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ABSTRACT

Objective assessment of audio source-separation systems still mismatches subjec-
tive human perception, especially when interference from competing talkers and
distortion of the target signal interact. We introduce Perceptual Separation (PS)
and Perceptual Match (PM), a complementary pair of measures that, by design,
isolate these leakage and distortion factors. Our intrusive approach generates a
set of fundamental distortions, e.g., clipping, notch filter, and pitch shift from
each reference waveform signal in the mixture. Distortions, references, and system
outputs from all sources are independently encoded by a pre-trained self-supervised
model, then aggregated and embedded with a manifold learning technique called
diffusion maps, which aligns Euclidean distances on the manifold with dissimilari-
ties of the encoded waveform representations. On this manifold, PM captures the
self-distortion of a source by measuring distances from its output to its reference
and associated distortions, while PS captures leakage by also accounting for dis-
tances from the output to non-attributed references and distortions. Both measures
are differentiable and operate at a resolution as high as 75 frames per second,
allowing granular optimization and analysis. We further derive, for both measures,
frame-level deterministic error radius and non-asymptotic, high-probability confi-
dence intervals. Experiments on English, Spanish, and music mixtures show that,
against 14 widely used measures, the PS and PM are almost always placed first or
second in linear and rank correlations with subjective human mean-opinion scores.

1 INTRODUCTION

Reliable perceptual evaluation is critical for source-separation progress, yet gold-standard listening
tests are costly and slow (ITU-T.;|1996;2003;2018). Thus, research relies on objective metrics that
blur two distinct failures, interference from competing talkers and target distortion. Disentangling
these modes can better align with listener perception and accelerate trustworthy development.

Existing measures such as the signal-to-distortion ratio (SDR), signal-to-interference ratio (SIR),
signal-to-artifacts ratio (SAR) (Vincent et al.,2000), scale-invariant SDR (SI-SDR) (Le Roux et al.,
2019) and alike usually compute ratios between source to various disturbances in the waveform
domain, offering low complexity and widespread adoption. However, even jointly, they are defined
with an intrinsic ambiguity to whether an error stems for leakage or self-distortion. Classical intrusive
perceptual and intelligibility metrics like the PESQ (Rix et al., 2001)), STOI (Taal et al.,[2011) and
ESTOI (Jensen & Taall, 2016) map an entire utterance to a scaled mean-opinion score (MOS) using
hand-crafted auditory features. Designed preliminary for speech enhancement, they perform well for
corrupted noisy-reverberant speech utterances but may not account for leakage, while also lacking to
provide access to their inherent granular processing. Learned black-box metrics such as the DNSMOS
family (Reddy et al., 2022) that are trained end-to-end to predict crowd-sourced MOS, as well as
SpeechBERTscore (Saeki et al.,|2024) and Sheet-SSQA (Huang et al., [2025)), have shown promising
results on various speech tasks, but do not offer confidence in their decisions. Spectral-distance
metrics are interpretable but tend to mask where degradations occur, e.g., the popular Mel-Cepstral
Distortion (MCD) (Fukada et al., [1992) collapses the spectral envelope into a global value. Even
when taking into account a broader set of metrics, as available in recently developed speech quality
assessment toolkits (Shi et al.l 2024), no existing family of measures can simultaneously disentangle
leakage from distortion, offer granular analysis, and provide error estimates for their decisions.
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We introduce the Perceptual Separation (PS) and Perceptual Match (PM), the first measures for
source separation that functionally disentangle leakage and self-distortion. Inspired by auditory
theory (Gabrielsson & Sjogrenl |1979; Jekoschl 2004} Wilson & Fazenda, 2014} Bannister et al.,
2024), we apply a set of fundamental distortions to every reference waveform, intended to create a
wide cover of perceptual auditory field around the reference. These distortions range from mildly-
intrusive short-tailed reverberations to highly degrading hard clipping. A pretrained self-supervised
model, e.g., wav2vec 2.0 (Baevski et al.,[2020), is used to independently encode the waveforms of
references, distortions, and system outputs across all sources, in a resolution as high as 75 frames-
per-second. These representations are aggregated and projected via a manifold learning technique
called diffusion maps (Coifman & Lafon, 2006) onto a low-dimensional manifold. A key property
of diffusion maps aligns Euclidean distances between points on the manifold with dissimilarities
between their encoded representations. On the manifold, PM quantifies self-distortion by measuring
how far an output lies from its attributed reference and the distortions, whereas PS quantifies leakage
by comparing these distances with the output proximity to non-attributed references and distortions.

Evaluations on the SEBASS database (Kastner & Herrel 2022) with mixtures of English, Spanish,
and music, show that compared to 14 widely used measures, PS and PM almost always achieve first-
or second-place rankings in both linear and rank correlations with human scores, with the exception
of Spanish rank correlations, where they remain within the top third. We derive granular theoretical
deterministic error radius and high-probability confidence intervals (CIs) for both measures, enabling
frame-level guarantees on the reliability of the measures. In almost all scenarios, the worst-case error
radius would not lower the PS and PM rankings. In addition, the normalized mutual information
(NMI) (Danon et al.| [2005) between the PS and PM values shows that they are highly complementary.

*Two lines about appendices and disclaimers on LLM usage*

2 PROBLEM FORMULATION

Notational remark. Column vectors and matrices are written in bold and other symbols in non-bold.

Consider a source separation system performing inference on an audio mixture (Vincent et al., 2018).
In a time frame f that consists of L samples, let Ny > 2 denote the number of active sources and Sy

their index set. The observed mixture z; € RZL is modeled as:

zp =Y Vif+vy, (1)
iESf

For i € Sy, we denote y; ; € RL the reference signal of the i-th source in frame f, potentially
including interference inherent to its original conditions. v represents system and environmental
interference, assumed statistically independent of the sources. The estimation of y; ¢ is denoted y; ¢.

Given source indices 4, j € Sy in time frame f, our goal is to introduce these two measures:

* The perceptual separation (PS) measure quantifies how well §; ¢ is perceptually separated
from all interfering sources {y; f};zi.

* The perceptual match (PM) measure quantifies how closely the estimated source y; ¢
perceptually aligns with its reference y; ;.

3 DIFFUSION MAPS: THEORETICAL FOUNDATIONS

Notational remark. Sections are denoted by §. Symbols are carried over from §2| except for indices
i, j that are repurposed, and the subscript f that is dropped since we concern a fixed time frame.

Diffusion maps is a manifold learning method that represents high-dimensional data in a low-
dimensional space by capturing geometric and structural relationships (Coifman & Lafon, 2006).
Consider the set X = {x;}¥| withx; € RM forall 7, e.g., feature vectors from wav2vec 2.0 (Baevski
et al., 2020). An affinity matrix K € RY*¥ is calculated between the high-dimensional vectors:

|2
s o (L R0E) o
oK
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where i,j € {1,...,N}and Vi,j : 0 < K, ; < 1, and 0 = median{”xi *Xng ’ i #]} To
account for non-uniform sampling density of points, an a-normalization replaces K by K(®):

K. .
K@ — 3
W o) 3)
where o € [0,1] and v; = Z;\Ll K, ;. Then, we define the diagonal degree-matrix D(®), given
by D(® = diag (véa), . ,vg\?‘ll) € RV>XN | where vga) = Z;V:l KEC;) and Vi : UEQ) > 0 by

construction. We assume « is fixed and for readability we neglect the a notation from now on.
The probability transition operator P on K is defined with (3)) as:

P=D"'K e RV*¥V, 4)
Note P is row-stochastic, so Vi, j : P;; > 0, Zjvzl P,; = 1. Spectral decomposition on P reveals

a trivial right eigenvector ug = 1 € RY with eigenvalue Ay = 1. Remaining eigenvectors {uz}évz 711
are associated with eigenvalues {)\g}évz_ll and orderedas 1 > Ay > Ao > -+ > Any_1 > 0, so that:

Pllg = )\[11[. (5)

Denoting u;(¢) the i-th element of the j-th eigenvector, then the embedding of x; onto manifold M
can be expressed with the eigenfunctions in (5), by the embedding operation ¥, : RM — RN—1;

. . T
U, (x;) = (A (d), Mua(i), ..., Ay_jun—1(9))" . (6)
where ¢ is the number of Markov chain steps, controlling the diffusion scale of the embedding. The
eigenvalues in {u,};' ;' are orthonormal under the stationary measure 7 = 71,7, . . . , ]
D;;
= =, m € (0,1). 7
> j=1Djj

Let Dy(t, j) be the diffusion distance at time step ¢ between two points x; and x;:
N E\2
(Pim - P;m)

Di(i,j) =Y

m=1

®)

Tm

where P! @) denotes the probability of transitioning from node ¢ to node m in ¢ time steps.
Intuitively, the diffusion distance measures the similarity between the probability distributions of
random walks starting from nodes i and j. A key strength of diffusion maps is the equivalence (6):

D} (i) = [[@elxi) = a5 ©)
which is fundamental to our approach, as it ensures that the Euclidean distances between every two
points on the manifold, which we measure in §4.2]and align with dissimilarities between their
matching high-dimensional points, represented by the diffusion distance (8). The embedding in (6) is
truncated to its first d coordinates and discards the rest. This reduces noise sensitivity and retains the

most meaningful geometric structures (Nadler et al., 2006). The mapping \Ifgd) :RM — R? gives:

) , T
T (x;) = (Mg (8), Abua (i), ..., Ajua(9)" (10)
Consider T € [0, 1] as the minimal normalized retained sum of the eigenvalues, then d is given by:
k
A
d_min{ke{l,...,N}:zfvlézr}. (11)
22:1 A

4 THE PERCEPTUAL SEPARATION AND PERCEPTUAL MATCH MEASURES

4.1 CONSTRUCTING PERCEPTUAL CLUSTERS ON THE MANIFOLD

The waveform reference signal of the ¢-th source, y;, undergoes N, perceptual distortions, e.g., noise
gating in different thresholds, vibrato in various rates, and a comb filter with several delay-gain pairs.
Typically, N,, € [60, 70]. We define the i-th distortion set D; as:

D’L' = {yi7Y’iaY’i,1a v 7yi,Np}a vp € {15 .. aNp} Yip S RLv (12)
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with L from (I). Each waveform in D; is independently encoded via a pre-trained self-supervised
model, e.g., wav2vec 2.0 (Baevski et al.,[2020). Let ® : RL — RM pe this encoding operator, with
M from $0X;p =P (yip), xi =P (yi), X; = ©(¥;). Applying across all Ny sources
results in the high-dimensional set of representations:

i:1,...,Nf}, (13)

X = {)A(i7Xi7Xi71, - ,Xi,]\[}D
with | X| = Ny (N, + 2) := N. We define the i-th perceptual cluster CZ-(d) on manifold M (@) :
el = {w{(x), 9 (x;,) ’ p=1, Ny} (14)

where we exclude the embedding of the system output \Ilgd) (%;) € R4 l) from Ci(d), since this
embedding will be measured against the cluster statistics to produce the PS and PM measures.

