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ABSTRACT

Humans naturally express uncertainty through verbal cues via uncertainty mark-
ers (e.g., “possible”, “likely”), yet existing Large Language Model (LLM) un-
certainty quantification (UQ) methods primarily rely on response likelihood or
semantic consistency, which are often computationally costly. Despite increas-
ing interest in LLM reliability, it remains underexplored how LLMs diverge from
humans in verbal uncertainty expression: Do LLMs share the same confidence
level of uncertainty markers as humans? Can we quantify LLM uncertainty ver-
bally? To address this gap, we study the divergence between humans and LLMs in
verbal uncertainty expression. Specifically, we first collect a corpus of human un-
certainty markers from the literature and systematically examine their alignment
with LLMs. Our extensive experiments reveal that LLMs may encode verbal un-
certainty with confidence levels that differ substantially from those of humans. To
bridge this mismatch, we introduce VOCAL, a novel optimization-based algorithm
that learns the confidence level for each uncertainty marker for LLMs. VOCAL
achieves comparable performance on par with state-of-the-art sampling-based UQ
methods over extensive experimental settings, with significantly reduced compu-
tational costs. Moreover, VOCAL disentangles the calibration mismatch and pin-
points the confidence disparity between human and LLM verbal expressions. This
work opens a new perspective on LLM UQ by grounding it in the verbal dimen-
sion of uncertainty expression, and offers insights into both model alignment and
human–AI communication.

1 INTRODUCTION

Despite large language models’ (LLMs) recent remarkable success across diverse domains (Yang
et al., 2024; Thapa et al., 2025; Xie et al., 2023; Colombo et al., 2024), a fundamental question
remains: when should we trust LLMs’ responses? This question highlights the need to make LLMs
more trustworthy and responsible. Hallucinations are not only mistakes but also risks that can reduce
users’ trust and cause harm in sensitive applications (Asgari et al., 2025; Das et al., 2025), like giving
unsafe treatment advice in biomedicine. One promising approach to mitigating this phenomenon is
uncertainty quantification (UQ) (Malinin & Gales, 2020; Kuhn et al., 2023a; Duan et al., 2024),
which aims to measure and express the confidence of a model in its predictions. UQ provides a
probabilistic signal of reliability directly from the model’s outputs. This enables the estimation of
a prediction’s trustworthiness even in the absence of labeled data, a scenario common in real-world
applications, and to distinguish between cases where the model is likely correct and those where it
may be uncertain, extrapolating, or hallucinating.

However, existing approaches for quantifying hallucination in LLMs still have some limitations.
Most current methods can be broadly divided into two main groups: sampling-based techniques
(Farquhar et al., 2024; Kossen et al., 2024; Li et al., 2025; McCabe et al., 2025) and logits-based
techniques (Nguyen et al., 2025; Ma et al., 2025; Yang et al., 2025; Sriramanan et al., 2024). Malinin
& Gales (2020) introduced predictive entropy (PE), a logits-based technique that can give useful
reliability estimates but often mistakes simple wording changes for uncertainty and usually requires
heavy computation. Sampling-based methods, such as semantic entropy (SE) Kuhn et al. (2023b),
ensemble variance, or consistency checks across multiple generations, can be more robust but are
also slow and costly, which makes them difficult to use in practice. Therefore, a recent direction
focuses on verbal uncertainty, where models are asked to output a confidence score (often on a 1–100
scale) in natural language form (Tian et al., 2023b). While this strategy can improve calibration
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Figure 1: Comparison of traditional uncertainty quantification (UQ) methods and our method VOCAL. Tradi-
tional UQ methods (sampling-based and logits-based) exhibit a gap with human uncertainty expressions. In
VOCAL, UM-lookup tables derived from human data alone cannot fully capture model uncertainty, so they are
optimized with the model’s confidence distribution to better align with its internal uncertainty expressions.

compared to raw probability outputs, it is still unnatural because humans do not usually express
uncertainty as exact numbers. Instead, people prefer qualitative terms such as “possible,” “likely,”
or “almost certain” in daily communication. These expressions are easier to understand and better
capture the nuance of human reasoning. This contrast shows a gap in current methods and points
to the need for approaches that allow models to express uncertainty in a way that is more natural,
human-like, and trustworthy for real-world use (Figure 1 (left)).

Motivated by this gap, our work investigates whether LLMs can express verbal uncertainty in a man-
ner comparable to humans. To study this question, we construct the first verbal uncertainty marker
lookup table (UM-Lookup) that maps qualitative expressions of uncertainty to numerical represen-
tations. The lookup table is built through a literature review grounded in psychology and decision
science (Lichtenstein & Newman, 1967; Beyth-Marom, 1982; Wesson & Pulford, 2009), followed
by a debiasing procedure to refine ambiguous cases. We then aggregate judgments from more than
300 human annotators, resulting in a curated resource of 115 distinct verbal uncertainty markers
with associated numeric interpretations. Leveraging this resource, we evaluate the ability of LLMs
to align their verbal expressions of uncertainty with human interpretations. Our results show that
LLMs demonstrate non-trivial UQ performance when assessed against the UM-Lookup. For exam-
ple, when evaluated with GPT-4o (Achiam et al., 2023) model on SciQ dataset(Welbl et al., 2017),
verbal uncertainty outperforms representative logits-based and sampling-based methods such as PE
and SE, achieving an improvement of 4.7% AUROC and 5.6% AUROC, respectively. However,
across broader benchmarks, verbalized UQ remains weaker than strong UQ baselines, reflecting a
gap between human-derived lookup tables for uncertainty markers and LLM confidence signals.

This gap largely arises from the difference between how humans and LLMs interpret verbal uncer-
tainty markers when they answer the same question. For example, when a model uses the term “pos-
sible”, it may actually associate it with a much higher confidence level than humans typically do. In
addition, humans often combine multiple verbal uncertainty markers to convey more fine-grained or
complex levels of confidence, while LLMs usually rely on a single marker at each time (Vogel et al.,
2022). These differences suggest a gap between human communication patterns and how LLMs
currently express verbal uncertainty. To address this gap, we propose VOCAL, an approximation
algorithm that provides an optimal mapping solution between uncertainty markers and confidence
levels by adapting to the confidence distribution of each model (Figure 1 (right)). VOCAL is evalu-
ated over comprehensive experiments on a wide range of models and datasets. Our results demon-
strate that the VOCAL significantly outperforms single-turn UQ methods, such as Aichberger et al.
(2025), and achieve comparable performance as multi-sample UQs, without additional sampling or
computational requests. Our contribution can be summarized as:

• We highlight the necessity of studying LLM verbal uncertainty, an underexplored but crit-
ical aspect of trustworthy AI, and construct the first lookup table that maps human verbal
uncertainty markers to numerical confidence scores, grounded in psychology and decision
science. This lookup table is a foundational resource that could benefit follow-up verbal
uncertainty quantification methods in the future.
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• We propose a simple yet effective method, VOCAL, that optimizes the alignment between
verbal markers and model confidence distributions.

