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ABSTRACT

The hypergraph data structure has been used to represent the multiway interactions
of a set of genes of a genetic pathway. Since genes within each genetic pathway
collaboratively perform a biological function, the functional context of a pathway
(i.e., the interaction context of a hyperedge), which is often unannotated, needs to
be captured. However, most existing hypergraph neural networks fail to reflect the
interaction context of each hyperedge due to their limited ability to capture impor-
tant or relevant factors. In this paper, we propose a simple yet effective hyperedge
disentangling method, Natural-HNN, which captures the interaction context of a
hyperedge. We introduce a novel guidance mechanism for hyperedge disentangle-
ment based on the naturality condition in category theory. In our experiments, we
applied our model to hypergraphs of genetic pathways for the cancer subtype clas-
sification task and demonstrated that our model outperforms baseline approaches
by capturing the functional semantic similarity of genetic pathways.

1 INTRODUCTION

A genetic pathway is a set of genes that collaborate to perform a specific function in a biological
process. As gene interactions within each pathway contribute to biological functions, there have
been several attempts to leverage genetic pathways for predicting labels that are associated with bi-
ological functions. For example, genetic pathways were used to predict cancer (Liu et al., 2024) or
other diseases (Sharma & Xu, 2023) that are often the result of dysregulation of pathways with spe-
cific biological function. To reflect multiway interactions among a set of genes, several hypergraph
neural networks (HNNs) (Luo, 2022; Tang et al., 2024), in which each hyperedge connects multiple
nodes, have been proposed.

Since genes within a genetic pathway interact to perform biological functions, HNNs need to reflect
the functional context in which the genetic interaction occurs. However, such functional contexts of
pathways are often unannotated (Liu & Thomas, 2019), making heterogeneous hypergraph models
inapplicable. Most homogeneous hypergraph models, on the other hand, cannot perform context-
dependent message passing, as nodes generate the same message to their neighboring hyperedges.
Thus, capturing unannotated interaction contexts (i.e., functional contexts) is necessary.

To this end, we propose a novel Naturality-guided disentangled Hypergraph Neural Network
(Natural-HNN) that can inherently reflect the interaction context of an hyperedge. We approach the
task with the category theoretical perspective (Fong & Spivak, 2018), and determine the criterion for
disentangling factors as the factor representation consistency based on the naturality condition that
must be satisfied between entangled and disentangled representations. Figure 1 shows the naturality
condition applied to our genetic pathway example. Let’s suppose that genes in a pathway interacts
under the context 2 and does not interact under context 1. The result of interaction under context 2
must be consistent, regardless of whether interaction was performed only on context 2 (i.e., factor
specific message passing, Figure 1 piiq Ñ piiiq Ñ pviq) or the interaction was performed for both
contexts but only context 2 related result was selected (i.e., factor information extraction after en-
tangled message passing, Figure 1 piiq Ñ pvq Ñ pviq). On the other hand, this commutativity does
not hold for context 1 (i.e., the result of piiq Ñ piq Ñ pivq and piiq Ñ pvq Ñ pivq is different) as the
pathway is not related to context 1. The adoption of consistency constraint derived from category
theory allows us to capture context related factors without relying on any assumption on the data.

˚denotes the corresponding author.
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Figure 1: Naturality condition (commutativity) guides interaction context disentanglement.

Our main contributions are summarized as follows:

• To the best of our knowledge, we are the first to propose a hyperedge disentanglement-based
method that is systematically designed to capture the context related to the background or condi-
tion of multiway interaction .

• We proposed a novel way to guide the hyperedge disentanglement, by focusing on the composi-
tional structure of entities in hypergraph message passing framework. Through a new criterion
derived from the category theory, we created a simple but effective model, showing outstanding
performance even with a small hyperparameter search space.

• We applied our model to the cancer subtype classification task, and showed our model can actu-
ally capture functional semantics of pathways.

2 RELATED WORK

Hypergraph Neural Network. Several HNN models have been recently proposed to leverage
information contained in multiway interaction. HGNN (Feng et al., 2019) and HCHA (Bai et al.,
2021) use a normalized hypergraph Laplacian, which is mathematically equivalent to clique expan-
sion (CE) (Sun et al., 2008), and apply the traditional graph convolution mechanism. HNHN (Dong
et al., 2020) additionally adopts nonlinearity when calculating hyperedge representations to differ-
entiate a hypergraph from a clique expanded graph, while UniGNN (Huang & Yang, 2021) unifies
HNNs and GNNs into the same framework. Moreover, HyperGAT (Ding et al., 2020) adopts the
attention mechanism to HNN for text classification, and SHINE (Luo, 2022) proposes dual attention
mechanism for the disease classification task. ED-HNN (Wang et al., 2022) proposes equivariant
message passing HNN, which allows hyperedges to propagate different messages to its incident
nodes. AllDeepSets and AllSetTransformer (Chien et al., 2021) consider a hyperedge as a set and
apply DeepSets (Zaheer et al., 2017) and Set Transformer (Lee et al., 2018), respectively, to increase
expressive power of HNN. All of theses methods, however, cannot give different weights to different
heads or factors, limiting their capability of capturing the interaction context of an hyperedge, which
is crucial in practice.

Disentangled Representation Learning. Disentangled representation learning (DRL) (Roth et al.,
2022; Fumero et al., 2021; Higgins et al., 2018) aims to disentangle the factor of variation of ob-
served data. The effectiveness of DRL has garnered attention of researchers, leading to its expansion
into the field of GNN. DisenGCN (Ma et al., 2019) disentangles the factor of variations in nodes to
find the factor behind connections, while FactorGCN (Yang et al., 2020) disentangles graphs into
several factor graphs. DisGNN (Zhao et al., 2022) recently proposes to disentangle edge types with
the self-supervision from label conformity.

Since graph-based disentangling methods cannot model multiway interactions, DRL is also being
applied to hypergraphs. HSDN (Hu et al., 2022) attempts to capture structural semantics by disen-
tangling a hypergraph into several factor hypergraphs. Although this method is advantageous when
capturing the functional structure in molecules or finding communities in a social network, it is not
suitable for capturing the interaction context as this approach captures semantics derived from dif-
ferent connectivity or substructure. DisenHCN (Li et al., 2022) disentangles user embeddings for
recommender systems, but is only applicable to hypergraphs with known hyperedge types.
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Figure 2: Compositional structure in hypergraph repre-
sentation learning.

Prior to the discussion of the naturality
condition for hyperedge disentanglement,
it is essential to analyze the composi-
tional structure in the hypergraph repre-
sentation learning. In Section 3.1, we
describe the compositional structure of
hypergraph message passing neural net-
works. In Section 3.2, we propose the
naturality condition as a guidance for hy-
peredge disentanglement. The basic con-
cepts in category theory we used are de-
scribed in Appendix D, and the basic ex-
planation of disentangled representation
learning is described in Appendix E.1.

Notation. Let G “ pV, Eq denote a
hypergraph, where V “ tv1, v2, ..., vNu

indicates a set of nodes and E “

te1, e2, ..., eMu indicates a set of hyper-
edges, where N “ |V| and M “ |E | are
the number of nodes and the number of hyperedges in a hypergraph G, respectively. A set of node
features given as input to each layer of the model is denoted as X “ txv1 , ..., xvN u, a set of hyperedge
representations (calculated in each layer of the model) is denoted as H “ the1 , ..., heM u, and a set
of representations obtained after message passsing is denoted as Y “ tyv1 , ..., yvN u. ‘en’ denotes
an entangled object or morphism and is written in superscript or subscript, while ‘dis’ denotes a
disentangled object or morphism. The symbol ‘o9’ is used to denote the composition of morphisms.1

3.1 COMPOSITIONALITY IN HYPERGRAPH REPRESENTATION LEARNING

Most hypergraph representation learning methods produce the representation of a node by integrat-
ing its own representation and its neighbors’ representations defined by a hypergraph topology. As
an example, in Figure 2 (a), the representation of a center node vc is updated to the representation
that can express the meaning produced by a set of nodes Nc, the set whose elements are the node
vc and its one-hop neighbors (v1, v2, v3). During the process, the hypergraph topology created by
hyperedges are considered.

