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Abstract

Recent theoretical work established the unsupervised identifiability of quantized factors un-
der any diffeomorphism. The theory assumes that quantization thresholds correspond to
axis-aligned discontinuities in the probability density of the latent factors. By constrain-
ing a learned map to have a density with axis-aligned discontinuities, we can recover the
quantization of the factors. However, translating this high-level principle into an effective
practical criterion remains challenging, especially under nonlinear maps. Here, we develop a
criterion for unsupervised disentanglement by encouraging axis-aligned discontinuities. Dis-
continuities manifest as sharp changes in the estimated density of factors and form what
we call cliffs. Following the definition of independent discontinuities from the theory, we
encourage the location of the cliffs along a factor to be independent of the values of the other
factors. We show that our method, Cliff, outperforms the baselines on all disentanglement
benchmarks, demonstrating its effectiveness in unsupervised disentanglement.

1 Introduction

Representation learning aims to find useful inductive biases that reflect the nature and structure of the data.
In essence, the representation is desired to be disentangled, having modular factors of variation that control
or cause the observed variables (Bengio et al., 2013; Eastwood et al., 2023). This is more precisely defined
through identifiability theory, which provides mathematical conditions to determine when such factors can
be uniquely recovered from observations. However, this problem remains hard to solve and difficult to apply
to real-world data; some reasons for this discrepancy could be because of strict underlying assumptions from
identifiability theory, or because the methods were designed in small and controlled settings that do not scale
well. As an alternative to complete disentanglement, we use quantization as an inductive bias. Quantized
latent factors are often a natural representation for humans, for example, when thinking of colors (that are
continuous in the sensorial reality, but discrete when thinking of red or blue) and concepts ?. We incorporate
this inductive bias since it is a relaxed, yet useful form of disentanglement.

Disentanglement aims to find the axis where the ground truth latent factors lie. In this work, we develop
the idea of axis alignment by leveraging discontinuities in the density of the latent factors. Inspired by the
theoretical results in the literature concerning the identifiability of quantized latent factors (Barin-Pacela
et al., 2024), we design a learning criterion to align with the axes the discontinuities in the learned latent
density.

The theory assumes that these discontinuities are aligned with the axes in the joint probability density
of the latent factors; equivalently, these are defined as independent discontinuities (formal definition in
Appendix B.1). That allows the recovery of the axis alignment even after the warping of the latent variables
by a nonlinear transformation. Hence, the theory uses these axis-aligned discontinuities as quantization
thresholds.

We address the main limitations found in the empirical implementation of the criterion from Barin-Pacela
et al. (2024), which was based on estimating gradients in the joint of the density of reconstructed factors and
aligning them with the axis. We leverage the definition of independent discontinuities through conditionals,
such that the location of the cliffs along a factor is independent of the values of the other factors. This criterion
is combined with the encouragement of cliffs in the marginals and a term that avoids degenerate solutions.
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Our approach makes this criterion suitable for nonlinear transformations and applies it to disentanglement
datasets, which were unexplored in previous research.

Therefore, the contributions of this body of work are:

• The proposal of a new criterion that encourages axis alignment, and validation of its effectiveness
on synthetic datasets under nonlinear transformations. This criterion is model-agnostic and can be
applied as a regularizer to any model encoding a representation.

• Benchmarking and evaluation of the criterion and baselines on disentanglement datasets.

2 A brief overview of quantized identifiability

We learn from observed variables x = (x1, . . . , xD) ∈ X . The generative process assumes unobserved
latent factors z = (z1, . . . , zd) ∈ Z that are transformed into observed variables through a mixing function
f : Z → X , such that x = f(z). We learn a function (encoder) g : X → Z that should approximate f−1.

The field of causal representation learning studies identifiability by specifying conditions and assumptions on
the generative model to reconstruct z and g up to certain indeterminacies, in the best case up to scaling and
permutation. This setting is typically studied through independent component analysis, where the latent
factors z are assumed to be statistically independent. It has been long-established that when f is nonlinear,
independence alone can be easily satisfied and not enough to determine a unique factorization of the factors
(Hyvärinen & Pajunen, 1999), deeming the unsupervised identifiability of latent factors impossible under a
diffeomorphic map (Locatello et al., 2019; Buchholz et al., 2022) in the absence of either a stronger inductive
bias on the map, weak supervision, or auxiliary information. This formulation allows for a technical definition
of disentanglement through identifiability theory: reconstructing the true factors z from observed data up
to the indeterminacies.

Given the difficulty of precise unsupervised identifiability, Barin-Pacela et al. (2024) established the identifi-
ability of a quantization of continuous factors under any diffeomorphic map. This theoretical result does not
require independent factors but assumes the presence of independent discontinuities in their joint probability
density function (pdf).

By definition, an axis-aligned discontinuity is equivalent to an independent discontinuity. A factor zi is
said to have an independent discontinuity at zi = τ if the joint pdf p(z1, . . . , zd) is discontinuous at zi = τ
regardless of the values taken by the other factors. A set of such independent discontinuities, for all factors,
forms an axis-aligned grid. Importantly, the location of each factor’s discontinuities can be used as a
quantization threshold to yield its quantized value qi(zi). When these latent factors z are mapped to an
observation x by any diffeomorphism, the discontinuities are preserved in the pdf of x. They may no longer
be axis-aligned, but the discontinuity grid structure survives under potential warping. It is, thus, possible to
learn a reverse diffeomorphism that realigns discontinuities with the axes. This suffices to obtain recovered
factors (z′

1, . . . , z′
d), together with new quantization thresholds, based on their discontinuities locations.

Barin-Pacela et al. (2024) formally proved that their quantized values are, then, guaranteed to match the
quantized values of the original factors, up to permutation and axis reversal. The details of the theorems
are available in Appendix B and a discussion on the differences between Cliff and their preliminary criterion
is available in Appendix B.3.

