture_double_script. This indicates that in these tasks, com-
puting only the first-order approximation or using clip clipping like HAPPO is not the optimal
solution. Among value-based algorithms, QPLEX and WQMIX are the two best performing algo-
rithms. Among them, QPLEX trains slightly faster, indicating that in simple tasks with fewer agents,
QPLEX is the fastest learning algorithm among its value-based counterparts.

In flag_capture_mappo, actor-critic-based algorithms train relatively quickly and can achieve the
high win rate within 50,000 episodes. On the contrary, value-based algorithms can achieve the high
win rate only after 50,000 episodes. Except for QMIX, which performed poorly, the other algorithms
performed well. In flag_capture_double_mappo, all actor-critic-based algorithms perform well. In
value-based algorithms, only QPLEX can achieve the high win rate after a large number of episodes.

Table 2: The result of engaging with teams driven by MAPPO. The data represents the average win
rate within the corresponding range of episodes.

flag _capture_mappo flag_capture_double_mappo

ALGORITHM |- 50k 50k~100k  100k~150k | Ok~50k  50k~100k 100k~ 150k
MAPPO 0.52+0.25 0.56+0.09 0.50+£0.17 | 0.71£0.12 0.71+£0.08 0.78+0.17
HAPPO 0.65+0.20 0.67+0.17 0.77£0.11 | 0.67£0.08 0.68+0.18 0.71£0.17
HATRPO 0.54+0.28 0.67+0.16  0.51£0.29 | 0.61+£0.26 0.65+0.34 0.7740.12
QMIX 0.11£0.07 0.02+0.03  0.01£0.02 | 0.07£0.02 0.65+0.34 0.77£0.12
QTRAN 0.71£0.06 0.73+£0.13  0.78+0.06 | 0.25+£0.28 0.17+£0.24  0.13£0.13
QPLEX 0.66+0.21 0.96+0.03 0.97+0.02 | 0.29+£0.20 0.73+£0.09 0.87+0.14
WQMIX 0.39£0.18 0.79+£0.08 0.76£0.19 | 0.27+£0.13 0.07+£0.05 0.10£0.10

6.3 EVERY TASK HAS ITS OWN SOTA ALGORITHM

Each task has its unique characteristics, which necessitate different suitable algorithms. In fact, no
single algorithm currently dominates across all tasks, which implies the need for more advanced
algorithms. Meanwhile, we summarize the above-mentioned algorithms as follows.

MAPPO. With strong parameter sharing capabilities, it is suitable for large-scale and simple tasks.

HAPPO. Compared to HATRPO, HAPPO has a lower computational burden but performs incon-
sistently in large-scale tasks. It performs better in simpler tasks such as multi-team tasks.

HATRPO. HATRPO has a significant computational burden, making it suitable for small-scale
tasks, where it often performs better. Additionally, it tends to perform well in the early stages of
multi-team tasks. However, it is difficult to run this algorithm for large-scale tasks.

QMIX. With the most classic mixing network, QMIX is suitable for the later stages of multi-team
tasks, where it can stably suppress MAPPO.

QTRAN. The performance of QTRAN is relatively mediocre in the first 12 tasks. QTRAN exhibits
better performance in flag_capture_mappo, with relatively stable training results. However, it still
performs poorly in flag_capture_double_mappo.
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QPLEX. QPLEX has strong performance capabilities, suitable for small-scale tasks with sparse
team rewards.

WQMIX. As a relatively new algorithm, it outperforms QMIX in many tasks. It shows potential in
tasks with sparse team rewards.

6.4 PHYSICAL EXPERIMENT

We conduct this experiment to demonstrate the potential of UMAP in bridging the sim-to-real gap.
Firstly, we construct a real-world experimental setup, which consists of a motion capture system,
a communication system, several autonomous UGVs and UAVs, and a number of physical entities.
Subsequently, we develop the landmark_conquer scenario through UMAP, wherein the entities are
proportionally replicated from the physical setup, and the kinematics of the unmanned units are also
recreated. Ultimately, we develop an algorithm-UMAP-hardware framework, with details presented

in Appendix

During the training phase, the algorithmic side, represented by HMAP, interact with UMAP to train
policies within the simulated scenarios. In the execution phase, the physical system relay global
information captured by the motion capture system and first-person view data from the vehicles’
cameras to UMAP. UMAP then update its internal environment with this information and transmit
the filtered observational data to HMAP. The algorithm within HMAP generate action commands
based on these observations, which are conveyed to UMAP. UMAP execute virtual state transitions
based on these commands, and concurrently transmit the decomposed action information to the
real-world setup for execution by the autonomous vehicles/drones.

Figure[5 presents snapshots from both the virtual and the real-world scenarios. The experimental re-
sults indicate that the whole system can successfully replicate the policies of the multi-agent system
from the virtual environment within the physical setup.