Including \Ilgd) (%X;) in the cluster would create a circular dependency that will bias the PS and PM.
These distortions were hand-crafted to create a wide perceptual auditory coverage relative to the
reference, e.g., by considering mildly-intrusive additive colored noise with signal-to-noise-ratios
(SNRs) of 15 dB on one hand, and severely degrading heavy-tailed reverberations on the other hand.

Given x;,x; € X, the property in @) guarantees that as the Euclidean distance between \Ilgd) (xi)

and \Ilgd) (x;) lowers, so does the diffusion distance between x; and x;. In and §4.3 we define
our PS and PM measures using Euclidean distances, based on our hypothesis that this diffusion
distance also aligns with the perceptual alignment between the corresponding waveforms, y; and y ;.
In §7] we explore if this perceptual-geometric hypothesis is valid by comparing our measures with
human perception.

4.2 THE PERCEPTUAL SEPARATION (PS) MEASURE

For readability, we denote the elements of the clusters in (14)) as ¢ both here and in

For source 7, we aim to quantify the perceptual separation of §; from its non-attributed references
{yj}# ; with the Mahalanobis distance (Evans et al.,2021). The empirical centroid and unbiased

. . d
covariance matrix of the cluster C ]( ) are:

NCIR a@ 1 . (d) @)\
;o= C(d) Z ¢7 Zj = C(d) ) Z (¢_uj ) (¢_Hj ) , (15)
‘ 7| pect® } J ‘_ pecl?

where [Lg»d) € RY, f);d) € R?¥4, The squared Mahalanobis distance from the embedding of the i-th

output \Ilgd) (%) to CJ(-d) is given by:

Dan ~d) S )/ @\T (aw -1 ). . (d
d; (w0 i, S10) = (@10 ) - @) (S0 +er @) (20 - 47), a6)

where we use for regularization € = 10~% with the d-dimensional identity matrix I(*). We define the

measured Mahalanobis distance from ‘Ilgd) (%x;) to its attributed and closest non-attributed clusters as:

A =y (9105, B0) B = ay (R s 20), an

with j* = argminjeg  n,y, j2i M (\Ilgd) (%) ;p,;d)7 E;d)). Notice that M resembles the
source permutation minimization processing in source separation evaluations (Le Roux et al.l 2019).
The measured PS score for ; in the truncated dimension d is:
_(d Al
PSE - 1— =,
i@+ 50

7

—(d
s\ e [0,1]. (18)

where by design fll(.d) + Bi(d) > 0 and a higher score is better. Functionally, when Agd) < Bi(d) then
the ¢-th output perceptually resembles its cluster members significantly more than competing cluster

—(d . - —(d
members and PS,S ) approaches 1. Bi(d) < Al(»d) indicates the opposite, and PS,S ) drops towards 0.
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4.3 THE PERCEPTUAL MATCH (PM) MEASURE

The PM measure aims to quantify how perceptually aligned the estimated output y; is with its
reference y;. Let C~i(d) = Ci(d) \ \Ilgd) (x;) denote the reference-free i-th cluster. Unlike Equation ,
we compute the unbiased empirical covariance matrix of C~’Z-(d) relative to its reference embedding:

= (d) 1 T
_ _ o@Dy oDy
e (v- o) (w-2x)) - (19)
Then, forp € {1,..., Np}, the squared Mahalanobis distance from the p-th distortion to its attributed

= (d)
reference in the i-th cluster, is given by d3, (\Pgd) (Xip); fo,Ed) (x4),3; ), following the definition

in Equation (I6). Let us define the set of distances:

. =(d)
gi(d) = {d?y[ (‘I’Ed)(xi,p)Q \I’Ed)(xi)vzi ) ’ p=1,.. "Nl)} : (20)

Empirically, we validated that nearly always these distances are well-approximated by a Gamma
distribution, using Kolmogorov-Smirnov goodness-of-fit tests (Smirnovl, [1948; Kolmogorov, |1986)).

The sample mean and unbiased variance of C;i(d) are estimated by:

. 1 . 1 . 2
/"Lgi(d) = T Z g, O—égd) = T~ Z (g_;u‘gq(d)) ) (21)

5(d 5(d
g§ )‘ geg(® gi( )‘ -1 geg?

and can be moment-matched with a Gamma distribution, assuming /& G 62(d) > 0, with parameters:

~2 ~2
M@ O

~(d g; A(d g;

B = i g = 2 (22)
Ugi(aw Nggd)

Similarly, the squared Mahalanobis distance from the output embedding to its attributed reference
=(d)
isal” = a2, (\pg@ (%) 0\ (x;), 3, ) . Consider Q(k,z) = T'(k,z)/T (k) as the regularized

upper incomplete Gamma function (NIST| [2024)). Then, the PM score for y; in dimension d is:

. (d)
—(d ~ : —(d
Y =0 (k@, ;%) P o1, 23)

3

where I%Ed), é§d> are well-defined by design for /V,, > 1 and a higher score is better. If the output

&gd) lies well within the bulk of its distortion cluster, the Gamma-tail probability is near 1, which

may indicate a strong perceptual match. As dgd) drifts away, the score decays smoothly toward zero,

reflecting degradation. When distortions are tightly concentrated and l%gd) or HAZ@ lower, even small
( (

id) and égd) grow, the PM tolerates larger did) deviations.

mismatches in &Ed) lower PM sharply. As ki

5 ERROR GUARANTEES FOR THE PS AND PM MEASURES

Standing notation and assumptions. We fix frame f with generally Ny > 2 . For this
proof, consider the specific case of Ny = 2 with indices 7,j € Sy. Consider source index j
and set m = N — 1 — d as the dimension of the omitted space in the diffusion maps process,
so the embedding notations in the retained, omitted, and complete N — 1-dimensional spaces are

respectively ¥{" (%), o™ (x;), Wi (x;) l| Similarly, clusters Cj(-d), CJ(.m), and C; are formed as
in with means and covariances pairs H§d)7 Egd))’ (H§7'L)a Egm)) and (g1, %;), and cross-

covariance C; € R¥*™ We have empirically prevented ill-conditioning, as all matrix inversions are
Tikhonov-regularized (Tikhonov & Arsenin,|1977) with €/, where € = 1076 and I the identity matrix,
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with context-dependent dimension. When we quantify sampling uncertainty, we use dependence-
adjusted effective sample sizes via Bartlett method (Bartlett, |1946), and sub-Gaussian tails for
quadratic forms via the dependent Hanson—Wright inequalities (Adamczak, |2015; |Vershynin, 2024).

Schur decomposition of full versus truncated Mahalanobis distances. For radius error calculations,
from (24) to (36), we assume access to clusters statistics. For the output embedding of source i
against cluster j, define A(d) \I'(d)( i) — ;d) and AEZL) = \Ilgm)(xl) - ;m). The full cluster
statistics aggregate as: ’

(d) (d) (d)
1 i.f %G
| Big= | 60| Zi=|gr s 24
1 Aij ¢ %
Block inversion to (T6) via the Schur complement (Horn & Johnson| 2013) yields:
T
B (%) 15, 55) = (ALY) (B0 +e1@) A T sy, (25)
—_—
=a =b

-1 -1
rij =AY O (20 1) Al s =3 ol (20 +a?) ¢ @6
Since Va,b > 0 : |\/ﬁ — \/Zz’ < v/b (Rudin, (1976, Ch. 5), we bound truncation error to :

10 := ’dM(‘I't(fci);uj,2]-)—d2 (\Il(d)( i)l E(d))‘ < \/T 7

PS radius. Let A;, B; be the full-space versions of Az(.d)7 Bi(d) in . Set |6;,4] == |A; — AZ(-d)| and
|0 4+ :== |Bi — Bl.(d) |, with j* as in . We empirically confirmed that truncation introduces only

mild changes, i.e., |9, z(-d) + Bi(d). Thus, a first-order Taylor expansion of PS;, the
B

i

full-space version of PSZ(-d), around (Az(-d) ) , is valid. Ultimately, we drop quadratic components

that were found negligible, and use |d; ;| and |d; ;-

B 5.+ AD |5, ;.

_pg @ <
|PS; — PS;”| < (AD 3 p@)? (28)
Combining with (27), the deterministic PS error radius is:
d Bl(d) \/ szSz Tii + A(d)
|Ps; — Psi¥| < C R (29)
(47 + B )
‘We notice that large residual spread E§-m) or cross-block coupling C; inflate through Sj_l.
PM radius. For source ¢ and every distortion index p € {1,..., N,}, we center cluster coordinates

at the reference x;, o AE’UQ = oY (x,,) - #9(x;) and AEZ) = ¥ (x,,) — ™ (x;). By
repeating for the reference-free clusters in the d, m, and N — 1 spaces, we obtain:

I
or o sm

(30)

i

where f]gd) is defined in |i Exactly as in llli we use Schur complement:
~ T s~
&, (\pt(xi,p); W, (xi), zi) _ (A@) (25‘” )™ ) AD 4l S, (3D

i,p~1

p= Al - Cr (5 )+d> A g =z _¢r (§§d>+d)_16‘i. (32)

i,p?

Let G; be the set of the squared distances in li over p and gi(d) its d-dimensional analogue .

Define per-sample truncation gaps dg, , := 7; pSl 7ip > 0 and 6pmax = max, dg, ,. Employing

elementary algebra and Cauchy—Schwarz 1nequal1ty (Vershynin| [2024), we obtain the relations I)):
1 N,

‘,Ugi — ,ug;d) = Fp;égi’p, ‘Jéi — U;@ < N, -1 (25max (Ggl + Ug(d)) + 5max) . (33)

@)}
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Again, simple algebra bounds the Gamma-matching parameters (22)), with constants C, C5 > 0:

2 2
Np ag1 + Uggd)

N, -1 Né@)

N, MG T Hg@

N,—1 o2 ’
p ggd)

)‘ S Cl 6max

0; = 07| < Ca O (34)

Recalling the distance of the output from its cluster, denoted aE ) , we can define using :
&, (\I't(fii);\Ilt(xi),Ei) — &, (\I:(‘”( D 0D (x)), Eff”) =1l S vy = g0 (35)
In the full space, PM; = Q(k;,a;/6;) . Its derivatives with respect to its variables are standard
and bounded on compact sets (NIST}, [2024). Let the truncation ellipsoid B; be such set, so that
B = {(k,0}.a) : ]k; - k@] < O, |0 — 0 >‘ < 6.0, |al — a ] < 05,0 } with 8g, . 05, 0

denoting the bounds in . Since @ increases in k and decreases in z = a/6 for k,z > 0 (NIST,
2024), the maximum deviation over 3; occurs at a corner, and the radius can be obtained by:

Qkesac/0) — QU™ al® /61 | (36)

‘PM'L - PMEd)‘ S max
(kc,0c,a.)€08;

Dependence-adjusted sample size. For any cluster C](d) with n; dependent points, we use
Njeff = Ny (1 +2 25;1 ij7[)71 with Lj = mln{ﬁ : ‘ﬁj,d < 20.975/\/711' — E} (Bartlett, |1946).

