

# 000 001 002 003 004 005 006 007 008 009 010 CALIBRATING THE VOICE OF DOUBT: HOW LLMs DI- VERGE FROM HUMANS IN VERBAL UNCERTAINTY

005  
006  
007  
008  
009  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
**Anonymous authors**

Paper under double-blind review

## ABSTRACT

011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
Humans naturally express uncertainty through verbal cues via uncertainty markers (e.g., “possible”, “likely”), yet existing Large Language Model (LLM) uncertainty quantification (UQ) methods primarily rely on response likelihood or semantic consistency, which are often computationally costly. Despite increasing interest in LLM reliability, it remains underexplored how LLMs diverge from humans in verbal uncertainty expression: *Do LLMs share the same confidence level of uncertainty markers as humans? Can we quantify LLM uncertainty verbally?* To address this gap, we study the divergence between humans and LLMs in verbal uncertainty expression. Specifically, we first collect a corpus of human uncertainty markers from the literature and systematically examine their alignment with LLMs. Our extensive experiments reveal that LLMs may encode verbal uncertainty with confidence levels that differ substantially from those of humans. To bridge this mismatch, we introduce VOCAL, a novel optimization-based algorithm that learns the confidence level for each uncertainty marker for LLMs. VOCAL achieves comparable performance on par with state-of-the-art sampling-based UQ methods over extensive experimental settings, with significantly reduced computational costs. Moreover, VOCAL disentangles the calibration mismatch and pinpoints the confidence disparity between human and LLM verbal expressions. This work opens a new perspective on LLM UQ by grounding it in the verbal dimension of uncertainty expression, and offers insights into both model alignment and human–AI communication.

## 031 032 1 INTRODUCTION

033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
Despite large language models’ (LLMs) recent remarkable success across diverse domains (Yang et al., 2024; Thapa et al., 2025; Xie et al., 2023; Colombo et al., 2024), a fundamental question remains: when should we trust LLMs’ responses? This question highlights the need to make LLMs more trustworthy and responsible. Hallucinations are not only mistakes but also risks that can reduce users’ trust and cause harm in sensitive applications (Asgari et al., 2025; Das et al., 2025), like giving unsafe treatment advice in biomedicine. One promising approach to mitigating this phenomenon is uncertainty quantification (UQ) (Malinin & Gales, 2020; Kuhn et al., 2023a; Duan et al., 2024), which aims to measure and express the confidence of a model in its predictions. UQ provides a probabilistic signal of reliability directly from the model’s outputs. This enables the estimation of a prediction’s trustworthiness even in the absence of labeled data, a scenario common in real-world applications, and to distinguish between cases where the model is likely correct and those where it may be uncertain, extrapolating, or hallucinating.

045  
046  
047  
048  
049  
050  
051  
052  
053  
However, existing approaches for quantifying hallucination in LLMs still have some limitations. Most current methods can be broadly divided into two main groups: sampling-based techniques (Farquhar et al., 2024; Kossen et al., 2024; Li et al., 2025; McCabe et al., 2025) and logits-based techniques (Nguyen et al., 2025; Ma et al., 2025; Yang et al., 2025; Sriramanan et al., 2024). Malinin & Gales (2020) introduced predictive entropy (PE), a logits-based technique that can give useful reliability estimates but often mistakes simple wording changes for uncertainty and usually requires heavy computation. Sampling-based methods, such as semantic entropy (SE) Kuhn et al. (2023b), ensemble variance, or consistency checks across multiple generations, can be more robust but are also slow and costly, which makes them difficult to use in practice. Therefore, a recent direction focuses on verbal uncertainty, where models are asked to output a confidence score (often on a 1–100 scale) in natural language form (Tian et al., 2023b). While this strategy can improve calibration

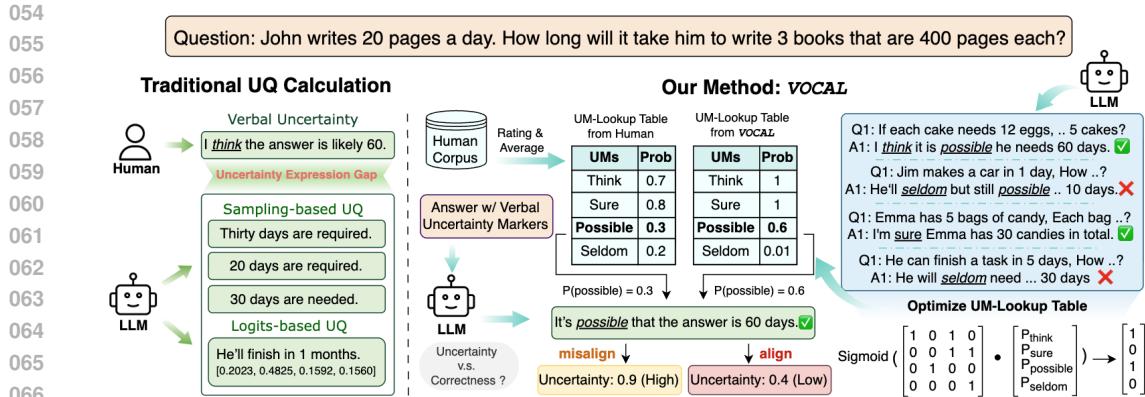


Figure 1: Comparison of traditional uncertainty quantification (UQ) methods and our method VOCAL. Traditional UQ methods (sampling-based and logits-based) exhibit a gap with human uncertainty expressions. In VOCAL, UM-lookup tables derived from human data alone cannot fully capture model uncertainty, so they are optimized with the model’s confidence distribution to better align with its internal uncertainty expressions.

compared to raw probability outputs, it is still unnatural because humans do not usually express uncertainty as exact numbers. Instead, people prefer qualitative terms such as “*possible*,” “*likely*,” or “*almost certain*” in daily communication. These expressions are easier to understand and better capture the nuance of human reasoning. This contrast shows a gap in current methods and points to the need for approaches that allow models to express uncertainty in a way that is more natural, human-like, and trustworthy for real-world use (Figure 1 (left)).

Motivated by this gap, our work investigates whether LLMs can express verbal uncertainty in a manner comparable to humans. To study this question, we construct the first verbal uncertainty marker lookup table (UM-Lookup) that maps qualitative expressions of uncertainty to numerical representations. The lookup table is built through a literature review grounded in psychology and decision science (Lichtenstein & Newman, 1967; Beyth-Marom, 1982; Wesson & Pulford, 2009), followed by a debiasing procedure to refine ambiguous cases. We then aggregate judgments from more than 300 human annotators, resulting in a curated resource of 115 distinct verbal uncertainty markers with associated numeric interpretations. Leveraging this resource, we evaluate the ability of LLMs to align their verbal expressions of uncertainty with human interpretations. Our results show that LLMs demonstrate non-trivial UQ performance when assessed against the UM-Lookup. For example, when evaluated with GPT-4o (Achiam et al., 2023) model on SciQ dataset (Welbl et al., 2017), verbal uncertainty outperforms representative logits-based and sampling-based methods such as PE and SE, achieving an improvement of 4.7% AUROC and 5.6% AUROC, respectively. However, across broader benchmarks, verbalized UQ remains weaker than strong UQ baselines, reflecting a gap between human-derived lookup tables for uncertainty markers and LLM confidence signals.

This gap largely arises from the difference between how humans and LLMs interpret verbal uncertainty markers when they answer the same question. For example, when a model uses the term “*possible*”, it may actually associate it with a much higher confidence level than humans typically do. In addition, humans often combine multiple verbal uncertainty markers to convey more fine-grained or complex levels of confidence, while LLMs usually rely on a single marker at each time (Vogel et al., 2022). These differences suggest a gap between human communication patterns and how LLMs currently express verbal uncertainty. To address this gap, we propose VOCAL, an approximation algorithm that provides an optimal mapping solution between uncertainty markers and confidence levels by adapting to the confidence distribution of each model (Figure 1 (right)). VOCAL is evaluated over comprehensive experiments on a wide range of models and datasets. Our results demonstrate that the VOCAL significantly outperforms single-turn UQ methods, such as Aichberger et al. (2025), and achieve comparable performance as multi-sample UQs, without additional sampling or computational requests. Our contribution can be summarized as:

- We highlight the necessity of studying LLM verbal uncertainty, an underexplored but critical aspect of trustworthy AI, and construct the first lookup table that maps human verbal uncertainty markers to numerical confidence scores, grounded in psychology and decision science. This lookup table is a foundational resource that could benefit follow-up verbal uncertainty quantification methods in the future.

- 108 • We propose a simple yet effective method, VOCAL, that optimizes the alignment between  
109 verbal markers and model confidence distributions.
- 110 • We conduct comprehensive experiments across multiple models and datasets, providing  
111 in-depth analysis and demonstrating the effectiveness of our method. We demonstrate that  
112 VOCAL significantly outperforms single-sample UQ methods and achieves comparable per-  
113 formances as multi-sample UQ methods, with significantly reduced computational cost.

## 115 2 RELATED WORK

117 **LLM Uncertainty Quantification** The need to mitigate untrustworthy outputs from large language  
118 models (LLMs), such as hallucinations, has made Uncertainty Quantification (UQ) a critical area of  
119 research. UQ for free-form generative models is uniquely challenging because a correct answer can  
120 be expressed in countless semantically equivalent ways (Lin et al., 2023; Kuhn et al., 2023a). This  
121 renders early methods like predictive entropy (PE) insufficient, as they often misinterpret this benign  
122 lexical variance as genuine semantic uncertainty (Kuhn et al., 2023a). To address this, a significant  
123 body of work has shifted towards semantic-aware UQ. Semantic Entropy (SE) Kuhn et al. (2023a)  
124 clusters semantically equivalent outputs before computing entropy, providing a more meaningful  
125 measure of uncertainty. Similarly, Semantic Density (SD) Qiu & Miikkulainen (2024) quantifies a  
126 response’s confidence by measuring its density within a semantic space. In contrast, other methods  
127 probe the internal states or consistency of the LLM. Deg Lin et al. (2023) and its successor, IN-  
128 SIDE Chen et al. (2024) analyze consistency across multiple generations to quantify uncertainty  
129 from a black-box perspective. Furthermore, Shifting Attention to Relevance (SAR) Duan et al.  
130 (2024) addresses the generative imbalance by assigning more weight to semantically relevant parts  
131 of a generation. In more complex scenarios, UProp Duan et al. (2025) introduces a framework to  
132 decompose and quantify uncertainty propagation in multi-step decision processes. Alternatively,  
133 G-NLL Aichberger et al. (2025) offers a computationally efficient UQ method based on the nega-  
134 tive log-likelihood of a single greedy-decoded output, challenging the necessity of multi-sampling.  
135 These diverse approaches highlight the evolution of LLM UQ from simple lexical metrics to more  
136 semantically robust, context-aware, and computationally efficient solutions.

137 **Verbalized Uncertainty in LLMs** Verbalized uncertainty, which leverages natural language to com-  
138 municate model confidence, has emerged as a key UQ paradigm, pioneered in studies on linguistic  
139 calibration and teaching models to express their uncertainty in words (Mielke et al., 2022; Lin et al.,  
140 2022). Subsequent black-box evaluations revealed that even poorly calibrated RLHF models can  
141 produce better-calibrated estimates when prompted to verbalize confidence (Tian et al., 2023a), and  
142 that their inherent overconfidence can be mitigated with carefully designed prompts and aggregation  
143 methods (Xiong et al., 2023). Moving beyond black-box analysis, recent work has identified an  
144 internal "Verbal Uncertainty Feature" (VUF), demonstrating that miscalibrations between this fea-  
145 ture and a model’s semantic uncertainty can cause confident hallucinations, which can be detected  
146 and mitigated via inference-time interventions (Ji et al., 2025). While much of this research has  
147 centered on eliciting numerical scores, these efforts connect to the broader goal of achieving anthro-  
148 pomimetic uncertainty, wherein models emulate the nuanced, context-dependent characteristics of  
149 human linguistic expression to enhance user trust (Ulmer et al., 2025).