Figure 5: Snapshots from UMAP-simulated and real-world scenarios. The top four subfigures shows
snapshots of multiple agents deploying well-trained policies only in virtual scenarios. The bottom
four subfigures shows deployed policies in real-world scenarios at the same timesteps.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduce UMAP, a powerful, highly extensible UE-based MARL simulation en-
vironment. Utilizing UMAP, we design a series of base tasks which include features such as het-
erogeneity, large scale, sparse team rewards, and multi-team. Additionally, we develop a multi-
agent experimental framework compatible with UMAP, named HMAP. With the tasks developed on
UMAP and the algorithm modules within HMAP, we provide a thorough report and discussion on
several SOTA MARL algorithms, encompassing both value-based and actor-critic-based methods.
Finally, we replicate a task in a real-world setting, demonstrating UMAP’s potential to bridge virtual
algorithms with real-world applications.

However, UMAP is not perfect. One limitation is that the sim-to-real demonstration so far is rela-
tively simple and requires global real-world information to construct pretended local information. In
the future, we plan to develop a comprehensive, plug-and-play sim-to-real toolkit based on UMAP.
This toolkit will help map real-world requirements into UMAP’s virtual environment, thereby ad-
vancing the practical application of MARL to the next level.
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A OPEN SOURCE STATEMENT

We are willing to open source all the components of UMAP and HMAP to benefit the MARL
community. Due to the constraints of the paper review rules and the file size limitations for supple-
mentary materials, we temporarily include only the most crucial components in the supplementary
material. These components comprise a lightweight version of the HMAP framework and the Python
interface for UMAP.

In fact, we have a detailed plan for open-sourcing, which will be executed after the review process.
The open-source plan is as follows:

1. Regarding code environment configuration: We will release a Docker image supporting
UMAP and HMAP services on Docker Hub. This image will include the HMAP frame-
work, a default version of UMAP’s compiled binary files, and a series of environment
configurations.

2. Regarding UMAP: We will publish UMAP’s usage tutorials and one-click deployment
scripts on GitHub. These scripts facilitate the compilation of rendering/training-only binary
files for various platforms and automate the downloading of large files. The Unreal project
and the modified Unreal Engine of UMAP will be available on a cloud drive, accessible for
automatic download via Python scripts.

3. Regarding HMAP: We will publish HMAP’s usage tutorials and its entire content to
GitHub. This content includes the core of HMAP, wrappers for all supported environments,
built-in algorithms, and algorithms from third-party frameworks.

4. Future Plans for Open Source Work: We will continue to maintain all GitHub reposi-
tories, develop new scenarios, incorporate more algorithms from third-party frameworks,
and develop sim-to-real related toolkits.

B RELATED WORK

The simulation environments for MARL can be broadly categorized into two types: those with
physics engines and those without. Here, physics engines refer to a suite of tools capable of simulat-
ing the physical laws inherent in real-world tasks (Templet, [2021)). Given that game engines also aim
at reincarnating the real-world elements into the digital world (Vohera et al., 2021), environments
leveraging game engines are classified under the physics engine category.

Among the environments without physics engines, MPE (Mordatch & Abbeel, [2017) utilizes a sim-
ple rule-based particle world to simulate multi-agent tasks such as predator-prey and cooperative
navigation. MAgent (Zheng et al.| [2018), grounded in a grid world, facilitates simulations involv-
ing the aggregation and combat of pixel-block agents, notable for its ability to support large-scale
multi-agent settings. The two environments mentioned above are based on the state transition laws
of particle worlds and particle interactions. Although they are completely open-source and their task
elements are relatively easy to modify, their scenarios are overly simplistic and lack realism.

Hanabi (Bard et al.l 2020) provides a multiplayer card game scenario, which is commonly used
in MARL research based on opponent modeling. However, the overly narrow theme prevents it
from further simulating tasks involving heterogeneity, large scale, and mixed strategies. Neural
MMO (Suarez et al.l 2021)) is developed in a 3D grid world derived from massively multiplayer
online games, supporting large-scale multi-agent simulations over long time horizons.

Gobigger (Zhang et al., 2022)), based on a ball world concept, stands out for enabling simulations
involving collaboration and competition among multiple teams. However, similar to MPE and MA-
gent, their particle-based 2D environments fall significantly short of simulating the real-world com-
plexities of 3D scens.

JaxMARL (Rutherford et al.| 2024)) integrates numerous MARL environments together and has re-
implemented these environments using JAX technology, enabling them to support efficient, GPU-
based parallel computing. However, to support pure GPU parallelism, some environments in JAX-
MARL have lost their original CPU-based underlying physical engines. Moreover, as a collection
of environments that integrates multiple basic environments, it does not support multi-team multi-
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algorithm training, nor does it support controllable time-flow simulation and cross-platform real-
time rendering.

As for the environments with physics engines, GRF (Kurach et al.,[2020) is built upon the Gameplay-
Football simulator (Schuiling| [2017), creating a highly realistic football match setting that allows
agents to simulate the behaviors of human players. However, it does not support large-scale sce-
narios, multi-team training, and mixed multi-agent gameplay. Moreover, although its environment
interface and underlying engine are open-source, the underlying engine is not suitable.

SMAC (Samvelyan et al.,[2019) and SMACV2 (Ellis et al.} 2022) are developed based on the popu-
lar video game StarCraft II, constructing a multi-agent micromanagement environment where each
agent controls individual units to complete adversarial tasks. Despite their widespread use, the fact
that their underlying games and engines are not fully open-source limits further expansion, confining
their built-in tasks to battle-type game scenarios only.