PS tail bound. We now resort to the retained d-dimensional space, and estimate cluster statistics

due the finite number of n; . samples. Let pt A(d) and Z(d) be the empirical cluster statistics. Vector
and matrix-Bernstein and dependent Hanson—anht theories (Vershynin, 2024, Props. 2.8.1, 4.7.1),
(Adamczak, 2015}, Thm. 2.5) give for 67, 05, € (0,1/2), with least probabilities 1 — ;5,1 — 6} 5::

JsH7 Jsk
58] o ) Wl 8
[0~ SO £ Che () s @/ e = Az, )

withr; = trace(flg-d) )/ Amax (f]gd)). A first-order perturbation of A\, B{¥) yields the bounds:
€PS (A\Ed)> S 2\/ A\Ed)AL“\/)\max (igd)) /S\min (igd)) + A\Ed)Ai,E/Amax (igd)) ) (39)

(B) < 2y/BOA P (S9) i (819) 4 B2 0w (852) . 40

With LFS being the Euclidean gradient norm of PSEd) at (Az(-d), Bi(d)), for 675 = 555 + 55% €(0,1)

’1551@ —psi¥| < Lfs\/gPS (25“”) + gPS(§§d>) wp. >1— 6P, (41)

PM tail bound. Let R; = maxycg, g and choose confidence levels 67N, 5PM §PM € (0,1/3).

L ) i,0 ) Vi.a
Concentration bounds for the output quadratic form via Hanson—anht (Vershynin| 2024,

Props. 2.8.1, 4.7.1) yields

P — P | < b (42)
| gi gi | Np Np
2R21In(2/6FM)  3RZIn(2/6FM) In(2/5FM)
~ ) 0,0 % 1,0 (d) ~(d) i,a
|ag§d> - aggd)| < N, + N, o™ =@ | < R N, (43)
Just like in and (40), these are mapped to bounds on the parameters (k,0,a), yield-
ing A; x,Ajg,Aj,. Consider 6FM = 5P£/I + 5PM + 6PM € (0,1), then for the local box

Bloc = { |k — kY| < Ay, |9—9§ < Avg, Ja—a®| < A }:

|f71\\/ll(vd) fPM§d)| < max

o | QUkeac/t) = Q QED @D /8| wp. > 18N, (44)
c)Vc,lc .
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Table 1: SRCC and PCC of the PS and PM measures (underlined), their waveform counterparts, and
14 comparative measures, across scenarios. The top-3 results in every column are in bold.

English Spanish Music (Drums) Music (No Drums)
Measure SRCC PCC SRCC PCC SRCC PCC SRCC PCC
PS 84.12% 83.74% 82.33% 85.01% 72.87% 77.38% 87.23% 87.81%
PM 84.69% 86.36% 83.41% 85.30% 75.18% 69.88% 88.12%  85.26%
PS (waveform) 7342% 71.04% 74.69% 75.05% 51.75% 61.83% 78.88% 78.95%
PM (waveform) 69.30% 66.62% 68.27% 67.35% 49.52% 51.77% 74.37% 75.51%
STOI 80.85% 78.40% 78.79% 82.56% 67.29% 71.27% 75.64% 78.13%
eSTOI 82.14% 82.28% 79.20% 82.68% 54.68% 57.35% 70.06% 74.45%
PESQ 85.56% 84.05% 86.06% 84.98% 61.60% 53.87% 61.26% 60.24%
SI-SDR 78.11% 76.96% 84.07% 81.38% 42.08% 56.98% 70.42% 71.96%
SDR 7772% 73.13% 84.29% 76.07% 44.78% 54.33% 74.51% 75.35%
SIR 51.28% 56.20% 45.67% 55.19% 18.64% 35.76% 51.00% 55.12%
SAR 75.54% 72.98% 7821% 73.29% 36.98% 40.81% 66.15% 68.96%
CI-SDR 78.66% 17.41% 84.32% 81.48% 45.02% 5542% 74.25% 75.11%
DNSMOS-OVRL  63.70% 67.77% 35.34% 43.57% 21.79% 3427% 13.81% 19.47%
MCD 43.05% 33.86% 4590% 3797% 3027% 42.23% 33.49% 32.19%
SpeechBERTscore  68.58% 67.44% 69.55% 70.48% 52.33% 59.71% 75.60% 81.13%
Sheet-SSQA 41.17% 51.38% 61.06% 73.01% 39.40% 29.03% 14.19% 5.17%
UTMOS 55.53% 5543% 52.22% 55.775% -924% -825% 12.59% < 7.72%
NISQA 60.78% 67.62% 63.37% 66.58% 27.27% 41.73% 42.33% 48.07%

6 EXPERIMENTAL SETUP

6.1 DATABASE

We use the Subjective Evaluation of Blind Audio Source Separation (SEBASS) database (Kastner &
Herre, 2022), a public collection of expertly curated listening tests that aggregates 11, 000 ratings for
more than 900 separated signals across five evaluation campaigns. SEBASS covers speech mixtures of
4 male or 4 female speakers, each consisting of English and Spanish pairs. As realistic conversations
are monolingual, we separate each mixture into English and Spanish speakers pairs. Also included
are music mixtures with drums and without drums, each with 3 sources. Namely, Ny € {2, 3} (I).
The split between drum and no-drum mixtures is crucial, as percussion transients create perceptual
and algorithmic masking distinct from harmonic content. Each mixture was processed by 32 source
separation systems, ranging from classic approaches to deep-learning models. Outputs with 10 s
duration, sampled at 16 kHz, were judged by 15 certified raters under the MUSHRA standard
(Schoeffler et al.,2018)), which grades output quality between 0 and 100 relative to a reference.

6.2 PRE-PROCESSING AND PERFORMANCE EVALUATION

SEBASS provides MOS values at the utterance level. Since our PM and PS measures operate at
much finer temporal resolutions, with frame sizes of L = 400 for speech and L = 324 samples for
music (T)), aggregation from the frame-level to the utterance-level is required to enable comparison
with human MOS. PM values are aggregated using a simple average, while PS values are aggregated
with a perceptually-weighted scheme inspired by PESQ. For performance evaluation, we correlate
the aggregated PM and PS values with the utterance-level MOS values using the Pearson product-
moment correlation coefficient (PCC) (Benesty et al.,[2009) and the Spearman rank-order correlation
coefficient (SRCC) (Sedgwick, 2014). We set a = 1 @) to eliminate density-dependent bias from the
embedding, and ¢ = 1 (6) to keep the diffusion operator focused on local structures. The retained
dimension d is in [20, 40] , using 7 = 0.99 , as done on (Fjellstrom & Nystrom) 2022).

7  EXPERIMENTAL RESULTS

Results are from zero-shot SEBASS inference, without training or data-driven parameter tuning.
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Figure 1: NMI between the PS and PM measures across their thresholded values.

Table 2: Deterministic error radius and probabilistic 95% CI of the SRCC and PCC across scenarios.

English Spanish Music (Drums) Music (No Drums)
Measure SRCC PCC SRCC PCC SRCC PCC SRCC PCC
PS radius 0.16% 0.21% 0.10% 0.14% 0.40% 0.72% 0.14% 0.11%
PS CIs (95%) 30.03% 1029% 26.39% 8.85% 28.71% 1221% 12.69% 4.11%
PM radius 0.11% 0.99% 0.18% 1.23%  0.29% 1.39% 0.02% 1.04%

PM CIs 95%) 7.23% 3.83% 898% 428%  6.25% 4.15% 4.75% 1.77%

Table [T] benchmarks the proposed PS and PM measures against 14 widely-used metrics for audio
quality and also versus its waveform-only version, denoted PS (waveform) and PM (waveform).
For speech, we used a wav2vec 2.0-based (Baevski et al., [2020) model with features of dimension
M = 1024 (§E]) and 24 transformer layers, and for music we use the MERT model (Li et al.| [2023)
with M = 768 and 12 transformer layers. Since earlier layers are more stable, we pick layer 2 for
speech, layer 1 for drums, and layer 3 for no-drums music. PS and PM consistently achieve top
PCC values, aside from minor advantages by PESQ and STOI. For SRCC, our measures dominate
in music, but trail PESQ in English and SDR-based metrics in Spanish. These results position
the PS and PM as valid measures for leakage and self-distortion for source separation systems.
Encoding proves essential, as waveform-only variants perform worse. Finally, PS and PM outperform
SpeechBERTScore, showing the benefit of diffusion maps over cosine similarity.

We examine the complementary relationship between the PS and PM using NMI (Danon et al., [2005)),
which captures statistical dependence beyond linear effects, with lower NMI indicating less shared
information. Each measure is normalized per utterance to [0, 1]. For thresholds {0.1,0.2,...,1}, we
retain frames with PS below the threshold and compute the NMI between aligned PS-PM pairs. The
procedure is repeated with thresholding on the PM. Figure[I|shows the NMI decreases toward zero as
thresholds tighten, suggesting that the PS and PM become more complementary when separation
quality is poor. At the loosest thresholds, NMI rises up to 0.15, yet full redundancy corresponds to 1.
These results support reporting both PS and PM, as each captures failure modes missed by the other.

Frame-level error bounds of the measures were derived in Table [2| presents their propagation
into PCC and SRCC error bounds. The error radius never exceeds 1.39%, a bias that rarely affects
the performance ranking in Table|l] The 95% CIs highlight that the PS carries higher statistical
uncertainty, whereas the PM is statistically more robust. This positions the PS as a complementary
diagnostic, capturing perceptual leakage that the PM misses, at the cost of greater variability.

8 CONCLUSIONS

We introduced the PS and PM, frame-level measures that showed competitive correlations with human
MOS for source separation evaluation by operating on diffusion map embeddings of self-supervised
audio representations. We derived a deterministic truncation bias and non-asymptotic CIs for both
measures, making scores interpretable under quantified uncertainty. Looking forward, PS and PM
can serve as diagnostic tools to localize whether errors stem from target distortion or cross-talk,
while their differentiability enables use as loss terms or curriculum triggers to balance fidelity and
separation under confidence monitoring. Finally, their uncertainty bounds offer a principled layer for
benchmarking, supporting fairer hyper-parameter sweeps and reporting standards.
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A PERCEPTUAL DISTORTIONS APPLIED IN THE PS AND PM CALCULATIONS

Table 3: Distortions applied to the references when calculating the PS and PM measures (§4.1)). f; is
the sampling frequency, and Ags and Agns mark the 95th-percentile and RMS absolute amplitudes.