In this paper, for the first time, we describe the above process of hypergraph representation learning
through the lens of the category theory. Specifically, if we consider each node as a set, since a hy-
peredge contains nodes, there are morphisms (inclusion) between nodes and hyperedges induced by
the poset structure. We defined this as PISet, the category with poset structure where morphisms are
inclusions and objects are sets. Thus, we can see nodes (v1, vc, v2, v3) and hyperedges (e1, e2) con-
stitute PISet as shown in Figure 2 (b), where gray-colored nodes and hyperedges are set objects, and
inclusions are morphisms (blue arrow) between sets. The same mechanism holds between hyper-
edges (e1, e2) and a set Nc that includes node vc and its neighbors. In Figure 2 (b), for instance, we
can see hyperedges (e1, e2) and Nc constitute PISet as they have morphisms (green arrow) induced
by the poset structure.

In order to learn and predict with computers, such objects and morphisms must be expressed in
numerical values and their transformations. Hence, we define a category of deep learning repre-
sentations, DLRep, where objects are vector representations and morphisms are transformations
between them. Figure 2 (c) shows the result of applying a functor F : PISet Ñ DLRep, which
can be simplified to a diagram in Figure 2 (d). Thus, any kind of hypergraph message passing neu-
ral networks2 can be seen as a way of learning representations and their transformations respecting
compositional structure of entities.

1Two notations f o
9 g and g ˝ f have the same meaning : “applying f first, and then applying g”. We use the

notation ‘o9’ following (Fong & Spivak, 2018).
2The message passing types are not only limited to traditional convolution-based or attention-based meth-

ods, but also can include complex methods such as general message passing (Papillon et al., 2023).
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Figure 3: Naturality condition in disentangled representation learning to capture context related
factors. X denotes a set of node representations and H denotes hyperedge representation. V and E
denote node and hyperedge in PISet, respectively.

The most expressive way for a model to accommodate various morphisms would be to assign dif-
ferent learnable parameters to every morphism, which, however, would likely fail in generalizability
and scalability perspectives. In this case, providing proper inductive bias is the key to balancing the
trade-off between expressive power and generalizability of the model. However, convolution-based
methods have a strong assumption that all neighbors can be considered equally regardless of the
interaction context of an hyperedge, limiting expressive power of the model. On the other hand, dis-
entangled representation learning can be used as an adequate trade-off by categorizing morphisms
into a small number of morphism types, which can be considered as context-dependent message
passing. Therefore, we propose a hyperedge disentangling method for context-dependent message
passing, which will be introduced in Section 4.

3.2 GUIDING DISENTANGLEMENT WITH NATURALITY CONDITION

Since entangled representations and disentangled representations are different ways of representing
the same compositional structure, we can regard them as the result of applying two different functors
F : PISet Ñ DLRep (for entangled representations) and G : PISet Ñ DLRep (for disentangled
representations) as shown in Figure 3 (a). Thus, we have the naturality condition between entangled
representations and disentangled representations. Figure 3 (b) is equivalent to Figure 3 (a), but
only the components related to the factor ‘c’ are shown. Note that αX,c “ αX

o
9 pc where pc :

Xdis Ñ Xdis
c (refer to Appendix E.3). If factor ‘c’ is relevant to the morphism between node set V

and hyperedge E, the naturality condition must hold for the perspective of factor ‘c’. Thus, factor
‘c’ representation of a hyperedge (i.e., Hdis

c ) must be the same (or similar) regardless of applying
f en o

9 αH,c (i.e., message passing on entangled representation first, and then disentangling factors) or
αX,c

o
9 f dis

c (i.e., disentangling factors first, and then message passing on disentangled representation).
In other words, the factor representation must be consistent regardless of the sequence of operations
if that factor is relevant to the interaction context of an hyperedge3. We use this property as a
guidance for disentanglement, since it must hold for any kind of hypergraph message passing neural
networks, and must work regardless of data characteristics. More precise and detailed explanations
are provided in Appendix E.3

4 PROPOSED METHOD: NATURAL-HNN

Each layer of Natural-HNN is composed of a message passing lane (left column of Figure 4 (c)),
and a non-message passing lane (right column of Figure 4 (c)) as well as their integration with layer
normalization (Section 4.3, bottom of Figure 4 (c)). The key component of our model is the message
passing lane (Figure 4 (b)) that consists of a Node-to-Hyperedge factor propagation module (Section
4.1), and a Hyperedge-to-Node factor propagation module (Section 4.2). Note that each layer of
Natural-HNN has K factors where K is a hyperparamter.

4.1 NODE-TO-HYPEREDGE FACTOR PROPAGATION

Obtaining Two Disentangled Hyperedge Representations. To validate whether the naturality
condition (Figure 4 (a)) holds, we need to get two disentangled hyperedge factor representations

3The group discussion example in Figure 1 shows this property.
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Figure 4: An overview of Natural-HNN. (a) illustrates the naturality condition shown in Figure 3
(b). (b) shows the message passing block of Natural-HNN that consists of a Node-to-Hyperedge and
Hyperedge-to-Node factor propagation modules. The Final output of the message passing block is
shown at the right bottom corner of (b). (c) shows the composition of each layer of Natural-HNN.

for every factor (i.e., Hdis
k for every factor k P r1,Ks). The two disentangled representations are

obtained through 1) Aggregation-first Branch and 2) Disentalgle-first Branch. In the following, we
describe how morphisms in Figure 4 (a) are implemented as operations in the two branches shown
in Figure 4 (b).

• Aggregation-first Branch. The first disentangled representation is obtained from the aggregation-
first branch performing f en o

9 αH,k for each factor k. This process is implemented as performing
aggregation aggn2e (i.e., f en in Figure 4 (a)) first, and then disentangling into hyperedge factor
representations using a factor encoder αH,k. The factor representations of hyperedge ei obtained
from this branch are denoted as h̃1

ei
, . . . , h̃K

ei
.

• Disentangle-first Branch. The other one is obtained from the disentangle-first branch perform-
ing αX,k

o
9 f dis

k for each factor k. This process is implemented as disentangling into node factor
representations with factor encoder αX,k first, and then performing aggregation aggn2e (i.e., f dis

c in
Figure 4 (a)). The factor representations of hyperedge ei obtained from this branch are denoted as
h1ei

, . . . , hK
ei

.

For both branches, we used mean aggregation as aggn2e and K MLPs as factor encoders for dis-
entangling factors. Factor representations are vectors with size d{K (i.e., hk

ei
, h̃k

ei
P R d

K ), when the
desired size for node representations after message passing is d. In summary, operations of the two
branches regarding factor k can be written as follows:

h̃k
ej

“ MLPkpmeanptxvi |vi P ejuqq, hk
ej

“ meanptMLPkpxvi q|vi P ejuq (1)

Deciding Factors with Consistency. The extent to which the naturality condition is satisfied can
be measured by calculating the similarity between the two disentangled hyperedge factor represen-
tations h̃k

ej
and hk

ej
. In other words, we can consider that the naturality condition holds when the

two representations are similar (i.e., consistent), and does not hold when the two representations are
largely different. We introduce a similarity scorer that calculates the similarity of two L2-normalized
vectors. Specifically, we calcualte the relevance or importance of factor k for a hyperedge ei as

αk
i “ σp

hk
ei

∥hk
ei
∥2

Wk
h̃kT

ei

∥h̃k
ei
∥2

q, where Wk P R d
K ˆ d

K is a learnable parameter matrix for factor k, and σ is the

sigmoid function. Lastly, we obtain the final hyperedge factor representations by multiplying αk
i to

the corresponding hyperedge factor representations obtained from the disentangle-first branch4, i.e.,
αk

i hk
ei

, that reflects the relevance of the factor k for the hyperedge ei.