3 Related work

Existing literature has explored the quantization of latent factors in theory and practice. Kong et al.
(2024) provide theoretical guarantees for learning discrete concepts from high-dimensional data through a
hierarchical causal model, expanding upon the identifiability theory of discrete auxiliary variables from Kivva
et al. (2022). However, realistic methods based on theoretical principles are still to be shown. Different kinds
of quantization have been successfully proposed, such as vector quantization, in the case of the VQ-VAE
(van den Oord et al., 2017), and Finite Scale Quantization (FSQ) (Mentzer et al., 2024). FSQ is a factorized
quantization which fixes the binning and tries to fit the representation that preserves the information when
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correlated density general no auxiliary
Method latents constraint diffeomorphism info identifiability
β-VAE (Higgins et al., 2017) ✓ global ✓ ✓ ✗
HFS (Roth et al., 2023) ✓ global ✓ ✓ ✗
IOSS (Wang & Jordan, 2021) ✓ global ✗ ✓ ✓
(Kong et al., 2024) ✓ global ✓ ✓ ✓(quantized)
Additive Decoders (Lachapelle et al., 2023) ✓ non-global ✗ ✓ ✓(block)
Cliff (Barin-Pacela et al., 2024, and here) ✓ non-global ✓ ✓ ✓(quantized)

Table 1: Contrasting theoretical guarantees of unsupervised disentanglement approaches. Cliff (following
from Barin-Pacela et al. (2024)) is the only approach with minimal assumptions (no auxiliary info, no global
density constraints, allows for correlated latent variables and general diffeomorphisms) that still allows for
(quantized) identifiability guarantees.

quantized into this fixed binning. In contrast, our method aims to learn a natural quantization of factors
based on properties that are preserved under a diffeomorphism, which makes it theoretically sound. One
recent direction proposed by Hsu et al. (2024) builds on quantizing latent variables (Hsu et al., 2023; Mentzer
et al., 2024) and combines it with three other inductive biases for disentanglement: encoding into independent
latent variables (Chen et al., 2018) and having these variables interact minimally to generate data (Peebles
et al., 2020). In contrast, this work is motivated to allow correlations between the latent variables.

Compared to other disentanglement methods that allow for correlations between the latent variables (Roth
et al., 2023; Träuble et al., 2021; Wang & Jordan, 2021; Morioka & Hyvärinen, 2024), our work is more
general as it explores the idea of latent quantization, hence requiring fewer and weaker assumptions. In
particular, the theoretical results (Barin-Pacela et al., 2024) do not require factorized support (Roth et al.,
2023; Wang & Jordan, 2021; Ahuja et al., 2022b) or knowledge about the grouping structure of observed
variables (Morioka & Hyvärinen, 2024).

Table 1 compares the main methods for unsupervised disentanglement. We distinguish between global and
non-global constraints on the density of latent factors pz, with the purpose of judging the strength of the
assumptions and their usefulness in practice. Hence, here “global" refers to when the main assumption on pz

cannot be checked by simply looking at the neighborhood of points (for instance, factorized support requires
global alignment between the boundaries). Alternatively, “non-global" means that the main assumption on
the density can be checked by only looking locally at the distribution, using only a small neighbourhood
around each point (for instance, a cliff). Furthermore, we clarify that while Wang & Jordan (2021) provides
an identifiability proof, it makes a very strong assumption on the mixing map that is not enforced in
the proposed method and has been replaced by an assumption on the map or auxiliary (interventional)
information in follow-up work (Ahuja et al., 2022b). Finally, the table illustrates our proposal to develop
an empirical method with identifiability guarantees that has fewer and weaker assumptions than existing
methods.

4 A new regularizer: Cliff Alignment (Cliff)

The disentanglement principle suggested by the quantized identifiability theory (Barin-Pacela et al., 2024) is
simple to state: “Learn a diffeomorphism that maps observations to recovered factors such that the discon-
tinuities in the joint pdf of these factors form an axis-aligned grid”. But translating this high-level principle
into an effective practical criterion is far from straightforward. We wish to design an experimental crite-
rion that encourages the model to learn discontinuities in the latent space, and for them to be independent
(aligned with the axes).

To lighten the notation, for the remainder of the paper, we will refer to the estimated latent factor z′
i as zi.

We consider a finite sample of n observed data points D = {x(1), . . . , x(n)} that are mapped to their recovered
representations {z(1), . . . , z(n)} via a learned parameterized function (such as a neural network) ϕθ, i.e.
z(k) = ϕθ(x(k)) where z(k) denotes the vector of all factors of the k-th training point. We use kernel density
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Figure 1: a. Joint PDF p(z1, z2) with a cliff at z1 = 0, parallel (aligned) to the z2 axis. b. Marginal PDF
of z1, p(z1), displayed on the left axis; magnitude of the gradient ∂p(z1)/∂z1 on the right axis (on a different
scale). The magnitude of the gradient is high at the cliff, which is a point of sharp change in the marginal
density. c. Marginal PDF of z2, p(z2), and its repective gradient magnitude; no cliffs observed along this
axis.

estimation to approximate the true probability density of recovered factors p(z) in the finite-sample setting.
We employ a Gaussian kernel of fixed bandwidth σ (Parzen Windows estimator).

p̂σ(z) = 1
n

n∑
k=1

N (z; z(k), σ2I), (1)

where N (z; z(k), σ2I) denotes the evaluation at z of the pdf of a Gaussian of mean z(k) and diagonal covariance
σ2I.

This yields a kernel-smoothed version of the true density. In this smoothed version, discontinuities are also
smoothed, so that they will appear as cliffs with a steep slope (large but finite derivative) instead of actual
discontinuities (infinite derivative). Therefore, we aim to design a criterion that encourages the pdf to have
cliffs of high slope aligned with the axes.

One additional practical difficulty is that, while kernel density estimation works well in low dimensions, in
high dimensions it tends to be quite challenging and unreliable. Luckily, the characteristic of independent
(axis-aligned) discontinuities in the joint pdf p(z1, . . . , zd) should also be present in subsets of factors, as
illustrated in Figure 1. Therefore, in practice, we relax our characterization to encourage a mapping that
yields z with:

1. discontinuities in marginal pdfs p(zi) (univariate criterion).

2. discontinuities that are independent, in all pairs of factors p(zi, zj), with j ̸= i (bivariate criterion).

Hence, we can simply use low-dimensional kernel density estimates to estimate p(zi) and p(zi, zj).

As motivated above, we can consider the presence of derivatives of high magnitude in the estimated density
as evidence for the presence of discontinuities in the true pdf that has been kernel-smoothed. Note that the
scale of the factors yielded by the mapping ϕθ is irrelevant for the characterization of their pdf as having
independent discontinuities. Thus, we first standardize each factor zi to have zero mean and unit variance,
and then use a fixed-width kernel density estimation.
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Figure 2: a. Joint PDF with p(z1, z2) with a cliff parallel to the diagonal, therefore not axis-aligned – this
is the same density as in Figure 1, but rotated by 45◦. b. Marginal PDF of z1, p(z1) and its respective
gradient magnitude ∂p(z1)/∂z1. c. Marginal PDF of z2, p(z2), and its respective gradient magnitude. No
cliffs observed in the marginals because this cliff is not axis-aligned. Note that while there are some bumps
in the gradient magnitude, the scale of this magnitude is small, especially when compared to the cliff from
Figure 1.

To simplify notation, from here on, p(zi) and p(zi, zj) will no longer denote the true pdf of the original z,
but the result of the 1d or 2d kernel density estimate p̂σ on standardized zi or (zi, zj).