Distortion PS PM
Notch Filter Center frequencies: Number of notches:
500, 1000, 2000, 4000, 8000 Hz <20
Operating band:
80 Hz - 0.45 f;
Notch spacing:
> 300 Hz
Bandwidth:
+60 Hz
Comb Filter Delay: Delay-gain pairs:
2.5-15 ms (2.5 ms, 0.4), (5 ms, 0.5),
Feedback gain: (7.5 ms, 0.6), (10 ms, 0.7),
0.4-0.9 (12.5 ms, 0.9)
Tremolo Rate: Rate:
1,2,4,6 Hz 1,2,4,6 Hz
Depth: Depth:
0.3-1.0 1
Additive Noise SNR: SNR:

Additive Harmonic
Tone

Reverberation

Noise Gate
Pitch Shift

Low-Pass Filter

High-Pass Filter

Echo

Hard Clipping

Vibrato

-15, -10, -5, 0, 5, 10, 15 dB
Noise color:

white, pink, brown

Tone frequency:

100, 500, 1000, 4000 Hz
Amplitude:

0.02-0.08 (absolute)

RTjgq (Schroeder, 1965):
0.3-1.1's

Early tail length:

5, 10, 15, 20 ms
Threshold:

0.005, 0.01, 0.02, 0.04 (absolute)

Offsets:

-4, -2, +2, +4 semitones
Cutoff:

2000, 3000, 4000, 6000 Hz

Cutoff:
100, 300, 500, 800 Hz

Delay:

5-20 ms

Gain:

0.3-0.7

Threshold:

0.3, 0.5, 0.7 (absolute)

Rate:

3,5,7Hz

Depth:

0.001-0.003 (fractional stretch)

-15,-10, -5, 0, 5, 10, 15 dB
Noise color:

white, pink, brown

Tone frequency:

100, 500, 1000, 4000 Hz
Amplitude:

{04, 067 087 1} X ARMS
Exponential tail length:
50, 100, 200, 400 ms
Decay scaling:
0.3,0.5,0.7,0.9
Threshold:

{005, 01, 02, 04} X A95
Offsets:

-4, -2, +2, +4 semitones
Cutoff rule:
spectral-energy quintiles:
50, 70, 85, 95%
Rounding:

nearest 100 Hz

Cutoff rule:
spectral-energy quintiles:
5, 15, 30, 50%
Rounding:

nearest 100 Hz

Delay:

50, 100, 150 ms

Gain:

0.4,0.5,0.7

Threshold:
{0.3,0.5,0.7} x Ags
Rate:

3,5,7Hz

Depth:

adaptive, clipped to 0.01-0.05
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Figure 2: Functional behavior of the PS measure with 0.25,0.5,0.75 contour lines, and of the PM
measure in three different setups of ng) =10\ =1, k;d) =1

i

B ADDITIONAL EXPREIMENTAL SETUP DETAILS

B.1 THE PS AND PM MEASURES

The functionality of the measures is demonstrated in Figure 2]and illustrates the behavior explained
in §4.2]and §4.3

The empirical distributions of the frame-level values of the measures are shown in Figure 3] The PM
and PS metrics exhibit contrasting distribution patterns. PM values cluster predominantly around
zero with minimal density near one, while PS concentrate near one with virtually no occurrence
near zero. Although frame-level human speech quality ratings are not publicly available for direct
comparison, these patterns raise comparisons to how humans might perceive audio disturbances.
The PM distribution aligns intuitively with human perception, as listeners typically penalize speech
quality severely when disturbances occur, making ratings near the scale minimum unsurprising.
However, real granular human ratings would likely show less extreme clustering around zero due to
perceptual and rating scale complexities. The PS behavior presents a more complex interpretative
challenge. Previous research suggests that humans perceive leakage as more quality-degrading
than self-distortions, particularly in acoustic echo cancellation contexts (Khanagha et all, [2024),
yet our findings here do not support this hypothesis. Whether this discrepancy stems from dataset
characteristics, limitations of the PS measure itself, or the mismatch between granular PS values and
aggregated human ratings remains unclear and warrants future investigation beyond the scope of this
study.
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Figure 3: The distribution of PM and PS values across speech and music scenarios from the SEBASS
database.

B.2 THE SEBASS DATABASE

The SEBASS dataset suits this study for several reasons. Multilingual coverage of English and
Spanish validates language-agnostic behavior, while music tests robustness to highly transient
material. Large algorithmic spread creates rich output clusters that stress-test our methodology, and
the dense sampling of raters allows for a more reliable estimation of the true mean-opinion score of
subjective human opinion. Figure ] shows that the speech reference signals have been recorded in a
relatively clean environment with SNRs between 3.9 dB to 41.7 dB, with an average of 25 dB.

B.3 PRE-PROCESSING

We recognize that English and Spanish speakers rarely participate in the same conversation in real-life
scenarios. To emulate realistic scenarios, we separate each 4-speaker mixture into their English and
Spanish speakers, creating for each language two mixtures where the one has a pair of male speakers
and the other a pair of female speakers. We acknowledge the uncertainty this step induces, as residuals
of English may be present in the output signal of a Spanish speaker, and vice versa. It should be
mentioned that listening tests have rendered this cross-language leakage extremely negligible. This
may be since, as expected, source separation systems are able to leverage languages as a meaningful
feature to recognize leakage and remove it.

Every waveform, including references, distortions, and outputs from all sources of the mixture,
undergoes independent loudness normalization. We use the EBU Recommendation R-128
[Broadcasting Union (EBU), 2011) and set the target level of each waveform to loudness units relative
to full scale (LUFS) of -23. If the peak magnitude of the scaled waveform exceeds one, we attenuate
it to avoid digital clipping. This step removes loudness bias, known to wrongly affect both human
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Figure 4: Frame-level SNR estimations for English and Spanish references in the SEBASS database.

and algorithmic quality judgments, while preserving inter-speaker level relations across the outputs.
Since the PS and PM measures address source separation, we also filter out any frames in which there
are not at least two active sources using energy-based thresholding.

When applying diffusion maps, we set v = 1 in (3) to eliminate density-dependent bias from the
embedding. This choice ensures that the PS and PM measures reflect the intrinsic geometric structure
of the manifold rather than sampling density variations, which would introduce instead artificial
distortions into the representation. We set ¢ = 1 in (6), to keep the diffusion operator focused on local
neighborhoods and not being blurred by multi-step mixing.

B.4 FRAME-LEVEL TO UTTERANCE-LEVEL AGGREGATION OF THE MEASURES

At trial [, let us denote the PM value of the i-th output of source-separation system ¢ in time frame f
as PMq’ Let F! holds the time-frame indices with at least two active sources, and let Fi Le Flbeits

subset of time-frame indices in which the ¢-th source is active. Then, the utterance-level PM measure
after average aggregation is given by:

PM{y, = Z (45)
f eF!
Although average aggregation assumes that human listeners perceive global audio quality by weighing
local events equally, which is evidently not the case [2001), we chose to carry it for the
PM since its behavior already exhibits strong and frequent granular penalties where the score drops
to around zero. Thus, it is assumed that standard human behavior that weighs negative experience
heavily in the utterance-level score is implicitly carried out by the nature of the PM measure itself.

However, this is not the case for the PS measure. Here, the aggregation we applied is inspired by the

window-based pooling and loglstlc mapping used inside PESQ (Rix et al.,[2001). Again, considering
only time frame indices in F! and dropplng the rest, let us consider a window of size W frames that
slides across the PS measure w1th a hop size of H frames. Using the p-norm, we define the following:

1
ol = [ =3 [pse A" 46
i,m ‘ i, (m— 1)H+w‘ ’ (46)

where m € {1,..., M}} and M} is the number of possible windows:

M — max (1 {W‘WD . @7)
3 ) H
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We then calculate the following root mean square expression:

ot = 1177124:( 1) (48)

and eventually the aggregated PS measure is given by:

4
PSY, = 0.999 + : (49)
o 1+ exp(—1.3669 ¢4 + 3.8224)

where the constants were chosen according to (ITU-T| 2007). Here, we penalize lower scores
explicitly using the p-norm to better match human perceptual aggregation.

B.5 CORRELATION COEFFICIENTS BETWEEN AGGREGATED MEASURES AND MOS

At trial [, let the utterance-level MOS of the i-th output from separation system ¢ be vf’l. Given

() independent source separation systems such that ¢ € {1,...,Q}, consider the ()-dimensional
vectors:
l 1,1 Q,l
PS.,, = (PSW, ..., PS un) , (50)
1 1,0 l
PMz ,utt — (PMz utt? * ° PMzQutt) ) (51)
vﬁ_(}l,...,v?fl) . (52)

The PCC (Benesty et al.,|2009)) is measured twice, for the PS and the PM, as follows:

— T
1 (Psi,utt) Vi
Pt (PS] o vE) = (53)
‘Psi,utt 2‘ Vi )
1 T*l
. . (PMi,utt) Vi
P (PMZ eV ): - , (54)
[
’ 2 2

where PS

—l —1 . l l l :
i.us PM; o and V; are the centered versions of PS; ., PM; ,, and v;, respectively.

Let R : R? — R® be the ranking operator, which in the presence of ties assigns the average ranks.
The SRCC (Sedgwick, [2014])) is measured for the PS and the PM:

Sml (PSi uttr V ) :TECC}I (R (PSi utt) R (Vi)) ) (55)
Aot (PML o vE) =r2! (R (PML,, ) R (V). (56)

We report these correlation coefficients per Enghsh Spanish, and music mixtures scenarios separately.
Let us denote Ny L the number of active sources in trial [ during frame f. Then, given a scenario with

L 1ndependent trlals such that! € {1,..., L}, we mark the maximal number of sources in trail [ with
Nmax °
r_ !
Npax = }réz% Ny. (57)

19



Under review as a conference paper at ICLR 2026

Then, for the PS and PM measures, the PCC and SRCC we report per scenario are given by:

£ Ny
N et (B8], v1) (58)
S T (e
L Nuw
PMPe — et (PMY . 1) (59)
Zl 1ernax lzgz; "
r NY

i
l
pS’rec — l Z Z srccl (PSi eV ) , (60)

Zl 1NmaXl 1 =1
ax
1

PMS ¢ =~ Z Z srce, l

»V 61)
El 1N1£1axl 1 i= “m )
C ADDITIONAL EXPERIMENTAL RESULTS

Table 4: Self-supervised architectures, their pre-trained checkpoints, scenarios, and number of
transformer layers.