4Although we choose the disentangle-first branch here, we can instead use the output of the aggregation-first
branch. Both choices give similar results. Please refer to Appendix C.1.
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Table 1: Model performance on cancer subtype classification task (Macro F1). Top two models are
colored by First, Second. : : the variant of the model using multihead attention.

Method BRCA STAD SARC LGG HNSC CESC KIPAN NSCLC
HGNN 0.726 ± 0.053 0.563 ± 0.040 0.684 ± 0.067 0.694 ± 0.033 0.799 ± 0.053 0.835 ± 0.052 0.921 ± 0.016 0.959 ± 0.016
HCHA 0.704 ± 0.051 0.558 ± 0.044 0.675 ± 0.068 0.682 ± 0.041 0.783 ± 0.055 0.844 ± 0.054 0.920 ± 0.015 0.954 ± 0.009
HNHN 0.697 ± 0.046 0.573 ± 0.072 0.688 ± 0.075 0.674 ± 0.038 0.791 ± 0.035 0.837 ± 0.059 0.920 ± 0.021 0.958 ± 0.016

UniGCNII 0.697 ± 0.052 0.617 ± 0.059 0.728 ± 0.066 0.663 ± 0.039 0.830 ± 0.030 0.841 ± 0.046 0.935 ± 0.012 0.949 ± 0.017
AllDeepSets 0.716 ± 0.058 0.557 ± 0.044 0.599 ± 0.058 0.665 ± 0.046 0.801 ± 0.058 0.870 ± 0.044 0.912 ± 0.015 0.953 ± 0.010

AllSetTransformer 0.743 ± 0.057 0.553 ± 0.046 0.719 ± 0.052 0.653 ± 0.038 0.814 ± 0.036 0.847 ± 0.046 0.925 ± 0.013 0.953 ± 0.014
HyperGAT 0.637 ± 0.121 0.534 ± 0.063 0.574 ± 0.153 0.665 ± 0.054 0.789 ± 0.061 0.832 ± 0.046 0.899 ± 0.037 0.927 ± 0.020
HyperGAT: 0.641 ± 0.115 0.502 ± 0.087 0.584 ± 0.150 0.646 ± 0.043 0.791 ± 0.079 0.827 ± 0.041 0.896 ± 0.025 0.939 ± 0.009

SHINE 0.446 ± 0.155 0.371 ± 0.135 0.529 ± 0.160 0.628 ± 0.104 0.718 ± 0.055 0.745 ± 0.159 0.837 ± 0.197 0.866 ± 0.128
SHINE: 0.651 ± 0.053 0.532 ± 0.064 0.673 ± 0.059 0.650 ± 0.046 0.770 ± 0.040 0.837 ± 0.061 0.925 ± 0.017 0.954 ± 0.013
HSDN 0.757 ± 0.044 0.629 ± 0.045 0.726 ± 0.063 0.692 ± 0.038 0.811 ± 0.044 0.867 ± 0.033 0.937 ± 0.005 0.961 ± 0.013

ED-HNN 0.735 ± 0.047 0.615 ± 0.050 0.718 ± 0.071 0.700 ± 0.030 0.835 ± 0.047 0.875 ± 0.053 0.931 ± 0.013 0.955 ± 0.012
ED-HNNII 0.722 ± 0.045 0.536 ± 0.057 0.650 ± 0.087 0.695 ± 0.039 0.845 ± 0.025 0.895 ± 0.044 0.930 ± 0.015 0.953 ± 0.012

Natural-HNN (Ours) 0.804 ± 0.036 0.659 ± 0.049 0.745 ± 0.045 0.707 ± 0.035 0.862 ± 0.045 0.881 ± 0.042 0.934 ± 0.010 0.962 ± 0.013

4.2 HYPEREDGE-TO-NODE FACTOR PROPAGATION

When aggregating hyperedge representations (i.e., αk
i hk

ei
) to update node representations, the sum

of neighboring hyperedge representations with respect to factor k must be divided by the sum of αk
i

so that hyperedge relevance scores (i.e., αk
i ) are normalized during aggregation. Thus, the updated

factor k representation of node vi, i.e., yk
vi

, can be written as yk
vi

“ 1
ř

ejQvi
αk

j

ř

ejQvi
αk

j hk
ej

.

4.3 FINAL OUTPUT OF EACH LAYER OF NATURAL-HNN

We allowed our model to determine its focus between information from neighbors (i.e., yvi ) and
information of the node itself (i.e., xvi ) by introducing hyperparameter β that decides interpolation
ratio between them. To make sure that interpolation is performed on disentangled representations,
we used the factor encoder used in the message passing step (i.e., hk

vi
“ MLPkpxvi q). Specifically,

zvi “ LayerNormpβyvi ` p1 ´ βqhvi q, where yvi “ Concatpy1vi
, . . . , yK

vi
q, hvi “ Concatph1vi

, . . . , hK
vi

q.
Note that to reduce the burden of hyperparameter tuning, we fix β “ 0.5.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset. For the cancer subtype classification task, we downloaded clinical data for 8 cancer
types (BRCA, STAD, SARC, LGG, CESC, HNSC, KIPAN and NSCLC) and preprocessed data
following Pathformer (Liu et al., 2023) (Details in Appendix A.2). Every patient (i.e., a hypergraph)
has the same genes (i.e., nodes) and pathways (i.e., hyperedges), but the clinical data (i.e., gene
representations) are different. The data statistic of each cancer data is provided in Appendix A.1.

Compared Methods. We compared Natural-HNN with HNNs introduced in Section 2. Specif-
ically, HGNN(Feng et al., 2019), HCHA (Bai et al., 2021), HNHN (Dong et al., 2020), UniGCNII
(Huang & Yang, 2021), AllDeepSets (Chien et al., 2021), AllSetTransformer (Chien et al., 2021),
HyperGAT (Ding et al., 2020), SHINE (Luo, 2022), ED-HNN (Wang et al., 2022), ED-HNNII
(Wang et al., 2022) and a hypergraph disentangling method HSDN (Hu et al., 2022) are used as
baselines.

Evaluation. We randomly split the data into 50%/25%/25% for training/validation/test set. We
measured average and standard deviation of the performances for 10 different data splits. The hy-
perparameter search space is provided in Appendix B.2.

5.2 RESULTS FOR CANCER SUBTYPE CLASSIFICATION

The cancer subtype classification task can be considered as a hypergraph classification task, since
every patient (i.e., a hypergraph) has the same genes (i.e., nodes) and pathways (i.e., hyperedges).
Specifically, we generated the representation of a hyperedge by simply concatenating representations
of hyperedges in a hypergraph following Pathformer (Liu et al., 2023), due to the lack of an effec-
tive pooling method reflecting the hypergraph topology developed to date. Then, we applied one
layer MLP as the classifier. We have the following observations in Table 1. 1) Natural-HNN shows
superior performance in most of the cancers with large performance gap compared with most of the
models. Especially, we achieve large performance improvements compared with the convolution-
based methods as well as AllDeepSets, which cannot leverage the interaction contexts. In the case
of BRCA, we achieve about 5% performance improvement compared with the second best model.

6



Published as a workshop paper at MLGenX 2025

(a) Ground-Truth (b) Natural-HNN (c) HSDN

(d) Ground-Truth (e) Natural-HNN (f) HSDN

(i) With pathways selected by Natural-HNN

(ii) With pathways selected by HSDN

Figure 5: Captured interaction context. Captured patterns are shown in red boxes and not captured
patterns are shown with orange boxes. Weakly captured cases are marked as dotted red block.