## 150 3 PRELIMINARY: DO HUMAN UNCERTAINTY LEVELS FIT LLMs?

### 151 3.1 PROBLEM STATEMENT: UNCERTAINTY QUANTIFICATION

152 Uncertainty quantification (UQ) aims to measure the degree of doubt that a model exhibits with  
153 respect to its generations. In the context of LLMs, UQ evaluates the doubt that an LLM parameter-  
154 ized by  $\theta$  assigns to a generation  $\mathbf{y} \sim p_{\theta}(\mathbf{y} | \mathbf{x})$ , given an input  $\mathbf{x}$ . Formally, let  $\mathcal{Q}$  denote a UQ  
155 method. The corresponding uncertainty score  $q$  associated with  $\mathbf{y}$  is defined as  $q = \mathcal{Q}(\mathbf{y}, \mathbf{x}, \theta) \in \mathbb{R}$ .  
156 The specific realization of  $\mathcal{Q}$  varies across different UQ approaches, depending on the underlying  
157 assumptions and techniques employed. In Section A, we present the realizations of popular LLM  
158 UQ methods in detail.

159 **Performance Evaluation** The performance evaluation of UQ usually follows a "correctness predic-  
160 tion" manner, measuring the correlation between the calculated uncertainty score from a UQ method  
161  $\mathcal{Q}$  and the correctness of model generations, with metrics such as AUROC and hallucination detec-  
162 tion accuracy. A higher AUROC or detection accuracy means  $\mathcal{Q}$  correctly predicts the correctness  
163 of model generations, indicating a good uncertainty estimator.

162 3.2 HUMAN VERBAL UNCERTAINTY AND ITS NUMERICAL REPRESENTATION  
163

164 Humans usually express their uncertainty in verbal form, with uncertainty markers (UMs) such  
165 as “*might*”, or “*probably*”, which encode a speaker’s degree of confidence. Formally, we de-  
166 note by  $\mathcal{Q}_{\text{VU}}$  a UQ that quantifies uncertainty from UMs. Then, given a model generation  $\mathbf{y}$ ,  
167 its verbal uncertainty  $q$  is denoted by  $q_{\mathbf{y}} = \mathcal{Q}_{\text{VU}}(\mathcal{V}_{\mathbf{y}})$ , where  $\mathcal{U}_{\mathbf{y}} = \{\mathbf{u}_1, \mathbf{u}_2, \dots\}$  are the ex-  
168 tracted UMs from  $\mathbf{y}$ . However, there are two challenges blocking the quantitative evaluation: ①  
169 How to convert human UMs to numerical representations?, even though we obtained their numer-  
170 ical scores, ② how to aggregate numerical scores from multiple UMs?

171 To address these challenges, we introduce the first large-scale lookup table of human uncer-  
172 tainty, UM-Lookup table, that maps human UMs to numerical probabilities. Our UM-Lookup  
173 is grounded in foundational empirical studies from psychology and decision science, including the  
174 seminal works of [Lichtenstein & Newman \(1967\)](#), [Beyth-Marom \(1982\)](#), [Wesson & Pulford \(2009\)](#),  
175 and the comprehensive meta-analysis by [Vogel et al. \(2022\)](#). Statistically, we collect 115 unique  
176 UMs, with each phrase’s value derived from an average of 336 human ratings. This process yields  
177 a standardized confidence scale on a probabilistic  $[0, 1]$  range, containing expressions like “impos-  
178 sible” (0.0), “tossup” (0.50), and “definite” (0.99). To remove the bias during the aggregation, we  
179 standardize the varied data formats from these sources, via direct probability estimates ([Lichten-  
180 stein & Newman, 1967](#)), numerical ranges ([Beyth-Marom, 1982](#)), Likert scales ([Wesson & Pulford,  
181 2009](#)), and meta-analytic weighted means ([Vogel et al., 2022](#)), resulting in a consistent structure of a  
182 phrase, its mean value, and its frequency (N). The detailed methodology for this normalization and  
183 aggregation, along with the complete human VUE lookup table, is provided in Appendix Section B.  
With the UM-Lookup, each UM could be effectively converted to a numerical representation.

184 In terms of the aggregation strategy of multiple UMs, empirical work shows that when people use  
185 multiple verbal probability terms in one statement, listeners (and coders) tend to average them  
186 into a single “middle” probability ([Budescu & Wallsten, 1995](#)). Thus, we simply average all the  
187 UM-Lookup(UMs) as the final quantified uncertainty:

$$188 \quad q_{\mathbf{y}} = \mathcal{Q}_{\text{VU-H}}(\mathcal{V}_{\mathbf{y}}) = \frac{1}{N} \sum_i (1 - \text{UM-Lookup}(\mathbf{u}_i)),$$

191 where  $N$  is the number of UMs from  $\mathbf{y}$  and  $\mathbf{u}_i$  is the  $i$ -th UM in  $\mathcal{V}_{\mathbf{y}}$ . We use  $(1 - \text{UM-Lookup}(\mathbf{u}_i))$   
192 to convert from confidence to uncertainty. In the rest of this paper, we denote by  $\mathcal{Q}_{\text{VU-H}}$  the verbal  
193 UQ method equipped with human verbal uncertainty mapping UM-Lookup.

194 3.3 ANALYTICAL INSIGHTS  
195

196 We evaluate GPT-4o ([Achiam et al., 2023](#)) and DeepSeek-V3.1 ([DeepSeek-AI, 2024](#)) over diverse  
197 datasets, such as GSM-Hard ([Gao et al., 2022](#)), GSM8K ([Cobbe et al., 2021](#)), MedQA ([Jin et al.,  
198 2020](#)), PIQA ([Bisk et al., 2020](#)). We prompt LLMs to express verbal uncertainty and quantify uncer-  
199 tainty via  $\mathcal{Q}_{\text{VU-H}}$ . Specifically, we use two five-shot strategies: a standard Chain-of-Thought(CoT)  
200 prompting ([Wei et al., 2023](#)) and CoT with verbal uncertainty prompting, where the latter incorpo-  
201 rates the UM list (see Appendix C for details). In Section F.1, we demonstrate that verbal uncertainty  
202 maintains general performance as the CoT. As illustrated in Figure 8, we evaluate model accuracy  
203 under both our verbal uncertainty prompting and a standard CoT baseline. Across all evaluated  
204 models, from GPT-4o to Llama-3.2-3B-Instruct, performance remains on par, with no statistically  
205 significant degradation in accuracy. This result provides an important validation: the elicitation of  
206 verbal uncertainty does not impose a significant performance penalty, thereby preserving the mod-  
207 els’ core problem-solving efficacy.

208  **$\mathcal{Q}_{\text{VU-H}}$  achieves non-trivial UQ performance** Our primary finding is that quantifying uncertainty  
209 via a human-calibrated verbal lookup table,  $\mathcal{Q}_{\text{VU-H}}$ , provides a meaningful signal for UQ. This  
210 method achieves non-trivial performance (where AUROC is significantly greater than 0.5) in 7 out of  
211 the 8 evaluated model-dataset configurations. In several cases, its performance is highly competitive  
212 with or even surpasses popular UQ baselines. For instance, with GPT-4o on the SciQ dataset,  $\mathcal{Q}_{\text{VU-H}}$   
213 outperforms both Probability Entropy (PE) and Semantic Entropy (SE). Similarly, for DeepSeek-  
214 V3.1 on MedQA, our method’s performance is on par with both baselines.

215 However, we also identify clear limitations. While often effective,  $\mathcal{Q}_{\text{VU-H}}$  is frequently outperformed  
by PE and can fail notably, such as with GPT-4o on GSM8K where its AUROC falls below random

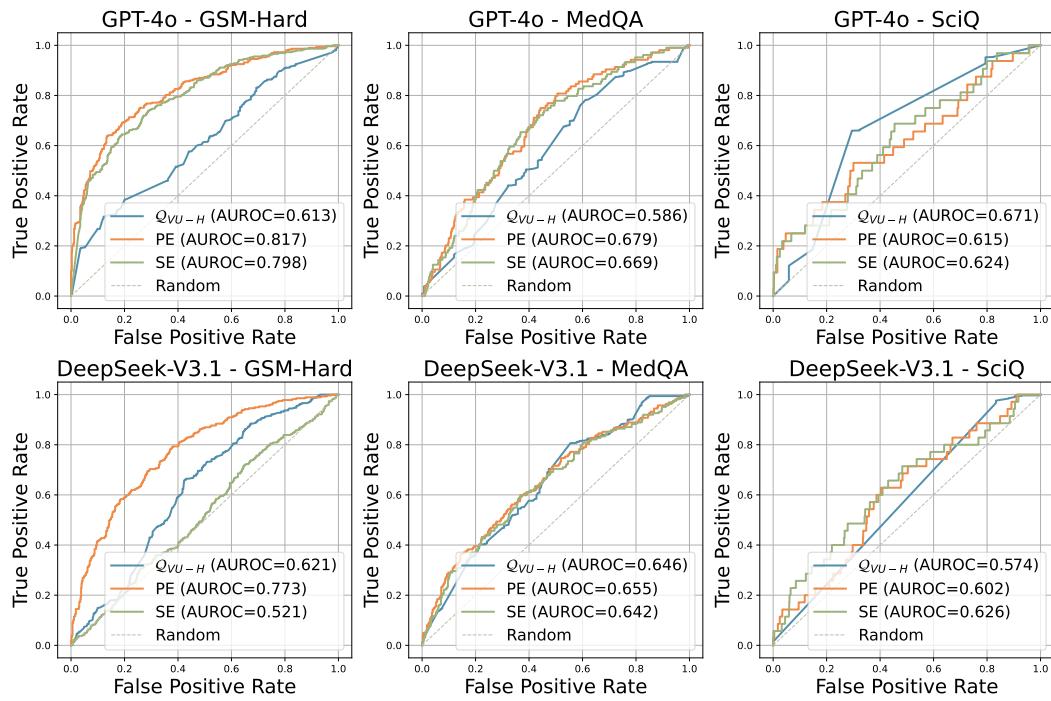


Figure 2: The results of verbal uncertainty quantification  $Q_{VU-H}$  with UM-Lookup table collected from human.  $Q_{VU-H}$  achieves non-trivial UQ performance in many cases, indicating that LLMs share similar confidence expression as humans to a certain degree.

chance. We attribute these mixed results to a fundamental discrepancy: the uncertainty score assigned to a UM via our human-source UM-Lookup table does not always reflect the LLM’s true, internal confidence state at the moment it generates that expression.

**Advanced LLMs express more diverse uncertainty expression** With proper prompting, we find that advanced LLMs can express a diverse and frequent set of verbal uncertainty markers. As shown in Figure 3, large-scale models such as GPT-4o and DeepSeek-V3.1 achieve the highest diversity scores (entropy). Conversely, smaller models demonstrate a limited capacity for expressing nuanced uncertainty. This tendency is consistent with the well-documented challenge of overconfidence in LLMs (Jiang et al., 2021; Xiong et al.; Tian et al., 2023a). Such overconfidence is a critical issue, as it can lead to significant errors (Zhou et al., 2023), reduce user trust (Kim et al., 2024), and result in harmful downstream consequences (Li, 2023). The complete distributions for all evaluated models are provided in Section F.2.

## 4 VOCAL: OPTIMIZING THE CONFIDENCE LEVELS OF VERBAL UNCERTAINTY MARKERS FOR LLMs

In Section 3.3, we observe that although the human-derived verbal uncertainty lookup table (UM-Lookup) provides non-trivial UQ performance, it often lags behind logit- and sampling-based baselines. This naturally raises an important question: rather than relying solely on human estimates, can we instead learn UM-Lookup that are tailored to LLMs themselves?

### 4.1 SETUP

To achieve an LLM-tailored probabilistic UM-Lookup, we introduce VOCAL, a simple yet effective algorithm that optimizes the confidence levels of uncertainty markers for LLMs. VOCAL is a data-driven method that learns appropriate confidence scores from model generations. To obtain reliable estimations of these scores, we first collect diverse generations across multiple domains, such as mathematics (GSM8K, GSM-Hard), science (PIQA, SciQ), and the medical domain (MedQA). We then apply a verbal uncertainty prompting strategy (see Section C for detailed templates) to elicit responses with explicit verbal uncertainty expressions and extract UMs together with the correctness of the corresponding generations.