Architecture Checkpoint Scenario Transformer Layers
WavLM Large microsoft/wavlm-large English 24
WavLM Base microsoft/wavlm-base English 12
wav2vec 2.0 Large facebook/wav2vec2-large-1v60 English 24
wav2vec 2.0 Base  facebook/wav2vec2-base English 12
HuBERT Large facebook/hubert-large-1160k English 24
HuBERT Base facebook/hubert-base-1s960 English 12
wav2vec 2.0 Large facebook/wav2vec2-large-xIsr-53  Spanish 24
MERT m-a-p/MERT-v1-95M Music 12

We begin by analyzing how performance depends on the choice of the pre-trained self-supervised
model, the purpose of which is encoding waveforms into perceptual representations before they are
fed into the diffusion maps. Table []lists the models we examine in this study. We consider six
different models for English mixtures, based on the wav2vec 2.0 (Baevski et al.|[2020), WavLM (Chen
et al.,[2022), and HuBERT (Hsu et al., [2021]) backbones, with FigureE] demonstrating their layer-wise
performance. When using “Large” versions of the models, for both PCC and SRCC values, earlier
layers frequently produce representations that allow superior results that gradually decline toward
deeper layers, showing approximately 10% average absolute degradation between extremes. Existing
layer-wise analysis already reported that acoustic and phonetic content is richly represented in
intermediate layers, while deeper layers shift toward semantic abstraction (Pasad et al., [2022; [Vaidya
& Kell,[2022). Additional work confirms that distortion sensitivity peaks in the lower or middle layers
and diminishes in deeper ones (Tamm et al., [2023} |[Hung et al.| 2022), and that pretrained models
tend to lose low-level signal fidelity in their deepest layers (Moussa & Toneva, 2025). A notable
data point appears in the final layers of wav2vec 2.0 with a sharp drop in performance, especially for
PS. This is likely due to its contrastive learning pretraining objective, which drives later layers to
specialize in predicting quantized latent codes rather than preserving acoustic detail. For the “Base”
versions of the models, we observe a somewhat different behavior. At low and middle layers, their
performance is often quite competitive with the “Large” variants, and in several cases the former
even outperforms the latter in deeper layers. However, for WavLM, the gap widens toward the final
layers, with the “Large” version consistently outperforming. Interestingly, wav2vec 2.0 Base does not
exhibit the sharp degradation observed in its counterpart and instead its deeper layers remain stable
and even show improvements for PS, suggesting that the absence of over-specialization to quantized
prediction in the “Base” model preserves sensitivity to perceptual distortions.

Table [5 narrows these models down to their top performing layer, chosen by the max-min criteria
of the PCC and SRCC values, across all layers. A no-encoding option is also reported, where
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Figure 5: For English mixtures, the effect of transformer layers in different pretrained self-supervised
models on the PCC and SRCC values for the PS and PM measures.

waveforms are skip-connected directly into the diffusion maps, which under-performs compared to
encoded modes and emphasizes the effectiveness of the waveform encoding in the proposed pipeline.
These results reaffirm that shallow layers achieve optimal performance. Although point-by-point
comparisons show that “Base” models perform comparably to, or occasionally slightly exceed “Large”
models, applying the max-min criteria across the models in the table reveals that ‘Large” models are
preferable when jointly optimizing for PS and PM. For once, wav2vec 2.0 Large achieves for the PM
a PCC and SRCC differences from its “Base” counterpart of absolute 6% and 2%, respectively, even
when the PS case shows a negligible gap. Among the “Large” model variants, wav2vec 2.0 Large
with transformer layer 2 emerges as the ideal configuration and we carry it forward as a case study
we investigate. It should be noted that among “Large” models, the PS very slightly changes with
roughly 1% and 0.5% gaps between extremes for the PCC and SRCC, respectively, while the PM
gaps are more meaningful. This suggests that the choice of model may mainly affect the PM scores.

Next, we analyze all scenarios with wav2vec 2.0 “Large” encoders for speech and the MERT encoder
for music representations, and analyze the effect of their transformer layer on performance. The
results are shown in Figure [f] English and Spanish mixtures, both evaluated with wav2vec 2.0
backbones, show broadly similar trends across layers, with Spanish exhibiting a sharper decline
in deeper layers. This can be explained by the XLSR pretraining data being relatively scarcer in
Spanish than in English, leading later layers to emphasize cross-lingual abstractions over fine acoustic
detail (Conneau et al.l 2020). Music mixtures with drums show the lowest performance among
scenarios, which we attribute to the dominance of strong percussive transients. Self-supervised
models have demonstrated less stability in these highly non-stationary regions, reducing the ability of
PS and PM to capture perceptual degradations (Zeghidour et al.,[2021)). In contrast, music mixtures
without drums demonstrate consistently high performance, in most layers even surpassing speech
mixtures. This likely stems from the MERT backbone being particularly suited in capturing harmonic
and timbral structure, allowing the measures to remain faithful to perceptual cues such as instrument
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| Measure Representation Transformer Layer SRCC PCC |
PS wav2vec 2.0 (Large) 2 84.12%  83.74%
PS wav2vec 2.0 (Base) 2 84.25%  83.23%
PM wav2vec 2.0 (Large) 2 84.69% 86.36%
PM wav2vec 2.0 (Base) 2 82.79%  80.07%
PS WavLM (Large) 3 84.80% 84.16%
PS WavLM (Base) 2 84.84% 84.19%
PM WavLM (Large) 3 85.71% 81.44%
PM WavLM (Base) 2 82.82% 77.51%
PS HuBERT (Large) 3 84.48%  83.09%
PS HuBERT (Base) 2 84.83% 82.73%
PM HuBERT (Large) 3 84.12%  82.24%
PM HuBERT (Base) 2 81.37%  79.47%
PS Waveform (raw) - 73.42% 71.04%
PM Waveform (raw) - 69.30% 66.62%

Table 5: For English mixtures, comparing PCC and SRCC values between best-layer performance of
“Large” and “Base” models. A raw waveform option, i.e. no encoding, is also reported. The highest
SRCC and PCC are in bold per PS and PM.
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Figure 6: For all scenarios, the effect of transformer layers in their respective pretrained self-
supervised architectures on the PCC and SRCC values for the PS and PM measures.

texture and vocal clarity (Li et al.;2023). Interestingly, whether drums are present or not, MERT-based
performance demonstrates a steady behavior across all layers, suggesting the MERT representations
are not vulnerable to degradation across processing stages. The max-min criteria across all layers,
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per scenario, shows that the ideal layers for English, Spanish, drums, and no-drums music mixtures
are layers 2, 2, 1, and 3, respectively.
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Figure 7: The effect of temporal misalignment between references and outputs of the separation
system on the PS and PM measures.

We employed these layers to construct Table[I]in the main text and now we extend the discussion on
it. The advantage of PESQ can be attributed to its long-standing perceptual model, which explicitly
encodes aspects of loudness perception, asymmetry, and time-alignment penalties, features that
directly penalize separation artifacts. In Spanish mixtures, the PS and PM are most performant in
terms of PCC, but fall behind PESQ and SDR-based metrics in SRCC. One possible explanation
is that the syllable-timed rhythm and steady vowels of Spanish make fidelity-driven metrics such
as SI-SDR, CI-SDR, and SDR more predictive of listener rankings, as these metrics emphasize
reconstruction accuracy at the waveform level. For music mixtures, PS and PM achieve the strongest
overall correlations across both drums and no-drums conditions for both PCC and SRCC. Even though
SpeechBERTSscore has shown impressive results and is also based on a self-supervised backbone,
it is mostly not competitive with our measures, and notably even performing worse than our raw
waveform version at times, which projects on the importance of the diffusion maps in the pipeline.
We emphasize that unlike English, we only inspected one backbone model for Spanish or music
mixtures. In addition, the aggregation strategies we applied were not data-driven but a heuristic and
reasoning-based choice. Consequently, while the proposed measures already demonstrate strong
alignment with human perception, these low-hanging fruits may potentially boost performance. Quite
surprisingly, the first group of STOI, PESQ, and SDR-based measures is consistently preferable to the
second group consisting of DNSMOS, speechBERTscore, UTMOS, and others, which rarely achieve
more than 70% in performance. One crucial conclusion this table suggests is that measures originally
developed for a certain audio application, should not be zero-shot adapted into other applications,
and in that case into source separation evaluation. Otherwise, values that drift from human opinion
may be reported, which may spiral the development of audio technologies instead of accelerating it.

An additional stress test for our measures concerns their robustness to temporal misalignment
between the input and output streams of the separator, a phenomenon commonly introduced by
modern communication systems or, e.g., when dealing with references obtained from different,
per-speaker microphones, such as in meeting datasets (Carletta et al., 2005 Vinnikov et al., [2024).
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Figure[7]illustrates the effect of artificial delays ranging from 0 ms to 100 ms across English, Spanish,
and music scenarios. While performance gradually degrades for speech scenarios as misalignment
grows, as expected, a 20 ms delay or less still preserves coefficients higher than 80%. Surpassing this
threshold, however, often causes a pronounced drop that underscores this weakness in our measures,
since human ratings are insensitive to these short latencies. Music mixtures exhibit a different pattern,
as performance remains largely stable across delays, with the presence of drums introducing more
variability than its counterpart.

Table [6] provides complementary information to the NMI results in Figure [I|but listing the frame
counts used for the PS and PM measures for every examined threshold. Even the lowest threshold of
0.1, had a minimum of 481 for calculations, rendering its results statistically reliable. An interesting
observation in the music scenario, without drums, is that it exhibits significantly more time frames in
which there are at least two active sources, compared to all other scenarios.

Threshold | English | Spanish | Music (Drums) | Music (No Drums)
| PS<th PM<th | PS<th PM<th | PS<th PM<th | PS<th PM<th
0.1 583 7426 622 10721 481 13987 622 22859
0.2 1546 12086 1591 15756 1536 16126 1832 28828
0.3 3191 16350 3350 19714 3327 17846 4226 33231
0.4 5753 20118 6091 23054 5861 19492 8821 36953
0.5 9115 23697 9725 25964 8927 21033 15748 40426
0.6 13364 27232 13904 28627 12037 22522 24958 43769
0.7 18465 30758 18592 30885 15373 23864 35434 47186
0.8 24477 34076 23871 32703 19498 25168 46078 50682
0.9 31572 36507 29589 33902 25748 26614 57795 54939
1.0 37888 37888 34496 34496 34688 34688 66528 66528

Table 6: Frame counts used for NMI computation at each threshold, denoted ‘th’ in the table. Columns
show counts of frames per scenario, split by PS and PM subsets.

In the next phase, we investigate the deterministic error radius and probabilistic CIs derived for the PS
and PM measures in Appendix [E] Figure [§|shows histograms of the frame-level error distributions for
speech and music mixtures. As expected, the radius caused by the spectral truncation in the diffusion
maps process is typically an order of magnitude smaller than the 95% probabilistic width, which is
originated from finite-sample clusters on the manifold. The error radius is also concentrated mostly
near zero, which further confirms its negligibility. Cls typically span 10-50% of the dynamic range of
the measures at the frame level, but surprisingly in the PM, between 10-15% of frame-level instances
have probabilistic tails that approach zero across scenarios. The immediate contribution of these
results are by making development of source separation systems more reliable and informed at the
frame-level.