Specifically, for each batch of size n, we first standardize z, and then compute:

p(zi) = 1
n

n∑
k=1

N (zi; z
(k)
i , σ2) (2)

and

p(zi, zj) = 1
n

n∑
k=1

N ((zi, zj); (z(k)
i , z

(k)
j ), σ2I). (3)

Furthermore, our criterion is based primarily on (partial) derivatives of the estimated densities, which can
be computed in a similar way:

dp(zi)
dzi

= 1
n

n∑
k=1

d

dzi
N (zi; z

(k)
i , σ2) (4)

and
∂p(zi, zj)

∂zi
= 1

n

n∑
k=1

∂

∂zi
N ((zi, zj); (z(k)

i , z
(k)
j ), σ2I), (5)

where the (partial) derivative of the Gaussian kernel has a straightforward analytic expression.

The remainder of the section defines each term of the training objective.

4.1 Univariate criterion – Encouraging cliffs in the marginals

This term of the criterion aims to encourage the curve corresponding to the magnitude of the gradients of

the marginal
∣∣∣∣dp(zi)

dzi

∣∣∣∣ to be very peaky, to have a few steep spikes (Figure 1). When this magnitude is high
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enough, we call it a cliff. From the perspective of information theory, we would like the distribution to be
as far as possible from a uniform distribution, which is the distribution with finite support that maximizes
the entropy. This is a similar approach taken by independent component analysis (ICA), which attempts
to move away from Gaussian distributions by maximizing the negentropy, since for infinite support, the
Gaussian is the distribution that maximizes the entropy with specified mean and variance. However, here
we are focusing not on the density, but on its derivative dp(zi)

dzi
. Therefore, we formulate the following term

for the criterion. We define si to be the magnitude of the derivative of the marginal density of a factor

si(zi) = 1
c

∣∣∣∣dp(zi)
dzi

∣∣∣∣ , (6)

where c is the normalization constant that ensures s integrates to 1:

c =
∫

Zi

∣∣∣∣dp(zi)
dzi

∣∣∣∣ dzi. (7)

We can interpret si as a pdf which is high wherever the derivative of p(zi) has a high magnitude. Then, we
compute its differential entropy:

H(si) = −
∫

si(zi) log(si(zi)) dzi (8)

The entropy is a measure of “peakiness”: it is the lowest when high magnitude derivatives are concentrated
around one or a few points, which is what we want to encourage with this term.

Therefore, the univariate criterion hereby proposed simply adds the entropy for the density derivative of
each factor:

luni =
d∑

i=1
H(si). (9)

Since the goal is to minimize the entropy, luni should be minimized.

Intuitively, this criterion not only encourages a spiky landscape but also aligns the spikes with the axes. As
an illustration, Figure 1.b plots the ground-truth gradient magnitude and its respective marginal density.
While there could be more distributions that result in the gradient function shown, the goal is to recover the
underlying marginal (green), which has axis-aligned cliffs. This argument is validated in Figure 5, where it
is visible that this criterion is optimal at the axis-aligned directions.

Second, we elaborate on how axis-aligned cliffs can be detected from the marginals. Suppose that there is a
discontinuity in the joint p(zi, zj) that is not axis-aligned, then the discontinuity will not be steep enough in
the marginal, as illustrated in Figure 2. Since the marginal cliffs are sharper and more pronounced than the
joint cliffs, the univariate criterion will encourage the marginals to have cliffs that are aligned with the axes.

As a technical remark, note that the Dirac delta distribution could be a solution for equation 9, and this
solution will be avoided by counterbalancing it with another term in the loss function, as will be explained
in section 4.3. The criterion we develop involves several one-dimensional integrals along a factor, used above
to define c or H(si). In practice, they are estimated via basic numerical integration:∫

f(zi) dzi ≈ b − a

K

∑
zi∈I(a,b,K)

f(zi), (10)

where I(a, b, K) is a set of K equally-spaced values between a and b.1

1In practice, to estimate integrals along our standardized zi, we use I(−5, +5, 100).
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4.2 Bivariate criterion – Encouraging independent cliffs

For a visual understanding of independent discontinuities, Figure 1 illustrates an independent cliff, while
Figure 2 illustrates a cliff that is not independent, as it is not aligned with the axes. Note that the cliff in
Figure 1.a is independent since, for any value of z2, there is always a discontinuity at z1, therefore being
independent of the value of z2 (hence in agreement with the definition B.1). On the other hand, the cliff in
Figure 2.a is not independent, as there is not a particular value of z1 for which there would be a discontinuity
at any value of z2 or vice-versa.

To encourage the discontinuities to be independent, we look at different assignments of zj in ∂p(zi|zj)
∂zi

, and
expect all of these different functions to be similar or “close to each other”. In particular, we look at the

location of the peaks of these functions, which are the zi that lead to high-magnitude
∣∣∣∣∂p(zi|zj)

∂zi

∣∣∣∣, and the

location of these peaks should be the same across all the different assignments of zj .

First, we deduce the derivative of the conditional ∂p(zi|zj)
∂zi

from the kernel density estimates in Eq. 2 and
Eq. 5 as follows:

∂p(zi|zj)
∂zi

= 1
p(zj)

∂p(zi, zj)
∂zi

. (11)

Then, we define “density derivative magnitudes” as

uij(zi|zj) =
∣∣∣∣∂p(zi|zj)

∂zi

∣∣∣∣ , (12)

and the corresponding normalized density as

p̃ij(zi|zj) = uij(zi|zj)∫
uij(z′

i|zj)dz′
i

. (13)

Here, p̃ij(·|zj) can be interpreted as a new probability density function, which is concentrated wherever the
derivative of p(zi|zj) has a high magnitude.

We will use these to encourage pij(zi|zj) to have high derivative magnitude (cliffs) at the same locations,
independent of the values taken by zj . This is done as follows. Let {ζ1, . . . , ζM } be M values of zj , picked
randomly from the training batch. We encourage the p̃ij(·|zj = ζk) to be close to each other across the
different ζk by minimizing their generalized Jensen-Shannon divergence (JSD) 2:

lJSD(i|j) = JSD [p̃ij(·|zj = ζ1), . . . , p̃ij(·|zj = ζM )]

= 1
M

m∑
k=1

DKL(p̃ij(·|zj = ζk)∥m̃)

= H(m̃) − 1
M

M∑
k=1

H(p̃ij(·|zj))

(14)

where m̃(zi) = 1
M

∑M
k=1 p̃ij(zi|zj = ζk) and DKL denotes the Kullback-Leibler divergence. The differential

entropy H is defined as previously in Eq. 8.