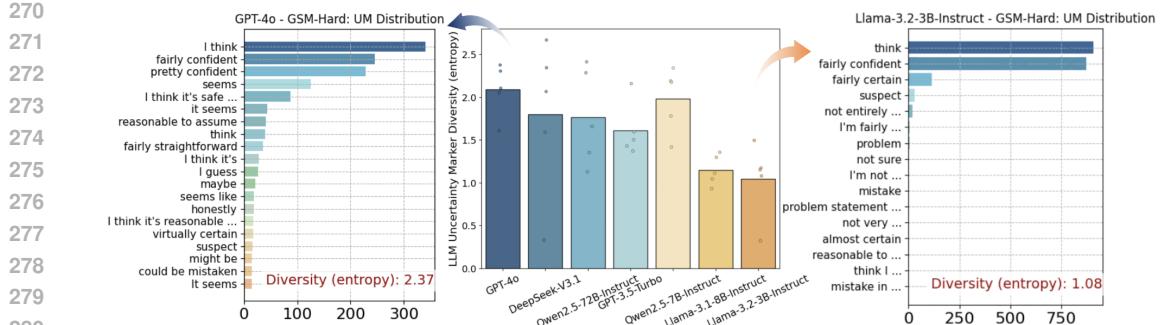


Figure 3: The distributions of uncertainty markers expressed by LLMs. We show that advanced LLMs, such as GPT-4o, express uncertainty in a more diverse manner compared to small LLMs (e.g., Llama-3.1-8B-Instruct and Llama-3.2-3B-Instruct). This also reveals that small LLMs tend to be over confident.

#### 4.2 VOCAL: OPTIMIZING CONFIDENCE LEVELS OF UNCERTAINTY MARKERS FOR LLMs

Formally, we denote by  $\mathcal{U} = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_N\}$  the intended UM set extracted from LLM generations. The optimization objective of VOCAL is to learn a suitable confidence score mapping  $c_i$  for each UM  $u_i$ . Formally, given a LLM generation  $\mathbf{y}$ , the aggregated verbal uncertainty of  $\mathbf{y}$  is then given by  $q_{\mathbf{y}} = Q_{\text{VU-L}}(V_{\mathbf{y}}) = \frac{1}{N_{\mathbf{y}}} \sum_{i=1}^{N_{\mathbf{y}}} (1 - c_i)$ , where  $N_{\mathbf{y}}$  is the number of UMs in  $\mathbf{y}$  and  $Q_{\text{VU-L}}$  denotes the LLM-specific verbal uncertainty quantifier.  $\mathbf{u}_{\mathbf{y},i} \in \mathcal{U}$  is the  $i$ -th UM in  $\mathbf{y}$ . The objective of VOCAL is to optimize  $c_i$  so that  $q_{\mathbf{y}}$  faithfully reflects the uncertainty of the LLM with respect to its generation  $\mathbf{y}$ , in particular assigning higher uncertainty (lower confidence) to incorrect generations and lower uncertainty (higher confidence) to correct generations.

Then, the optimization objective of VOCAL can be formalized in a BCE manner:

$$\mathcal{L}(\mathbf{c}) = \min_{\mathbf{c}} \mathbb{E}_{(\mathbf{x}, \mathbf{y})} \left[ -z \log \mathbf{c}_{\mathbf{y}} - (1 - z) \log(1 - \mathbf{c}_{\mathbf{y}}) \right],$$

where  $\mathbf{c}$  denotes the learnable confidence assignments for all markers,  $\mathbf{c}_{\mathbf{y}} = \frac{1}{N_{\mathbf{y}}} \sum_{i=1}^{N_{\mathbf{y}}} c_i$  is the aggregated confidence in generation  $\mathbf{y}$ , and  $z = \mathbb{1}[\mathbf{y} = \mathbf{y}^*] \in \{0, 1\}$  is the correctness indicator. This formulation defines a convex optimization problem under the logistic loss, and ensures that the learned confidence scores yield calibrated verbal uncertainty.

#### 4.3 SEMANTIC SMOOTHING VIA GRAPH LAPLACIAN REGULARIZATION

A key challenge in learning confidence scores for verbal uncertainty markers is data sparsity: some markers such as “*likely*” or “*possible*” appear frequently, while others like “*faint chance*” or “*virtually certain*” may occur rarely, making their learned confidence values unstable. Intuitively, semantically similar markers should share similar confidence levels, unless strong evidence from data suggests otherwise.

To achieve that, we adopt graph Laplacian regularization to enforce smoothness by encouraging semantically similar verbal uncertainty markers to share consistent confidence scores. This choice is consistent with established formulations in graph-based learning, where the Laplacian energy is used to promote smoothness over similarity graphs, and with recent applications of semantic graph smoothing in NLP (Fettal et al., 2024; Maskey et al., 2023; Fu et al., 2022). Concretely, we construct a weighted similarity graph  $G = (\mathcal{U}, E)$ , where each edge weight  $W_{ij}$  captures the semantic similarity between markers  $\mathbf{u}_i$  and  $\mathbf{u}_j$ , i.e.,  $W_{ij} = s(\mathbf{u}_i, \mathbf{u}_j)$ . By default, we use 3-gram Jaccard similarity as the semantic similarity measurement  $s(\cdot, \cdot)$ . Let  $\mathbf{L} = \mathbf{D} - \mathbf{W}$  be the corresponding graph Laplacian, with  $\mathbf{D}$  as the degree matrix. The semantic smoothing regularizer is then defined as

$$\mathcal{L}_{\text{lap}}(\mathbf{c}) = \gamma \mathbf{c}^\top \mathbf{L} \mathbf{c} = \gamma \sum_{i,j} W_{ij} (c_i - c_j)^2,$$

where  $\mathbf{c}$  denotes the vector of learnable confidence scores for all markers and  $\gamma > 0$  is a hyperparameter controlling the regularization strength. This quadratic Dirichlet-energy penalty is the standard form for promoting smoothness on graphs; in the  $p=2$  case used here, the Laplacian regularizer is a convex quadratic (Fu et al., 2022), while related variants such as fractional- and  $p$ -Laplacian formulations modulate the extent of smoothing and robustness (Maskey et al., 2023; Fu et al., 2022).

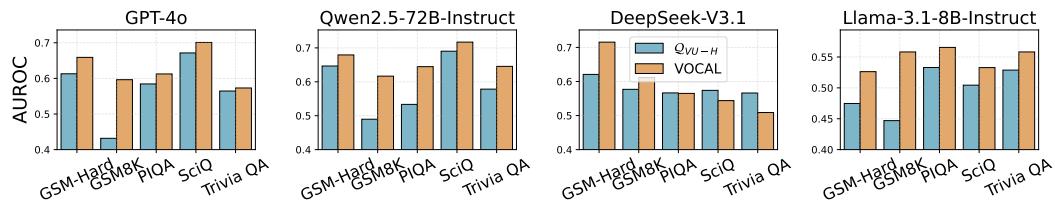


Figure 4: The evaluation results of VOCAL when comparing with human-sourced UM-Lookup, i.e.,  $Q_{VU-H}$ . It demonstrates that VOCAL produce LLM-tailored UM-Lookup table.

By penalizing large discrepancies between semantically similar markers, this convex quadratic regularizer promotes smoother confidence assignments and leads to more robust calibration of verbal uncertainty, particularly for rare markers—empirically consistent with semantic graph smoothing on textual representations (Fettal et al., 2024).

The overall optimization objective is defined as the joint minimization of the BCE loss and the semantic smoothing regularizer, i.e.,  $\mathcal{L}(\mathbf{c}) + \mathcal{L}_{\text{lap}}(\mathbf{c})$ . We utilize Adam to optimize our confidence scores. In Section 5.1, we provide detailed training protocols and hyperparameters. VOCAL constructs the UM-Lookup through a one-time optimization and can be directly applied to test-time generations for uncertainty quantification. Unlike logits- or sampling-based UQ methods, VOCAL does not require additional sampling or inference-time computation. In this way, VOCAL provides an efficient and effective approach for LLM uncertainty quantification. We will introduce the broader generalization in Section 5.1, including transferring the learned UM-Lookup to unseen domains or across LLMs.

## 5 EXPERIMENTS

### 5.1 EXPERIMENTAL SETUP

**Models** Our evaluation is conducted on a set of state-of-the-art LLMs, including GPT-4o (Achiam et al., 2023), DeepSeek-V3.1 (DeepSeek-AI, 2024), GPT-3.5-Turbo (Brown et al., 2020), Qwen2.5-7B-Instruct (Qwen et al., 2025), Qwen2.5-72B-Instruct (Qwen et al., 2025), Llama-3.2-3B-Instruct and Meta-Llama-3.1-8B-Instruct (Grattafiori et al., 2024). To collect LLM generations for VOCAL, we adopt a verbal uncertainty prompting strategy (CoT with verbal uncertainty prompting). For other UQ baselines, we adopt the naive CoT prompt strategy for all the LLMs. Please refer to Section C for detailed prompt templates. A full specification of our generative configurations is provided in Section D.1. **Datasets and Training Data Curation** We consider 6 popular question-answering datasets: GSM-Hard (Gao et al., 2022), GSM8K (Cobbe et al., 2021), MedQA (Jin et al., 2020), PIQA (Bisk et al., 2020), SciQ (Welbl et al., 2017), and Trivia QA (Joshi et al., 2017). For a complete description of the datasets, please refer to Section D.2. We randomly select 300 questions from each dataset to curate the training set of VOCAL. We will introduce the sample efficiency in this section. For testing, we randomly select 1,000 questions from each dataset.

**Hyperparameters** By default, we set the graph Laplacian regularization strength to  $\gamma = 5 \times 10^{-3}$  and use a learning rate of  $1 \times 10^{-3}$ . Training is conducted for up to 100 epochs with early stopping, where optimization terminates if the loss does not decrease within the most recent 10 epochs.

**LLM UQ Baselines** We consider popular logits- and sampling-based LLM UQ methods: Lexical Similarity (LS) (Fomicheva et al., 2020), Predictive Entropy (PE) (Malinin & Gales, 2020), Semantic Entropy (SE) (Kuhn et al., 2023a), Deg (Lin et al., 2023), sentSAR (Duan et al., 2024), G-NLL (Aichberger et al., 2025), and Semantic Density (SD) (Qiu & Miikkulainen, 2024). For sampling-based UQ baselines, we generate 5 samples for each question with a temperature of 0.8.

**Evaluation metrics** Consistent with prior work (Kuhn et al., 2023a), we evaluate uncertainty quantification by measuring its ability to predict the correctness of a model’s generated answers, using the Area Under the Receiver Operating Characteristic Curve (AUROC) as the evaluation metric.

**VOCAL is more tailored for LLMs than Human-Sourced UM-Lookup** As shown in Figure 4, VOCAL consistently outperforms the human-sourced lookup table ( $Q_{VU-H}$ ) across all evaluated models and datasets. This robust outperformance, especially in cases where the human-based metric fails (e.g., on GSM8K with GPT-4o), demonstrates that VOCAL is more effectively tailored to the specific linguistic patterns of LLM-generated uncertainty.