For illustration, Figure[9] shows reference and output spectrograms from an English mixture, time-
aligned to corresponding PM and PS values over a 10-second utterance using the “Large” models,
with layers specified in Table [5] While a single example cannot be over-interpreted, the latest
observation about the PS gaps across layers is visually supported here, with very similar behavior
of all models. The PM shows highly correlated behavior, but with noticeable different values by
wav2vec 2.0, which exhibits the highest PM value for PCC. An interesting visual example is shown
at approximately the 9 seconds mark, when both speakers exhibit visible self-distortion artifacts
accompanied by sharp drops in their PM measures. Listening tests confirmed that leakage is indeed
more present in “Speaker 2” than in “Speaker 17, as supported by the PS plot.

Finally, to give the reader an intuitive grasp of how the two error terms evolve in a time-aligned
manner with the PS and PM measures, Figure [T0]illustrates a representative example.
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Figure 8: An histogram view of the frame-level deterministic error radius and the 95% probabilistic
tail in the PS and PM measures across scenarios.
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D EXPECTATION AND PROBABILISTIC CONFIDENCE BOUND OF THE
TRUNCATION ERROR

Truncating the spectrum to d dimensions breaks the equality in Equation (9), and leads to a truncation
error. Here, we derive the expectation and probabilistic tail bound for this truncation error. Assume
a point x; € X is drawn from the stationary distribution 7 [/| of the diffusion process, where
i € {1,...,N}. This assumption is supported by (Hein et al., 2005, Lem. 1), and by showing
empirically on 5, 000 graphs that the corresponding eigenvector matches the theoretical stationary
distribution up to statistical fluctuations. Given that the N — 1-dimensional embedding of x; is
truncated to dimension d, then the truncation error is expressed as :

1/2
(Z A2ta2 (i) ) ) (62)

l=d+1

We define the squared truncation error and analyze it:

T(x;) = E*(x;) Z A2ta2 (4) (63)
l=d+1

Since the eigenvectors {uy} éV: _01 are orthonormal under 7r, then:

N
=Y mud(i) = 1, (64)
1=1

from which we derive the expectation of T'(x;) under 7:

N-1
En [T(x <Z M2 (i ): > A (65)

l=d+1 l=d+1

Thus, the expectation of the truncation error is given directly by:

N-1 1/2
Ex [E(x:)] = ( > A3f> : (66)

l=d+1

This term decays monotonically as d grows and is typically lower than 10~3. To obtain a non-
asymptotic and high-probability confidence bound on the truncation error, we derive V¢, ¢ (64):

‘u@(i)‘ < n_L/2 Tmin = min 7. (67)

min

Any bounded variable is sub-Gaussian, and its 12-norm is at most the bound divided by v/In 2
(Vershynin, 2024, Example 2.6.5):
—-1/2
w(i < -min_ o 68
” f()H¢mﬂ = \/Hfi (68)

Letm = N — 1 — d, so we define z; € R™ as:

zi = (ugga(i), ., uy 1(9)) ", (69)
and the diagonal matrix of weights D € R™*™ as:
D :diag(/\fi+1,...,/\§v_1). (70)
Then E(x;) and T'(x;) can be rewritten as:
T(x;) = Dz, D
E(x;) = ||Dz|,. (72)

28



Under review as a conference paper at ICLR 2026

For ¢ > 0, u,(%) is zero-mean under 7. Consequently, the vector z; is zero-mean and by definition
satisfies [|z;|y,,» < K+/m. We also notice that multiplication by a fixed matrix scales the sub-
Gaussian norm linearly, and since D is symmetric and positive:

ID2(0) g, w < KVm|Dls = Kv/mmax \j = Ky/mAj,,. (73)

According to (Vershynin, [2024} Prop. 6.2.1), for an m-dimensional, zero-mean and sub-Gaussian
vector Y with || Y| y,.= < &, it holds:

P {[Y]l2 > Cr(vm +1)} <e ", (74)

where t > 0 and C' > 0 is a constant. Setting Y = Dz; and k = K+/m\l, , gives:
IP,,{T(xi) > C2A2 K 2m(y/m + t)2} <et (75)

Let € (0,1) and set t = 4/In(1/5). We can rewrite as:

2
IF’,,{T(xi) < C?\ L K*m <¢E+ \/m;) } >1-6. (76)

Thus, the desired confidence bound on the truncation error is:

]P’W{E(xi) <ONL K (m—l— {/mln (1$> } >1-4. a7

The choice of d dimensions affects both m that shrinks linearly with d and A’ ; that falls monotoni-
cally with d. K is affected by the minimal stationary probability 7y, so if the graph contains rare

points then 7y, may be tiny, while a well-balanced graph derives K ~ /N and tightens the bound.

E DETERMINISTIC ERROR RADIUS AND PROBABILISTIC TAIL BOUND OF THE
MEASURES

We derive a deterministic error radius and a high-probability confidence bound on the frame-level PS
and PM measures by considering: (i) spectral truncation error due to retaining d diffusion coordinates,
which is separately developed in Appendix [D} (ii) finite-sample uncertainty in estimating the cluster
centroid and covariance. We then combine these via union bounds. In this section, we consider a
fixed trail [, separation system ¢, and time frame f.

E.1 THE PS MEASURE

Considering source indices ¢, j € {1,..., Ny} (, we begin by analyzing the effect of the truncation

error, assuming access to cluster statistics. The difference between the embedding of X; and the

centroid of cluster j can be expressed in the truncated subspace R and in its complement subspace
(15)

R™, respectively denoted AEZ) and AZ(-Z-L). Using ,

ALY = o (%) - p{” R, (78)
A = o™ (%) - p" e R™, (79)

where m = N — d — 1. For completion, for every x € X and its global index k € {1,..., N}:

my _ 1
= 2 Y (80)
‘ i | peci™
e = {wm x), wM (x) | =1, N, ) (81)
T (x) = (Ao (k), o My_juy 1 (k). (82)
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In the full, NV — 1-dimensional space, the cluster C; is given by:
C] :{\Ilt(xj)7\:[lt(xjyp) |p:153Np}7 (83)

with mean g € RV 1, difference A; ; € R¥~! and covariance 3; € RW=UX(V=1) that hold:

(d) (d) (4)
Bi= |y B = | G| Bi= | m) | (84)
where Egm) € R™*™ and C; € R™*™ are:
5 3 () (vos)
‘ J ‘ T pect™
1 T
d d m m
Ci= =2 (‘I’g (x1.0) — 1o} )) (‘I’E (%)) — 11§ )) ~ (86)
CRRES
According to the squared Mahalanobis distance from ¥;(%;) to C; is:
-1
A3 (W1 (%0); g, By) = A (Ej + GI(N_D) A, (87)

where inversion is empirically obtained by taking ¢ = 10~6 with (M —1) being the N — 1-dimensional
identity matrix. To evaluate the truncation effect, we perform blockwise inversion on via the
Schur complement (Horn & Johnson| |[2013):

T -1
@y (W%, Z5) = (A) (B0 +er@) ALY+l STy, 68
where 7; ; € R™ and the Schur complement S; € R™*™ hold:
-1
riy = Al — T (20 4 e @) ALY, (89)
-1
m d
;=3 —cf (2 + 1) ;. (90)
We now utilize the inequality:
Va,b>0: ‘\/a+ —\/E‘gx/E, ©1)

obtained by the mean-value theorem for f(-) = /- (Rudin, 1976, Ch. 5). Let us set:

0= (A,E?)T (ng” + eI(d)) o Al (92)
b=rl;8"ri;, (93)
to obtain:
10551 = |dar (@o(ke)s 15, B5) = dag (@05 ™ 240) | < /T8 My 0%
Namely, |6i, j| is the truncation error of this Mahalanobis distance. From , it holds that:
Sii=A—AY 5 ;. =B, — B, 95)
where j* is defined in and:
Ai = dn (Te(%0); 14, 24) (96)
Bi = dpr (Wi (X4); pje, 3j+) . 97)
Consider the N — 1-dimensional representation of PSZ(-d), ie. PS; :
PS;=1- ﬁ" 5 (98)
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which is smooth and differentiable in A; and B;, since by definition A; + B; > 0. We assume and
have empirically validated that truncation introduces a small relative change, i.e.:

16,1l < A + B, (99)
16+ < AYD 4+ B, (100)

making the first-order Taylor expansion of PS; around (AZ(-d), Bi(d)) valid. We can therefore write:

o <d>N3PSz'( (d) <d>) N 3P5i( (d) <d)) N
PS; — PS!?Y ~ A A B 5“+8Bi AW BDY s, (101)
B A
- it i,

(@ | g\ (@ | g\
(4 + B) (A + B)

where the quadratic remainder in the expansion is empirically one order smaller than the first-order
term and can be safely dropped. Applying the triangle inequality and yields the deterministic
error radius in the PS measure:

(d) (d) @\/ﬁ (d) \/Tfl
’Psi—PSEd)ISBi 0iil + AfN3i e _ Bi yTaaSe Tii ¥ ATy S5 T (102)

(Al(d) i Bi(d))2 (AZ(_d) i Bi(d))z

—~(d
We now quantify the uncertainty in PSZ(- ) due to finite-sample cluster statistics. Empirically, we
observe that cluster coordinates exhibit weak dependence between one another and derive from
(Bartlett, |1946) the following cut-off rule for the effective sample size of cluster C J(-d):
_ nj
=———F
1+237,2, bje

where p; ¢ is the empirical average Pearson auto-correlation of coordinates at lag ¢, and:

T eft nj = ‘CJ@‘ (103)

L; = argmin? || < —225_ % (104)
l nj —/

Empirical evidence across 5,000 graphs suggest that on average >, p;¢ ~ 0.2, and so we set

njer = 0.7n; for all clusters.

To bound the deviation between the estimated and true cluster mean and covariance, we employ
the vector and matrix Bernstein (Vershyninl 2024, Props. 2.8.1,4.7.1) and the dependent Hanson-

Wright inequalities (Adamczak, 2015, Thm. 2.5). For every 5;-)7511, 5??2 € (0,1/2), with respective

least probabilities 1 — (5;’75“ and 1 — 65752:

2o (igd)) In (2/6%5,)

i = | < = Aju (105)

Nj eff
N R ) r:+1In (2/(5PSE>
=60 = 20| < O (B4 [ 2+ = L) = apm, (106)
J I lg J Nj off 1) off '
with an absolute constant C' > 0 and the ratio:
tr (f]j(d))

r; = ; (107)

Amax (i;d) )*.