• We conduct comprehensive experiments across multiple models and datasets, providing
in-depth analysis and demonstrating the effectiveness of our method. We demonstrate that
VOCAL significantly outperforms single-sample UQ methods and achieves comparable per-
formances as multi-sample UQ methods, with significantly reduced computational cost.

2 RELATED WORK

LLM Uncertainty Quantification The need to mitigate untrustworthy outputs from large language
models (LLMs), such as hallucinations, has made Uncertainty Quantification (UQ) a critical area of
research. UQ for free-form generative models is uniquely challenging because a correct answer can
be expressed in countless semantically equivalent ways (Lin et al., 2023; Kuhn et al., 2023a). This
renders early methods like predictive entropy (PE) insufficient, as they often misinterpret this benign
lexical variance as genuine semantic uncertainty (Kuhn et al., 2023a). To address this, a significant
body of work has shifted towards semantic-aware UQ. Semantic Entropy (SE) Kuhn et al. (2023a)
clusters semantically equivalent outputs before computing entropy, providing a more meaningful
measure of uncertainty. Similarly, Semantic Density (SD) Qiu & Miikkulainen (2024) quantifies a
response’s confidence by measuring its density within a semantic space. In contrast, other methods
probe the internal states or consistency of the LLM. Deg Lin et al. (2023) and its successor, IN-
SIDE Chen et al. (2024) analyze consistency across multiple generations to quantify uncertainty
from a black-box perspective. Furthermore, Shifting Attention to Relevance (SAR) Duan et al.
(2024) addresses the generative imbalance by assigning more weight to semantically relevant parts
of a generation. In more complex scenarios, UProp Duan et al. (2025) introduces a framework to
decompose and quantify uncertainty propagation in multi-step decision processes. Alternatively,
G-NLL Aichberger et al. (2025) offers a computationally efficient UQ method based on the nega-
tive log-likelihood of a single greedy-decoded output, challenging the necessity of multi-sampling.
These diverse approaches highlight the evolution of LLM UQ from simple lexical metrics to more
semantically robust, context-aware, and computationally efficient solutions.

Verbalized Uncertainty in LLMs Verbalized uncertainty, which leverages natural language to com-
municate model confidence, has emerged as a key UQ paradigm, pioneered in studies on linguistic
calibration and teaching models to express their uncertainty in words (Mielke et al., 2022; Lin et al.,
2022). Subsequent black-box evaluations revealed that even poorly calibrated RLHF models can
produce better-calibrated estimates when prompted to verbalize confidence (Tian et al., 2023a), and
that their inherent overconfidence can be mitigated with carefully designed prompts and aggregation
methods (Xiong et al., 2023). Moving beyond black-box analysis, recent work has identified an
internal "Verbal Uncertainty Feature" (VUF), demonstrating that miscalibrations between this fea-
ture and a model’s semantic uncertainty can cause confident hallucinations, which can be detected
and mitigated via inference-time interventions (Ji et al., 2025). While much of this research has
centered on eliciting numerical scores, these efforts connect to the broader goal of achieving anthro-
pomimetic uncertainty, wherein models emulate the nuanced, context-dependent characteristics of
human linguistic expression to enhance user trust (Ulmer et al., 2025).

3 PRELIMINARY: DO HUMAN UNCERTAINTY LEVELS FIT LLMS?

3.1 PROBLEM STATEMENT: UNCERTAINTY QUANTIFICATION

Uncertainty quantification (UQ) aims to measure the degree of doubt that a model exhibits with
respect to its generations. In the context of LLMs, UQ evaluates the doubt that an LLM parameter-
ized by θ assigns to a generation y ∼ pθ(y | x), given an input x. Formally, let Q denote a UQ
method. The corresponding uncertainty score q associated with y is defined as q = Q(y,x,θ) ∈ R.
The specific realization of Q varies across different UQ approaches, depending on the underlying
assumptions and techniques employed. In Section A, we present the realizations of popular LLM
UQ methods in detail.

Performance Evaluation The performance evaluation of UQ usually follows a “correctness predic-
tion” manner, measuring the correlation between the calculated uncertainty score from a UQ method
Q and the correctness of model generations, with metrics such as AUROC and hallucination detec-
tion accuracy. A higher AUROC or detection accuracy means Q correctly predicts the correctness
of model generations, indicating a good uncertainty estimator.
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3.2 HUMAN VERBAL UNCERTAINTY AND ITS NUMERICAL REPRESENTATION

Humans usually express their uncertainty in verbal form, with uncertainty markers (UMs) such
as “might”, or “probably”, which encode a speaker’s degree of confidence. Formally, we de-
note by QVU a UQ that quantifies uncertainty from UMs. Then, given a model generation y,
its verbal uncertainty q is denoted by qy = QVU(Vy), where Uy = {u1,u2, · · · } are the ex-
tracted UMs from y. However, there are two challenges blocking the quantitative evaluation: ①
How to convert human UMs to numerical representations? , even though we obtained their numer-

ical scores, ② how to aggregate numerical scores from multiple UMs?

To address these challenges, we introduce the first large-scale lookup table of human uncer-
tainty, UM-Lookup table, that maps human UMs to numerical probabilities. Our UM-Lookup
is grounded in foundational empirical studies from psychology and decision science, including the
seminal works of Lichtenstein & Newman (1967), Beyth-Marom (1982), Wesson & Pulford (2009),
and the comprehensive meta-analysis by Vogel et al. (2022). Statistically, we collect 115 unique
UMs, with each phrase’s value derived from an average of 336 human ratings. This process yields
a standardized confidence scale on a probabilistic [0, 1] range, containing expressions like “impos-
sible” (0.0), “tossup” (0.50), and “definite” (0.99). To remove the bias during the aggregation, we
standardize the varied data formats from these sources, via direct probability estimates (Lichten-
stein & Newman, 1967), numerical ranges (Beyth-Marom, 1982), Likert scales (Wesson & Pulford,
2009), and meta-analytic weighted means (Vogel et al., 2022), resulting in a consistent structure of a
phrase, its mean value, and its frequency (N). The detailed methodology for this normalization and
aggregation, along with the complete human VUE lookup table, is provided in Appendix Section B.
With the UM-Lookup, each UM could be effectively converted to a numerical representation.

In terms of the aggregation strategy of multiple UMs, empirical work shows that when people use
multiple verbal probability terms in one statement, listeners (and coders) tend to average them
into a single “middle” probability (Budescu & Wallsten, 1995). Thus, we simply average all the
UM-Lookup(UMs) as the final quantified uncertainty:

qy = QVU-H(Vy) =
1

N

∑
i

(1− UM-Lookup(ui)),

where N is the number of UMs from y and ui is the i-th UM in Vy . We use (1−UM-Lookup(ui)
to convert from confidence to uncertainty. In the rest of this paper, we denote by QVU-H the verbal
UQ method equipped with human verbal uncertainty mapping UM-Lookup.