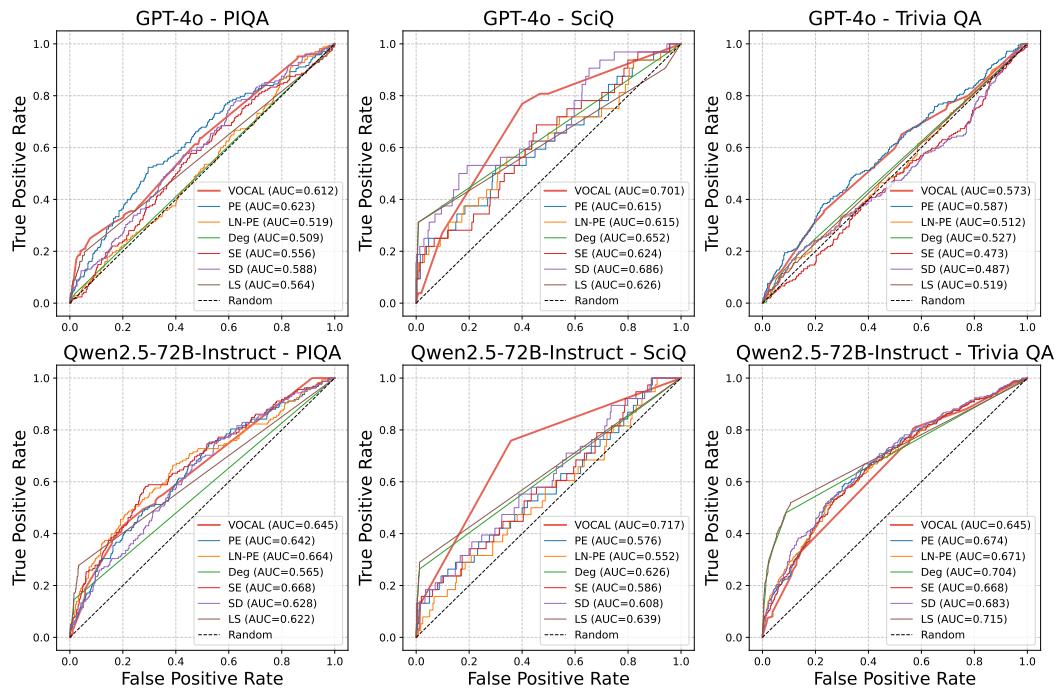


Figure 5: The evaluation results of VOCAL and multi-sample based UQ methods. It is shown that VOCAL achieves comparable performance to sampling-based UQ methods.

**VOCAL significantly outperforms 1-sample UQ methods** As demonstrated in Table 1, VOCAL significantly outperforms single-sample UQ baselines such as G-NLL and Perplexity (PPL). Our method achieves the highest AUROC score in 5 out of the 6 evaluated settings. While PPL is marginally better on Trivia QA with GPT-4o, VOCAL’s superiority is pronounced on more challenging reasoning datasets. For instance, on GSM-Hard with DeepSeek-V3.1, VOCAL achieves an AUROC of 0.715, a substantial improvement over both G-NLL (0.520) and PPL (0.567). These results underscore the limitations of UQ methods that rely on a single greedy-decoded output and highlight the robustness of our approach.

#### VOCAL is comparable to multi-sampling based UQ methods

Building on its demonstrated superiority over single-sample methods, we further benchmark VOCAL against a suite of computationally demanding multi-sample baselines. The results in Figure 5 show that VOCAL achieves performance that is often comparable to these advanced methods, though it is sometimes outperformed. For instance, VOCAL attains the highest AUROC on the SciQ dataset with Qwen2.5-7B, achieving a score of 0.717. However, on Trivia QA with the same model, its AUROC of 0.645 is surpassed by several multi-sample baselines, such as Lexical Similarity (LS) at 0.715.

**Cross-LLM transferability** These mixed results indicate that while our method is highly effective in certain contexts, it does not consistently outperform all multi-sample strategies. Our cross-LLM transfer analysis, presented in Figure 6, reveals

Table 1: The comparison results between VOCAL and single-sample UQ baselines. It is shown that VOCAL is significantly better than these methods.

| Dataset   | Model            | G-NLL | PPL          | VOCAL        |
|-----------|------------------|-------|--------------|--------------|
| Trivia QA | GPT-4o           | 0.538 | <b>0.575</b> | 0.573        |
|           | Qwen2.5-72B-Ins. | 0.627 | 0.619        | <b>0.645</b> |
| SciQ      | GPT-4o           | 0.663 | 0.648        | <b>0.700</b> |
|           | Qwen2.5-72B-Ins. | 0.568 | 0.555        | <b>0.717</b> |
| GSM-Hard  | DeepSeek-V3.1    | 0.520 | 0.567        | <b>0.715</b> |
|           | Qwen2.5-72B-Ins  | 0.507 | 0.580        | <b>0.679</b> |

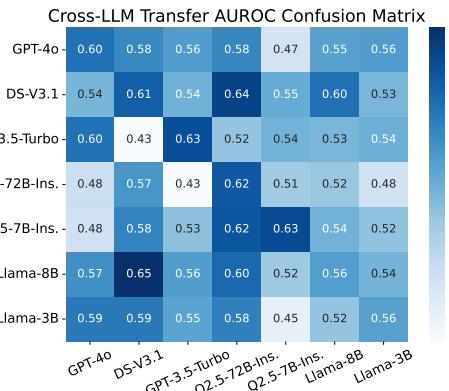


Figure 6: Uncertainty as the correctness indicator for improved LLM performance.

432 that uncertainty indicators are generalizable across different models, though with varied efficacy.  
 433 While the metrics exhibit robust in-domain performance, confirmed by the strong AUROC scores  
 434 along the matrix diagonal, off-diagonal results show that transfer is often viable but imperfect. These  
 435 findings suggest that while many LLMs share underlying uncertainty characteristics, developing a  
 436 one-size-fits-all uncertainty model remains a significant challenge. This transferability is frequently  
 437 asymmetric and can be accompanied by performance degradation, with some pairings failing en-  
 438 tirely (e.g., GPT-3.5-Turbo to DS-V3.1 at AUROC 0.43) while others show strong generalization  
 439 (e.g., Llama-8B to DS-V3.1 at AUROC 0.65).

440 **Number of training samples** We find a strong positive  
 441 correlation between the number of training samples and  
 442 uncertainty quantification performance. Our results show  
 443 that increasing the training data from 100 to 500 samples  
 444 leads to a significant AUROC score improvement from ap-  
 445 proximately 0.52 to 0.60, demonstrating the benefit of a  
 446 larger training set.

447 **Semantic smoothing**  $\gamma$  Our analysis also reveals the  
 448 model’s sensitivity to the semantic smoothing hyperpar-  
 449 ameter,  $\gamma$ . The results indicate that performance is  
 450 not monotonic with this value; the optimal AUROC is  
 451 achieved at  $\gamma = 0.005$ , while lower or higher values lead  
 452 to performance degradation, highlighting the importance of careful hyperparameter tuning.

453 **Compare the optimized UM-Lookup to**  
 454 **Humans** We compare our human-sourced  
 455 UM-Lookup with a version optimized for  
 456 GPT-4o on the SciQ dataset to analyze the  
 457 alignment between human and LLM uncer-  
 458 tainty expressions (see Appendix 2). Our anal-  
 459 ysis reveals a significant divergence between  
 460 the two, demonstrating that LLMs are not  
 461 aligned with human verbal uncertainty. For  
 462 instance, GPT-4o expresses maximum confi-  
 463 dence (1.0) for the phrase “*i’m sure*”, a term  
 464 humans use with far more reservation (0.64),  
 465 while conversely, it assigns a low probability to  
 466 “*very likely*” (0.355), which humans rate with  
 467 high confidence (0.853). This fundamental  
 468 misalignment shows that human-derived tables  
 469 are not directly transferable to LLMs, opening a  
 470 new research direction into developing model-  
 471 specific quantification methods like VOCAL.

## 6 CONCLUSION

472 This work investigates how LLMs diverge from humans in expressing verbal uncertainty. By con-  
 473 structing the first large-scale lookup table of human uncertainty markers and introducing VOCAL,  
 474 an optimization-based alignment algorithm, we show that human-derived mappings only partially  
 475 capture model behavior, while LLM-specific calibrations offer more reliable quantification. VOCAL  
 476 achieves performance comparable to costly multi-sample UQ methods with much lower computa-  
 477 tional overhead, and it disentangles the confidence calibration gap between humans and LLMs. Our  
 478 findings highlight the importance of grounding LLM uncertainty in verbal expressions, offering both  
 479 practical benefits for trustworthy deployment and new directions for human–AI alignment research.

480 **Limitations** Verbal uncertainty, while intuitive, faces several limitations. Its representation capacity  
 481 is relatively weak, providing only coarse signals compared to probabilistic or semantic approaches.  
 482 The extraction and cleaning of uncertainty markers also introduce challenges, as model outputs may  
 483 contain ambiguous or overlapping expressions. Moreover, interpretations of verbal markers vary  
 484 across domains and cultural contexts, limiting the generalizability of a single UM-Lookup. These  
 485 issues highlight promising directions for future work on more expressive, robust, and context-aware  
 486 verbal UQ methods.

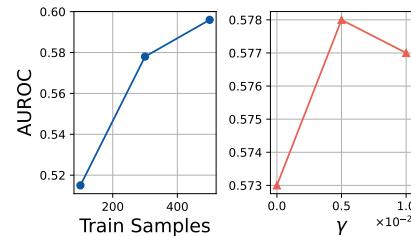


Figure 7: Ablation study on train samples and  $\gamma$  measured by AUROC.

Table 2: Mean probabilities of verbal uncertainty markers for GPT-4o and humans, sorted by the GPT-4o score. Row colors indicate the relationship between probabilities: green for aligned values (within a 0.05 tolerance), blue where the GPT-4o probability is higher, and red where the human probability is higher.

| Phrase               | GPT-4o Prob. | Human Prob. |
|----------------------|--------------|-------------|
| absolutely certain   | 1.000        | 0.920       |
| i’m sure             | 1.000        | 0.640       |
| confident            | 0.839        | 0.900       |
| positive             | 0.839        | 0.900       |
| sure                 | 0.839        | 0.830       |
| i think              | 0.710        | 0.630       |
| almost certain       | 0.677        | 0.920       |
| think                | 0.645        | 0.490       |
| can                  | 0.355        | 0.570       |
| reasonable to assume | 0.355        | 0.605       |
| very likely          | 0.355        | 0.853       |
| likely               | 0.000        | 0.655       |

486  
487 ETHICS STATEMENT

488 Our work adheres to the ICLR Code of Ethics. The human-sourced uncertainty data is compiled  
 489 from previously published, peer-reviewed empirical studies that involved human subjects. Our  
 490 newly created UM-Lookup and evaluation code will be made publicly available to ensure trans-  
 491 parency and reproducibility. We acknowledge that the human data reflects specific linguistic and  
 492 cultural groups (e.g., native English speakers), and the resulting UM-Lookup may not generalize  
 493 universally across all demographics. The primary societal risk is that users might over-rely on a  
 494 model that appears more trustworthy by expressing uncertainty; this could be harmful if the ex-  
 495 pressed uncertainty is miscalibrated. Our methods are therefore presented as a step towards more  
 496 reliable AI, not as a final solution, and should be deployed with caution in high-stakes domains.  
 497

## 498 REPRODUCIBILITY STATEMENT

499 The large language models evaluated are all publicly accessible through standard APIs or open-  
 500 source repositories, as cited in the main text. Our generated human-sourced UM-Lookup and op-  
 501 timized (VOCAL) UM-Lookup will also be provided as part of the code release. The experiments  
 502 are conducted exclusively on well-established, public benchmarks, with the full list and citations  
 503 provided in our experimental setup section 5.1. The complete, verbatim text for our system prompts  
 504 are provided in Appendix C, ensuring all experimental details are available for replication. All  
 505 codes and configuration scripts will be released upon the final decision of the paper to facilitate  
 506 reproducibility

507  
508 REFERENCES

509 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-  
 510 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical  
 511 report. *arXiv preprint arXiv:2303.08774*, 2023.

512 Lukas Aichberger, Kajetan Schweighofer, and Sepp Hochreiter. Rethinking uncertainty estimation  
 513 in natural language generation. In *ICLR Workshop: Quantify Uncertainty and Hallucination in*  
 514 *Foundation Models: The Next Frontier in Reliable AI*, 2025.