Hide-and-Seek (Baker et al.,|2019)) has set up a series of multi-agent curriculum learning scenarios,
such as hide and seek, based on a 3D engine. However, its theme is too singular, making it im-
possible to simulate tasks involving heterogeneity, large scale, multiple teams, etc., and it does not
allow for customization of all task elements. Hok3v3 (Liu et al., |2023), specifically designed for
heterogeneous multi-agent tasks, is based on the Honor of Kings engine, with agent action spaces
consistent with those of human players engaging in the real game. However, it only supports het-
erogeneous multi-agent scenarios (3VS3) and does not have an open-source underlying game and
related engine.

MAMuJoCo (Peng et all 2021a)) is developed using the Mujoco physics engine (Todorov et al.,
2012)), where multiple agents each control different joints to collaboratively manage the movements
of a single robot. However, all of the multi-agent scenarios are fully cooperative and do not support
large-scale multi-agent tasks.

Marathon Environment (Booth & Booth} 2019) is developed using the Unity3D engine, support-
ing multiple agents learning complex movements such as running and backflipping. The built-in
tasks are relatively simple and are unable to simulate large-scale, multi-team, and mixed multi-agent
gameplay tasks. Moreover, its underlying engine, Unity3D, is not fully open-source, thus preventing
comprehensive modifications from the bottom to the top layer.

It is evident that environments without physics engines are adept at simulating challenging tasks
designed to push the limits of existing algorithms. In contrast, environments equipped with physics
engines offer greater potential for real-world applications but are constrained in terms of academic
flexibility. Our goal is to develop an environment that not only has practical application potential
but also fully leverages scalability, ultimately leading to the creation of UMAP.

C UMAP DETAILS

C.1 ARCHITECTURE OF UMAP

UMAP utilizes a hierarchical design that consists of five layers, all of which are open source. As
shown in Figure 2] the first layer of UMAP is the native part of the Unreal Engine, including the
physics engine, rendering engine, Al engine, and a range of 3D assets. We build the entire UMAP
based on the open-source version of UE, making modifications to some of the native modules.
For instance, the original Al detection system for agents in UE was very inefficient in large-scale
scenes. UMAP optimizes the detection of multiple entities by incorporating tensor operations and
eliminating redundant checks.

The second layer of UMAP comprises the underlying systems and programming specification, all
implemented in C++. The time control system and task system in this layer ensure the correct initia-
tion and termination of simulation episodes, guaranteeing the precision of simulation time steps and
the reproducibility of experimental results. Other components of this layer define the specification
for all base classes, communication, and debugging within UMAP.

The third layer consists of three fundamental classes implemented using Blueprints. The agent class
defines all entities that can be controlled by algorithms, while the entity actor corresponds to all
environmental entities that do not make decisions. Classes derived from these two form all the
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entity elements within a task scenario. The abstract class acts as a bridge, connecting the underlying
systems to the highest Python-based layer, facilitating communication, debugging, action updates,
and observation feedback.

The fourth layer of UMAP consists of advanced functional modules, implemented using Blueprints.
These modules allow for the modification of various attributes of agents, including appearance,
perception, action sets, movement, and navigation, enabling the development of diverse types of
agents. Moreover, leveraging the abundant resources in the Unreal community, the map construction
module facilitates the creation of new maps and even the importation of real-world maps. The
entity construction module aids in developing complex environmental entities, such as altering the
kinematic model of missiles launched by drones.

The fifth layer serves as the interface for interaction between UMAP and algorithms, all imple-
mented in Python. This interface adheres to the gym (Brockman, |2016) specification, encompassing
basic functions like reset, step, and done, and supports the customization of agent-level observation
and reward functions. Attributes such as agent size, initial position, detection range, and health are
directly encapsulated within the agent initialization function, allowing for easy modification. As
shown in Figure @ the selection of agents, tasks, and maps in UMAP are independent. Users can
customize the types, numbers, and teams of agents in a task and switch maps flexibly.

From the perspective of designing and utilizing a MARL simulation environment, users need only
focus on the fourth and fifth layers of UMAP. In most cases, users can directly customize MARL
tasks by modifying the built-in scenarios and agent parameters through the fifth layer. If there is
a need to develop new scenarios or further develop existing ones, users can also easily develop
through the graphical programming approach provided in the fourth layer. UMAP’s hierarchical
design significantly reduces the burden of customizing tasks.

C.2 TIME IN UMAP
Time is the most important factor in simulations. There are two different type of time in UMAP:

1. Real World Time t,..,;. The actual time of our world.

2. Simulation Time tg;,,,. The time in the simulated virtual world.

It is inevitable that simulation speed (from the perspective of ¢,.,;) Will be influenced by factors
such as CPU frequency, GPU performance, policy neural network size, machine workload, etc. As a
result, UMAP decouples simulation time flow therefore has achieved flexible control of simulation
time

1. UMAP allows researchers to slow down simulation time by setting a time dilation factor,
extending a second in the simulation multiple times to render details of agents in slow
motion.