This is repeated for each pair of variables i, j from the d variables, yielding the bivariate component of the
loss:

2We have explored some divergences from the f-divergence family, such as the squared Hellinger distance, as well as other
measures that are not in the f-divergence family, and found that JSD worked best in practice through the analysis described in
Appendix C.
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lbiv =
d∑

i=1

∑
j ̸=i

lJSD(i|j). (15)

4.3 Preventing the collapse to Diracs

Lastly, we introduce a term to avoid degenerate solutions, such as the Dirac delta distribution mentioned
earlier, or the collapse of the latent variables to a very small scale. It encourages the density of each
standardized zi to be spread out not too unevenly, enforcing p(zi) for each dimension i to be close to a
uniform distribution. This is implemented as the KL divergence between these marginals and a uniform.

lKL-uni =
d∑

i=1
KL(U(−

√
3,

√
3), p(zi))

=
d∑

i=1
(−2

√
3 − Ezi∼U(−

√
3,

√
3)[log(p(zi)])

(16)

We use a uniform between −
√

3 and
√

3 because it has mean 0 and variance 1, as does the standardized zi.
The expectation is estimated as an average over K samples from that uniform.

This term is useful even when the univariate criterion is not used, but only the bivariate. It encourages the
support of the distribution to be learned more efficiently by “spreading" the distribution.

4.4 Total loss

We combine the three loss components defined into a weighted sum:

LCliff = λuniluni + λbivlbiv + λKL-unilKL-uni, (17)
where the corresponding λ are hyperparameters controlling the relative strengths of each loss component.
Training consists of learning the model parameters θ that produce the factors z that minimize the loss LCliff.

An interesting visualization of the loss landscape and how each term of the criterion promotes axis alignment
is available in Appendix C.

Computational complexity We compute the loss for a batch of length n with d factors. We use K
values to estimate one-dimensional integrals along zi, and M different values for conditioning zj .

The computational complexity is:

• univariate term luni: O(dKn)

• bivariate term lbiv: O(d2MKn)

• anticollapse term lKL-uni: O(dKn).

So the total loss computation has an overall complexity of O(d2MKn).

5 Experiments

To assess if the proposed criterion for generic nonlinear transformations is effective for unsupervised disen-
tanglement and prove its usefulness against current methods, we present three sets of experiments to answer
the following questions:

1. Can Cliff correctly estimate latent variables under nonlinear transformations?
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(a) True factors z (b) Observed variables x

(c) Cliff’s learned factors
z′

(d) IOSS learned factors
z′

Figure 3: Synthetic data: True factors z (a) are mapped through observed variables x through a nonlinear
mixing function. The nonlinearity is manifested through distortions. We learn a decoder g that yields the
reconstructed factor z′ = g(x). Our method, Cliff (c) matches the true factors (a) almost perfectly and
obtains a much more straight and axis-aligned representation (MCC of 94.1 ± 0.9) than IOSS (d) (MCC of
91.6 ± 0.8) .

2. Does Cliff show a benefit when tested on a dataset that fulfills the assumption of axis-aligned
discontinuities?

3. Is Cliff competitive against other disentanglement methods?

For question 1, we apply Cliff to a synthetic dataset with axis-aligned discontinuities, where it is possible
to visualize the latent factors and their discontinuities, how they are deformed into observed space, how the
reconstructed latent factors look, and whether they are aligned with the axes. Compared to other identifiable
models, Cliff exhibits better alignment with the axes, which is the goal of disentanglement.

For question 2, we use a dataset with synthetically rendered images of balls (a variation of the dSprites
dataset) whose latent variables (coordinates) have axis-aligned discontinuities. We observe that Cliff out-
performs other models.

For question 3, we evaluate our method on the Shapes3D dataset, a widely used disentanglement benchmark,
and compare it with other methods for unsupervised disentanglement, showing that our method demonstrates
superior performance.

Regarding the main baselines, both the Independence-Of-Support Score (IOSS) (Wang & Jordan, 2021) and
Hausdorff Factorized Support (HFS) (Roth et al., 2023) encourage the independence of the support of the
latent factors, or equivalently, they both encourage the support to be factorized. However, they employ
different estimation procedures that are appropriate depending on the dataset. Therefore, we will use IOSS
for the first two questions and HFS for the last one. See Appendix D.5 for a more extensive discussion. All
the experimental details, such as hyperparameter configurations and model architectures, are available in
Appendix D.

5.1 Synthetic data

To answer question 1, we evaluate if Cliff can identify the true latent variables under nonlinear transforma-
tions in the simplest setting, with synthetic data and when the assumption is fulfilled. We use the synthetic
dataset generation of the latent factors z from Barin-Pacela et al. (2024), as it follows the axis-alignment
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assumption. However, we replace the mixing function with a nonlinear mixing to visualize the distortion of
the discontinuities in the observed variables. The dataset has axis-aligned discontinuities in pz, as illustrated
in Figure 3a. A nonlinear mixing function f transforms z onto x, as seen in Figure 3b.

Cliff’s reconstruction z′ is very similar to z, as depicted in 3c, with clearly axis-aligned discontinuities and
support. On the other hand, IOSS’s (Wang & Jordan, 2021) reconstruction is not axis-aligned, as seen in
Figure 3d.

For a quantitative comparison, we run both methods under 10 different initializations; Cliff reaches a Mean
Correlation Coefficient (MCC) of 94.1±0.9, while IOSS reaches an MCC of 91.6±0.8. Therefore, for question
1, we conclude that not only Cliff can reconstruct latent variables in this simple and controlled nonlinear
setting, but it also outperforms the current strongest baseline.

5.2 Balls dataset

To answer question 2, we test whether Cliff still succeeds in more realistic datasets of images, while the
main assumption is still satisfied. We use a variant of the dSprites dataset (Matthey et al., 2017), the
balls dataset from Ahuja et al. (2022a), where it is possible to control the distribution pz such that it has
axis-aligned discontinuities. We develop the models and code from Lachapelle et al. (2023). We render two
balls per image, each ball having its own color and whose coordinates are the latent variables that follow
the same distribution as the latent factors of the synthetic data described in the previous section. That
is, z = (z1, z2, z3, z4), where (z1, z2) are the coordinates of ball 1 and (z3, z4) are the coordinates of ball 2.
There are 4 axis-aligned discontinuities in z1, 3 in z2, 4 in z3, and 3 in z4.