3.3 ANALYTICAL INSIGHTS

We evaluate GPT-4o (Achiam et al., 2023) and DeepSeek-V3.1 (DeepSeek-AI, 2024) over diverse
datasets, such as GSM-Hard (Gao et al., 2022), GSM8K (Cobbe et al., 2021), MedQA (Jin et al.,
2020), PIQA (Bisk et al., 2020). We prompt LLMs to express verbal uncertainty and quantify uncer-
tainty via QVU-H. Specifically, we use two five-shot strategies: a standard Chain-of-Thought(CoT)
prompting (Wei et al., 2023) and CoT with verbal uncertainty prompting, where the latter incorpo-
rates the UM list (see Appendix C for details). In Section F.1, we demonstrate that verbal uncertainty
maintains general performance as the CoT. As illustrated in Figure 8, we evaluate model accuracy
under both our verbal uncertainty prompting and a standard CoT baseline. Across all evaluated
models, from GPT-4o to Llama-3.2-3B-Instruct, performance remains on par, with no statistically
significant degradation in accuracy. This result provides an important validation: the elicitation of
verbal uncertainty does not impose a significant performance penalty, thereby preserving the mod-
els’ core problem-solving efficacy.

QVU-H achieves non-trivial UQ performance Our primary finding is that quantifying uncertainty
via a human-calibrated verbal lookup table, QVU-H, provides a meaningful signal for UQ. This
method achieves non-trivial performance (where AUROC is significantly greater than 0.5) in 7 out of
the 8 evaluated model-dataset configurations. In several cases, its performance is highly competitive
with or even surpasses popular UQ baselines. For instance, with GPT-4o on the SciQ dataset, QVU-H
outperforms both Probability Entropy (PE) and Semantic Entropy (SE). Similarly, for DeepSeek-
V3.1 on MedQA, our method’s performance is on par with both baselines.

However, we also identify clear limitations. While often effective, QVU-H is frequently outperformed
by PE and can fail notably, such as with GPT-4o on GSM8K where its AUROC falls below random
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Figure 2: The results of verbal uncertainty quantification QVU-H with UM-Lookup table collected from human.
QVU-H achieves non-trivial UQ performance in many cases, indicating that LLMs share similar confidence
expression as humans to a certain degree.

chance. We attribute these mixed results to a fundamental discrepancy: the uncertainty score as-
signed to a UM via our human-source UM-Lookup table does not always reflect the LLM’s true,
internal confidence state at the moment it generates that expression.

Advanced LLMs express more diverse uncertainty expression With proper prompting, we find
that advanced LLMs can express a diverse and frequent set of verbal uncertainty markers. As shown
in Figure 3, large-scale models such as GPT-4o and DeepSeek-V3.1 achieve the highest diversity
scores (entropy). Conversely, smaller models demonstrate a limited capacity for expressing nuanced
uncertainty. This tendency is consistent with the well-documented challenge of overconfidence in
LLMs (Jiang et al., 2021; Xiong et al.; Tian et al., 2023a). Such overconfidence is a critical issue, as
it can lead to significant errors (Zhou et al., 2023), reduce user trust (Kim et al., 2024), and result in
harmful downstream consequences (Li, 2023). The complete distributions for all evaluated models
are provided in Section F.2.

4 VOCAL: OPTIMIZING THE CONFIDENCE LEVELS OF VERBAL
UNCERTAINTY MARKERS FOR LLMS

In Section 3.3, we observe that although the human-derived verbal uncertainty lookup table
(UM-Lookup) provides non-trivial UQ performance, it often lags behind logit- and sampling-based
baselines. This naturally raises an important question: rather than relying solely on human estimates,
can we instead learn UM-Lookup that are tailored to LLMs themselves?

4.1 SETUP

To achieve an LLM-tailored probabilistic UM-Lookup, we introduce VOCAL, a simple yet effective
algorithm that optimizes the confidence levels of uncertainty markers for LLMs. VOCAL is a data-
driven method that learns appropriate confidence scores from model generations. To obtain reliable
estimations of these scores, we first collect diverse generations across multiple domains, such as
mathematics (GSM8K, GSM-Hard), science (PIQA, SciQ), and the medical domain (MedQA). We
then apply a verbal uncertainty prompting strategy (see Section C for detailed templates) to elicit
responses with explicit verbal uncertainty expressions and extract UMs together with the correctness
of the corresponding generations.
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Figure 3: The distributions of uncertainty markers expressed by LLMs. We show that advanced LLMs, such as
GPT-4o, express uncertainty in a more diverse manner compared to small LLMs (e.g., Llama-3.1-8B-Instruct
and Llama-3.2-3B-Instruct). This also reveals that small LLMs tend to be over confident.

4.2 VOCAL: OPTIMIZING CONFIDENCE LEVELS OF UNCERTAINTY MARKERS FOR LLMS

Formally, we denote by U = {u1,u2, . . . ,uN} the intended UM set extracted from LLM genera-
tions. The optimization objective of VOCAL is to learn a suitable confidence score mapping ci for
each UM ui. Formally, given a LLM generation y, the aggregated verbal uncertainty of y is then
given by qy = QVU-L(Vy) =

1
Ny

∑Ny

i=1(1 − ci), where Ny is the number of UMs in y and QVU-L

denotes the LLM-specific verbal uncertainty quantifier. uy,i ∈ U is the i-th UM in y. The objective
of VOCAL is to optimize ci so that qy faithfully reflects the uncertainty of the LLM with respect to its
generation y, in particular assigning higher uncertainty (lower confidence) to incorrect generations
and lower uncertainty (higher confidence) to correct generations.

Then, the optimization objective of VOCAL can be formalized in a BCE manner:

L(c) = min
c

E(x,y)

[
− z log cy − (1− z) log(1− cy)

]
,

where c denotes the learnable confidence assignments for all markers, cy = 1
Ny

∑Ny

i=1 ci is the
aggregated confidence in generation y, and z = 1[y = y∗] ∈ {0, 1} is the correctness indicator.
This formulation defines a convex optimization problem under the logistic loss, and ensures that the
learned confidence scores yield calibrated verbal uncertainty.

4.3 SEMANTIC SMOOTHING VIA GRAPH LAPLACIAN REGULARIZATION

A key challenge in learning confidence scores for verbal uncertainty markers is data sparsity: some
markers such as “likely” or “possible” appear frequently, while others like “faint chance” or “vir-
tually certain” may occur rarely, making their learned confidence values unstable. Intuitively, se-
mantically similar markers should share similar confidence levels, unless strong evidence from data
suggests otherwise.