This result can be attributed to the following two facts: First, pathways contain “context-dependent
interaction”5 that reflect various functional semantics (Stoney et al., 2018; 2015). Second, cancers
are directly related to the functions of multiple pathways (Windels et al., 2022; Stoney et al., 2018).
Thus, we can conclude that reflecting various functional context of pathways is important in cancer
related tasks and our model benefited by effectively capturing such interaction contexts. 2) Natural-
HNN does not show impressive performance on KIPAN and NSCLC compared to other datasets.
This is due to the fact that those cancers are relatively easy to be classified with only the gene fea-
tures (Wang et al., 2021; Oh et al., 2021). 3) Natural-HNN outperforms the disentangle-based model,
HSDN, with a large performance gap. Although HSDN mainly aimed to capture the structural se-
mantics, it is similar to ours in that it can potentially capture interaction types by giving different
factor importance for each hyperedge. They also used similarity-based criterion for disentanglement
by comparing similarity between factor representations of a hyperedge and nodes. However, the su-
perior performance of Natural-HNN validates that the naturality-guided disentanglement can better
integrate contextual information of interaction.

5.3 NATURAL-HNN CAPTURES FUNCTIONAL CONTEXT OF PATHWAYS

To validate that Natural-HNN can capture the interaction context, we checked whether our model
captures functional semantics of genetic pathways. Because the models rely solely on cancer
subtype labels during training6, we expect the interaction contexts of informative hyperedges (such
as cancer-related pathways) to be captured by the models, while non-informative hyperedges (such
as pathways not relevant to cancer) are not. For this experiment, we first selected top-15 pathways7

based on the SHAP value for each model (Natural-HNN in Figure 5 top and HSDN in Figure 5 bot-
tom). Note that we rely on the SHAP value since information regarding which pathways are relevant
to cancers is not given. Then, after clustering these 15 pathways with CliXO algorithm (Kramer
et al., 2014), we calculate the similarity between clusters based on the average similarity of pathways
that belong to each cluster. Our goal is to check how well Natural-HNN preserves the functional
semantic similarity between pathway clusters compared with the cluster similarity calculated with
Lin’s method (Lin et al., 1998) (BMA), which we consider as the ground-truth. For HSDN and
Natural-HNN, cluster similarity is calculated based on the relevance score vector of each hyperedge
ei across all factors, i.e., αi “ rα1

i , ..., α
K
i s, which can be calculated as 1{p1 ` ∥αi ´ αj∥2q. As the

experiment setting is somewhat complicated, we described the detailed procedure in Appendix A.3.

5A direct quote from (Stoney et al., 2018)
6This means that models do not use external data related to pathway types or pre-trained models.
7Only a few pathways are related to each type of cancer. We can also observe this with the SHAP value

distribution in Figure 7
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(a) Top 10, Natural-HNN, avg : 0.716 (b) Top 50, Natural-HNN, avg : 0.781 (c) Top 100, Natural-HNN, avg : 0.754

(d) Top 10, HSDN, avg : 0.357 (e) Top 50, HSDN, avg : 0.582 (f) Top 100, HSDN, avg : 0.619

Figure 6: Jaccard similarity of (SHAP) top-k pathways across different hyperparameters.

The result on the BRCA datset is shown in Figure 5. The row and column of each heatmap is the
index of the pathway clusters and color represents similarity between clusters. Figure 5 (a), (b) and
(c) shows the measured similarity between clusters with pathways selected by Natural-HNN. Com-
paring (b) and (c) with (a), we observe that Natural-HNN preserves the functional similarity (red
box) better than HSDN, which fails to do so (orange box). Moreover, Figure 5 (d), (e) and (f) shows
the measured similarity between clusters with pathways selected by HSDN. An interesting observa-
tion is that even with the pathways that were informative to the HSDN, HSDN fails (orange box)
to preserve the functional similarity between clusters while Natural-HNN could capture them. The
results imply that the naturality condition in category theory is effective in capturing the interaction
context of an hyperedge. Additional analyses are described in Appendix E.5

5.4 NATURAL-HNN SHOWS CONSISTENCY REGARDLESS OF THE HYPERPARAMETER

Since cancers are directly related to the functions and dysregulation of multiple pathways (Sharma
& Xu, 2023; Windels et al., 2022; Stoney et al., 2018), models should rely on specific pathways for
cancer subtype classification regardless of the choice of hyperparameters. To check whether models
rely on the same pathways, we ranked the pathways with SHAP value and selected top-k pathways.
These pathways are the ones that models relied on most for their prediction. Then, we calculated
Jaccard similarity of top-k pathways for different hyperparameters. If top-k pathways earned from
each hyperparameter combination is similar, then we can conclude that the model rely on the same
pathways regardless of the hyperparameters.

Figure 6 is the result of calculating Jaccard similarity between different hyperparameter combina-
tions on HNSC dataset. The hyperparameters we changed was the hidden dimension size and the
number of factors. Values in each tick of row and column is the pair of the two hyperparameters.
Heatmap (a), (b) and (c) corresponds to the result of Natural-HNN for top 10, 50 and 100 pathways
respectively. Heatmap (d), (e) and (f) corresponds to the result of HSDN for top 10, 50 and 100
pathways respectively. We can observe that Natural-HNN tends to rely on the same pathway (i.e.
high Jaccard similarity) regardless of the hyperparameter while HSDN does not. This consistency
makes Natural-HNN more reliable.

6 CONCLUSION

In this work, we propose Natural-HNN, which captures the interaction context of nodes within a
hyperedge during the message passing process. We analyzed compositional structure in hypergraph
message passing through the lens of category theory and focused on the naturality condition that
must be satisfied between entangled and disentangled representations. Through several experiments
with cancer subtype classification dataset, we validated that our novel hyperedge disentangle-based
model successfully captures functional contexts of genetic pathways without the help of external
knowledge or a complex objective function.
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Bruno Gavranović. Compositional deep learning. arXiv preprint arXiv:1907.08292, 2019.

Jakob Hansen and Thomas Gebhart. Sheaf neural networks. arXiv preprint arXiv:2012.06333, 2020.

Jakob Hansen and Robert Ghrist. Toward a spectral theory of cellular sheaves. Journal of Applied
and Computational Topology, 3:315–358, 2019.

Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo Rezende, and
Alexander Lerchner. Towards a definition of disentangled representations. arxiv. arXiv preprint
arXiv:1812.02230, 2018.

Bingde Hu, Xingen Wang, Zunlei Feng, Jie Song, Ji Zhao, Mingli Song, and Xinyu Wang. Hsdn:
A high-order structural semantic disentangled neural network. IEEE Transactions on Knowledge
and Data Engineering, 2022.

Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural networks.
arXiv preprint arXiv:2105.00956, 2021.

Minoru Kanehisa and Susumu Goto. Kegg: kyoto encyclopedia of genes and genomes. Nucleic
acids research, 28(1):27–30, 2000.

Michael Kramer, Janusz Dutkowski, Michael Yu, Vineet Bafna, and Trey Ideker. Inferring gene
ontologies from pairwise similarity data. Bioinformatics, 30(12):i34–i42, 2014.

Anton Kratz, Minkyu Kim, Marcus R Kelly, Fan Zheng, Christopher A Koczor, Jianfeng Li, Kei-
ichiro Ono, Yue Qin, Christopher Churas, Jing Chen, et al. A multi-scale map of protein assem-
blies in the dna damage response. Cell Systems, 14(6):447–463, 2023.

Henry Kvinge, Brett Jefferson, Cliff Joslyn, and Emilie Purvine. Sheaves as a framework for under-
standing and interpreting model fit. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 4222–4230, 2021.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer. 2018.

Tom Leinster. Basic category theory. arXiv preprint arXiv:1612.09375, 2016.

Martha Lewis. Compositionality for recursive neural networks. arXiv preprint arXiv:1901.10723,
2019.

Yinfeng Li, Chen Gao, Quanming Yao, Tong Li, Depeng Jin, and Yong Li. Disenhcn: Disentan-
gled hypergraph convolutional networks for spatiotemporal activity prediction. arXiv preprint
arXiv:2208.06794, 2022.

Dekang Lin et al. An information-theoretic definition of similarity. In Icml, volume 98, pp. 296–304,
1998.