2. UMAP allows researchers to accelerate simulation time by setting the same time dilation
factor (before reaching the hardware limitation). Gathering large amount of samples is
necessary in most RL tasks. Accelerating computation is the primary ways to achieve this
goal.

UMAP guarantees that the simulation results will not be influenced by time dilation factor, hardware
or workload. For instance, as long as the random seed remains identical, same agent trajectories are
expected: 1) regardless of whether we choose to enable GPU to accelerate neural network compu-
tation. 2) regardless of whether we choose to simulate agents slowly or rapidly by setting different
time dilation factors.

There are three global time-related settings to adjust in UMAP.

Decision time interval. From the perspective of agents in the simulated environment, agents will
have a chance to act once every Alternatively, tzﬁf is also the time interval between each RL step.
tsz is usually a short period with a default value 0.5s. Nevertheless, for tasks such as flights that

last hours in a episode, ¢*;" should be increased accordingly.

sim
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t;fif does NOT has directly relationship with how long a RL step will actually take in the real
world. More specifically, a team can take as long as necessary to compute the next-step action after
receiving observation, meanwhile the simulation time flow freezes until all teams have committed
agent actions. In extreme situations, algorithms can spend hours to update large policy networks and

the simulated agents will not be influenced by this delay.

Baseline Frame Rate. Baseline Frame Rate tI  determines how many frames to compute for each
simulation second in UMAP. As an example, when ¢ = 30, the simulation will proceed (tick)
%s after each frame. Important computation such as collision detection and agent dynamic update

are performed in each of these frames. As an example, let ¢5,F = 0.5 and & = 30, under this
circumstance 15 ticks will be performed between each RL step. Similarly, tgm does NOT have
direct relationship with the real world time flow.

Time Dilation Factor. In UMAP, Time Dilation Factor t& | is the sole bridge between simulation
time flow and real world time flow. In reinforcement learning, there are three typical cases that

involves the control of time in simulation:

1. Task Development and Evaluation. In this case, it is demanded that simulation time flows
at a normal speed to observe the interaction of agents. A dilation factor t4f, ~ 1 will
synchronize simulation time flow with the real world time flow.

2. Slow Motion. In this case, it is required that the simulation runs slowly to allow human
observers to diagnose issues in multi-agent cooperation. Changing the dilation factor t4f | <
1 will slow down the simulated world accordingly.

3. Training. In this case, it is demanded that simulation runs as fast as possible to collect train-
ing data. UMAP will attempt to accelerate the simulation until reaching the tfgal threshold.
If not possible due to hardware, the simulation will still proceed at the fastest possible

simulation speed.

1. Easily Determing & Changing 2. Reusing Maps to Explore
Where a Task Should Take Place More Possible Multiagent Operations

Task 1 \\ Map 1 Task 1 \\ Map 1
Task 1 \\ Map 2 Task 2 \\ Map 1
Task 1 \\ Map 3 Task 3 \\ Map 1

3. Reusing Previously Designed Agents 4. Sharing Action Design between
in New Competitions Different Agents

Choice 1
Fully Inherit

% Type 1Agent

Type 1 Agent

I Type 2 Agent ’

Type .. Agent

Action Set of T1 Agent

Choice 2
Reuse & Inherit
Action Set of T1 Agent

3 Type2Agent

+ Additional Actions
Unique to Agent 2

Choice 3

Fully Re-design

Type n Agent Action Set of T2 Agent

Figure 6: One of the advantages of UMAP framework is the isolation of maps, task and agents, mak-
ing it possible to reusing existing modules to develop new environment for Reinforcement Learning
studies.
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Figure 7: Parameter configuration of HMAP. This is an example under the

flag_capture_double_mappo task using the QMIX algorithm. To facilitate multi-team train-
ing, users only need to add teams and designate their respective algorithms in the mission config,
and append the corresponding algorithmic parameters in the Algorithm config.

D HMAP DETAILS

The utilization of HMAP is straightforward, necessitating only a Docker container, a configuration
of parameters, and execution of a single command to deploy a specified algorithm into a designated
scenario. The parameter configuration files of HMAP exemplify its modular design, including three
categories: core config, mission config, and algorithm config. Figure[7illustrates a configuration file
for the QMIX algorithm under the flag_capture_double_mappo task. Core config comprises basic
settings and experimental settings, where the former allows for the specification of file and path
for experiment storage, and the latter includes parameters relevant to the experiment such as the
number of parallel task environments, testing intervals, and random seeds. Mission config includes
selections for the simulation environment and deployed algorithm. Upon selecting UMAP as the
simulation environment, users can make further selections regarding maps, tasks, and teams, as
well as choose between training, rendering, or a mode that combines both training and real-time
rendering. Algorithm config is composed of the algorithmic parameters set for each team.