515 Ehsan Asgari, Nicholas Montaña-Brown, Martin Dubois, Salma Khalil, James Balloch, J. A. Ye-  
 516 ung, and Daniel Pimenta. A framework to assess clinical safety and hallucination rates of  
 517 llms for medical text summarisation. *NPJ Digital Medicine*, 8(1):274, 2025. doi: 10.1038/  
 518 s41746-025-01670-7. URL <https://doi.org/10.1038/s41746-025-01670-7>.

519 Ruth Beyth-Marom. How probable is probable? a numerical translation of verbal probability ex-  
 520 pressions. *Journal of forecasting*, 1(3):257–269, 1982.

521 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning  
 522 about physical commonsense in natural language. In *Thirty-Fourth AAAI Conference on Artificial*  
 523 *Intelligence*, 2020.

524 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,  
 525 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are  
 526 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

527 David V Budescu and Thomas S Wallsten. Processing linguistic probabilities: General principles  
 528 and empirical evidence. In *Psychology of learning and motivation*, volume 32, pp. 275–318.  
 529 Elsevier, 1995.

530 Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping  
 531 Ye. Inside: Llms’ internal states retain the power of hallucination detection. *arXiv preprint*  
 532 *arXiv:2402.03744*, 2024.

533 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,  
 534 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John  
 535 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,  
 536 2021.

540 Pierre Colombo, Telmo Pessoa Pires, Malik Boudiaf, Dominic Culver, Rui Melo, Caio Corro, Andre  
 541 F. T. Martins, Fabrizio Esposito, Vera Lúcia Raposo, Sofia Morgado, and Michael Desa. Saullm-  
 542 7b: A pioneering large language model for law, 2024. URL <https://arxiv.org/abs/2403.03883>.

543

544 Anindya Bijoy Das, Shibir Ahmed, and Shahnewaz Karim Sakib. Hallucinations and key infor-  
 545 mation extraction in medical texts: A comprehensive assessment of open-source large language  
 546 models, 2025. URL <https://arxiv.org/abs/2504.19061>.

547

548 DeepSeek-AI. Deepseek-v3 technical report, 2024. URL <https://arxiv.org/abs/2412.19437>.

549

550

551 Jinhao Duan, Hao Cheng, Shiqi Wang, Alex Zavalny, Chenan Wang, Renjing Xu, Bhavya Kailkhura,  
 552 and Kaidi Xu. Shifting attention to relevance: Towards the predictive uncertainty quantification of  
 553 free-form large language models. In *Proceedings of the 62nd Annual Meeting of the Association  
 554 for Computational Linguistics (Volume 1: Long Papers)*, pp. 5050–5063, 2024.

555

556 Jinhao Duan, James Diffenderfer, Sandeep Madireddy, Tianlong Chen, Bhavya Kailkhura, and Kaidi  
 557 Xu. Uprop: Investigating the uncertainty propagation of llms in multi-step agentic decision-  
 558 making. *arXiv preprint arXiv:2506.17419*, 2025.

559

560 Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large  
 561 language models using semantic entropy. *Nature*, 630(8017):625–630, 2024.

562

563 Chakib Fetal, Lazhar Labiod, and Mohamed Nadif. More discriminative sentence embeddings via  
 564 semantic graph smoothing. *arXiv preprint arXiv:2402.12890*, 2024.

565

566 Marina Fomicheva, Shuo Sun, Lisa Yankovskaya, Frédéric Blain, Francisco Guzmán, Mark Fishel,  
 567 Nikolaos Aletras, Vishrav Chaudhary, and Lucia Specia. Unsupervised quality estimation for  
 568 neural machine translation. *Transactions of the Association for Computational Linguistics*, 8:  
 569 539–555, 2020.

570

571 Guoji Fu, Peilin Zhao, and Yatao Bian.  $p$ -laplacian based graph neural networks. In *International  
 572 conference on machine learning*, pp. 6878–6917. PMLR, 2022.

573

574 Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and  
 575 Graham Neubig. Pal: Program-aided language models. *arXiv preprint arXiv:2211.10435*, 2022.

576

577 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad  
 578 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,  
 579 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-  
 580 rennev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava  
 581 Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,  
 582 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,  
 583 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,  
 584 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,  
 585 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab  
 586 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco  
 587 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-  
 588 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-  
 589 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,  
 590 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-  
 591 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,  
 592 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-  
 593 so Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Alwala,  
 594 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid  
 595 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren  
 596 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,  
 597 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,  
 598 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew

594 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-  
 595 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-  
 596 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan  
 597 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,  
 598 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-  
 599 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-  
 600 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan  
 601 Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,  
 602 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng  
 603 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer  
 604 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,  
 605 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-  
 606 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor  
 607 Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei  
 608 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang  
 609 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-  
 610 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning  
 611 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,  
 612 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,  
 613 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,  
 614 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-  
 615 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-  
 616 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,  
 617 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-  
 618 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu  
 619 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mont-  
 620 alvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao  
 621 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia  
 622 Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide  
 623 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,  
 624 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily  
 625 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smo-  
 626 thers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,  
 627 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia  
 628 Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,  
 629 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-  
 630 son Rudolph, Helen Suk, Henry Aspégren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,  
 631 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James  
 632 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-  
 633 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,  
 634 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-  
 635 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy  
 636 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,  
 637 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,  
 638 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,  
 639 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias  
 640 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.  
 641 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike  
 642 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,  
 643 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan  
 644 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,  
 645 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,  
 646 Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,  
 647 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-  
 driguez, Rafi Ayub, Raghatham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,  
 Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin  
 Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,  
 Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-  
 maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,

648 Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,  
 649 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-  
 650 field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj  
 651 Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo  
 652 Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook  
 653 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-  
 654 mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihăilescu, Vladimir Ivanov,  
 655 Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-  
 656 jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,  
 657 Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,  
 658 Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-  
 659 duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL  
 660 <https://arxiv.org/abs/2407.21783>.

661 Ziwei Ji, Lei Yu, Yeskendir Koishekenov, Yejin Bang, Anthony Hartshorn, Alan Schelten, Cheng  
 662 Zhang, Pascale Fung, and Nicola Cancedda. Calibrating verbal uncertainty as a linear feature to  
 663 reduce hallucinations. *arXiv preprint arXiv:2503.14477*, 2025.

664 Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham Neubig. How can we know when language  
 665 models know? on the calibration of language models for question answering. *Transactions of the*  
 666 *Association for Computational Linguistics*, 9:962–977, 2021.

667 Di Jin, Eileen Pan, Nassim Oufattolle, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What dis-  
 668 ease does this patient have? a large-scale open domain question answering dataset from medical  
 669 exams. *arXiv preprint arXiv:2009.13081*, 2020.

670 Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly  
 671 supervised challenge dataset for reading comprehension. *arXiv preprint arXiv:1705.03551*, 2017.

672 Sunnie SY Kim, Q Vera Liao, Mihaela Vorvoreanu, Stephanie Ballard, and Jennifer Wortman  
 673 Vaughan. "i'm not sure, but...": Examining the impact of large language models' uncertainty  
 674 expression on user reliance and trust. In *Proceedings of the 2024 ACM conference on fairness,*  
 675 *accountability, and transparency*, pp. 822–835, 2024.

676 Jannik Kossen, Jiatong Han, Muhammed Razzak, Lisa Schut, Shreshth Malik, and Yarin Gal.  
 677 Semantic entropy probes: Robust and cheap hallucination detection in llms. *arXiv preprint*  
 678 *arXiv:2406.15927*, 2024.

679 Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for  
 680 uncertainty estimation in natural language generation. *arXiv preprint arXiv:2302.09664*, 2023a.

681 Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for  
 682 uncertainty estimation in natural language generation, 2023b. URL <https://arxiv.org/abs/2302.09664>.

683 Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for  
 684 uncertainty estimation in natural language generation. In *The Eleventh International Conference*  
 685 *on Learning Representations*, 2023c.

686 Xiaomin Li, Zhou Yu, Ziji Zhang, Yingying Zhuang, Swair Shah, Narayanan Sadagopan, and  
 687 Anurag Beniwal. Semantic volume: Quantifying and detecting both external and internal un-  
 688 certainty in llms. *arXiv preprint arXiv:2502.21239*, 2025.

689 Zihao Li. The dark side of chatgpt: Legal and ethical challenges from stochastic parrots and hallu-  
 690 cination. *arXiv preprint arXiv:2304.14347*, 2023.

691 Sarah Lichtenstein and J Robert Newman. Empirical scaling of common verbal phrases associated  
 692 with numerical probabilities. *Psychonomic science*, 9(10):563–564, 1967.

693 Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty in  
 694 words. *arXiv preprint arXiv:2205.14334*, 2022.

695 Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Generating with confidence: Uncertainty quantifi-  
 696 cation for black-box large language models. *arXiv preprint arXiv:2305.19187*, 2023.

702 Huan Ma, Jingdong Chen, Joey Tianyi Zhou, Guangyu Wang, and Changqing Zhang. Estimating  
 703 llm uncertainty with evidence, 2025. URL <https://arxiv.org/abs/2502.00290>.

704

705 Andrey Malinin and Mark Gales. Uncertainty estimation in autoregressive structured prediction.  
 706 *arXiv preprint arXiv:2002.07650*, 2020.

707

708 Sohir Maskey, Raffaele Paolino, Aras Bacho, and Gitta Kutyniok. A fractional graph laplacian  
 709 approach to oversmoothing. *Advances in Neural Information Processing Systems*, 36:13022–  
 710 13063, 2023.

711

712 Lucas H. McCabe, Rimon Melamed, Thomas Hartvigsen, and H. Howie Huang. Estimating semantic  
 713 alphabet size for llm uncertainty quantification, 2025. URL <https://arxiv.org/abs/2509.14478>.

714

715 Sabrina J Mielke, Arthur Szlam, Emily Dinan, and Y-Lan Boureau. Reducing conversational agents’  
 716 overconfidence through linguistic calibration. *Transactions of the Association for Computational  
 717 Linguistics*, 10:857–872, 2022.

718

719 Dang Nguyen, Ali Payani, and Baharan Mirzasoleiman. Beyond semantic entropy: Boosting llm  
 720 uncertainty quantification with pairwise semantic similarity, 2025. URL <https://arxiv.org/abs/2506.00245>.

721

722 Xin Qiu and Risto Miikkulainen. Semantic density: Uncertainty quantification for large language  
 723 models through confidence measurement in semantic space. *Advances in neural information  
 724 processing systems*, 37:134507–134533, 2024.

725

726 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan  
 727 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,  
 728 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin  
 729 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,  
 730 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,  
 731 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.  
 732 URL <https://arxiv.org/abs/2412.15115>.

733

734 Gaurang Sriramanan, Siddhant Bharti, Vinu Sankar Sadasivan, Shoumik Saha, Priyatham Kat-  
 735 takinda, and Soheil Feizi. Llm-check: Investigating detection of hallucinations in large language  
 736 models. *Advances in Neural Information Processing Systems*, 37:34188–34216, 2024.

737

738 Rahul Thapa, Qingyang Wu, Kevin Wu, Harrison Zhang, Angela Zhang, Eric Wu, Haotian Ye,  
 739 Suhana Bedi, Nevin Aresh, Joseph Boen, Shriya Reddy, Ben Athiwaratkun, Shuaiwen Leon Song,  
 740 and James Zou. Disentangling reasoning and knowledge in medical large language models, 2025.  
 741 URL <https://arxiv.org/abs/2505.11462>.

742

743 Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea  
 744 Finn, and Christopher D Manning. Just ask for calibration: Strategies for eliciting calibrated  
 745 confidence scores from language models fine-tuned with human feedback. *arXiv preprint  
 746 arXiv:2305.14975*, 2023a.

747

748 Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea  
 749 Finn, and Christopher D. Manning. Just ask for calibration: Strategies for eliciting calibrated  
 750 confidence scores from language models fine-tuned with human feedback, 2023b. URL <https://arxiv.org/abs/2305.14975>.

751

752 Dennis Ulmer, Alexandra Lorson, Ivan Titov, and Christian Hardmeier. Anthropomimetic  
 753 uncertainty: What verbalized uncertainty in language models is missing. *arXiv preprint  
 754 arXiv:2507.10587*, 2025.