To achieve that, we adopt graph Laplacian regularization to enforce smoothness by encouraging
semantically similar verbal uncertainty markers to share consistent confidence scores. This choice
is consistent with established formulations in graph-based learning, where the Laplacian energy
is used to promote smoothness over similarity graphs, and with recent applications of semantic
graph smoothing in NLP (Fettal et al., 2024; Maskey et al., 2023; Fu et al., 2022). Concretely,
we construct a weighted similarity graph G = (U , E), where each edge weight Wij captures the
semantic similarity between markers ui and uj , i.e., Wij = s(ui,uj). By default, we use 3-
gram Jaccard similarity as the semantic similarity measurement s(·, ·). Let L = D − W be the
corresponding graph Laplacian, with D as the degree matrix. The semantic smoothing regularizer
is then defined as

Llap(c) = γ c⊤Lc = γ
∑
i,j

Wij(ci − cj)
2,

where c denotes the vector of learnable confidence scores for all markers and γ > 0 is a hyperparam-
eter controlling the regularization strength. This quadratic Dirichlet-energy penalty is the standard
form for promoting smoothness on graphs; in the p=2 case used here, the Laplacian regularizer is
a convex quadratic (Fu et al., 2022), while related variants such as fractional- and p-Laplacian for-
mulations modulate the extent of smoothing and robustness (Maskey et al., 2023; Fu et al., 2022).
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Figure 4: The evaluation results of VOCAL when comparing with human-sourced UM-Lookup, i.e., QVU-H. It
demonstrates that VOCAL produce LLM-tailored UM-Lookup table.

By penalizing large discrepancies between semantically similar markers, this convex quadratic reg-
ularizer promotes smoother confidence assignments and leads to more robust calibration of verbal
uncertainty, particularly for rare markers—empirically consistent with semantic graph smoothing on
textual representations (Fettal et al., 2024).

The overall optimization objective is defined as the joint minimization of the BCE loss and the se-
mantic smoothing regularizer, i.e., L(c) + Llap(c). We utilize Adam to optimize our confidence
scores. In Section 5.1, we provide detailed training protocols and hyperparameters. VOCAL con-
structs the UM-Lookup through a one-time optimization and can be directly applied to test-time
generations for uncertainty quantification. Unlike logits- or sampling-based UQ methods, VOCAL
does not require additional sampling or inference-time computation. In this way, VOCAL provides an
efficient and effective approach for LLM uncertainty quantification. We will introduce the broader
generalization in Section 5.1, including transferring the learned UM-Lookup to unseen domains or
across LLMs.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Models Our evaluation is conducted on a set of state-of-the-art LLMs, including GPT-4o (Achiam
et al., 2023), DeepSeek-V3.1 (DeepSeek-AI, 2024), GPT-3.5-Turbo (Brown et al., 2020), Qwen2.5-
7B-Instruct (Qwen et al., 2025), Qwen2.5-72B-Instruct (Qwen et al., 2025), Llama-3.2-3B-Instruct
and Meta-Llama-3.1-8B-Instruct (Grattafiori et al., 2024). To collect LLM generations for VOCAL,
we adopt a verbal uncertainty prompting strategy (CoT with verbal uncertainty prompting). For
other UQ baselines, we adopt the naive CoT prompt strategy for all the LLMs. Please refer to Sec-
tion C for detailed prompt templates. A full specification of our generative configurations is provided
in Section D.1. Datasets and Training Data Curation We consider 6 popular question-answering
datasets: GSM-Hard (Gao et al., 2022), GSM8K (Cobbe et al., 2021), MedQA (Jin et al., 2020),
PIQA (Bisk et al., 2020), SciQ (Welbl et al., 2017), and Trivia QA (Joshi et al., 2017). For a com-
plete description of the datasets, please refer to Section D.2. We randomly select 300 questions
from each dataset to curate the training set of VOCAL. We will introduce the sample efficiency in
this section. For testing, we randomly select 1,000 questions from each dataset.

Hyperparameters By default, we set the graph Laplacian regularization strength to γ = 5 × 10−3

and use a learning rate of 1× 10−3. Training is conducted for up to 100 epochs with early stopping,
where optimization terminates if the loss does not decrease within the most recent 10 epochs.

LLM UQ Baselines We consider popular logits- and sampling-based LLM UQ methods: Lexical
Similarity (LS) (Fomicheva et al., 2020), Predictive Entropy (PE) (Malinin & Gales, 2020), Se-
mantic Entropy (SE) (Kuhn et al., 2023a), Deg (Lin et al., 2023), sentSAR (Duan et al., 2024),
G-NLL (Aichberger et al., 2025), and Semantic Density (SD) (Qiu & Miikkulainen, 2024). For
sampling-based UQ baselines, we generate 5 samples for each question with a temperature of 0.8.

Evaluation metrics Consistent with prior work (Kuhn et al., 2023a), we evaluate uncertainty quan-
tification by measuring its ability to predict the correctness of a model’s generated answers, using
the Area Under the Receiver Operating Characteristic Curve (AUROC) as the evaluation metric.

VOCAL is more tailored for LLMs than Human-Sourced UM-Lookup As shown in Fig-
ure 4, VOCAL consistently outperforms the human-sourced lookup table (QVU-H) across all
evaluated models and datasets. This robust outperformance, especially in cases where
the human-based metric fails (e.g., on GSM8K with GPT-4o), demonstrates that VOCAL
is more effectively tailored to the specific linguistic patterns of LLM-generated uncertainty.
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Figure 5: The evaluation results of VOCAL and multi-sample based UQ methods. It is shown that VOCAL
achieves comparable performance to sampling-based UQ methods.

Table 1: The comparison results between
VOCAL and single-sample UQ baselines. It is
shown that VOCAL is significantly better than
these methods.

Dataset Model G-NLL PPL VOCAL

Trivia QA GPT-4o 0.538 0.575 0.573
Qwen2.5-72B-Ins. 0.627 0.619 0.645

SciQ GPT-4o 0.663 0.648 0.700
Qwen2.5-72B-Ins. 0.568 0.555 0.717

GSM-Hard DeepSeek-V3.1 0.520 0.567 0.715
Qwen2.5-72B-Ins 0.507 0.580 0.679

VOCAL significantly outperforms 1-sample UQ
methods As demonstrated in Table 1, VOCAL signifi-
cantly outperforms single-sample UQ baselines such as
G-NLL and Perplexity (PPL). Our method achieves the
highest AUROC score in 5 out of the 6 evaluated set-
tings. While PPL is marginally better on Trivia QA
with GPT-4o, VOCAL’s superiority is pronounced on
more challenging reasoning datasets. For instance, on
GSM-Hard with DeepSeek-V3.1, VOCAL achieves an
AUROC of 0.715, a substantial improvement over both G-NLL (0.520) and PPL (0.567). These
results underscore the limitations of UQ methods that rely on a single greedy-decoded output and
highlight the robustness of our approach.