With HMAP, users can conveniently specify the number of teams and freely assign algorithms to
each team. For instance, Figure[7|demonstrates the setting of three teams, where Team-1 is assigned
QMIX from the PYMARL?2 framework, and Team-2 and Team-3 are designated MAPPO from the
HARL framework. HMAP allows multiple teams to utilize the same algorithm module without
affecting the normal construction of buffers and network updates. It is achieved by adding a prefix
keyword like “TEMP.t2” to the additional configurations of the same algorithm. Theoretically, as
long as computational resources are sufficient, UMAP and HMAP can support an arbitrary number
of teams, each allocated with different algorithms in a same scenario, with the updates of different
algorithms not interfering with each other.

E SCENARIOS DETAILS

Metal Clash. This scenario is designed for heterogeneous multi-agent tasks and large-scale multi-
agent tasks. Within this scenario, an ally team need to confront an enemy team controlled by built-in
scripts or MARL policies. The objective of the ally team is to eliminate as many enemy agents as
possible while preserving more ally agents.

Metal Clash offers three types of basic agents: missile cars (for ground and air attacks), laser cars
(for ground attacks), and support drones (for attacks and supports). Missile cars can attack ground
or aerial units with missiles and have a long range, but they move slowly. Laser cars excel at close-
range combat, using lasers to damage ground units. Support drones, as aerial units, have a faster
movement speed and can restore the health points of allied missile cars and laser cars. They can also
attack opponents with smaller firepower but have lower HP.
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The physical attributes of each basic agent, such as movement speed, size, HP, observation radius,
etc., are exposed as configurable parameters at the task construction interface. Users can conve-
niently modify all the parameters, thereby creating a variety of heterogeneous agent types that far
exceed the original three. Agents can sense their neighborhood allies and enemies within the per-
ception range, and the information of perceived agents is concatenated in the observation space.
Due to the height advantage, the flying agents have a much larger perception range than ground
agents. Agents have rich options of actions. Besides the idle and moving actions, agents can choose
a patrol-moving action to search enemies, select visible opponents to attack, or toggle their micro-
management strategy (such as whether agents are allowed to peruse opponents after receiving future
attack action). Furthermore, users can freely designate the types and corresponding numbers of
agents in both allied and enemy teams, thus controlling the nature and difficulty of the task.

e Observation

Three types of agents are intentionally designed differently to reflect the heterogeneity of this sce-
nario. We define the distance unit of the unreal engine as u. Missile car have a maximum movement
speed of 500u per second, an attack power of 1, an attack range of 1000u, and 150 HP. Laser cars
have a maximum movement speed of 800u per second, an attack power of 1, an attack range of
500u, and 100 HP. Support drones have a maximum movement speed of 1000u per second, an at-
tack power of 1/6, an attack range of 1700u, and 50 HP. The observation capabilities of three agents
are shown in Table [3] The observation structure refers to the composition of what an agent observes,
where the number 1 represents its own observation, and the subsequent two numbers indicate the
maximum number of allied agents and enemy agents that can be observed. For example, missile
cars have an observation range of 2500u, and their observation structure is [1,8,8]. This indicates
that missile cars can observe information about up to 10 ally agents and 10 foe agents within a range
of 2500u. Additionally, the information for each observed agent is a 20-dimensional vector, with
vectors for invalid entities filled with zeros. Therefore, the observation dimension for the missile
vehicle is (17)*20.

Table 3: Observation Capabilities of three base agents in Metal Clash.

Agent Observation Range  Observation Structure ~ Observation Dimension
Missile Car 2500u [1,8,8] (17)*20
Laser Car 2000u [1,5,5] (11)*20
Support Drone 2500u [1,10,10] (21)*23

e Action

All three types of agents have nine common actions: moving in four directions, staying still, target-
ing foe agents within the defense circle, fleeing, etc. On this basis, each type of agent can perform
special actions. For example, support drones can choose to restore the health of ally agents within
their support range or choose to attack foe agents. Missile cars can choose to attack all units, while
laser cars can only choose to attack ground units.

e  Reward

Regarding reward settings, when an agent from our team or the enemy team is destroyed, the entire
team receives a penalty of 0.05 and a reward of 0.1. At the end of an episode, the team with the
higher total remaining HP wins, receiving a reward of 1.0, while the losing team receives a penalty
of -1.0. In the event of a tie, both teams receive a penalty of -1.0.

Tower Challenge. This scenario consists of a defense tower and several agents. Users can adjust the
task’s difficulty by altering the tower’s defensive capabilities and the number of agents involved. In
the most challenging cases, agents must form a precise formation beyond the tower’s defense range
and launch a swift, simultaneous attack to just manage to destroy the tower.

Regarding reward settings, the entire team receives a positive reward only if the agents successfully
destroy the tower; there are no rewards or penalties in other cases. In this experiment, We develop a
simple cooperative task with the defense tower’s HP set to 400 and a difficult cooperative task with
the defense tower’s HP set to 800. Similar to the Metal Clash scenario, both the tower and the agents
have spherical perceptual space centered around themselves. Agents can choose from idle, move to
a certain direction, or attack in their action space.