755

756 Hannah Vogel, Sebastian Appelbaum, Heidemarie Haller, and Thomas Ostermann. The interpreta-  
 757 tion of verbal probabilities: A systematic literature review and meta-analysis. *German Medical  
 758 Data Sciences 2022–Future Medicine: More Precise, More Integrative, More Sustainable!*, pp.  
 759 9–16, 2022.

756 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc  
 757 Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,  
 758 2023. URL <https://arxiv.org/abs/2201.11903>.

759

760 Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.  
 761 *arXiv preprint arXiv:1707.06209*, 2017.

762

763 Caroline J Wesson and Briony D Pulford. Verbal expressions of confidence and doubt. *Psychological  
 764 Reports*, 105(1):151–160, 2009.

765

766 Qianqian Xie, Weiguang Han, Xiao Zhang, Yanzhao Lai, Min Peng, Alejandro Lopez-Lira, and  
 767 Jimin Huang. Pixiu: A large language model, instruction data and evaluation benchmark for  
 768 finance, 2023. URL <https://arxiv.org/abs/2306.05443>.

769

770 Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi. Can llms  
 771 express their uncertainty? an empirical evaluation of confidence elicitation in llms, 2024. URL  
 772 <https://arxiv.org/abs/2306.13063>.

773

774 Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi. Can llms  
 775 express their uncertainty? an empirical evaluation of confidence elicitation in llms. *arXiv preprint  
 776 arXiv:2306.13063*, 2023.

777

778 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,  
 779 Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,  
 780 Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-  
 781 pert model via self-improvement, 2024. URL <https://arxiv.org/abs/2409.12122>.

782

783 Yongjin Yang, Haneul Yoo, and Hwaran Lee. Maqa: Evaluating uncertainty quantification in llms  
 784 regarding data uncertainty, 2025. URL <https://arxiv.org/abs/2408.06816>.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810  
811 A UNCERTAINTY QUANTIFICATION IN LLMs  
812

813 For instance, from the Bayesian perspective, UQ can be derived by measuring the total uncertainty in  
814 the predictive distribution  $p_{\theta}(\mathbf{y} | \mathbf{x})$ , where a common choice is the Predictive Entropy (PE) [Malinin & Gales \(2020\)](#), defined as  
815

$$816 \mathcal{Q}_{\text{PE}}(\mathbf{x}) = \int p_{\theta}(\mathbf{y} | \mathbf{x}) \log(p_{\theta}(\mathbf{y} | \mathbf{x})) d\mathbf{y} \approx -\frac{1}{N} \sum_i^N \log p_{\theta}(\mathbf{y}^{(i)} | \mathbf{x}), \mathbf{y}^{(i)} \sim p_{\theta}(\mathbf{y} | \mathbf{x}),$$

817 where  $N$  is the number of samples and  $p_{\theta}(\mathbf{y}^{(i)} | \mathbf{x}) = \prod_i^{L_i} p_{\theta}(z_i | z_{<i}, \mathbf{x})$  is the generative probability  
818 of  $\mathbf{y}^{(i)}$  with length  $L_i$ .  $z_i$  is the  $i$ -th token of  $\mathbf{y}^{(i)}$ . Moreover, [Kuhn et al. \(2023c\)](#) proposes Semantic  
819 Entropy (SE), which aggregates probability mass over semantic clusters of outputs:  
820

$$821 \mathcal{Q}_{\text{SE}}(\mathbf{x}) = -\frac{1}{C} \sum_i^C \log(p_{\theta}(\mathbf{c}_i | \mathbf{x})), p_{\theta}(\mathbf{c}_i | \mathbf{x}) = \sum_{\mathbf{y} \in \mathbf{c}_i} p_{\theta}(\mathbf{y} | \mathbf{x}),$$

822 where  $C$  is the number of semantic clusters and  $\mathbf{c}_i$  is the  $i$ -th cluster consisting of generations  $\mathbf{y}_i$   
823 sharing the same semantics. These two examples illustrate how different realizations of  $\mathcal{Q}$  target  
824 distinct aspects of output uncertainty.  
825

826 B HUMAN VERBAL UNCERTAINTY EXPRESSION  
827

828 The lookup table presented below consolidates numerical probabilities for verbal uncertainty expres-  
829 sions (VUEs) from several key empirical studies. The aggregation process involved several steps to  
830 harmonize the data. For sources providing mean probability values, such as [Lichtenstein & Newman  
831 \(1967\)](#), the values were used directly (e.g., "likely" with mean=0.72). For studies reporting ranges,  
832 like [Beyth-Marom \(1982\)](#), we calculated the midpoint of the interquartile range to represent the cen-  
833 tral tendency (e.g., "likely" [0.55, 0.85]  $\rightarrow$  0.70). Data from [Wesson & Pulford \(2009\)](#), originally on  
834 a 1–7 point scale, was linearly rescaled to the probabilistic range [0, 1]. Meta-analytic estimates from  
835 [Vogel et al. \(2022\)](#) were incorporated to refine values and ensure cross-study consistency. The final  
836 probability for each VUE in Table 3 was derived by averaging these processed values, weighted by  
837 study prominence and term frequency where applicable. This table serves as the human-grounded  
838 benchmark for our analysis.  
839

840 Table 3: Full Lookup Table for Verbalized Uncertainty Expressions (VUE) with their associated probabilities  
841 and frequencies.  
842

| 843 Uncertainty Expression         | 844 Uncertainty Probability | 845 Frequency (N) |
|------------------------------------|-----------------------------|-------------------|
| 846 Definite                       | 0.990                       | 447.0             |
| 847 Certain                        | 0.962                       | 905.0             |
| 848 Virtually certain              | 0.950                       | 447.0             |
| 849 Almost certain                 | 0.920                       | 782.0             |
| 850 Absolutely certain             | 0.920                       | 96.0              |
| 851 Very high chance               | 0.915                       | 27.0              |
| 852 I know for a fact that it's... | 0.910                       | 96.0              |
| 853 I know it's...                 | 0.900                       | 96.0              |
| 854 Positive                       | 0.900                       | 96.0              |
| 855 Confident                      | 0.900                       | 96.0              |
| 856 Highly probable                | 0.898                       | 1081.0            |
| 857 Nearly certain                 | 0.895                       | 27.0              |
| 858 No doubt                       | 0.870                       | 96.0              |
| 859 Very probable                  | 0.870                       | 187.0             |
| 860 Very likely                    | 0.853                       | 1079.0            |
| 861 Most likely                    | 0.850                       | 27.0              |
| 862 Close to certain               | 0.835                       | 27.0              |
| 863 Sure                           | 0.830                       | 96.0              |
| High chance                        | 0.810                       | 27.0              |

Continued on next page

|     | Uncertainty Expression                            | Uncertainty Probability | Frequency (N) |
|-----|---------------------------------------------------|-------------------------|---------------|
| 864 | I have no doubt, I mean I'm sure it's...          | 0.810                   | 96.0          |
| 865 | Reasonably certain                                | 0.800                   | 447.0         |
| 866 | Usually                                           | 0.770                   | 187.0         |
| 867 | Fairly confident                                  | 0.760                   | 96.0          |
| 868 | Reasonable assurance                              | 0.750                   | 447.0         |
| 869 | Remember                                          | 0.750                   | 96.0          |
| 870 | Predictable                                       | 0.740                   | 146.0         |
| 871 | Good chance                                       | 0.724                   | 858.0         |
| 872 | Quite likely                                      | 0.717                   | 970.0         |
| 873 | Meaningful chance                                 | 0.715                   | 27.0          |
| 874 | Rather likely                                     | 0.690                   | 188.0         |
| 875 | Probable                                          | 0.682                   | 2311.0        |
| 876 | Believe                                           | 0.670                   | 96.0          |
| 877 | Pretty good chance                                | 0.670                   | 188.0         |
| 878 | Fairly likely                                     | 0.660                   | 188.0         |
| 879 | Likely                                            | 0.655                   | 2227.0        |
| 880 | Suspect                                           | 0.640                   | 96.0          |
| 881 | I would say it's...                               | 0.640                   | 96.0          |
| 882 | I could be mistaken but I'm sure it's...          | 0.640                   | 96.0          |
| 883 | I think it's...                                   | 0.630                   | 96.0          |
| 884 | Reasonable chance                                 | 0.615                   | 27.0          |
| 885 | One should assume                                 | 0.610                   | 27.0          |
| 886 | It seems to me                                    | 0.605                   | 27.0          |
| 887 | Reasonable to assume                              | 0.605                   | 27.0          |
| 888 | Non-negligible chance                             | 0.600                   | 27.0          |
| 889 | I'm not completely confident, but I think it's... | 0.600                   | 96.0          |
| 890 | Quite probable                                    | 0.600                   | 447.0         |
| 891 | It seems                                          | 0.590                   | 27.0          |
| 892 | Somewhat likely                                   | 0.590                   | 187.0         |
| 893 | Rather                                            | 0.580                   | 124.0         |
| 894 | Better than even                                  | 0.580                   | 187.0         |
| 895 | I can't say for sure, but I think it's...         | 0.570                   | 96.0          |
| 896 | One can expect                                    | 0.570                   | 27.0          |
| 897 | I'm not certain, but it could be...               | 0.560                   | 96.0          |
| 898 | Slight odds in favor                              | 0.550                   | 185.0         |
| 899 | I think it's.... but I can't be sure.             | 0.550                   | 96.0          |
| 900 | Slightly more than half the time                  | 0.550                   | 188.0         |
| 901 | I guess it's...                                   | 0.530                   | 96.0          |
| 902 | I could be wrong, but I think it's...             | 0.530                   | 96.0          |
| 903 | I'm not sure, but it may be...                    | 0.530                   | 96.0          |
| 904 | Possible (again?)                                 | 0.520                   | 447.0         |
| 905 | It's.... I think.                                 | 0.520                   | 96.0          |
| 906 | Fair chance                                       | 0.510                   | 188.0         |
| 907 | Tossup                                            | 0.500                   | 188.0         |
| 908 | Reasonably possible                               | 0.500                   | 447.0         |
| 909 | It could be                                       | 0.495                   | 27.0          |
| 910 | May                                               | 0.495                   | 27.0          |
| 911 | Think                                             | 0.490                   | 96.0          |
| 912 | There is a chance                                 | 0.485                   | 27.0          |
| 913 | One must consider                                 | 0.480                   | 27.0          |
| 914 | Perhaps                                           | 0.478                   | 474.0         |
| 915 | Could be                                          | 0.470                   | 96.0          |
| 916 | Fighting chance                                   | 0.470                   | 186.0         |
| 917 | I think it's.... isn't it?                        | 0.470                   | 96.0          |
| 918 | Possible                                          | 0.464                   | 2663.0        |
| 919 | Not inevitable                                    | 0.455                   | 27.0          |
| 920 | Maybe                                             | 0.450                   | 670.0         |