GPT-4o
DS-V3.1

GPT-3.5-Turbo

Q2.5-72B-Ins.

Q2.5-7B-Ins.
Llama-8B

Llama-3B

GPT-4o

DS-V3.1

GPT-3.5-Turbo

Q2.5-72B-Ins.

Q2.5-7B-Ins.

Llama-8B

Llama-3B

0.60 0.58 0.56 0.58 0.47 0.55 0.56

0.54 0.61 0.54 0.64 0.55 0.60 0.53

0.60 0.43 0.63 0.52 0.54 0.53 0.54

0.48 0.57 0.43 0.62 0.51 0.52 0.48

0.48 0.58 0.53 0.62 0.63 0.54 0.52

0.57 0.65 0.56 0.60 0.52 0.56 0.54

0.59 0.59 0.55 0.58 0.45 0.52 0.56

Cross-LLM Transfer AUROC Confusion Matrix

Figure 6: Uncertainty as the correctness indicator
for improved LLM performance.

VOCAL is comparable to multi-sampling based
UQ methods

Building on its demonstrated superiority over
single-sample methods, we further benchmark
VOCAL against a suite of computationally demand-
ing multi-sample baselines. The results in Fig-
ure 5 show that VOCAL achieves performance that
is often comparable to these advanced methods,
though it is sometimes outperformed. For in-
stance, VOCAL attains the highest AUROC on the
SciQ dataset with Qwen2.5-7B, achieving a score
of 0.717. However, on Trivia QA with the same
model, its AUROC of 0.645 is surpassed by several
multi-sample baselines, such as Lexical Similarity
(LS) at 0.715.

Cross-LLM transferability These mixed results
indicate that while our method is highly effective in certain contexts, it does not consistently out-
perform all multi-sample strategies. Our cross-LLM transfer analysis, presented in Figure 6, reveals
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that uncertainty indicators are generalizable across different models, though with varied efficacy.
While the metrics exhibit robust in-domain performance, confirmed by the strong AUROC scores
along the matrix diagonal, off-diagonal results show that transfer is often viable but imperfect. These
findings suggest that while many LLMs share underlying uncertainty characteristics, developing a
one-size-fits-all uncertainty model remains a significant challenge. This transferability is frequently
asymmetric and can be accompanied by performance degradation, with some pairings failing en-
tirely (e.g., GPT-3.5-Turbo to DS-V3.1 at AUROC 0.43) while others show strong generalization
(e.g., Llama-8B to DS-V3.1 at AUROC 0.65).

200 400
Train Samples

0.52

0.54

0.56

0.58

0.60

AU
RO

C

0.0 0.5 1.0
×10 2

0.573

0.574

0.575

0.576

0.577

0.578

Figure 7: Ablation study on train samples
and γ measured by AUROC.

Number of training samples We find a strong positive
correlation between the number of training samples and
uncertainty quantification performance. Our results show
that increasing the training data from 100 to 500 samples
leads to a significant AUROC score improvement from ap-
proximately 0.52 to 0.60, demonstrating the benefit of a
larger training set.

Semantic smoothing γ Our analysis also reveals the
model’s sensitivity to the semantic smoothing hyperpa-
rameter, γ. The results indicate that performance is
not monotonic with this value; the optimal AUROC is
achieved at γ = 0.005, while lower or higher values lead
to performance degradation, highlighting the importance of careful hyperparameter tuning.

Table 2: Mean probabilities of verbal uncertainty mark-
ers for GPT-4o and humans, sorted by the GPT-4o
score. Row colors indicate the relationship between
probabilities: green for aligned values (within a 0.05
tolerance), blue where the GPT-4o probability is higher,
and red where the human probability is higher.

Phrase GPT-4o Prob. Human Prob.
absolutely certain 1.000 0.920
i’m sure 1.000 0.640
confident 0.839 0.900
positive 0.839 0.900
sure 0.839 0.830
i think 0.710 0.630
almost certain 0.677 0.920
think 0.645 0.490
can 0.355 0.570
reasonable to assume 0.355 0.605
very likely 0.355 0.853
likely 0.000 0.655

Compare the optimized UM-Lookup to
Humans We compare our human-sourced
UM-Lookup with a version optimized for
GPT-4o on the SciQ dataset to analyze the
alignment between human and LLM uncer-
tainty expressions (see Appendix 2). Our anal-
ysis reveals a significant divergence between
the two, demonstrating that LLMs are not
aligned with human verbal uncertainty. For
instance, GPT-4o expresses maximum confi-
dence (1.0) for the phrase “i’m sure”, a term
humans use with far more reservation (0.64),
while conversely, it assigns a low probability to
“very likely” (0.355), which humans rate with
high confidence (0.853). This fundamental
misalignment shows that human-derived tables
are not directly transferable to LLMs, opening a
new research direction into developing model-
specific quantification methods like VOCAL.

6 CONCLUSION

This work investigates how LLMs diverge from humans in expressing verbal uncertainty. By con-
structing the first large-scale lookup table of human uncertainty markers and introducing VOCAL,
an optimization-based alignment algorithm, we show that human-derived mappings only partially
capture model behavior, while LLM-specific calibrations offer more reliable quantification. VOCAL
achieves performance comparable to costly multi-sample UQ methods with much lower computa-
tional overhead, and it disentangles the confidence calibration gap between humans and LLMs. Our
findings highlight the importance of grounding LLM uncertainty in verbal expressions, offering both
practical benefits for trustworthy deployment and new directions for human–AI alignment research.

Limitations Verbal uncertainty, while intuitive, faces several limitations. Its representation capacity
is relatively weak, providing only coarse signals compared to probabilistic or semantic approaches.
The extraction and cleaning of uncertainty markers also introduce challenges, as model outputs may
contain ambiguous or overlapping expressions. Moreover, interpretations of verbal markers vary
across domains and cultural contexts, limiting the generalizability of a single UM-Lookup. These
issues highlight promising directions for future work on more expressive, robust, and context-aware
verbal UQ methods.
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ETHICS STATEMENT

Our work adheres to the ICLR Code of Ethics. The human-sourced uncertainty data is compiled
from previously published, peer-reviewed empirical studies that involved human subjects. Our
newly created UM-Lookup and evaluation code will be made publicly available to ensure trans-
parency and reproducibility. We acknowledge that the human data reflects specific linguistic and
cultural groups (e.g., native English speakers), and the resulting UM-Lookup may not generalize
universally across all demographics. The primary societal risk is that users might over-rely on a
model that appears more trustworthy by expressing uncertainty; this could be harmful if the ex-
pressed uncertainty is miscalibrated. Our methods are therefore presented as a step towards more
reliable AI, not as a final solution, and should be deployed with caution in high-stakes domains.