19



Under review as a conference paper at ICLR 2025

e Observation

In Tower Challenge, each agent has the same observation space. They can observe information such
as the ID, HP, position, and maximum speed of themselves and the position of the tower.

e Action

In Tower Challenge, agents have six possible actions to choose: moving in four directions, main-
taining the current action, and staying still. Additionally, each agent has an action to collide with
the tower.

e  Reward

This scenario is set up for sparse team rewards. Rewards are given only when all agents cooperate
to destroy the defense tower. Specifically, agents can receive a reward of value 1 only when they
defeat the defense tower.

Flag Capture. This scenario allows for competition among more than two teams. At the end of an
episode, only the team that holds the flag for the longest duration wins. Since each team begins with
an equal number of agents, the first team to capture the flag does not guarantee victory, as teams
must carefully consider the balance of power and strategic play among multiple teams to receive the
most rewards. In this scenario, agents are not equipped with weapons and cannot eliminate other
agents. Consequently, agents do not have attack actions. Moreover, the agent’s perceptual space is
conical rather than spherical.

e Observation

In Tower Challenge, each agent has the same observation space. They can observe information such
as the ID, HP, position, and maximum speed of ally or foe agents within the observation range.

e Action

Each agent has a constant speed. In the two-dimensional plane, there are eight discrete actions to
choose from, each representing a direction spaced 45 degrees apart. When the team is close enough
to the flag, the agent nearest to the flag will pick it up. To prevent other teams from approaching and
capturing the flag, it is necessary to target the agent that are near the flag.

e Reward

When a flag is picked up by an agent, the team to which the agent belongs receives a reward of
0.005. At the end of the episode, the team that has held the flag for the longest time will receive a
reward of 1.0.

Landmark Conquer. This scenario is specifically developed to demonstrate the potential of
sim2real transfer using UMAP. It features a straightforward structure and components for easy
replication and setup. Within this environment, a MARL algorithm must control an offensive unit
consisting of two unmanned ground vehicles (UGVs) and one unmanned aerial vehicle (UAV) to
attempt to capture a strategic area defended by two UGV with double the attack power and HP of
the offensive UGVs. The offensive UAV must seize control of the target area under the cover of
the UGVs. The scene includes various obstacles and walls, along with two strategic points. The
offensive team is deemed victorious if the UAV hovers above any strategic point undisturbed for 10
seconds. Failure occurs if the offensive team is eliminated or fails to capture any strategic point by
the end of an episode.

e Observation

In this scenario, agents can perceive the location and status of the target area regardless of the
distance, yet can only sense and attack opponents within agents’ perception range.

e Action

All three types of agents have nine common actions: moving in four directions, staying still, target-
ing foe agents within the defense circle, fleeing, etc. On this basis, each type of agent can perform
special actions. For example, support drones can choose to restore the health of ally agents within
their support range or choose to target foe agents.

e Reward
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Regarding reward settings, when an agent from our team or the enemy team is destroyed, the entire
team receives a penalty of 0.05 and a reward of 0.1. At the end of an episode, the team with the
higher total remaining HP wins, receiving a reward of 1.0, while the losing team receives a penalty
of -1.0. In the event of a tie, both teams receive a penalty of -1.0.

F UMAP’S EFFICIENCY AND COMPUTATIONAL RESOURCE CONSUMPTION

As a simulation environment based on a 3D physical engine, UMAP boasts high simulation effi-
ciency. Itis well-designed to adapt to and fully utilize various types of computing resources. UMAP
can be deployed on computing systems entirely devoid of GPUs for algorithm training and sup-
ports the full utilization of uneven computing resources. It can operate in a single-threaded manner
as well as support multiple parallel environments. Additionally, with the feature of time dilation
factors, UMAP can not only improve simulation efficiency by increasing the number of parallel
processes but also control the simulation speed of each process to make full use of computing re-
sources (using more CPU utilization under the same memory and GPU memory), a functionality not
available in other simulation platforms.

In this section, to verify UMAP’s efficiency and adaptability to various computing resources, we
conducted a series of experiments on UMAP’s efficiency index and resource consumption indices.
The efficiency index adopted was FPS, i.e., the number of virtual timesteps run in a real second;
the resource consumption indices included CPU utilization, memory occupancy, and GPU memory
occupancy. All experiments were conducted on a Linux server equipped with an AMD7742 CPU
(maximum frequency 2.25GHz) and NVIDIA RTX3090 GPUs. To ensure fairness, all experiments
tested the QMIX algorithm on the metal_clash_5sd_5Smc task. The data points for all indices were
obtained by averaging the results of five experiments. At the beginning of each experiment, the
server was maintained in an idle state, executing only the essential system processes.

Figure X shows the indices under a fixed number of parallel environments at 8, with varying time
dilation factors. Figure Y shows the indices with a time dilation factor of 32, under varying numbers
of parallel environments. From these two figures, the following conclusions can be drawn:

1. With a constant number of parallel environments, FPS and CPU utilization are roughly
proportional to the time dilation factor, but this proportional relationship degrades into a
positive correlation when the time dilation factor reaches a certain threshold (limited by the
CPU’s clock speed).

2. With a constant number of parallel environments, changing the time dilation factor almost
does not affect memory occupancy and GPU memory occupancy.