Meng Liu and Paul D Thomas. Go functional similarity clustering depends on similarity measure,
clustering method, and annotation completeness. BMC bioinformatics, 20(1):1–15, 2019.

Xiaofan Liu, Yuhuan Tao, Zilin Cai, Pengfei Bao, Hongli Ma, Kexing Li, Mengtao Li, Yunping Zhu,
and Zhi John Lu. Pathformer: a biological pathway informed transformer integrating multi-omics
data for disease diagnosis and prognosis. bioRxiv, pp. 2023–05, 2023.

10



Published as a workshop paper at MLGenX 2025

Xiaofan Liu, Yuhuan Tao, Zilin Cai, Pengfei Bao, Hongli Ma, Kexing Li, Mengtao Li, Yunping Zhu,
and Zhi John Lu. Pathformer: a biological pathway informed transformer for disease diagnosis
and prognosis using multi-omics data. Bioinformatics, 40(5):btae316, 2024.

Yuan Luo. Shine: Subhypergraph inductive neural network. Advances in Neural Information Pro-
cessing Systems, 35:18779–18792, 2022.

Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, and Wenwu Zhu. Disentangled graph convolutional
networks. In International conference on machine learning, pp. 4212–4221. PMLR, 2019.

Seyed MH Mansourbeigi. Sheaf Theory as a Foundation for Heterogeneous Data Fusion. PhD
thesis, Utah State University, 2018.

Craig H Mermel, Steven E Schumacher, Barbara Hill, Matthew L Meyerson, Rameen Beroukhim,
and Gad Getz. Gistic2. 0 facilitates sensitive and confident localization of the targets of focal
somatic copy-number alteration in human cancers. Genome biology, 12:1–14, 2011.

Mohamed Mounir, Marta Lucchetta, Tiago C Silva, Catharina Olsen, Gianluca Bontempi, Xi Chen,
Houtan Noushmehr, Antonio Colaprico, and Elena Papaleo. New functionalities in the tcgabi-
olinks package for the study and integration of cancer data from gdc and gtex. PLoS computa-
tional biology, 15(3):e1006701, 2019.

Darryl Nishimura. Biocarta. Biotech Software & Internet Report: The Computer Software Journal
for Scient, 2(3):117–120, 2001.

Jung Hun Oh, Wookjin Choi, Euiseong Ko, Mingon Kang, Allen Tannenbaum, and Joseph O Deasy.
Pathcnn: interpretable convolutional neural networks for survival prediction and pathway analysis
applied to glioblastoma. Bioinformatics, 37(Supplement 1):i443–i450, 2021.

Mathilde Papillon, Sophia Sanborn, Mustafa Hajij, and Nina Miolane. Architectures of topological
deep learning: A survey on topological neural networks. arXiv preprint arXiv:2304.10031, 2023.

Yue Qin, Casper F Winsnes, Edward L Huttlin, Fan Zheng, Wei Ouyang, Jisoo Park, Adriana Pitea,
Jason F Kreisberg, Steven P Gygi, J Wade Harper, et al. Mapping cell structure across scales by
fusing protein images and interactions. bioRxiv, pp. 2020–06, 2020.
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A DATASET AND EXPERIMENT DETAILS

A.1 STATISTICS : CANCER SUBTYPE CLASSIFICATION DATASET

The statistics of cancer datasets are shown in the Table 2. Note that every hypergraphs in all 8
cancers have 1497 pathways (hyperedges) and 11552 genes (nodes) with 9 feature dimension. The
degree statistics of cancer dataset is shown in the Table 3. When converted to a graph with star-
expansion, the graph contains 98013 edges. When converted to a graph with clique-expansion, the
graph contains 10114890 edges. Thus, converting the hypergraph into a graph with clique-expansion
requires large computation during message passing. The downloading and preprocessing details are
provided in Appendix A.2

Table 2: Statistics of 8 cancer datasets used for cancer subtype classification task.

dataset summary class distribution(counts)
BRCA 5 class, 769 hypergraphs Normal-like 33, Her2 44, Basal-like 134, LumB 143, LumA 415
STAD 5 class, 341 hypergraphs CIN 200, EBV 29, GS 46, MSI 59, HM-SNV 7
SARC 4 class, 257 hypergraphs LMS 104, MFS/UPS 75, DDLPS 57, Other 21
LGG 2 class, 503 hypergraphs G2 242, G3 261

HNSC 2 class, 507 hypergraphs HPV- 411, HPV+ 96
CESC 2 class, 280 hypergraphs AdenoCarcinoma 46, SquamousCarcinoma 234
KIPAN 3 class, 649 hypergraphs KICH 65, KIRC 313, KIRP 271
NSCLC 2 class, 813 hypergraphs LUAD 451, LUSC 362

Table 3: statistics of hypergraphs in cancer subtype classification task

min median mean max std
node degree 2 5 8.485 239 13.301

hyperedge degree 13 35 57 1371 84.720

A.2 PREPROCESSING : CANCER SUBTYPE CLASSIFICATION DATASET

The overall procedure was adopted from Pathformer (Liu et al., 2023). However, statistics of the
data can be slightly different due to the difference of time at which the data was downloaded.

CREATING HYPERGRAPH

We downloaded pathways from several pathway databases including KEGG (Kanehisa & Goto,
2000), PID (Schaefer et al., 2009), Reactome (Croft et al., 2010) and Biocarta.(Nishimura, 2001).
The pathways were selected based on their size and overlap ratio with other pathways. These two
conditions must be considered as 1) extremely large pathways do not represent specific functions
but rather general functions, 2) small pathways complicate interpretations 3) overlapping pathways
cause redundancies. The more detailed explanations can be found in (Reimand et al., 2019). Path-
ways with too small or too big size or large overlaps are excluded. A specific threshold was chosen
following the Pathformer.

GENERATING HYPERGRAPH LABELS

For BRCA and STAD, we gathered cancer subtypes from TCGA (Weinstein et al., 2013) using
TCGAbiolinks (Colaprico et al., 2016; Silva et al., 2016; Mounir et al., 2019) R library. For the
rest of 6 cancer datasets we downloaded cancer subtypes from Broad GDAC Firehose (https://
gdac.broadinstitute.org/)8. KIPAN and NSCLC, specifically, was created by integrating
KIRC, KICH, KIRP and LUAD, LUSC each as shown in Table 2. This is the reason why it is easy
to classify cancer subtypes in KIPAN dataset.

8Pathformer used labels from pan-cancer atlas study (Sanchez-Vega et al., 2018) for HNSC, CESC and
SARC. However, we decided to use the one in Broad GDAC Firehose since it was easier to process the same
data
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GENERATING NODE FEATURES

We gathered mRNA/miRNA expression, DNA methylation9, DNA copy number variation (CNV)10

using TCGAbiolinks. Gene lengths were acquired from biomaRt R package (Durinck et al., 2009;
2005). The procedure of processing each data with Gistic2 (Mermel et al., 2011), normalization by
TPM are adopted from Pathformer. At the end of the processing step, we calculate statistics (mean,
min, max, count) of modalities as values for each feature dimension.

A.3 EXPERIMENT DETAILS OF CAPTURING CONTEXT TYPES

To check whether HNNs could capture functional semantics of pathways (i.e, interaction context of
hyperedges), we need context labels for each hyperedge. However, there is no data that annotates
the functional semantics of genetic pathways. Instead, we rely on the methods in computational
biology to measure and create ground truth.

We clustered functionally similar pathways and measured functional similarity between clusters.
Since each cluster is consisted of functionally similar pathways, we can consider each cluster index
as a kind of a label that indicates a functional context type. By comparing the functional similarity
between clusters earned from model and ground truth, we can check whether the model effectively
captured functional semantics of pathways. If the similarity patterns between clusters (i.e., relative
similarity scores that are shown as color in heatmap) of predicted result and the ground truth are
similar, we can conclude that model could capture functional semantics. We do not directly com-
pare the exact values of prediction and the ground truth since the way of calculating the value is
different in prediction (calculation based on relevance scores αk

ei
) and ground truth (algorithm used

in computational biology).