Let us integrate the definitions of A\Ed) and Ei(d) with iilb Then, with probability of at
least 1 — 5?% — 5552, /ng) and Efd) deviate from their true versions by eFs (ggd)) and PS (Efd))
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bounded by:
_ A
S (A1) <2 +AD __SRE (108)
Amax (Egd)>
. . A
£Ps (Bf‘”) <2 B _ S (109)

i @Y’
Ana (02)

We avoid extremely loose bounds by replacing tiny, rarely observable eigenvalues, by a robust floor
eigenvalue. Given a matrix A € R*4 we define Ay (A) as (Horn & Johnson, 2013, Thm. 4.3.1):

Amin (A) = Amin (A + € Amax (A) I(d)) s (110)

where €, = 0.05 is typically taken and I(?) is the identity matrix. Ultimately, let us define the
Euclidean Lipschitz constant L; j;, as:

—~ 2 ~ 2
L = \/<8PS (A Bid’)>2+ (m (Aid),B§d))>2 - \/(Agd)> 57) . (1

o, (4787)) + (55, (3 59

—.(d
which enables us to bound the finite-sample deviation of PSZ(- ) with:

<P \/ s (A1) + 275 (BI). (112)

Finally, we employ the triangle inequality on both error sources (I02)) and (I12) and obtain for
oS =075, + 0} 5, with 67° € (0,1):

(

—(d
'PSi ) pg@

—(d
P, ’PSE ' _ps,

B e 87 s+ A JrT S,
St A0 s o (09 o () 21

(A9 + BY’

< (113)

We now analyze the obtained expression separately for the deterministic and probabilistic terms. In
the former term, the two square-root terms are energies that leak into the truncated complement after

regressing out the retained d diffusion coordinates. Intuitively, 2;4) encodes the local anisotropy of
cluster j in the kept coordinates, C; represents coupling of residual energy in the truncated block,

and 2;7") is the spread that remains in the truncated block. Therefore, larger S; down-weights
complement deviations, reducing the bias, while 7; ; and S; co-vary through the cross-covariance
C;. Namely, increasing C; shrinks both 7; ; and S, while decreasing C; does the opposite. The
practical rule is to prevent tiny Apin (S;), €.g., by promoting such directions into the kept set via a
local choice of d, and shape distortions so the complement is predictable from the kept coordinates,
keeping 7; ; small.

For the probabilistic part, its width reflects uncertainty in the empirical centroid and covariance of the

attributed and nearest foreign clusters, where )\max(E(-d)) and n; . determine the width primarily.
Practically, correlated distortions shrink 7 . and Wicfen the bound, and a smaller spectral flatness
ratio r; yields tighter matrix concentration. As expected, the probabilistic piece dominates the
deterministic as shown in Figure [§] which underlines the importance of cluster construction and
dependence control.
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E.2 THE PM MEASURE

As in the PS case, we start with the truncation error and assume access to cluster statistics. Let us
reconsider (78)-(90), but with two adjustments. First, the cluster coordinates are centered around the
cluster reference embedding and not the cluster mean. Given m = N — d — 1, we define:

A = e (x,,) - v (x;) € RY, (114)

A = v (x;,) — B (x;) € R™ (115)
Second, the cluster is now absent the reference embedding. Namely, the full N — 1-dimensional

cluster is (B3):
Ci =Ci \ Uy(x;). (116)

The cluster C; has difference A;, € RN~! for every pc {1,...,N,} and covariance
3, € RV=Dx(N=1) that hold (19):

A o [59 ¢
i . ’ 3 = I 7;, ’ 117
" lAEZZ) cr s am
with £™ € Rm*m and &; € R™*™ being:
(M 1 m m T
B = e Y (v ) (- v ) (118)
cm| 1 &
‘ ‘ pec™

¢, = \c<m>1\1 > (212 xi) — 90 () (7 (i)~ W 0x0)) - 19)
1 &

In N — 1 dimensions, the squared Mahalanobis distance from ¥;(x; ,) to C~i is given by :
- - —1
@y (Wixip) Wolxi), ) = AL, (S0 +e1¥0) A, (120)

where as in (87), inversion has been empirically obtained with ¢ = 10~ and the N — 1-dimensional
identity matrix (N=1) " We again turn to the Schur complement (Horn & Johnson, 2013) and

decompose (T20):
diy (‘I’t(xi,p)§ Wy (x,), i) = (AEfQ)T (ig‘“ + d<d>)71 AD 4l ST, (12
with r; , € R™ and the Schur complement S; € R™*™ being:
rip = Al - €T (£ + d<d>) Al (122)
S =% _¢&r (2@ + d<d)) “é. (123)
Let us define the set of squared Mahalanobis distances of cluster C; in dimension N — 1 as:

G = {dM (\Ilt(x”,) @, (xi), ) ‘p— 1,. Np}, (124)

in accordance to the truncated version of gz. in |i By employing (121), forevery p € {1,..., Np},
we can bound the truncation error of the squared Mahalanobis distance as follows:

By (Weloxin)i Welxi), B ) — iy (217 (i) 17 (), B ) = (125)

ZpSz Tip = 6@17137

and the difference between the mean of the elements in gi and G; () can be expressed as:

(d)’ Y og=— er A, = (126)

gegi(d”

1, — kgt = |g| > g-
“geg;

Np

1
ﬁp Zfsgq:,p = 0G; pu-
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Similarly, we can express the deviation of the variance:

1 9 1 2
aé,v,—o’;gd) :7|Qi|—1 zg: (9 — pg,) —W 2)(9—1@1@) ) (127)
geY; 7 - gegid

and with (126) and the Cauchy-Schwartz inequality, we can obtain:

N max max 2
08, — 2| < N (208, (00, + og ) + (63%)°) . (128)
where 6%, = max;, dg, ». The Gamma-matching parameters in the truncated and full dimensions
are (22)):
2
M@ 2
W= 2 k=t (129)
o o
ggd) Gi
2
0% o2
92@ _ Y . 0= gi7 (130)
Mgi(d) HG;

and their deviations can be bounded by considering (126)), (T128):
N, Mgt pg@

ki — kﬁ" < Oy 8m — 6o, 1, (131)
Gi,p Np _1 O';(d)
2 2
N, %G T
0; — 9&”‘ < Cpomx P CEp— (132)

Gi,p Np -1 “2@

with universal constants C'1, Cy > 0. Let the squared Mahalanobis distance from the output embed-
ding to the cluster be:

d3 (‘I’id) (%:): 17 (x,), iﬁd)) = a;, (133)
and employing (I23)) for the output embedding yields:
&, (\Irt(xi); W, (x,), i:) - (\ygf” (%:); €' (x,), i:§d)) — 1L 8 0 = 0grae (134)

As in (23)), the PM definition in dimension N — 1 can be expressed using the regularized upper
incomplete gamma function Q(k, x) = T'(k,z)/T'(k):

PM,; = Q (k ai) . (135)
Consider the truncation-induced ellipsoid:

B, = { (k. b,.a})

d
k: - kz( )‘ < 591',1%

d
0; - 0'5 )‘ < 5gi,9a

o) — a,g@] < 6gi,a}, (136)

For F(k,0,a) = Q(k,a/0), the gradient with the partial derivatives with respect to k, 6 and a is:

1 ° k—1 _—t _
F(k)/z tFlem Intdt — (k) Q(k, x)
k—1_—=x
VE( 6.a) = 9&2% : (137)
0 T(k)

where z = a/6 and 1)(+) is the digamma function. Since VF'(k, 6, a) is continuous and bounded on
the compact set B;, we set:

Lp, = sup HVF(I@,Q,@)H2 < oo0. (138)
(k.0,0)EB;
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To yield the bound on the PM measure due to truncation, we notice that both (k;,0;,a;) and

(k‘l(d), Gl@ (d)> lie in B3;, and apply the multivariate mean-value theorem to yield the following:

o (d) 2 2 2 1/2
PMz PMZ S .LBl 597,]6 + 5gi’9 + (Sgi’a . (139)

However, this bound can be tightened. We notice that Q(k, x) is monotonically increasing in k
and decreasing in z, for k, x>0 . We assume that on 3;, and for all (6, a) € B;, 0F/0k does
not Change signs, or 0therw1se we fallback to ( - Consequently, the maximal change of Q(k, =)
inside B; is attained at one of its eight corners, and (139)) can be tightened to this PM error radius:

d 7(d) ~(d) p(d
PM; — PM(?| < g (hesac/9e) = Q (KD, /61 | (140)

As in the PS case, we now analyze how the finite number of coordinates in a cluster leads to uncertainty
in the PM evaluation. Let R; be the maximal squared Mahalanobis distance in G;, namely:

R; = max g. (141)

9€G;

Again, similarly to the PS case, we utilize the vector and matrix Bernstein (Vershynin, [2024}
Props.2.8.1,4.7.1) and the dependent Hanson-Wright inequalities (Adamczak, 2015, Thm.2.5).
Let us consider the confidence parameters -\, 6PM 5PM € (0,1/3), so with respective least proba-

i,u Vi,00
bilities of 1 — 6PM 1 — §PM 1—5PM

PNTR 1,0
262, In (2/6PM PM
g — fga | < G." (/005 3Rimn (2/57) = A (142)
g; g, - Np Np K
2R?In (2/6PM)  3R?In (2/6PM
g — g : ]\(f - )+ ‘ ]\(f ) =N o, (143)
p p
2/6PM
a; — ;| < R M = A (144)

Recalling the definition of k( ) G(d) from , since by design /i ug<d), g(d) > (), and since
we empirically validate that Az " << ,ug(d>, io < 6 g(®» We can apply the first-order Taylor

expansions to k:( ) 9( around k 9 respectlvely. Apply the triangle inequality to it gives:

. ok ok 2ftg(a =22 &)
RO =] < T A+ | B = |5 | Bi + | 5| Ai 1= A, (145)
g<d> g
R 9((1) H(d) - _(d) 20 )
’91@ f egd)‘ < |95 n, |2 A, = 27g Ao+ | =2 Asy = Ag. (146)
o do l/'ggd,) ,Ugg@

Empirically, rarely A; 1, A; g or A; , become extremely loose. To avoid this behavior, we practically
regularize the box by setting:

A;j, — min (Ai,k, o.5k§d)> , (147)
Aig — min (Aw, 0.50§d>) , (148)
A;q — min (Am, o.5a§d)) . (149)
Let us consider the local box of values:
Bl = {(k;,eg, al): ke [k§d> iAi,kl 0, € [9@ + Aw] Jal € [af.d) + Aml } (150)
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As discussed earlier, Q(k, x) is monotonically increasing in k and decreasing in z, for k, = > 0 (137).
Consequently, the maximal change of Q(k, ) inside BL°¢ is attained at one of its eight corners. Thus,
the finite-sample error of the PM measure in dimension d is bounded by:

< max

(Ke,0e,a.)€OBLC

Q (keac/6) — Q (KP.al /6") | s

—(d
’PME.‘” —PM )‘

Ultimately, we combine the deterministic error radius with the probabilistic width. Let
SPM = 67N + 6o + op, which yields for 67™ € (0, 1):

i,a°

P, { ‘ﬁ\\/[f.d) _pMy| < (152)

Q (hesa/0e) = @ (KD, /017 |+

max
(km9c,ac)€687~,

max
(kcﬁc,ac)em’j’i%

Q (keyac/6.) = Q (a6 \} >1-

(m)

i

In the deterministic term, large cross-block coupling (NZ'I or residual spread >
the error radius via the Schur complement.

again directly inflate

In the probabilistic part, the local box B%OC aggregates two finite-sample pieces. The first is the
uncertainty of the moment, with A, , and A, , scale as 1/N,, but are amplified by the maximal
radius of Mahalanobis within the cluster R;. Heavy outliers increase R; and widen both bounds. The
second is the uncertainty of the distance of the output, contributed by A; , which is also proportional

to R; but scales by 1/,/N,,. Again, this emphasizes the importance of the design of distortions.