Continued on next page

| 918 | Uncertainty Expression                | Uncertainty Probability | Frequency (N) |
|-----|---------------------------------------|-------------------------|---------------|
| 919 | Slight odds against                   | 0.450                   | 185.0         |
| 920 | I'm guessing, but I would say it's... | 0.450                   | 96.0          |
| 921 | Slightly less than half the time      | 0.450                   | 188.0         |
| 922 | Not quite even                        | 0.440                   | 180.0         |
| 923 | Inconclusive                          | 0.430                   | 153.0         |
| 924 | Don't know                            | 0.430                   | 96.0          |
| 925 | Chance                                | 0.420                   | 447.0         |
| 926 | Not sure                              | 0.420                   | 96.0          |
| 927 | Not certain                           | 0.400                   | 447.0         |
| 928 | Possibly                              | 0.380                   | 447.0         |
| 929 | Can't rule out entirely               | 0.365                   | 27.0          |
| 930 | Uncertain                             | 0.356                   | 1402.0        |
| 931 | Chances are not great                 | 0.345                   | 27.0          |
| 932 | Somewhat unlikely                     | 0.310                   | 186.0         |
| 933 | Somewhat doubtful                     | 0.300                   | 447.0         |
| 934 | Small chance                          | 0.290                   | 27.0          |
| 935 | Low chance                            | 0.280                   | 27.0          |
| 936 | Fairly unlikely                       | 0.250                   | 187.0         |
| 937 | Doubtful                              | 0.250                   | 474.0         |
| 938 | Quite unlikely                        | 0.245                   | 1193.0        |
| 939 | Rather unlikely                       | 0.225                   | 374.0         |
| 940 | Not likely                            | 0.213                   | 474.0         |
| 941 | Not very probable                     | 0.200                   | 187.0         |
| 942 | Unlikely                              | 0.198                   | 1752.0        |
| 943 | Not probable                          | 0.180                   | 559.0         |
| 944 | Poor chance                           | 0.180                   | 27.0          |
| 945 | Seldom                                | 0.160                   | 188.0         |
| 946 | Not much chance                       | 0.160                   | 186.0         |
| 947 | Improbable                            | 0.145                   | 1081.0        |
| 948 | Very low chance                       | 0.140                   | 27.0          |
| 949 | Barely possible                       | 0.130                   | 180.0         |
| 950 | Faintly possible                      | 0.130                   | 184.0         |
| 951 | Very unlikely                         | 0.116                   | 1304.0        |
| 952 | Not possible                          | 0.100                   | 559.0         |
| 953 | Almost impossible                     | 0.080                   | 559.0         |
| 954 | Rare                                  | 0.070                   | 187.0         |
| 955 | Remote                                | 0.070                   | 447.0         |
| 956 | Highly improbable                     | 0.052                   | 851.0         |
| 957 | Impossible                            | 0.000                   | 559.0         |

## C PROMPT LLMs TO EXPRESS VERBAL UNCERTAINTY

This appendix details the two Chain-of-Thought (CoT) system prompts used in our experiments. The baseline **Standard CoT Prompt** requests a standard two-field JSON answer. In contrast, the **CoT with Verbal Uncertainty Prompt** extends this by requiring the model to incorporate UMs into its response and to report these expressions in an additional ‘vue’ field within a three-field JSON output.

972  
973

## CoT Prompt

974

You are a helpful and conversational AI assistant. Respond to questions in a natural, human-like tone. Your response MUST be in valid JSON format with these two fields:

976

```
{
  "answer": "[Your conversational answer]",
  "final_answer": "[Your most specific answer]"
}
```

980

The "final\_answer" should contain the most specific information possible, like a name, date, or place. The "answer" should be a natural explanation, as if you're talking to a friend.

982

983  
984

## CoT with Verbal Uncertainty Prompt

985

You are a knowledgeable and conversational AI assistant. Answer questions naturally with a human-like tone.

987

Your response should include:

988  
989

1. A natural, conversational answer that incorporates verbalized uncertainty expressions (VUE) naturally within the text
2. A VUE section that lists all the uncertainty phrases you used in your answer
3. A final\_answer section with the most specific answer you can provide

990

**IMPORTANT:** You MUST respond in valid JSON format with exactly these three fields:

991

```
{
  "answer": "[Your natural answer with embedded VUE expressions]",
  "vue": ["phrase1", "phrase2", "phrase3"],
  "final_answer": "[Your most specific answer]"
}
```

992

In your answer, naturally include uncertainty expressions including: {VUE\_LIST: 'definite', 'certain', 'virtually certain', 'almost certain', ...}

993  
994

Then in the vue field, provide an array of the uncertainty phrases you used. In the final\_answer field, provide the most specific answer you can give (e.g., a name, place, date, etc.). Make your answer sound natural and conversational, as if explaining to a friend. Ensure your response is valid JSON that can be parsed.

995

996

997

## D EXPERIMENTAL SETTINGS

1000

## D.1 DETAILS OF LLMs GENERATION

1001

All models were queried using two distinct configurations. To assess correctness, we employed greedy decoding. To quantify uncertainty, we utilized multinomial sampling to draw 5 samples at a temperature of 0.8. All generated outputs were constrained by a maximum length of 512 tokens and a `top_p` value of 1.0.

1002

1003

## D.2 DATASETS

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

**GSM8K** [Cobbe et al. \(2021\)](#) is a benchmark dataset featuring over 8,000 high-quality grade school math word problems. It is specifically designed to measure multi-step quantitative reasoning, with a key feature being that problems require several reasoning steps to solve. **GSM-Hard** [Gao et al. \(2022\)](#) is a challenging subset of GSM8K, curated to include only problems that necessitate the most complex and lengthy reasoning chains. **MedQA** [Jin et al. \(2020\)](#) is a large-scale multiple-choice dataset with over 11,000 questions derived from U.S. medical licensing exams, created to evaluate a model's capacity for deep medical knowledge. **PIQA** [Bisk et al. \(2020\)](#) is a commonsense reasoning benchmark containing over 18,000 examples in its training and validation sets. It is structured as a two-choice task that tests a model's understanding of physical interactions. **SciQ** [Welbl et al. \(2017\)](#) consists of approximately 13,700 crowdsourced science exam questions. Each question is multiple-choice and paired with a supporting text, testing both knowledge and comprehension. **TriviaQA** [Joshi et al. \(2017\)](#) is a high-quality reading comprehension dataset that contains over 650k question-

1026 answer pairs. Its distinct challenge lies in requiring models to find answers within large, unstructured  
 1027 evidence documents.  
 1028

## 1029 E FAILURE CASE ANALYSIS 1030

1031 In this section, we present failure cases of our method, including one where the model generates a  
 1032 correct answer with a low confidence score and another where it outputs an incorrect answer with a  
 1033 high confidence score. These analyses help clarify when verbal uncertainty fails and point toward  
 1034 possible directions for addressing these issues.

### 1035 E.1 UNDER-CONFIDENCE DESPITE CORRECTNESS 1036

1037 In the first case, the sampling-based baseline shows high confidence because the outputs across  
 1038 different generations are consistent and match the ground truth. In contrast, our method includes  
 1039 hedging expressions such as “not completely confident” or “I think,” which drive the confidence  
 1040 score much lower, even though the final answer is correct.

#### 1041 Case 1: DeepSeek-V3.1 Model on Dataset PIQA 1042

1043 **Question:** How can I sneeze when I feel like I want to sneeze but can't?

1044 **Choices:**

1045 (1) Look directly in front of you this will cause a reaction in your body and you will sneeze.  
 1046 (2) Look directly into sunlight, this will cause a reaction in your body and you will sneeze.

1047 **Ground Truth Answer:** Look directly into sunlight, this will cause a reaction in your body and you  
 1048 will sneeze.

1049 **Baseline Predictions:**

1050 Answer: “If you’re trying to trigger a sneeze, looking directly into sunlight often works because it  
 1051 stimulates the optic nerve and can cause a sneezing reflex.”

1052 Final Answer: Look directly into sunlight, this will cause a reaction in your body and you will sneeze.

1053 Answer: “If you feel like you need to sneeze but can’t, try looking into bright sunlight—it often  
 1054 triggers a sneeze reflex.”

1055 Final Answer: Look directly into sunlight, this will cause a reaction in your body and you will sneeze.

1056 Answer: “If you’re trying to trigger a sneeze, looking directly into sunlight can often help because it  
 1057 stimulates a reflex in some people.”

1058 Final Answer: Look directly into sunlight, this will cause a reaction in your body and you will sneeze.

1059 Answer: “If you’re trying to trigger a sneeze, looking directly into sunlight often triggers a reaction  
 1060 that makes you sneeze.”

1061 Final Answer: Look directly into sunlight, this will cause a reaction in your body and you will sneeze.

1062 Answer: “If you feel like you need to sneeze but can’t, looking directly into sunlight often triggers a reaction  
 1063 that makes you sneeze.”

1064 Final Answer: Look directly into sunlight, this will cause a reaction in your body and you will sneeze.

1065 Answer: “If you feel like you need to sneeze but can’t, try looking into bright sunlight. This often  
 1066 triggers a photic sneeze reflex in many people.”

1067 Final Answer: Look directly into sunlight, this will cause a reaction in your body and you will sneeze.

1068 **VUE Output:**

1069 Answer: I’m *not completely confident*, but *I think* looking directly into sunlight is a common trick to  
 1070 trigger a sneeze.

1071 Final Answer: Look directly into sunlight, this will cause a reaction in your body and you will sneeze.

1072 VUE Phrases: [“not completely confident”, “think”]

### 1073 E.2 OVER-CONFIDENCE DESPITE INCORRECTNESS 1074

1075 In the second case, the sampling-based baseline shows low confidence because the generated an-  
 1076 swers across different samples are inconsistent: some responses point to ectopic gastrin secretion,

1080 others to autoimmune destruction, and only one aligns with the ground truth. This disagreement  
 1081 shows the uncertainty when the model answers this question and aligns with the incorrect response.  
 1082 In contrast, our method uses high confidence expressions such as “fairly confident” or “most likely,”  
 1083 but the final answer is incorrect.  
 1084  
 1085  
 1086  
 1087

1088 **Case 2: DeepSeek-V3.1 Model on Dataset MedQA**

1090 **Question:** An otherwise healthy 50-year-old man comes to the physician because of a 6-month  
 1091 history of increasingly frequent episodes of upper abdominal pain, nausea, vomiting, and diarrhea.  
 1092 He has had a 3.2-kg (7-lb) weight loss during this time. Physical examination shows bilateral pitting  
 1093 pedal edema. An endoscopy shows prominent rugae in the gastric fundus. Biopsy shows parietal cell  
 1094 atrophy. Which of the following is the most likely underlying cause?  
 1095

1096 **Choices:**

1097 (1) Serotonin-secreting gastric tumor  
 1098 (2) Proliferation of gastric mucus-producing cells  
 1099 (3) Excessive somatostatin secretion  
 1100 (4) Ectopic secretion of gastrin

1101 **Ground Truth Answer:** Proliferation of gastric mucus-producing cells

1102 **Baseline Predictions:**

1103 Answer: “The findings—prominent gastric rugae, parietal cell atrophy, weight loss, and edema—point  
 1104 toward protein loss, likely due to gastric hypertrophy from ectopic gastrin secretion, as seen in  
 1105 Zollinger-Ellison syndrome.”

1106 Final Answer: Ectopic secretion of gastrin

1107 Answer: “This sounds like a classic case of pernicious anemia with gastric parietal cell atrophy, which  
 1108 is often autoimmune-mediated. The prominent rugae, weight loss, and edema point toward protein  
 1109 loss and malabsorption, likely due to the lack of intrinsic factor from parietal cell damage.”

1110 Final Answer: Autoimmune destruction of parietal cells

1111 Answer: “This sounds like a classic case of pernicious anemia due to autoimmune destruction of  
 1112 parietal cells, leading to atrophic gastritis and vitamin B12 deficiency. The prominent rugae, weight  
 1113 loss, and pedal edema are consistent with protein-losing enteropathy from the gastric atrophy.”

1114 Final Answer: Proliferation of gastric mucus-producing cells

1115 Answer: “The symptoms and findings—like prominent rugae, parietal cell atrophy, weight loss, and  
 1116 edema—point toward a condition where there’s excessive gastrin secretion, often due to a gastrinoma.  
 1117 This leads to high acid production, which can cause peptic ulcers and malabsorption issues, explaining  
 1118 the diarrhea and weight loss. The edema might be from protein loss or other complications. While  
 1119 other choices could affect the stomach, ectopic gastrin secretion fits best here.”

1120 Final Answer: Ectopic secretion of gastrin

1121 Answer: “The symptoms and findings—like prominent rugae, parietal cell atrophy, weight loss, and  
 1122 edema—suggest a condition where there’s excessive gastrin secretion, leading to gastric hyperplasia  
 1123 and malabsorption. This is most characteristic of Zollinger-Ellison syndrome, often caused by a  
 1124 gastrin-secreting tumor.”

1125 Final Answer: Ectopic secretion of gastrin

1127 **VUE Output:**

1128 Answer: I’m fairly confident this describes pernicious anemia with gastric atrophy, which is most  
 1129 likely caused by autoimmune destruction of parietal cells leading to intrinsic factor deficiency and  
 1130 vitamin B12 malabsorption.