We train an autoencoder with encoder gϕ, decoder fθ, and a regularization term weighted by λa accounting
for the Cliff loss LCliff described previously. Thus, the optimized loss is

L = 1
n

∥x − fθ(gϕ(x))∥2
2︸ ︷︷ ︸

reconstruction error

+ λaLCliff.︸ ︷︷ ︸
axis-alignment term

(18)

We compare our method with the additive decoder (Lachapelle et al., 2022) and IOSS (Wang & Jordan,
2021) and evaluate them with the Mean Correlation Coefficient (MCC) with Spearman correlation coefficient
since it gives the correlations up to nonlinear transformations. Similarly, the baselines are trained as an
autoencoder with a regularization term encouraging the corresponding inductive bias, as established in the
original evaluation for this task in Lachapelle et al. (2023). Both Cliff and IOSS are added as regularization
terms on the autoencoder loss. We report the mean and standard error for each method. Table 2 shows that
Cliff’s MCC outperforms IOSS’, whose assumption of factorized support also holds. The additive decoders
perform the worst as there are overlaps between the balls. Therefore, for question 2, we conclude that Cliff
achieves better results than both IOSS and Additive decoders, proving to be a suitable method when the
model assumptions are fulfilled.

Method MCC
Cliff 71.10 ± 2.98
IOSS 60.51 ± 5.58
Additive Decoder 37.80 ± 3.49

Table 2: Balls dataset Ahuja et al. (2022a): identification of the coordinates of two balls. Our model, Cliff,
outperforms additive decoders (Lachapelle et al., 2022). Mean and standard error are reported for the MCC
with the Spearman coefficient over 10 different initializations.
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Method D C I MIG
Cliff 80.33 ± 2.60 68.52 ± 1.52 99.26 ± 0.30 28.54 ± 2.45
HFS 70.64 ± 4.77 78.29 ± 4.55 94.09 ± 2.07 58.82 ± 7.20
β-VAE 69.72 ± 3.54 63.84 ± 3.23 97.08 ± 1.43 24.60 ± 1.65

Table 3: Disentanglement scores for the Shapes3D dataset (Kim & Mnih, 2018). We report the Disentan-
glement (D), Completeness (C), Informativeness (I) (Eastwood & Williams, 2018), and Mutual Information
Gap (MIG) (Chen et al., 2018). Our method (Cliff) outperforms Hausdorff Factorized Support (HFS) (Roth
et al., 2023) and β-VAE (Higgins et al., 2017) on the disentanglement score D. Both Cliff and HFS are
regularizers added to the β-VAE. The mean and its standard error are reported.

5.3 Disentanglement benchmarks

For question 3, we test the general usefulness of Cliff even when the assumption of axis-aligned discontinuities
is not clearly fulfilled, with the goal being to determine if the overall method is useful for unsupervised
disentanglement broadly and if it is competitive to the baselines. We evaluate our model on synthetically-
rendered datasets that contain the true factors of generation of the images, such as pose, angle, color of the
object, and background. This section focuses on the Shapes3D dataset (Kim & Mnih, 2018). This dataset
contains 6 factors of variation: floor color, wall color, object color, object size, object type, and azimuthal
angle of the object.

While the object type is a variable of discrete nature, all the others are of continuous nature. However,
their values are a set of linearly spaced points, such that these variables can also be considered ordinal.
Although Cliff considers continuous latent factors, its density estimation procedure relies on the Parzen
window density estimator with bandwidth σ3. When a large enough σ acts on a grid of ordinal values, the
smoothed estimated density will have axis-aligned discontinuities satisfying our requirements.

We build on the “Disentangling Correlated Factors” library (Roth et al., 2023) and follow a similar method-
ology as established in the literature for this dataset (Roth et al., 2023; Locatello et al., 2019). Notably, 10
latent factors are estimated for all the methods presented. While being higher than the number of ground
truth latent factors, this allows for considerable benefits in the optimization. We reserve for future work the
study on the effect of the number of latent factors on optimization and identifiability. Yet, we observe that
while overestimating the number of factors harms the compactness of the representation (and the complete-
ness score will suffer), the representation will not necessarily be entangled since instead, multiple estimated
factors may be redundantly representing the same one factor from the ground truth. This being said, we
decide that for this task, the most relevant evaluation metric is the disentanglement score (D) from DCI
(Eastwood & Williams, 2018), which is also in agreement with previous work (Roth et al., 2023).

We present results on the two main baselines: β-VAE (Higgins et al., 2017) and HFS (Roth et al., 2023).
These baselines were chosen because the β-VAE is the simplest baseline on unsupervised disentanglement,
and HFS is the main competitor of Cliff for this task. Both HFS and Cliff are implemented as a regularization
term added to the β-VAE. For example, for Cliff, the loss on this task is given as

L = −Ez∼qϕ(z|x) log pθ(x|z)︸ ︷︷ ︸
reconstruction term

+ βKL(qϕ(z|x) || pθ(z))︸ ︷︷ ︸
KL divergence term

+ λaLCliff︸ ︷︷ ︸
axis-alignment term

(19)

for a probabilistic encoder qϕ(z), decoder pθ(x|z), and λa being the regularization coefficient for the axis-
alignment term.

For hyperparameter selection, we consider the initialization as one of the optimization hyperparameters to
be chosen. Each set of hyperparameters is run for 10 seeds, and the best seed is selected based on the D

3For different datasets than the ones reported here, it may be necessary to do a hyperparameter search to find the best σ.
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score. Then, the mean and standard error are computed for the selected set of hyperparameters for each
of the scores. The details about the hyperparameter grid and the optimal hyperparameters selected are in
Appendix D.

As seen in Table 3, Cliff obtains the best D score compared to both HFS and β-VAE. We notice that while
the C and I scores are not high, this is to be expected since the theory guarantees only the quantized
identification of factors. The discussion of the DCI-ES score and its connection to identifiability from
Eastwood et al. (2023) implies that only when all of the D, C,I , E and S scores are close to 1 (or 100 in
this scaled case), precise identifiability up to scale and permutation is possible. Without the E score (which
is severely computationally expensive), it is difficult to make more conclusions about where exactly in the
identifiability spectrum our model lies, but it seems to hint at possible indeterminacy inside the quantization,
as expected from this criterion.

Therefore, for question 3, we conclude that Cliff is a useful method for unsupervised disentanglement even
when its main assumption is not completely fulfilled (the discontinuities are not pronounced), demonstrating
potential evidence for the practicality of non-global assumptions about the density discussed previously.
The high disentanglement score of 80.33 ± 2.60 on this task is evidence of good identification of the latent
variables, and beyond that, it also outperforms the baselines.

6 Conclusion

We tackle the problem of nonlinear unsupervised disentanglement and propose a criterion for aligning the
discontinuities in the density of the learned latent factors with the axes. This criterion is based on the theory
of identifiability of quantized factors, for which a criterion had been proposed only for the linear case. We
extend current disentanglement benchmarks for a more reliable evaluation and show that our method, Cliff,
outperforms the other methods according to the MCC and DCI scores.