3. With a constant time dilation factor, CPU utilization is roughly linearly related to the num-
ber of parallel environments, while FPS is roughly logarithmically related; memory and
GPU memory occupancy are positively correlated with the number of parallel environ-
ments.

The above conclusions mean that under limited memory resources, training efficiency can be im-
proved by increasing the time dilation factor to fully utilize CPU resources; similarly, under limited
CPU computing resources, reducing the time dilation factor and increasing the number of processes
can avoid the waste of computing resources.

In fact, when the number of processes is 8 and the time dilation factor is 32, training 1024 episodes
on the metal_clash_5sd_5mc task takes less than 2 minutes. This means that under such parameter
settings, this server can simultaneously support 50 such tasks (each with 20 agents) and complete all
training tasks (100k episodes) within 3 hours. In special cases, the number of parallel processes can
be further increased to improve training efficiency. When the number of processes reaches 128 and
the time dilation factor is set to 32, the FPS can reach 1000+, and the training task can be completed
in about an hour.

It is important to emphasize that FPS here counts the number of virtual UMAP timesteps per real
second. Considering this is a simulation of 20 agents, and each timestep in UMAP undergoes 1280
frames of calculations for environmental dynamics and kinematics to maintain fine state transitions
(details in Appendix C.2), this is already highly efficient computation.
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Figure 8: Efficiency index and resource consumption indices of running the QMIX algorithm with
different time dilation factors under 8 parallel environments in the metal_clash_5sd_5Smc task.
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Figure 9: Efficiency index and resource consumption indices of running the QMIX algorithm with
different numbers of parallel environments at a time dilation factor of 32 in the metal_clash_5sd_5Smc
task.

G PHYSICAL EXPERIMENT DETAILS

As shown in Figure[TT] the overall framework of the physical experiment includes three components:
the algorithm side represented by HMAP, the virtual environment side represented by UMAP, and
the hardware-based real environment side. During the training phase, HMAP and UMAP communi-
cate through the TCP protocol, exchanging observations and action information of the environment,
completing the training tasks on the same host server/computer. During the executing phase, UMAP
needs to maintain communication with not only HMAP but also with the communication system
in the real environment side through the TCP protocol, transmitting global observation information
and decoded action information. In addition to the communication system, the real environment
side also includes an action capture system, several UAVs and UGVs, landmarks and obstacles,
and a host computer. The motion capture system transmits global information (the position, speed
of all entities) to the host computer through a wired network, which receives local observation in-
formation (such as the first-person view from cameras) from UGVs and UAVs through a wireless
communication module and sends commands to them.

The UGVs and UAVs in the real environment have autonomous planning and control capabilities.
They can receive the information of target position or target speed from the communication module
and complete commands through two-dimensional and three-dimensional PID control. UMAP also
replicates their PID kinematics. UGVs are also equipped with cameras, which send the first-person
view information to UMAP. UMAP simulates their viewpoints, combined with the global informa-
tion from the motion capture system, to create simulated observation information under partially
observable conditions for HMAP. In the simulated environment training, the simulated UAVs also
have limited viewpoints, being able to observe entity information only within a specified range and
angle.

It is worth mentioning that landmark_conquer itself is also a MARL task, on which we test the
performance of 7 algorithms, as shown in Figure [I0] In the physical experiment, we transfer the
policy of the MAPPO algorithm to the real environment after 100k training episodes.
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Figure 10: Results of the landmark_conquer task.

= Training Data Flow
— Executing Data Flow
-

& |

Camera of Motion Capture System f

i -I
Onboard Pose Sensor
Onboard Mission Computer ¢
‘ (Autonomous Planning) (MU, Compass, Altimeter)
Local Perception
(@ Stcreo/Depth Camera, LIDAR)
‘Wireless Communication " global information 1 1 action commands
Data
" 1
Receiver
] UMAP

Onboard Control Computer
(Autonomous Planning)

Motor Driver

¢ (Receiver, Data Link, Wi-Fi)
//// Power Kit (Motor, Battery)

1
I
1

€

Wireless

(ESC, Actuation/Motion Driver)

‘ommunicatios
i-Fi

s Co
Wi
observaﬂonsl 1 actions

~

observaﬁonsl t actions

4 Algorithm

Host
Computer

D

Obstacles

Landmark

]
[}
1
1
I
1
1
I
1
I
[}
1
1
1
1
1
1
1
1
1
I
1
U

/ Physical Space Environment

Motion Capture (Global Perception) J

Figure 11: The algorithm-UMAP-hardware framework.
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H CHECKLIST OF ETHICS
We have finished a checklist to facilitate discussions on the ethical considerations of artificial intel-
ligence involved in our work. This checklist (Kaffee et al., 2023)) addresses the potential impacts of

various artefacts in the field of artificial intelligence.
C1 Did you explicitly outline the intended use of scientific artefacts you create?
Yes. The scientific artefacts we have created are UMAP and HMAP. The former is a extensible
simulation environment developed based on the Unreal Engine, designed with a layered architecture
to enable users to conveniently develop various realistic 3D multi-agent simulation environments.
The latter is an experimental framework that is highly compatible with UMAP, characterized by its
support for multi-team multi-algorithm training, and compatibility with existing classic simulation
environments and algorithms from third-party frameworks. The purpose of developing UMAP and

HMAP is to enable users to develop simulation environments that meet their needs (including sim-
to-real transfer and new research ideas) in the field of MARL, and to rapidly deploy algorithms to

validate ideas, thereby promoting the development of the MARL field.
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C2 Can any scientific artefacts you create be used for surveillance by companies or govern-
mental institutions?