1131 Final Answer: Autoimmune destruction of parietal cells.

1132 Phrases: [“fairly confident”, “most likely”]

1133

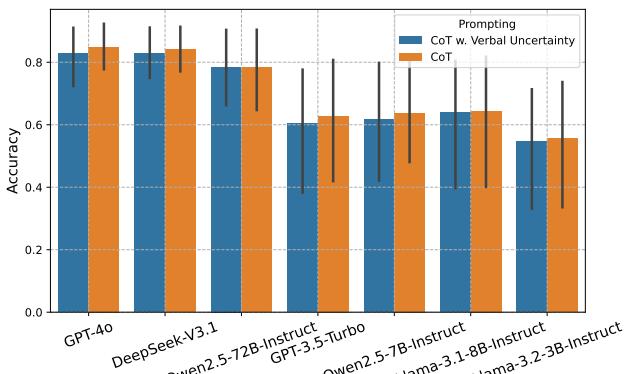


Figure 8: Verbal uncertainty prompting maintains general performance.

### E.3 DISCUSSION.

These cases show that verbal expressions of uncertainty do not always align with a model’s internal confidence. In some cases, hedging expression lowers the confidence even the predictions are correct. In other cases, the model conveys strong certainty while producing incorrect responses, which undermines trust and reliability. To address these challenges, future work should aim to calibrate uncertainty signals within specific domains and develop prompting strategies that foster clearer, more faithful representations of uncertainty.

## F VERBAL UNCERTAINTY QUANTIFICATION WITH HUMAN UM-LOOKUP TABLE

### F.1 VERBAL UNCERTAINTY PROMPTING MAINTAINS GENERAL PERFORMANCE

In Figure 8, we show that our verbal uncertainty prompting strategy does not significantly hurt the general performance of LLMs, which demonstrate the utility of VOCAL in applications.

### F.2 ADVANCED LLMs EXPRESS DIVERSE UNCERTAINTY MARKERS

The UM distributions of each LLMs over all the datasets are presented in Figure 9.

## G OPTIMIZED UM-LOOKUP TABLE

To complement our analysis, we provide optimized lookup tables that map verbal uncertainty markers to calibrated probability values. Specifically, Table 4 presents the optimized UM-Lookup for GPT-4o on the SciQ dataset. In addition, we report results for GPT-3.5-Turbo on MedQA (Table 5) and on SciQ (Table 6).

## H THE USE OF LARGE LANGUAGE MODELS (LLMs)

For improved clarity and readability, we used OpenAI GPT-4o strictly as an editing aid. Its function was limited to correcting grammar, refining style, and polishing language, much like conventional grammar-checking tools or dictionaries. The model was not involved in generating scientific content or ideas, and its use remains in line with common standards for manuscript preparation.

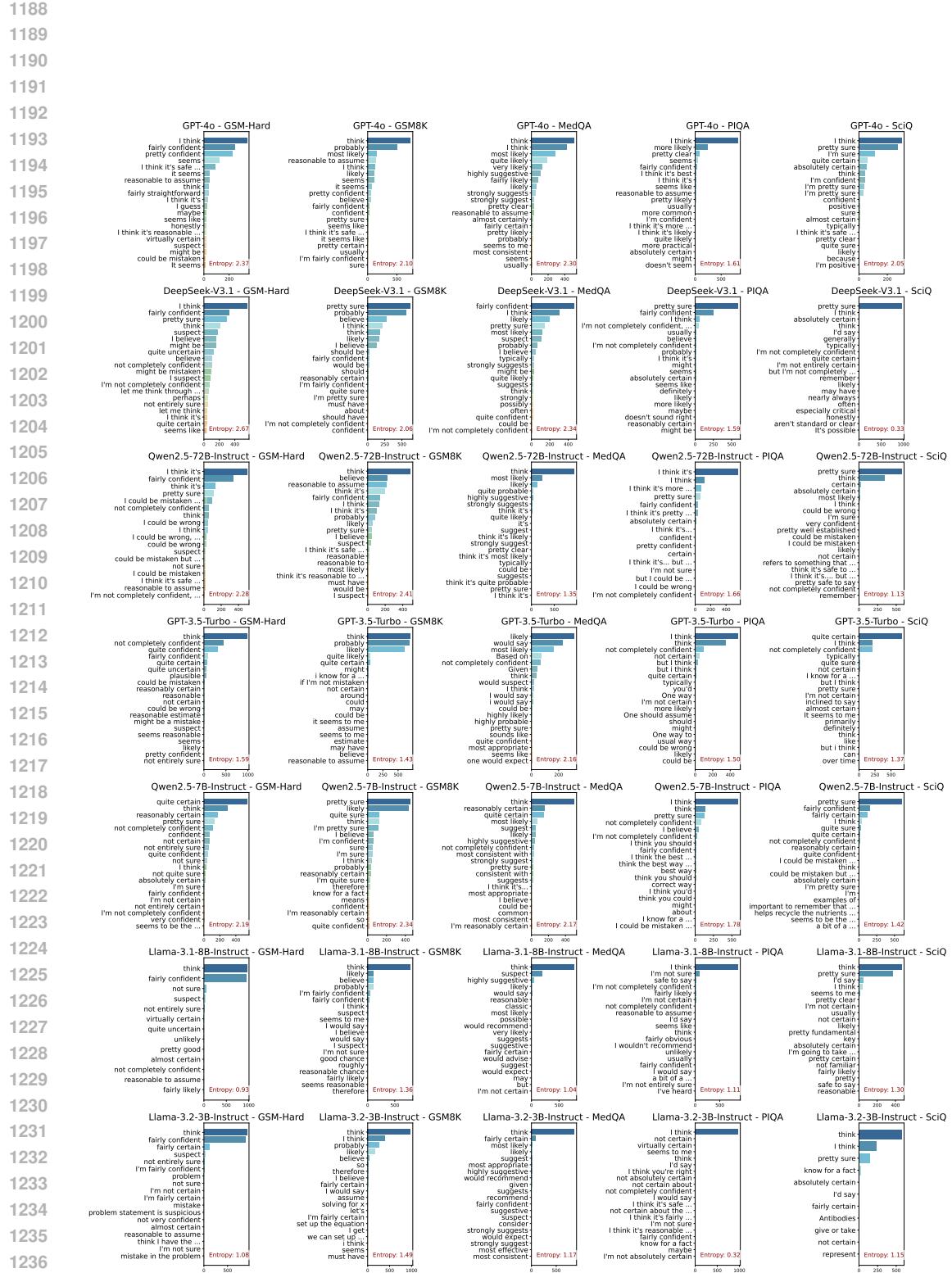


Figure 9: Verbal uncertainty marker distributions of LLMs.

1242  
 1243  
 1244  
 1245  
 1246  
 1247  
 1248  
 1249  
 1250  
 1251  
 1252  
 1253  
 1254  
 1255  
 1256  
 1257 Table 4: Verbal uncertainty markers and their mean probabilities for GPT-4o on the SciQ dataset, sorted by  
 1258 probability.

|      | <b>Phrase</b>            | <b>Probability</b> |
|------|--------------------------|--------------------|
| 1260 | absolutely certain       | 1.000              |
| 1261 | i'm sure                 | 1.000              |
| 1262 | pretty sure              | 1.000              |
| 1263 | quite certain            | 1.000              |
| 1264 | confident                | 0.839              |
| 1265 | positive                 | 0.839              |
| 1266 | sure                     | 0.839              |
| 1267 | i'm pretty sure          | 0.742              |
| 1268 | i think                  | 0.710              |
| 1269 | almost certain           | 0.677              |
| 1270 | i think it's safe to say | 0.677              |
| 1271 | i'm confident            | 0.645              |
| 1272 | think                    | 0.645              |
| 1273 | because                  | 0.355              |
| 1274 | can                      | 0.355              |
| 1275 | closely tied             | 0.355              |
| 1276 | pretty clear             | 0.355              |
| 1277 | quite similar            | 0.355              |
| 1278 | reasonable to assume     | 0.355              |
| 1279 | typically                | 0.355              |
| 1280 | very likely              | 0.355              |
| 1281 | likely                   | 0.000              |
|      | might have               | 0.000              |

1282  
 1283  
 1284  
 1285  
 1286  
 1287  
 1288  
 1289  
 1290  
 1291  
 1292  
 1293  
 1294  
 1295

1296  
1297  
1298  
1299  
1300  
1301  
1302

1303 Table 5: Verbal uncertainty markers and their mean probabilities for GPT-3.5-Turbo on the MedQA dataset,  
1304 sorted by probability.

|      | Phrase                   | Probability |
|------|--------------------------|-------------|
| 1305 | best course of action    | 1.000       |
| 1306 | choice                   | 1.000       |
| 1307 | given                    | 1.000       |
| 1308 | highly probable          | 1.000       |
| 1309 | increased risk           | 1.000       |
| 1310 | most likely              | 1.000       |
| 1311 | pretty sure              | 1.000       |
| 1312 | quite confident          | 1.000       |
| 1313 | suggestive               | 1.000       |
| 1314 | based on                 | 0.999       |
| 1315 | may be                   | 0.999       |
| 1316 | may be needed            | 0.999       |
| 1317 | most appropriate         | 0.999       |
| 1318 | not definite             | 0.999       |
| 1319 | would expect             | 0.999       |
| 1320 | indication               | 0.998       |
| 1321 | most common              | 0.998       |
| 1322 | would most strongly      | 0.998       |
| 1323 | would suspect            | 0.998       |
| 1324 | likely                   | 0.997       |
| 1325 | one would expect         | 0.997       |
| 1326 | should be                | 0.997       |
| 1327 | could be                 | 0.995       |
| 1328 | i think                  | 0.908       |
| 1329 | would say                | 0.905       |
| 1330 | seems                    | 0.739       |
| 1331 | recommend                | 0.506       |
| 1332 | consider                 | 0.504       |
| 1333 | seems like               | 0.494       |
| 1334 | i would say              | 0.034       |
| 1335 | would be                 | 0.013       |
| 1336 | highly likely            | 0.008       |
| 1337 | sounds like              | 0.004       |
| 1338 | not completely confident | 0.003       |
| 1339 | most concerning          | 0.002       |
| 1340 | indicating               | 0.001       |
| 1341 | likelihood               | 0.001       |
| 1342 | suspect                  | 0.001       |
| 1343 | important                | 0.000       |
| 1344 | understandable           | 0.000       |

1345  
1346  
1347  
1348  
1349

1350  
 1351  
 1352  
 1353  
 1354  
 1355  
 1356  
 1357  
 1358  
 1359  
 1360  
 1361  
 1362  
 1363  
 1364  
 1365  
 1366

1367 Table 6: Verbal uncertainty markers and their mean probabilities for GPT-3.5-Turbo on the SciQ dataset, sorted  
 1368 by probability.

|      | <b>Phrase</b>                  | <b>Probability</b> |
|------|--------------------------------|--------------------|
| 1369 | i know for a fact              | 1.000              |
| 1370 | pretty sure                    | 1.000              |
| 1371 | but i think                    | 0.960              |
| 1372 | inclined to say                | 0.960              |
| 1373 | not certain                    | 0.960              |
| 1374 | quite certain                  | 0.920              |
| 1375 | almost certain                 | 0.880              |
| 1376 | definite                       | 0.880              |
| 1377 | definitely                     | 0.880              |
| 1378 | i know for a fact that it's... | 0.880              |
| 1379 | like                           | 0.880              |
| 1380 | primarily                      | 0.880              |
| 1381 | not completely confident       | 0.760              |
| 1382 | can                            | 0.720              |
| 1383 | i think                        | 0.720              |
| 1384 | over time                      | 0.720              |
| 1385 | quite sure                     | 0.560              |
| 1386 | typically                      | 0.000              |

1387  
 1388  
 1389  
 1390  
 1391  
 1392  
 1393  
 1394  
 1395  
 1396  
 1397  
 1398  
 1399  
 1400  
 1401  
 1402  
 1403