Our empirical evaluation answers three important questions. First, the proposed criterion can better identify
the latent variables than IOSS, and the axis alignment can be verified visually. Second, we verify Cliff’s
performance in a dataset where its assumptions of axis-aligned discontinuities are fulfilled. The improvement
over the other methods showcases the benefits of applying this method in real datasets satisfying the axis-
alignment assumption (which were motivated in Barin-Pacela et al. (2024)). Third, we demonstrate that
Cliff is competitive against other methods for unsupervised disentanglement in the Shapes3D benchmark.

This work illustrates the potential of completely unsupervised disentanglement methods, a promising en-
deavor for real-world datasets. In future work, we hope to evaluate the usefulness of reusing disentangled
representations learned through Cliff in an unsupervised manner for downstream tasks, hoping to improve
sample efficiency and worst-group accuracy for example.
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A Appendix

B Summary of theorems from “On the Identifiability of Quantized Factors”
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Figure 4: Figure from Barin-Pacela et al. (2024). Recovery of quantized factors. Left: The
true (continuous) latent factors Z1 and Z2 are not independent, but their joint probability density pZ has
independent discontinuities: sharp changes in the density that are aligned with the axes and form a grid.
Middle: The factors get warped and entangled by the diffeomorphism f into observations X, but the
discontinuities in their density survive in the observed space. Right: We can learn a diffeomorphism g that
yields a density pZ′ having axis-aligned discontinuities. This suffices to recover a grid whose cells match the
initial grid’s cells (up to possible permutation and axis reversal). Pink cell example: the points Z ′ in cell
(3, 2) originated from the points Z in cell (3, 2). To construct these cells, the quantization of each continuous
factor to an integer depends on thresholds based on the location of the discontinuities. The quantizations
of Z ′

1 and Z ′
2 match precisely the quantizations of Z1 and Z2, up to possible permutation and axis reversal.

This summarizes the identifiability of quantized factors under diffeomorphisms.

Here, we reintroduce the main definitions and theorems from Barin-Pacela et al. (2024). Figure 4 summarizes
the main result from the main theorem (Theorem 2). For ease of reference, we reuse the figure and caption
from Barin-Pacela et al. (2024).

B.1 Main definitions and results

Setup (Barin-Pacela et al., 2024):

h=g◦f

Z︸︷︷︸
⊂Rd

true factors

∼ pZ

−−−−−−−−−−−−−−−−−−−−→
f−−−−−→

unknown
X︸︷︷︸

⊂RD

observed data

g≈f−1

−−−−→
learned

Z ′︸︷︷︸
⊂Rd

recovered factors
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(Barin-Pacela et al., 2024) Precise Identifiability of Factors: Knowledge of pX is sufficient to
determine a reverse mapping g : RD → Rd that will yield recovered factors (Z ′

1, . . . , Z ′
d) = g(X) that

correspond one-to-one to the ground-truth factors (Z1, . . . , Zd), up to permutation and component-wise
invertible transformations (ideally monotonic).

(Barin-Pacela et al., 2024) Identifiability of Quantized Factors: Knowledge of pX is sufficient
to determine a reverse mapping g : RD → Rd that will yield recovered factors (Z ′

1, . . . , Z ′
d) = g(X) such

that their quantization (q′
1(Z ′

1), . . . , q′
d(Z ′

d)) will correspond one-to-one to the quantized ground-truth factors
(q1(Z1), . . . , qd(Zd)), up to possible permutation of indices and order reversal.
Definition B.1. (Barin-Pacela et al., 2024) Let S be the support of pZ . We say that pZ has an independent
discontinuity at Zi = τ when every point in the intersection of the coordinate hyperplane {zi = τ} with S
is a non-removable discontinuity of pZ . Formally, this independent discontinuity at Zi = τ is defined as the
set ΓS(i, τ) = {z ∈ S|zi = τ} under the condition that ∀z ∈ ΓS(i, τ), pZ has a non-removable discontinuity
at z.

B.1.1 Summary of the main result (Barin-Pacela et al., 2024)

Assumptions

• f is a diffeomorphism

• (Z1, . . . , Zd) ∼ pZ are d continuous random variables.

• The interior of the support of pZ is a connected set.

• The set of non-removable discontinuities of pZ is the union of a finite set of independent discontinu-
ities that together form an axis-aligned grid. This grid must also possess a backbone.

Quantized factor identifiability theorem Under the above assumptions:

• It suffices to learn a diffeomorphism g yielding Z ′ = g(X) such that the PDF of pZ′ has independent
discontinuities forming an axis-aligned grid.

• Then, the quantized reconstructed factors (q′
1(Z ′

1), . . . , q′
d(Z ′

d)) will correspond one-to-one to the
quantized ground-truth factors (q1(Z1), . . . , qd(Zd)), up to possible permutation of indices (and order
reversal).

• The quantization thresholds used for qi and q′
i are obtained as the locations of the independent

discontinuities.

B.2 Main theorems

Theorem 1. (Barin-Pacela et al., 2024) Grid structure preservation and recovery theorem. Let
h : S ⊂ Rd → S ′ ⊂ Rd be a diffeomorphism, where both S and S ′ are open connected subsets of Rd. Suppose
we have an axis-aligned grid G ⊂ S, associated with its axis-separator-set G and discrete coordination A,
that is, G = gridS(A). While the grid does not need to be “complete”, we suppose that G has at least one
backbone. Now, suppose that we have another axis-aligned grid in S ′, associated with its discrete coordination
B, with G′ = gridS′(B). Suppose G′ = h(G). Then, there exists a permutation function σ over dimension
indexes 1, . . . , d and a direction reversal vector s ∈ {−1, +1}d such that ∀j ∈ {1, . . . , d}, i = σ−1(j), K =
|Ai| = |Bj |, ∀k ∈ {1, . . . , K}, ∀z′ ∈ S ′,

If si = +1, then: 
z′

j = Bj,k ⇐⇒ h−1(z′)i = Ai,k,

z′
j > Bj,k ⇐⇒ h−1(z′)i > Ai,k,

z′
j < Bj,k ⇐⇒ h−1(z′)i < Ai,k;
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If si = −1, then: 
z′

j = Bj,k ⇐⇒ h−1(z′)i = Ai,K−k+1,

z′
j > Bj,k ⇐⇒ h−1(z′)i < Ai,K−k+1,

z′
j < Bj,k ⇐⇒ h−1(z′)i > Ai,K−k+1.