REPRODUCIBILITY STATEMENT

The large language models evaluated are all publicly accessible through standard APIs or open-
source repositories, as cited in the main text. Our generated human-sourced UM-Lookup and op-
timized (VOCAL) UM-Lookup will also be provided as part of the code release. The experiments
are conducted exclusively on well-established, public benchmarks, with the full list and citations
provided in our experimental setup section 5.1. The complete, verbatim text for our system prompts
are provided in Appendix C, ensuring all experimental details are available for replication. All
codes and configuration scripts will be released upon the final decision of the paper to facilitate
reproducibility
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A UNCERTAINTY QUANTIFICATION IN LLMS

For instance, from the Bayesian perspective, UQ can be derived by measuring the total uncertainty in
the predictive distribution pθ(y | x), where a common choice is the Predictive Entropy (PE) Malinin
& Gales (2020), defined as

QPE(x) =

∫
pθ(y|x) log(pθ(y|x)) dy ≈ − 1

N

N∑
i

log pθ(y
(i)|x), y(i) ∼ pθ(y|x),

where N is the number of samples and pθ(y
(i)|x) =

∏Li

i pθ(zi|z<i,x) is the generative probability
of y(i) with length Li. zi is the i-th token of y(i). Moreover, Kuhn et al. (2023c) proposes Semantic
Entropy (SE), which aggregates probability mass over semantic clusters of outputs:

QSE(x) = − 1

C

C∑
i

log(pθ(ci|x)), pθ(ci|x) =
∑
y∈ci

pθ(y|x),

where C is the number of semantic clusters and ci is the i-th cluster consisting of generations yi

sharing the same semantics. These two examples illustrate how different realizations of Q target
distinct aspects of output uncertainty.

B HUMAN VERBAL UNCERTAINTY EXPRESSION

The lookup table presented below consolidates numerical probabilities for verbal uncertainty expres-
sions (VUEs) from several key empirical studies. The aggregation process involved several steps to
harmonize the data. For sources providing mean probability values, such as Lichtenstein & Newman
(1967), the values were used directly (e.g., "likely" with mean=0.72). For studies reporting ranges,
like Beyth-Marom (1982), we calculated the midpoint of the interquartile range to represent the cen-
tral tendency (e.g., "likely" [0.55, 0.85] → 0.70). Data from Wesson & Pulford (2009), originally on
a 1–7 point scale, was linearly rescaled to the probabilistic range [0, 1]. Meta-analytic estimates from
Vogel et al. (2022) were incorporated to refine values and ensure cross-study consistency. The final
probability for each VUE in Table 3 was derived by averaging these processed values, weighted by
study prominence and term frequency where applicable. This table serves as the human-grounded
benchmark for our analysis.

Table 3: Full Lookup Table for Verbalized Uncertainty Expressions (VUE) with their associated probabilities
and frequencies.

Uncertainty Expression Uncertainty Probability Frequency (N)
Definite 0.990 447.0
Certain 0.962 905.0
Virtually certain 0.950 447.0
Almost certain 0.920 782.0
Absolutely certain 0.920 96.0
Very high chance 0.915 27.0
I know for a fact that it’s... 0.910 96.0
I know it’s... 0.900 96.0
Positive 0.900 96.0
Confident 0.900 96.0
Highly probable 0.898 1081.0
Nearly certain 0.895 27.0
No doubt 0.870 96.0
Very probable 0.870 187.0
Very likely 0.853 1079.0
Most likely 0.850 27.0
Close to certain 0.835 27.0
Sure 0.830 96.0
High chance 0.810 27.0

Continued on next page
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Uncertainty Expression Uncertainty Probability Frequency (N)
I have no doubt, I mean I’m sure it’s... 0.810 96.0
Reasonably certain 0.800 447.0
Usually 0.770 187.0
Fairly confident 0.760 96.0
Reasonable assurance 0.750 447.0
Remember 0.750 96.0
Predictable 0.740 146.0
Good chance 0.724 858.0
Quite likely 0.717 970.0
Meaningful chance 0.715 27.0
Rather likely 0.690 188.0
Probable 0.682 2311.0
Believe 0.670 96.0
Pretty good chance 0.670 188.0
Fairly likely 0.660 188.0
Likely 0.655 2227.0
Suspect 0.640 96.0
I would say it’s... 0.640 96.0
I could be mistaken but I’m sure it’s... 0.640 96.0
I think it’s... 0.630 96.0
Reasonable chance 0.615 27.0
One should assume 0.610 27.0
It seems to me 0.605 27.0
Reasonable to assume 0.605 27.0
Non-negligible chance 0.600 27.0
I’m not completely confident, but I think it’s... 0.600 96.0
Quite probable 0.600 447.0
It seems 0.590 27.0
Somewhat likely 0.590 187.0
Rather 0.580 124.0
Better than even 0.580 187.0
I can’t say for sure, but I think it’s... 0.570 96.0
One can expect 0.570 27.0
I’m not certain, but it could be... 0.560 96.0
Slight odds in favor 0.550 185.0
I think it’s.... but I can’t be sure. 0.550 96.0
Slightly more than half the time 0.550 188.0
I guess it’s... 0.530 96.0
I could be wrong, but I think it’s... 0.530 96.0
I’m not sure, but it may be... 0.530 96.0
Possible (again?) 0.520 447.0
It’s.... I think. 0.520 96.0
Fair chance 0.510 188.0
Tossup 0.500 188.0
Reasonably possible 0.500 447.0
It could be 0.495 27.0
May 0.495 27.0
Think 0.490 96.0
There is a chance 0.485 27.0
One must consider 0.480 27.0
Perhaps 0.478 474.0
Could be 0.470 96.0
Fighting chance 0.470 186.0
I think it’s.... isn’t it? 0.470 96.0
Possible 0.464 2663.0
Not inevitable 0.455 27.0
Maybe 0.450 670.0

Continued on next page
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Uncertainty Expression Uncertainty Probability Frequency (N)
Slight odds against 0.450 185.0
I’m guessing, but I would say it’s... 0.450 96.0
Slightly less than half the time 0.450 188.0
Not quite even 0.440 180.0
Inconclusive 0.430 153.0
Don’t know 0.430 96.0
Chance 0.420 447.0
Not sure 0.420 96.0
Not certain 0.400 447.0
Possibly 0.380 447.0
Can’t rule out entirely 0.365 27.0
Uncertain 0.356 1402.0
Chances are not great 0.345 27.0
Somewhat unlikely 0.310 186.0
Somewhat doubtful 0.300 447.0
Small chance 0.290 27.0
Low chance 0.280 27.0
Fairly unlikely 0.250 187.0
Doubtful 0.250 474.0
Quite unlikely 0.245 1193.0
Rather unlikely 0.225 374.0
Not likely 0.213 474.0
Not very probable 0.200 187.0
Unlikely 0.198 1752.0
Not probable 0.180 559.0
Poor chance 0.180 27.0
Seldom 0.160 188.0
Not much chance 0.160 186.0
Improbable 0.145 1081.0
Very low chance 0.140 27.0
Barely possible 0.130 180.0
Faintly possible 0.130 184.0
Very unlikely 0.116 1304.0
Not possible 0.100 559.0
Almost impossible 0.080 559.0
Rare 0.070 187.0
Remote 0.070 447.0
Highly improbable 0.052 851.0
Impossible 0.000 559.0