In order to perform the experiment, we need to consider the followings: 1) Which pathways need
to be analyzed? 2) How to get ground truth pathway functions 3) How to calculate ground truth
functional similarity between pathways 4) How to cluster functionally similar pathways in a reliable
manner 5) How to measure ground truth cluster similarity and how to predict cluster similarity with
model outputs.

Which pathways need to be analyzed? There are two reasons behind selecting pathways : 1) Since
CliXO algorithm (Appendix A.6) used for clustering pathways takes a lot of time, the number of
pathways to be analyzed must be reduced. 2) The ground truth functional similarity (Appendix A.5)
contains vast biological context derived from biological domain knowledge or researches, which
might not be present in our dataset. Since our dataset contains only cancer-specific information, there
is no way to capture non-existing context (contexts that are not related to cancer) without external
supervision. Thus direct comparison between the ground truth and our result is impossible. The
most ideal way for fair comparison would be selecting the ground truth that is only relevant to our
dataset or task. However, it is impossible since there are no databases with annotated context (cancer
or environment) specific pathway functionalities. An alternative way was selecting the pathways
that were informative or important in the decision of the model. If a model can correctly capture
functional context of pathways, since pathway functions are highly related to the cancers (Windels
et al., 2022; Stoney et al., 2018), informative pathways (for the model prediction) are the pathways
that contain cancer-specific contexts. Since we only need to check whether functional context are
correctly captured under the cancer specific circumstances or condition, by selecting those pathways,
we can compare functional similarities that are specific to our data or cancer11. The details for
selecting pathways are described in Appendix A.4.

How to get ground truth pathway functions. Since there is no database that annotates functional
similarity scores between pathways, we rely on methods used in computational biology. Hence, we
need to get ground truth pathway functions. Similarity calculations and clusterings are based on the
annotation of pathway functions. The details are described in Appendix A.5.

How to calculate ground truth functional similarity between pathways. Based on the functions
of pathways, pathway functional similarity can be calculated. The calculated similarity will be used

9but we do not use promoter methylation
10but we do not use gene level CNV
11On the other hand, if the model could not correctly capture pathway functionalities, cancer irrelevant

pathways will be selected and will have different result from the ground truth in section 5.3
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in clustering and generating ground truth functional similarity between clusters. The details are dealt
in Appendix A.5.

How to cluster functionally similar pathways in a reliable manner. With functional similarity
between pathways, we can cluster functionally similar pathways with CliXO algorithm. The details
and example results are shown in Appendix A.6.

How to measure ground truth cluster similarity and how to predict cluster similarity with
model outputs. Finally, we need to devise a way to measure the similarity between clusters based
on the model outputs. Also, we need to measure ground truth functional similarity between clusters.
The details are described in Appendix A.7.

In summary, the procedure of experiments can be described as follows. First, we get functional
annotation of pathways (hyperedges). Second, we calculate functional similarity between pathways
based on annotations. Third, we select pathways to be analyzed based on the model output. Fourth,
we cluster the selected pathways with pathway similarity. Finally, we calculate the predicted func-
tional similarity between clusters from model prediction and compare that with the ground truth
cluster similarity. The detailed explanation for the result is provided in Appendix E.5.

A.4 SELECTING PATHWAYS WITH SHAP VALUES

To select pathways that were the most informative for prediction, we provide the final representation
of pathways generated by a model, 1 layer classifier (MLP) as well as labels to the DeepExplainer
to get SHAP values. Then we select top-k pathways based on the SHAP value. Note that only small
number of pathways are relevant to the task as shown in Figure 7. This is due to the fact that not all
pathways are related to very specific type of cancer. Although Natural-HNN and HSDN both use
the same number of pathways (top-k), the pathways selected by each model can be different. This
also leads to different number of clusters in Figure 5 and 9.

(a) SHAP value for all pathways (b) SHAP value for top-30 pathways

Figure 7: SHAP value distribution of Natural-HNN on BRCA dataset. X axis represents ranking
and Y axis represents SHAP value.

A.5 CALCULATING FUNCTIONAL SIMILARITY BETWEEN PATHWAYS

This process consists of two steps: 1) assigning pathway level function to pathways and 2) calcu-
lating functional semantic similarities between pathways. For both two steps, we adopted the most
frequently used and verified methods through several studies. For the assignment of pathway func-
tions, we use GO enrichment analysis. Gene ontology (GO) (Ashburner et al., 2000; Aleksander
et al., 2023) is a functional annotation of genes that has a hierarchical structure. Note that, however,
the hierarchical structure of functional annotations is close to a directed acyclic graph (DAG) rather
than a tree-like hierarchical structure. As an example, we can see DAG structure in the result of
CliXO algorithm in the Figure 8. We can computationally annotate pathway functions with GO
terms using GO enrichment analysis. We use ‘enrichGO’ function provided by R package cluster-
Profiler (Yu et al., 2012), with pvalue of 0.01 followig the paper (Stoney et al., 2018). Then we
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(a) Clustering result for (SHAP value) top 15 
pathways of Natural-HNN @ BRCA

(c) Clustering result for (SHAP value) top 15 
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Figure 8: The result of applying CliXO algorithm to top-15 pathways of Natural-HNN and HSDN
on BRCA and CESC. The pathway number denotes the index of pathway in our dataset (hyperedge
index).

selected the most specific GO terms with set cover algorithm proposed in (Stoney et al., 2018) to
assign pathways precise representation of their functions.

The next step is calculating functional semantic similarities between pathways. We used Lin’s
method (Lin et al., 1998) with best matching average (BMA) as the combination was proven to
perform well with CliXO and was proven to be robust in incomplete annotation cases in (Liu &
Thomas, 2019). We used mgoSim function in R package GOSemSim (Yu et al., 2010; Yu, 2020) for
the calculation of Lin’s method.

A.6 ASSIGNING PATHWAY TYPE WITH CLIXO

To cluster functionally similar pathways, we adopted CliXO (Kramer et al., 2014). It was origi-
nally designed to cluster gene function annotations (GO) and has been used in multiple biological
studies(Kratz et al., 2023; Qin et al., 2020). However, it can also be effectively applied to higher
functional semantics such as pathways as in (Zheng et al., 2021). We used official implementation
of CliXO 1.0 for our research. We used the following 4 values as hyperparameter of CliXO : a =
0.1, b = 0.6, m = 0.005, s = 0.2.

Since CliXO can cluster functionally similar pathways, we can assign interaction types to pathways
by assigning them to the cluster. Figure 8 shows the result of applying CliXO for top-15 pathways
selected by Natural-HNN or HSDN for BRCA as well as CESC. Unlike other hierarchical clustering
based methods, CliXO created clusters having DAG structure. Considering that GO also has DAG
structure, CliXO can be seen as a natural way of reflecting complex structure or relations in biology.

A.7 CALCULATING FUNCTIONAL SIMILARITY BETWEEN CLUSTERS

Ground Truth Given a pair of clusters, calculating functional similarity between them is simple. We
average the similarity of all possible pathway pairs belonging to different clusters to get functional
similarity between clusters.
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Model’s prediction If a model correctly captures functional context of pathways, then the relevance
scores (αk

i ) of two similar pathways must be similar for all factors. Thus we define the similarity
between pathways as 1

1`∥αi´αj∥ 2
, where αi “ rα1

i , ..., α
K
i s is a factor vector of pathway (hyperedge)

ei. The cluster similarity can be calculated in the same way as in the ground truth case. We average
the similarity of all possible pathway pairs belonging to different clusters to get functional similarity
between clusters.