Corollary 1. (Barin-Pacela et al., 2024) Recovery of quantized factors. Under the same premises
as Theorem 1, consider random variables Z and Z ′ = h(Z). Using the quantization operation Q, we recover
quantized factors up to permutation σ of the axes and possible direction reversal indicated by s: ∀i ∈ 1, . . . , d,
Q(Zi; Ai) = Qsi(Z ′

j ; Bj) with j = σ(i).
Theorem 2. (Barin-Pacela et al., 2024) Quantized factors identifiability theorem. Let Z be
a latent random variable with values in Z ⊂ Rd and whose PDF is pZ . Let f : Z → X ⊂ RD be a
diffeomorphism, and X = f(Z) be the observed random variable. Assume that the support of the PDF pZ

is an open connected set4. Further assume that pZ has at least one connected independent discontinuity in
each dimension, such that the set of non-removable discontinuities of pZ forms an axis-aligned grid with a
backbone. Let A be the discrete coordination of this grid. Then, there exists a diffeomorphism g : X → Z ′

yielding a variable Z ′ = g(X) such that the set of non-removable discontinuities of the PDF pZ′ is an axis-
aligned grid. Consider any such diffeomorphism g, and let B be the discrete coordination of its resulting axis-
aligned grid. Then, there exists a permutation function σ over the dimension indexes 1, . . . , d, and a direction
reversal vector s ∈ {−1, +1}d such that q′

j(Z ′
j) = qi(Zi) with i = σ−1(j), where q′

j(Z ′
j) = Qsi(Z ′

j ; Bj) and
qi(Zi) = Q(Zi; Ai). In other words, the quantized factors in Z ′ agree with the quantized factors in Z, up to
permutation and possible axis reversal.

B.3 Criterion

Here, we further discuss how Cliff differs from the criterion from Barin-Pacela et al. (2024), the latter being
empirically successful only when the mixing function is linear.

Their criterion is designed to align the output of linear maps with the axes, but it is not sufficient for
nonlinear maps since they can completely distort the grid and it is important not only to align it with the
axes but to straighten the mapping too. We have verified this empirically but did not include the comparison
because we did not find it appropriate since it’s not designed for nonlinear maps.

In short, their criterion estimates the joint density p̂σ of z and uses it to obtain the gradients ∂ log p̂σ

∂z . Then,
they encourage the alignment of these gradient vectors with the standard basis vectors (axes) by maximizing
their cosine similarity.

In contrast, we estimate the joint density (and its respective gradients) only pairwise for two variables. We
also estimate the marginal and conditional of the latent factors, which is more scalable in high dimensions
and is the core of what is employed in each of our terms. Meanwhile, the criterion from Barin-Pacela et al.
(2024) depends completely on the joint density between all the factors, the estimation of which may not be
reliable on high dimensions. Finally, and most importantly, the balance of our three terms can straighten
grids that are completely warped by diffeomorphisms.

C Validating the criterion

We would like to verify how each term of the criterion encourages the discontinuities to be aligned with the
axes. For this, we can do a “grid search” over all the possible projections (in all possible directions), over
the two latent variables: z = (z1, z2). We want to learn two vectors, w1 and w2, which should lead z′

1 and
z′

2 to be axis-aligned. That is, we project z onto w1: projw1z = z · w1

||w1||2
= (||z|| cos θ1)ŵ1, where θ1 is the

angle between z and w1, and ŵ1 is the direction of the vector w1 with unit length.

Similarly, projw2z = z · w2 = cos θ2ŵ2. For simplicity, we can consider that z, w1, and w2 have unit norm.

4Alternatively, if the support is not open, we can consider its interior.
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Figure 5: Loss landscape. Top row: Univariate criterion (encouraging cliffs in the marginals), minimized
at 0◦ or 90◦. Bottom row: Bivariate criterion (encouraging independent cliffs): avoids θ1 = θ2 = 0◦ and
θ1 = θ2 = 90◦; instead, the minimum is at (0◦, 90◦) and its multiples.

We design a “projection matrix”

W =
[

w⊺
1

w⊺
2

]
such that z′ = Wz.

More precisely, w1 = (cos θ1, sin θ1), since w1,1 is the coordinate of w1 in the z1 axis, and w1,2 is the
coordinate of w2 in the z2 axis. Similarly, w2 = (cos θ2, sin θ2). With this, we can obtain all the possible
parameterizations as a function of θ1 and θ2:

z′ = Wz =
[

w⊺
1z

w⊺
2z

]
=

[
z1 cos θ1 + z2 sin θ1
z1 cos θ2 + z2 sin θ2

]
=

[
projw1z
projw2z

]
. (20)

This enables us to see the angles that minimize the loss. In Figure 5, the first term of the criterion (univariate
– encouraging cliffs in the marginals) is represented in the top row. On the left, the loss is minimized for 0◦,
90◦, and their multiples. On the right, this same univariate loss is depicted for two angles at the same time.
The second row presents the bivariate criterion (encouraging independent cliffs). The role of this term is to
prevent θ1 = θ2 at the minimum. The minimum of this term is shown in purple as combinations of 0 and 90
degrees, but they are never the same (as opposed to the univariate criterion).

C.1 Latent traversals example

The estimated latent factors can be visualized through the images in Figure 6, where each row corresponds to
a particular factor, and each column corresponds to a traversal across this factor. The aim of disentanglement
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Figure 6: Shapes3D latent traversals.

is that each factor should be unique and should not affect the others. For example, in the third row, we
observe that the only attribute that changes across different traversals (columns) is the angle, while all the
others are kept fixed (object color, wall color, object size, object shape), which is exactly what we desire.
On the other hand, the first row is changing various attributes across traversals, so this representation is not
disentangled yet.

D Experimental details

All the experiments are executed with the Adam optimizer with default parameters (apart from the learning
rate).

D.1 Density estimation training

First, we train a Parzen window density estimator on the (standardized) joint samples to obtain
pσ(ztrain

1 , ztrain
2 ). Then, we select a test set consisting of z1 being 100 linearly spaced samples between -

5 and 5, and z2 being the first 20 samples of the test set. We evaluate the density estimator on this test set
to obtain pσ(ztest

1 , ztest
2 ). We also evaluate the marginal pσ(ztest

2 ), from which we can obtain the conditional
pσ(ztest

1 |ztest
2 ) = pσ(ztest

1 , ztest
2 /pσ(ztest

2 )).

D.2 Synthetic dataset

We conducted an extensive empirical investigation and found that as long as the neural network (encoder
g) has enough capacity, Adam always converges to the desired solution in the datasets with axis-aligned
discontinuities in pz.

Hyperparameters for the results reported:

• learning rate = 0.002

• batch size = 5000

• number of epochs = 1000
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• λuni = 0.0

• λbiv = 1.0

• λKL-uni = 1.0

• number of datasets = 10

• number of samples in the dataset = 5000

D.3 Balls dataset

We follow the setting from Lachapelle et al. (2023) (including the encoder and decoder architectures):

• Dataset size: 20000

• Batch size: 64

• Learning rate: 0.001

• Number of seeds (initialization): 10

• number of epochs: 1000

For both our criterion and IOSS, we search over regularization strengths λa ∈ {0.1, 0.5, 1.0}. For Cliff, the
result is reported for optimal λ∗

a = 0.1, and for IOSS, λ∗
a = 1.0.