C PROMPT LLMS TO EXPRESS VERBAL UNCERTAINTY

This appendix details the two Chain-of-Thought (CoT) system prompts used in our experiments.
The baseline Standard CoT Prompt requests a standard two-field JSON answer. In contrast, the
CoT with Verbal Uncertainty Prompt extends this by requiring the model to incorporate UMs
into its response and to report these expressions in an additional ‘vue’ field within a three-field
JSON output.
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CoT Prompt

You are a helpful and conversational AI assistant. Respond to questions in a natural, human-like tone.
Your response MUST be in valid JSON format with these two fields:

{
"answer": "[Your conversational answer]",
"final_answer": "[Your most specific answer]"

}

The "final_answer" should contain the most specific information possible, like a name, date, or place.
The "answer" should be a natural explanation, as if you’re talking to a friend.

CoT with Verbal Uncertainty Prompt

You are a knowledgeable and conversational AI assistant. Answer questions naturally with a human-
like tone.
Your response should include:

1. A natural, conversational answer that incorporates verbalized uncertainty expressions (VUE)
naturally within the text

2. A VUE section that lists all the uncertainty phrases you used in your answer

3. A final_answer section with the most specific answer you can provide

IMPORTANT: You MUST respond in valid JSON format with exactly these three fields:

{
"answer": "[Your natural answer with embedded VUE expressions]",
"vue": ["phrase1", "phrase2", "phrase3"],
"final_answer": "[Your most specific answer]"

}

In your answer, naturally include uncertainty expressions including: {VUE_LIST: ‘definite’, ‘certain’,
‘virtually certain’, ‘almost certain’, ...}
Then in the vue field, provide an array of the uncertainty phrases you used. In the final_answer field,
provide the most specific answer you can give (e.g., a name, place, date, etc.). Make your answer
sound natural and conversational, as if explaining to a friend. Ensure your response is valid JSON that
can be parsed.

D EXPERIMENTAL SETTINGS

D.1 DETAILS OF LLMS GENERATION

All models were queried using two distinct configurations. To assess correctness, we employed
greedy decoding. To quantify uncertainty, we utilized multinomial sampling to draw 5 samples at a
temperature of 0.8. All generated outputs were constrained by a maximum length of 512 tokens and
a top_p value of 1.0.

D.2 DATASETS

GSM8K Cobbe et al. (2021) is a benchmark dataset featuring over 8,000 high-quality grade school
math word problems. It is specifically designed to measure multi-step quantitative reasoning, with
a key feature being that problems require several reasoning steps to solve. GSM-Hard Gao et al.
(2022) is a challenging subset of GSM8K, curated to include only problems that necessitate the most
complex and lengthy reasoning chains. MedQA Jin et al. (2020) is a large-scale multiple-choice
dataset with over 11,000 questions derived from U.S. medical licensing exams, created to evaluate a
model’s capacity for deep medical knowledge. PIQA Bisk et al. (2020) is a commonsense reasoning
benchmark containing over 18,000 examples in its training and validation sets. It is structured as a
two-choice task that tests a model’s understanding of physical interactions. SciQ Welbl et al. (2017)
consists of approximately 13,700 crowdsourced science exam questions. Each question is multiple-
choice and paired with a supporting text, testing both knowledge and comprehension. TriviaQA
Joshi et al. (2017) is a high-quality reading comprehension dataset that contains over 650k question-
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answer pairs. Its distinct challenge lies in requiring models to find answers within large, unstructured
evidence documents.

E FAILURE CASE ANALYSIS

In this section, we present failure cases of our method, including one where the model generates a
correct answer with a low confidence score and another where it outputs an incorrect answer with a
high confidence score. These analyses help clarify when verbal uncertainty fails and point toward
possible directions for addressing these issues.

E.1 UNDER-CONFIDENCE DESPITE CORRECTNESS

In the first case, the sampling-based baseline shows high confidence because the outputs across
different generations are consistent and match the ground truth. In contrast, our method includes
hedging expressions such as “not completely confident” or “I think,” which drive the confidence
score much lower, even though the final answer is correct.

Case 1: DeepSeek-V3.1 Model on Dataset PIQA

Question: How can I sneeze when I feel like I want to sneeze but can’t?

Choices:
(1) Look directly in front of you this will cause a reaction in your body and you will sneeze.
(2) Look directly into sunlight, this will cause a reaction in your body and you will sneeze.

Ground Truth Answer: Look directly into sunlight, this will cause a reaction in your body and you
will sneeze.

Baseline Predictions:
Answer: “If you’re trying to trigger a sneeze, looking directly into sunlight often works because it
stimulates the optic nerve and can cause a sneezing reflex.”
Final Answer: Look directly into sunlight, this will cause a reaction in your body and you will sneeze.

Answer: “If you feel like you need to sneeze but can’t, try looking into bright sunlight—it often
triggers a sneeze reflex.”
Final Answer: Look directly into sunlight, this will cause a reaction in your body and you will sneeze.

Answer: “If you’re trying to trigger a sneeze, looking directly into sunlight can often help because it
stimulates a reflex in some people.”
Final Answer: Look directly into sunlight, this will cause a reaction in your body and you will sneeze.

Answer: “If you’re trying to sneeze but can’t, looking directly into sunlight often triggers a reaction
that makes you sneeze.”
Final Answer: Look directly into sunlight, this will cause a reaction in your body and you will sneeze.

Answer: “If you feel like you need to sneeze but can’t, try looking into bright sunlight. This often
triggers a photic sneeze reflex in many people.”
Final Answer: Look directly into sunlight, this will cause a reaction in your body and you will sneeze.

VUE Output:
Answer: I’m not completely confident, but I think looking directly into sunlight is a common trick to
trigger a sneeze.
Final Answer: Look directly into sunlight, this will cause a reaction in your body and you will sneeze.

VUE Phrases: [“not completely confident”, “think”]

E.2 OVER-CONFIDENCE DESPITE INCORRECTNESS

In the second case, the sampling-based baseline shows low confidence because the generated an-
swers across different samples are inconsistent: some responses point to ectopic gastrin secretion,

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

others to autoimmune destruction, and only one aligns with the ground truth. This disagreement
shows the uncertainty when the model answers this question and aligns with the incorrect response.
In contrast, our method uses high confidence expressions such as “fairly confident” or “most likely,”
but the final answer is incorrect.