F ERROR RADIUS AND PROBABILISTIC CONFIDENCE BOUND OF THE PCC
AND SRCC

In this Appendix, we propagate the frame-level error radius and probabilistic widths developed in
Appendix [E.T|and [E.2]to the reported PCC and SRCC values.

We start by fixing a trial [, a source separation system ¢, and a time frame f. Let the indices of
the active sources in frame f be Sjc and consider a source ¢ € Slf. The observation of measure

P € {PS,PM}, denoted 62’}’7), can be decomposed as:

P LP 29,L,P LP
vyt o= ey B+ G (153)
where: Zq.l,P P I,P
BT = L7ty (154
and 53 ’}’P is an unknown deterministic bias with a provided radius bg"]lc’P, such that:
18007 < b7, (155)
with bg;}’p given by either 1b or ll Regarding the probabilistic side, we define:
1P 1P 1P
Gy =&y —my (156)
where: = L,P L,P
ey = Uy Sy (157)

and E,. ( Z }P) = 0. Thus, the two-sided probabilistic half-width p’i’}’P > 0 can be interpreted as:

o

with 87 and the probabilistic bounds defined in (112) and (151). We abbreviate ¢” as ¢ from now on.
Consider z.- the normal quantile at level ¢* = (1 + ¢)/2, so we calibrate the half-widths scale to be:

47 T <ptpT) 2 1= 07 = P (158)

olf” = (159)
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with tails still reported back as half-widths at the original confidence c.

We now propagate these errors from frame to utterance level, based on the aggregations we introduced
in (#3) and (@9). On average, experlments showed that frames more than g = 4 apart are effectively
independent both for speech and music mixtures. Given the set F' of time frames with two or
more active sources, the standard Bartlett block-decimation (Bartlett, |1946)) yields the conservative

inflation:
1/2

std FZC“P < Y FZ(‘I”’) . (160)

Let the radius error and the p-level probabilistic half-width obtained at the utterance-level using
average pooling equal, respectively:

P @LP
?average = ]:l qu ’ (161)
1/2

1P 1P
h(z]average = ZC* l ]_'l Z ( ! ) . (162)

For the PESQ-like aggregation, let us denote its aggregation function from (49) as:

s(u) = 0.999 + 4(1 + exp(—1.3669 u + 3.8224)) . (163)

Let W be the window and H the hop of frame used for aggregation, then M is the maximal number
of possible windows. By norm submultiplicativity and the mean-value theorem (Horn & Johnson)
2013} Sec. 5.6):

1/2
Fl
C 1 2 0s
q,l,P __ OL q.,l,P
bz%pesq - v Fl le (bf ) o’ (164)
. 1/2
C 1 2 s
q,l,P __ OL L a.l,P s
hz ,pesq = Z¢* \/W 7 ];1 (Uf ) 811,7 (165)

where Cor, = [W/H| and by construction ds/d0u < 1.3669 when evaluated at point .

To translate utterance-level errors to source-based PCC and SRCC values, let the integration of
utterance-level MOS ratings from every system g € {1,...,Q} be:

l (o1 Q.
ViMos = (”i,MOSv - 7vi,MOS) 5 (166)

and similarly, denoting ©; as the estimated aggregated measure across systems, where A4 is either
average or PESQ-like aggregation (§B-4), then its integration is given by:

~1l ~1,1 ~Q,l,
Vil = (vi,’A’Pw-w Ay P)- (167)

For every vector v, we denote its centered version by v. Let us denote the PCC value between an
observation vector v and a MOS vector m as 77°C (v, m), according to (53 and (54 . Its gradient

with respect to v at point \757; is (Benesty et al., [2009):

q7!

PCC (LP 1
PCC r v’
or 1MOS LAY zMOS) 1P (168)
v P vi,A'
I 1 R A

Consider bé’}ﬁ the utterance-level bias radii from || or li across all systems:

by = (b7 b7 (169)
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Then, the induced PCC bias can be bounded by:
9rPCcc

BLP
~1,P ) i, A
6vi’ Al

For the probabilistic half-width, we model independent Gaussian jitters across systems with scales
fixed by the utterance half-widths. Consider the ()-dimensional Gaussian vector:

pLLP 2 RLPN 2
n~ N 0,diag (*‘) <A> , (171)
Zex Zex

with 0 € R?. Using the delta method, first-order error propagation gives:

T 2 2
1, 7> pCC orPce . hi’fip hg}l\’P OrPec
R [ R T 7. (172)
~LP ~L,P
avi:A Zex Zex 8Vi7.A

Turning to the SRCC, let pSRCC(. .) denote Spearman’s rank correlation between two vectors
(Kendall & Gibbons| [1990), as defined in (55) and (56). Because ranks are piecewise-constant, a safe
deterministic error radius is obtained by checking the two extreme bias orientations:

1,P,SRCC SRCC SRCC (L,P 1
b‘_A ( +b7“,47 ZMOS) 1Y ( 2_,47 zMOS) ’

‘PSRCC( Via biﬁa iMOS) PSRCC(V“m iMOS)‘)'

For the probabilistic half-width we jitter v vZ A 7 with the same independent Gaussian model in 1i
and report the empirical c¢* quantile from Monte Carlo of the following:

hl PSRCC = Quantile . (’pSRCC + n,v; MOS) - pSRCC( 557 i MOS) ’) J (174)

where we used 10* draws for estimation, in the spirit of quantile bootstrap (Efron & Tibshirani, [1994).

l PCC
b-’P’

HZ. (170)

- max( ‘,0 (173)

Lastly, we consider the error propagation across all trials and their sources in a given scenario, e.g.,
English mixtures. Let £ denote the number of trials in a scenario, and for each trial I € {1,..., L},
assume the number of total speakers in the trial is N/ lb The values we report average across all

L trials and N.,, speakers, following —.

The deterministic error radius of the PCC and SRCC per scenario are respectively given by:
L N!

1 max
PCC _ 1,P,PCC

b =T Z by ", (175)

=1 max =1 i=1

£ N
pSRCC _ 1 plPSRCC 176
Z i,A ( )

Zl 1 max =1 i=1

To yield the probabilistic term, we assume that within any fixed trial [, the pairwise correlation
between the source jitters has been empirically estimated and is denoted by p;, while jitters from
different trials are independent. This assumption holds by the construction of our trials in every
scenario. Consequently, the c-level probabilistic half-width on the scenario mean equals:

RPCC = (177)
c b hlPPCC 2 Nho jLP-PCC j,LP-PCC
i,A j,A
Zex + 2p;
e () e () ()
=1 i<j
RSREC = (178)
£ [ N 1,P,SRCC \ 2 I, P SRCC 1,P,SRCC
1 max hlvA m1x h h ) A7
(Zl 1 max) =1 i=1 < i,j=1 c*
1<J
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Ultimately, for each scenario and each measure P that uses aggregation technique .4, we report the
deterministic envelope and probabilistic half-width b"°C and hPCC for PCC values and bSR¢C and
hSRCC for SRCC values.

G FURTHER DISCUSSIONS

G.1 LIMITATIONS

Our validation depends exclusively on the SEBASS database, the only public corpus that provides
human ratings for source separation systems, which limits the diversity in acoustic and linguistic traits
that multiple dataset usually carry together. Moreover, the listening tests in SEBASS ask the human
raters a generic quality question, rather than questions that isolate leakage versus self-distortion. This
design choice may attenuate the ground-truth sensitivity to the specific error modes that PS and PM
are intended to disentangle, and can introduce a systematic bias that even multi-rater averaging cannot
fully cancel. Another noticeable limitation of this research concerns the aggregation techniques we
employ to convert frame-level to utterance-level scores. Since neither granular human ratings exist
nor is there any documented data-driven mapping from granular to global human ratings, we limit the
capability of the PS and PM measures by merely approximating aggregation functions.

On a single NVIDIA A6000 GPU paired with 32 CPU cores with 64 GB of memory, our implementa-
tion achieves a real-time factor of 1.2, e.g., when analyzing a 25 ms frame in 30 ms on average. While
this enables offline evaluation and hyper-parameter sweeps, it falls short of strict real-time monitoring
and may limit large-scale neural-architecture searches and limit using the PS and PM measures
inside loss function during training sessions. Profiling reveals that the dominant bottlenecks are
diffusion-map eigendecompositions and repeated Mahalanobis distance computations with per-frame
covariance estimation for all distortions points in every cluster. We plan to introduce more efficient
implementations as we maintain our code repository.

We also point out that in music mixtures, 0.5% of frames exhibit for the PM measure an error radius
that exceeds 1, rendering these observations irrelevant. These cases should be ignored completely, and
future work that focuses on the separation of music sources will further investigate this phenomenon.

G.2 POSITIONING OUR WORK AS A CATALYST

The absence of large, diverse datasets annotated with fine-grained human scores remains a critical gap
in source separation research. We argue that introducing perceptually grounded measures is precisely
what enables this gap to be closed. By releasing PS and PM as open-source tools, we provide the
community with a foundation on which richer benchmark datasets can be built, rather than waiting for
such datasets to exist before new measures are introduced. Their availability can catalyze the creation
of corpora that include human annotations at both frame-level and utterance-level resolutions. Such
resources would support systematic, fine-grained comparisons between objective measures and human
perception, stimulate the development of new evaluation metrics and systems, and allow researchers
to study the relationship between granular and global ratings, an aspect currently reduced to heuristic
aggregation. In this way, PS and PM act as a gateway toward more rigorous and perceptually aligned
evaluation standards in source separation.

H LLM USAGE

We used a large language model (LLM) as a general-purpose assistant in three ways:

1. Language polishing to improve clarity. Every word was read and proofed by the authors.
2. Exploration of literature. All cited literature was validated by the authors.

3. Coding assistance. All code was reviewed, rewritten as needed, and tested by the authors
before use.

We did not delegate authorship decisions or scientific claims to the LLM. We manually verified all
content, checked citations, and validated all results. No confidential or identity-revealing information
was provided to the LLLM, and use complied with dataset licenses and the ICLR Code of Ethics.
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