Cliff-specific hyperparameters:

• Learning rate (lr): 10−5

• Number of epochs: 105

• λ∗
uni = 0.5

• λ∗
biv = 1.0

• λ∗
KL-uni = 0.7

• σ = 0.1

We have searched over λuni ∈ {0.2, 0.5, 1.0}, λKL-uni ∈ {0.1, 0.5, 0.7} lr ∈ {10−5, 10−4, 10−3}.

Additive Decoder: “An additive decoder has the form f(z) =
∑

B∈B f (B)zB . Each f(B) has the same
architecture as the one presented above for the nonadditive case, but the input has dimensionality |B|"
(Lachapelle et al., 2022).

D.4 Shapes3D

We reuse the hyperparameters from Roth et al. (2023):

• learning rate = 0.0001

• batch size = 64

• number of epochs = 100

• evaluation batch size = 1000

• model architecture for VAE from Locatello et al. (2019)
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• number of estimated factors = 10

• number of initialization (seeds) = 10

For searching over the hyperparameters of Cliff’s criterion λuni, λbiv, λKL-uni, λa, we perform a series of
experiments to determine the grid range. When running the β-VAE, we observe that β = 10 gives a
high D score for β ∈ {1, 2, 4, 8, 10, 16}, so we fix β to 10 for all the experiments since there are already 4
other hyperparameters to search over. Initially, we take λuni ∈ {0.1, 0.2, 0.5, 0.7, 1.0}, λbiv = 10, λKL-uni ∈
{0.1, 0.2, 0.5, 0.7, 1.0}, λa = {0.1, 0.5, 1.0, 10, 16, 100}, and σ ∈ {0.1, 0.2, 0.5}. Some of these combinations
were discarded early in training for not being optimized easily.

For the baselines, we search over optimal hyperparameters as well. For the β-VAE, we search over β in the
range already mentioned, and for HFS, we search over both β and γ ∈ {1, 10, 100}.

The following hyperparameters were found to be optimal and are used in the results reported:

• Cliff: λuni = 0.5, λbiv = 1.0, λKL-uni = 0.7, λa = 1, σ = 0.1.

• HFS: β = 1, γ = 100.

• Beta VAE: β = 16.

D.5 Discussion on IOSS vs HFS

Both IOSS and HFS enforce the same inductive bias of factorized support, although there are slight differences
in the implementation.

The choice of one over the other is merely practical due to how much work it takes to tune the model for the
particular dataset, since we wish the baseline to be as strong as possible. HFS has already been trained on
Shapes3D by Roth et al. and we reuse their implementation to guarantee the best results since it relies on
particular estimation procedures and setups. For the balls dataset, neither IOSS nor HFS has been tuned as
a baseline, but IOSS is significantly easier to train due to its simple, modular and compact implementation,
as well as the stability of the method, which is why we chose it for the other datasets.

Expanding on the differences, first, we notice that “Independence Of Support" and “Factorized Support" are
equivalent notions, both defined by:

supp (Z1, . . . , Zd) = supp (Z1) × · · · × supp (Zd) (21)

This is computed through the Hausdorff distance between the set of mapped datapoints and a set of points
with factorized support. The HFS loss employs the Monte Carlo Hausdorff distance estimation and further
relaxing of the factorized support into pairwise factorization. The autoencoder term is crucial to avoid
collapse and retain input information. Therefore, we highlight that the HFS regularization term cannot be
employed on its own, and hyperparameter optimization always needs to happen together with the autoen-
coder terms, which makes it difficult to use in practice, as well as model-dependent, while our proposed
criterion is model agnostic.

Interestingly, IOSS is very similar to what we are proposing with lKL−uni in our criterion. In fact, we also
have an implementation of this criterion in the bivariate case, where we draw samples from 2D uniform
distributions, and the result should also have factorized support. Therefore, we conclude that our criterion
also encourages factorized support.

E Model architectures

E.1 Architectures for synthetic dataset

Encoder:

20



Under review as submission to TMLR

• Linear layer (2, 50) followed by tanh

• Linear layer (50, 100) followed by tanh

• Linear layer (100, 50) followed by tanh

• Linear layer (50, 2).

Ground-truth decoder: x = B tanh A (0.5 z)

E.2 Architectures from Lachapelle et al. (for balls dataset)

Encoder:

• RestNet-18 Architecture till the penultimate layer (512 dimensional feature output)

• Stack of 5 fully-connected layer blocks, with each block consisting of Linear Layer ( dimensions: 512
× 512), Batch Normalization layer, and Leaky ReLU activation (negative slope: 0.01).

• Final Linear Layer (dimension: 512 × d) followed by Batch Normalization Layer to output the latent
representation.

Decoder (Non-additive):

• Fully connected layer block with input as latent representation, consisting of Linear Layer (dimen-
sion: dz × 512), Batch Normalization layer, and Leaky ReLU activation (negative slope: 0.01).

• Stack of 5 fully-connected layer blocks, with each block consisting of Linear Layer ( dimensions: 512
× 512), Batch Normalization layer, and Leaky ReLU activation (negative slope: 0.01).

• Series of DeConvolutional layers, where each DeConvolutional layer is follwed by Leaky ReLU (neg-
ative slope: 0.01) activation.

– DeConvolution Layer (cin: 64, cout: 64, kernel: 4; stride: 2; padding: 1)
– DeConvolution Layer (cin: 64, cout: 32, kernel: 4; stride: 2; padding: 1)
– DeConvolution Layer (cin: 32, cout: 32, kernel: 4; stride: 2; padding: 1)
– DeConvolution Layer (cin: 32, cout: 3, kernel: 4; stride: 2; padding: 1)

E.3 Architectures from Locatello et al. (for Shapes3D dataset)

Encoder:

Input: 64 × 64× number of channels

4 × 4 conv, 32 ReLU, stride 2

4 × 4 conv, 32 ReLU, stride 2

4 × 4 conv, 64 ReLU, stride 2

4 × 4 conv, 64 ReLU, stride 2

FC 256, F2 2 × 10

(Bernoulli) Decoder:

Input: R10

FC, 256 ReLU

FC, 4 × 4 × 64 ReLU
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4 × 4 upconv, 64 ReLU, stride 2

4 × 4 upconv, 32 ReLU, stride 2

4 × 4 upconv, 32 ReLU, stride 2

4 × 4 upconv, number of channels, stride 2
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