B IMPLEMENTATION DETAILS

B.1 FACTOR ENCODER

In Section 4, we explained that we use K number of MLPs to get K factor representations. The
resulting factor representation is a vector with size d{K when desired output representation size of
a layer is given as d. When implementing the factor encoder as a code, we use single MLP that
outputs vector with size d. As described in E.1, applying K different MLPs (with output vector
size d{K) is the same as applying one MLP (with output vector size d) and chunking the vector
to smaller ones with size d{K. (i.e. First d{K values corresponds to the 1st factor representation,
and following d{K values corresponds to the 2nd factor representation and so on.) Hence, in the
right lane of Figure 4, the concatenation operation is not performed as the output of a single MLP is
equivalent to a concatenated vector. The nonlinear activation function we used for factor encoder is
hyperbolic tangent (tanh).

B.2 HYPERPARAMETER SEARCH SPACE

We report the hyperparameter search space of each model in cancer subtype classification task.
We used Adam optimizer for Natural-HNN. For the baselines, we closely followed optimizers or
schedulers they used in their paper. Table 4 shows the hyperparameter search space in the cancer
subtype datasets. ‘7 Total’ denotes the number of all possible hyperparameter combinations that each
model needs to search. ‘cl’ denotes the number of classifier layers. When the number of classifiers
is larger than 1, those models have an additional hyperparameter that decides the hidden dimension
of the classifier. 7 MLP layer denotes the number of layers in MLP that was used in AllDeepSets,
AllSetTransformer, ED-HNN, ED-HNNII. In the case of ED-HNN and ED-HNNII, there were three
types of MLPs and each MLP could have different number of layers. λ for Ldis is hyperparameter
that changes the reflection ratio of the factor discrimination loss.

Table 4: Hyperparameter search space in cancer subtype classification task. : : MLP layers used in
AllDeepSets, AllSetTransforer, ED-HNN, ED-HNNII

models head (factor) 7 MLP layer : λ for Ldis 7 Total
HGNN 1 - - 24
HCHA 1 - - 24
HNHN 1 - - 24

UniGCNII 1 - - 24
AllDeepSets 1 1,2 - 48

AllSetTransformer 1,2,4,8 1,2 - 192
HyperGAT 1,2,4,8 - - 96

SHINE 1,2,4,8 - - 96
HSDN 1,2,4,8 - 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 672

ED-HNN 1 [0,1] ˆ [1] ˆ [0,1] - 96
ED-HNNII 1 [0,1] ˆ [1] ˆ [0,1] - 96

Natural-HNN 1,2,4,8 - - 96

For cancer subtype classification tasks, we used [16, 32, 64] as the hidden dimension and [0.1, 0.01,
0.001, 0.0001] as learning rate. For weight decay, we used [0, 1e-5]. We fixed the number of layers
to 2 unless the paper of a model fixed the number of layers to a specific number. During training, we
set 50 as the batch size. Generally, we used 0.5 as dropout. (If the paper of a model specified dropout
to a specific value, we used the value following the paper.) Since we fixed the number of classifiers
to 1, the hyperparameter search space of some models are largely reduced when compared to the
node classification task. For ED-HNN and ED-HNNII, we reduced the search space of the number
of MLPs since it took too much time to get the results.
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C ABLATION STUDIES AND ADDITIONAL EXPERIMENTS

C.1 SELECTING ALTERNATIVE BRANCH

In Section 4, we used the representation earned from ‘Disentangle-first Branch’ (hk
ei

) when creating
final hyperedge factor representations (αk

i hk
ei

). The experiment results below shows the result when
using the other branch, ‘Aggregation-first Branch’ for creating final hyperedge factor representations
(αk

i h̃k
ei

). Table 5 shows the result for cancer subtype classification task.

Table 5: Comparison of our model (first row) with alternative model that uses the other type of
hyperedge factor representation (last row).

Method BRCA STAD SARC LGG HNSC CESC KIPAN NSCLC
Natural-HNN 0.804 ± 0.036 0.659 ± 0.049 0.745 ± 0.045 0.707 ± 0.035 0.860 ± 0.042 0.881 ± 0.042 0.934 ± 0.010 0.962 ± 0.013

Natural-HNN (other branch) 0.797 ± 0.028 0.654 ± 0.041 0.747 ± 0.063 0.707 ± 0.033 0.863 ± 0.022 0.875 ± 0.051 0.934 ± 0.011 0.962 ± 0.012

As we can see in Table 5, there is no big difference in the performance between using ‘Disentangle-
first Branch’ and ‘Aggregation-first Branch’. The reason for this phenomenon is quite simple. We
can consider the two cases: 1) when hk

ei
and h̃k

ei
are similar and 2) when they are largely different.

1) When hk
ei

and h̃k
ei

are similar, the result will not differ a lot between using hk
ei

or h̃k
ei

as similar
representations will be used. 2) When hk

ei
and h̃k

ei
are largely different, the result will not be different

a lot since relevance score αk
i will be very small. In other words, αk

i hk
ei

´αk
i h̃k

ei
“ αk

i phk
ei

´ h̃k
ei

q will be
very small for very small αk

i . This case means that the factor representation will not be reflected a lot
during message passing since the representation is inconsistent (different result for two branches).

C.2 NATURAL-HNN WITHOUT NATURALITY CONSTRAINT

We performed another ablation study to check whether naturality condition proposed in the paper
is important part that contributes to the model. We created an ablation model that do not satisfies
naturality condition by not reflecting relevance score αk

i during message passing. The results for the
cancer subtype classification task are provided in Table 6.

Table 6: Model performance on cancer subtype classification task (Macro F1). The ablation model
does not satisfy the naturality condition.

Method BRCA STAD SARC LGG HNSC CESC KIPAN NSCLC
Natural-HNN‹ (ours) 0.804 ± 0.036 0.659 ± 0.049 0.745 ± 0.045 0.707 ± 0.035 0.862 ± 0.045 0.881 ± 0.042 0.934 ± 0.010 0.962 ± 0.013

Natural-HNN‹ (ablation) 0.756 ± 0.031 0.605 ± 0.039 0.713 ± 0.071 0.692 ± 0.034 0.814 ± 0.037 0.852 ± 0.032 0.929 ± 0.016 0.958 ± 0.016

In Table 6, we can observe that there is a big difference between Natural-HNN and its ablation
model. Since interaction context matters in cancer subtype classification task, naturality condition
seems to boost the performance by capturing interaction context.

C.3 COMPUTATIONAL COMPLEXITY

Let di be the input embedding dimension, do be the output embedding dimension, K be number of
factors. N denotes number of nodes and M denotes number of hyperedges, E denotes the number of
node(v)-hyperedge(e) pair pv, eq satisfying v P e. We will assume that di ě do, do ě K, E ě M and
E ě N.

The computational complexity of one layer of Natural-HNN can be calculated by the following:

• Aggregation-first Branch (aggregation + MLP): OpEdiq ` OpMdidoq

• Disentangle-first Branch (MLP + aggregation): OpNdidoq ` OpEdoq

• Similarity (α) calculation : OpKp
d2

o
K2 ` do

K qq “ Op
d2

o
K q

• propagation back to nodes : OpKE ` Edoq “ OpEdoq

• other calculations (concat, interpolation by β) : OpNdoq Thus, total computational complexity
becomes OppM ` Nqdido ` Epdi ` do ` 1q ` Ndo `

d2
o

K q “ OppM ` Nqdido ` Epdi ` doqq

For HGNN with dimension di ě de ě do (de denotes dimension of hyperedge embedding), com-
putational complexity becomes OpEpdi ` deq ` pMdi ` Ndoqdeq. The computational complexity of
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HGNN and Natural-HNN differs only by constant times. It is not surprising since Natural-HNN is
quite similar to HGNN but instead use two branches (only) during Node-to-Hyperedge propagation
and use factor similarity calculation. Thus, Natural-HNN is as scalable as HGNN.