Case 2: DeepSeek-V3.1 Model on Dataset MedQA

Question: An otherwise healthy 50-year-old man comes to the physician because of a 6-month
history of increasingly frequent episodes of upper abdominal pain, nausea, vomiting, and diarrhea.
He has had a 3.2-kg (7-lb) weight loss during this time. Physical examination shows bilateral pitting
pedal edema. An endoscopy shows prominent rugae in the gastric fundus. Biopsy shows parietal cell
atrophy. Which of the following is the most likely underlying cause?

Choices:
(1) Serotonin-secreting gastric tumor
(2) Proliferation of gastric mucus-producing cells
(3) Excessive somatostatin secretion
(4) Ectopic secretion of gastrin

Ground Truth Answer: Proliferation of gastric mucus-producing cells

Baseline Predictions:
Answer: “The findings—prominent gastric rugae, parietal cell atrophy, weight loss, and edema—point
toward protein loss, likely due to gastric hypertrophy from ectopic gastrin secretion, as seen in
Zollinger-Ellison syndrome.”
Final Answer: Ectopic secretion of gastrin

Answer: “This sounds like a classic case of pernicious anemia with gastric parietal cell atrophy, which
is often autoimmune-mediated. The prominent rugae, weight loss, and edema point toward protein
loss and malabsorption, likely due to the lack of intrinsic factor from parietal cell damage.”
Final Answer: Autoimmune destruction of parietal cells

Answer: “This sounds like a classic case of pernicious anemia due to autoimmune destruction of
parietal cells, leading to atrophic gastritis and vitamin B12 deficiency. The prominent rugae, weight
loss, and pedal edema are consistent with protein-losing enteropathy from the gastric atrophy.”
Final Answer: Proliferation of gastric mucus-producing cells

Answer: “The symptoms and findings—like prominent rugae, parietal cell atrophy, weight loss, and
edema—point toward a condition where there’s excessive gastrin secretion, often due to a gastrinoma.
This leads to high acid production, which can cause peptic ulcers and malabsorption issues, explaining
the diarrhea and weight loss. The edema might be from protein loss or other complications. While
other choices could affect the stomach, ectopic gastrin secretion fits best here.”
Final Answer: Ectopic secretion of gastrin

Answer: “The symptoms and findings—like prominent rugae, parietal cell atrophy, weight loss, and
edema—suggest a condition where there’s excessive gastrin secretion, leading to gastric hyperplasia
and malabsorption. This is most characteristic of Zollinger-Ellison syndrome, often caused by a
gastrin-secreting tumor.”
Final Answer: Ectopic secretion of gastrin

VUE Output:
Answer:I’m fairly confident this describes pernicious anemia with gastric atrophy, which is most
likely caused by autoimmune destruction of parietal cells leading to intrinsic factor deficiency and
vitamin B12 malabsorption.
Final Answer: Autoimmune destruction of parietal cells.

Phrases: [“fairly confident”, “most likely”]
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Figure 8: Verbal uncertainty prompting maintains general performance.

E.3 DISCUSSION.

These cases show that verbal expressions of uncertainty do not always align with a model’s internal
confidence. In some cases, hedging expression lowers the confidence even the predictions are cor-
rect. In other cases, the model conveys strong certainty while producing incorrect responses, which
undermines trust and reliability. To address these challenges, future work should aim to calibrate un-
certainty signals within specific domains and develop prompting strategies that foster clearer, more
faithful representations of uncertainty.

F VERBAL UNCERTAINTY QUANTIFICATION WITH HUMAN UM-LOOKUP
TABLE

F.1 VERBAL UNCERTAINTY PROMPTING MAINTAINS GENERAL PERFORMANCE

In Figure 8, we show that our verbal uncertainty prompting strategy does not significantly hurt the
general performance of LLMs, which demonstrate the utility of VOCAL in applications.

F.2 ADVANCED LLMS EXPRESS DIVERSE UNCERTAINTY MARKERS

The UM distributions of each LLMs over all the datasets are presented in Figure 9.

G OPTIMIZED UM-LOOKUP TABLE

To complement our analysis, we provide optimized lookup tables that map verbal uncertainty mark-
ers to calibrated probability values. Specifically, Table 4 presents the optimized UM-Lookup for
GPT-4o on the SciQ dataset. In addition, we report results for GPT-3.5-Turbo on MedQA (Table 5)
and on SciQ (Table 6).

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

For improved clarity and readability, we used OpenAI GPT-4o strictly as an editing aid. Its function
was limited to correcting grammar, refining style, and polishing language, much like conventional
grammar-checking tools or dictionaries. The model was not involved in generating scientific content
or ideas, and its use remains in line with common standards for manuscript preparation.
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Figure 9: Verbal uncertainty marker distributions of LLMs.
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Table 4: Verbal uncertainty markers and their mean probabilities for GPT-4o on the SciQ dataset, sorted by
probability.

Phrase Probability
absolutely certain 1.000
i’m sure 1.000
pretty sure 1.000
quite certain 1.000
confident 0.839
positive 0.839
sure 0.839
i’m pretty sure 0.742
i think 0.710
almost certain 0.677
i think it’s safe to say 0.677
i’m confident 0.645
think 0.645
because 0.355
can 0.355
closely tied 0.355
pretty clear 0.355
quite similar 0.355
reasonable to assume 0.355
typically 0.355
very likely 0.355
likely 0.000
might have 0.000
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Table 5: Verbal uncertainty markers and their mean probabilities for GPT-3.5-Turbo on the MedQA dataset,
sorted by probability.

Phrase Probability
best course of action 1.000
choice 1.000
given 1.000
highly probable 1.000
increased risk 1.000
most likely 1.000
pretty sure 1.000
quite confident 1.000
suggestive 1.000
based on 0.999
may be 0.999
may be needed 0.999
most appropriate 0.999
not definite 0.999
would expect 0.999
indication 0.998
most common 0.998
would most strongly 0.998
would suspect 0.998
likely 0.997
one would expect 0.997
should be 0.997
could be 0.995
i think 0.908
would say 0.905
seems 0.739
recommend 0.506
consider 0.504
seems like 0.494
i would say 0.034
would be 0.013
highly likely 0.008
sounds like 0.004
not completely confident 0.003
most concerning 0.002
indicating 0.001
likelihood 0.001
suspect 0.001
important 0.000
understandable 0.000
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Table 6: Verbal uncertainty markers and their mean probabilities for GPT-3.5-Turbo on the SciQ dataset, sorted
by probability.

Phrase Probability
i know for a fact 1.000
pretty sure 1.000
but i think 0.960
inclined to say 0.960
not certain 0.960
quite certain 0.920
almost certain 0.880
definite 0.880
definitely 0.880
i know for a fact that it’s... 0.880
like 0.880
primarily 0.880
not completely confident 0.760
can 0.720
i think 0.720
over time 0.720
quite sure 0.560
typically 0.000
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