No. As a simulation environment and experimental framework in the MARL field, UMAP and
HMAP are unrelated to surveillance by companies or governmental institutions.

C3 Can any scientific artefacts you create be used for military application?

The motivation and details of creating UMAP and HMAP are unrelated to any military applications.
However, it must be emphasized that although the design inspirations, virtual materials, and physical
materials used in this work are unrelated to military applications, there is a risk if our work is applied
to MARL policy training for military purposes. Therefore, on one hand, we call on the open-
source community to strengthen the regulation of military application materials and urge users to
refrain from using UMAP for military purposes. On the other hand, we also plan to set up keyword
detection within the UE side, so that users with impure motives designing military application-
related scenarios will not be able to use the functions of UMAP.

C4 Can any scientific artefacts you create be used to harm or oppress any and particularly
marginalised groups of society?

The motivation and details of creating UMAP and HMAP are unrelated to harming or oppressing any
particularly marginalized groups of society. In fact, our environment and experimental framework
are suitable for users under various computing resources, and are compatible with various system
platforms.

CS Can any scientific artefacts you create be used to intentionally manipulate, such as spread
disinformation or polarise people?

The motivation and details of creating UMAP and HMAP are unrelated to intentional manipula-
tion, such as spreading disinformation or polarising people. However, it must be emphasized that
although the experiments and demonstrations based on UMAP are unrelated to this. If the simula-
tion environments developed using UMAP can be used to generate realistic false scenarios, there is
a risk of being maliciously used to create and spread false information. Therefore, we call on the
open-source community to participate in regulation, establish a reporting mechanism, and we will
add educational materials for users in the usage tutorials, emphasizing the ethical responsibility of
using simulation environments and raising users’ ethical awareness.

C6 Did you access your institution’s or other available resources to ensure limiting the misuse
of your research?

Yes, we have accessed our institution to ensure limiting the misuse of our research, including but
not limited to the promotion, use, and modification of this work.

C7 have you been provided by your institution with ethics training that covered potential
mis-use of your research?

Yes, we are confident that our institution has provided sufficient ethics training.

C8 Were the scientific artefacts you created reviewed for dual use and approved by your
institution’s ethics board?

Yes, the scientific artefacts we created have been reviewed for dual use and approved by our institu-
tion’s ethics board.
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I HYPERPARAMETER DETAILS

In this part, the common hyperparameters used for algorithms and tasks are described. We present
the hyperparameters used for actor-critic-based algorithms in Table[d]and for value-based algorithms
in Table [5]across all tasks. Other unspecified hyperparameters of algorithms remain at their default
settings. The hyperparameters used for tasks are shown in Table [6]

Table 4: Common hyperparameters used for MAPPO, HAPPO, and HATRPO in UMAP.

MAPPO HAPPO HATRPO

share parameter True True True
hidden sizes 128 128 128
use feature normalization True True True
use naive recurrent policy False False False
actor learning rate 0.001 0.001 0.001
critic learning rate 0.0005 0.0005 0.0005
eps of optimizer 0.00001  0.00001  0.00001
weight decay 0 0 0
clip parameter 0.2 0.2 0.2
entropy coefficient 0.01 0.01 0.01
coefficient for value loss 1 1 1
gamma 0.99 0.99 0.99
GAE lambda 0.95 0.95 0.95
use a fixed optimisation order - False False
kl threshold - - 0.01

Table 5: Common hyperparameters used for QMIX, QTRAN, QPLE, and WQMIX in UMAP.

QMIX QTRAN QPLEX WQMIX
optimizer adam adam adam adam
learning rate 0.001 0.001 0.001 0.001
state compat mean observation mean observation mean observation mean observation
hidden sizes 128 128 128 128
hypernet-dimension 64 64 64 64
TD lambda 0.6 0.6 0.6 0.6

Table 6: Common hyperparameters used for the 15 tasks.

Metal Clash  Flag Capture ~ Tower Challenge  Terrain Domination

simulation time step 172560 s 1/2560 s 1/2560 s 1/2560 s
simulation time interval 125 172s 172s 1728
time dilation factor 64 64 64 64
parallel environment 32 32 64 32
maximum episode step 125 250 100 150

Then, supplementary experiments are conducted. The mean reward for the evaluated algorithms
across the first 12 tasks is plotted in Figure[I2] Moreover, the result of experiments without param-
eter sharing is shown in Figure |[13|across tasks. Generally speaking, actor-critic-based algorithms
without parameter sharing perform worse than those with parameter sharing.
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Figure 12: The comparison of reward for all evaluated algorithms across 12 tasks. The shadowed
area depicts the 95% confidence interval.
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Figure 13: The comparison of test win rate and reward for actor-critic-based algorithms without
parameter sharing.
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