C.4 SCALABILITY ANALYSIS (TRAINING TIME)

We measured the time took for training 1 epoch in BRCA dataset. We averaged the values after
measuring 5 times each. Also, we conducted the experiment in two settings: one with 2 heads
and 16-dimensional vector as hidden representation and the other with 8 heads and 64-dimensional
vector as hidden representation. Note that convolution-based models, AllDeepSets and ED-HNN
(II) use 1 head as they do not have an attention mechanism. The Table 7 and Table 8 shows the
result of our model’s scalability. We have the following observations: 1) Our model is slower than
convolution-based models and HSDN. Since convolution-based models use strong inductive bias
with simple computations, they are naturally scalable than our model. HSDN took less time since
they use only one message passing layer. 2) Our model is much faster than all attention-based
models. Thus, we can conclude that our model scales well with hypergraph and parameter size next
to the convolution-based models.

Table 7: Time took for training 1 epoch on BRCA, measured in seconds. dc denotes hidden dimen-
sion. 7 denotes ‘number of’.

(dc, 7 heads) HGNN HCHA HNHN UniGCNII AllDeepSets Natural-HNN
(16,2) 0.217 ± 0.000 0.212 ± 0.000 0.117 ± 0.000 0.237 ± 0.000 1.195 ± 0.002 0.544 ± 0.001
(64,8) 0.831 ± 0.001 0.813 ± 0.000 0.426 ± 0.001 0.906 ± 0.001 2.463 ± 0.005 1.853 ± 0.002

Table 8: Time took for training 1 epoch on BRCA, measured in seconds. dc denotes hidden dimen-
sion. 7 denotes ‘number of’.

(dc, 7 heads) AllSetTransformer HyperGAT SHINE HSDN ED-HNN ED-HNNII Natural-HNN
(16,2) 1.108 ± 0.002 0.711 ± 0.001 0.675 ± 0.001 0.289 ± 0.000 2.042 ± 0.003 3.852 ± 0.006 0.544 ± 0.001
(64,8) 2.671 ± 0.002 2.415 ± 0.003 2.204 ± 0.002 0.996 ± 0.000 3.558 ± 0.005 6.169 ± 0.014 1.853 ± 0.002

C.5 CANCER SUBTYPE CLASSIFICATION (MICRO F1)

We briefly provide Micro F1 scores of each model in cancer subtype classification task. The Table
9 also shows that our model generally performs well on most of cancer datasets.

Table 9: Micro F1 score of each model with parameter and hyperparameter of the best Macro F1
score. Top two models are colored by First, Second. :: the variant of the model using multihead
attention. ‹ : we did not use Ldis.

Method BRCA STAD SARC LGG HNSC CESC KIPAN NSCLC
HGNN 0.817 ± 0.027 0.727 ± 0.026 0.739 ± 0.057 0.696 ± 0.034 0.888 ± 0.031 0.903 ± 0.034 0.935 ± 0.010 0.960 ± 0.016
HCHA 0.808 ± 0.024 0.725 ± 0.036 0.731 ± 0.058 0.685 ± 0.039 0.876 ± 0.034 0.911 ± 0.034 0.939 ± 0.014 0.954 ± 0.009
HNHN 0.806 ± 0.027 0.729 ± 0.067 0.733 ± 0.046 0.676 ± 0.037 0.884 ± 0.018 0.910 ± 0.033 0.931 ± 0.020 0.958 ± 0.016

UniGCNII 0.791 ± 0.027 0.797 ± 0.038 0.761 ± 0.046 0.665 ± 0.038 0.910 ± 0.013 0.911 ± 0.018 0.947 ± 0.010 0.950 ± 0.017
AllDeepSets 0.823 ± 0.025 0.748 ± 0.039 0.657 ± 0.035 0.669 ± 0.045 0.895 ± 0.025 0.927 ± 0.024 0.923 ± 0.016 0.954 ± 0.010

AllSetTransformer 0.827 ± 0.031 0.710 ± 0.047 0.749 ± 0.047 0.656 ± 0.037 0.898 ± 0.016 0.908 ± 0.025 0.938 ± 0.011 0.954 ± 0.014
HyperGAT 0.754 ± 0.116 0.725 ± 0.050 0.645 ± 0.106 0.669 ± 0.051 0.889 ± 0.030 0.900 ± 0.025 0.913 ± 0.036 0.928 ± 0.019
HyperGAT: 0.753 ± 0.072 0.676 ± 0.108 0.643 ± 0.098 0.665 ± 0.042 0.883 ± 0.053 0.896 ± 0.021 0.907 ± 0.256 0.940 ± 0.009

SHINE 0.659 ± 0.090 0.590 ± 0.127 0.618 ± 0.106 0.649 ± 0.058 0.846 ± 0.032 0.890 ± 0.044 0.866 ± 0.149 0.879 ± 0.098
SHINE: 0.783 ± 0.027 0.711 ± 0.061 0.709 ± 0.045 0.654 ± 0.044 0.873 ± 0.027 0.907 ± 0.031 0.936 ± 0.012 0.954 ± 0.013
HSDN 0.838 ± 0.022 0.801 ± 0.033 0.758 ± 0.047 0.694 ± 0.036 0.892 ± 0.025 0.925 ± 0.024 0.950 ± 0.008 0.962 ± 0.013

ED-HNN 0.826 ± 0.024 0.793 ± 0.047 0.761 ± 0.039 0.703 ± 0.028 0.913 ± 0.021 0.925 ± 0.035 0.942 ± 0.012 0.955 ± 0.012
ED-HNNII 0.815 ± 0.027 0.748 ± 0.024 0.694 ± 0.050 0.696 ± 0.038 0.916 ± 0.013 0.942 ± 0.024 0.942 ± 0.010 0.953 ± 0.012

Natural-HNN‹ (ours) 0.869 ± 0.024 0.824 ± 0.027 0.770 ± 0.040 0.709 ± 0.033 0.923 ± 0.020 0.932 ± 0.024 0.944 ± 0.009 0.962 ± 0.013

C.6 CAPTURED CONTEXT IN CESC

Figure 9 shows the captured context result in CESC. The evaluation and interpretation method is
identical to that of Section 5.3. As we can see in the figure, for pathways selected by Natural-HNN,
Natural-HNN correctly captures context similarities between clusters (red box) while HSDN does
not (orange box). For the pathways selected by HSDN, Natural-HNN and HSDN partially captures
cluster similarity. However, when comparing orange box in (d) and (f), we can observe that Natural-
HNN captures interaction context slightly better than HSDN even with the pathways selected by
HSDN.

C.7 FACTOR DISCRIMINATION ANALYSIS
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(a) Ground-Truth

(d) Ground-Truth

(b) Natural-HNN

(e) Natural-HNN

(c) HSDN

(f) HSDN

(ii) With pathways selected by HSDN

(i) With pathways selected by Natural-HNN

Figure 9: Captured interaction context. Pathways are selected by SHAP value. Captured patterns
are shown in red box and not captured patterns are shown with orange box. Weakly captured case is
marked as dotted red block.

(b) HSDN(a) Natural-HNN 

Figure 10: Factor-Cluster Relevance. For the
pathways that belongs to the same cluster, we av-
eraged their factor relevance score for each fac-
tors. (a) Natural-HNN case shows that each factor
contributes to clusters differently. (b) HSDN case
shows that some factors have similar contribution
over all clusters.

Finally, we perform an experiment to clarify
that factors captured by Natural-HNN poten-
tially have different contexts. Since each fac-
tor encodes different context and since clusters
generated by CliXO algorithm assigns func-
tionally (i.e., context) related hyperedge types,
each factor is likely to be related to differ-
ent clusters. Thus, for each factor and for
each cluster, we averaged relevance scores αk

i
of hyperedges that belong to the same cluster.
The cluster that is relevant to a specific factor
would have high value while irrelevant factors
would have small value for that cluster. Fig-
ure 10 shows the result of Natural-HNN and
HSDN. We have the following observations: 1)
In Natural-HNN, each factor has a different score distribution over clusters. This implies that the
factors are contributing to different clusters since they encode different functions. 2) In HSDN,
some factors have similar distribution over clusters. For example, factor 0 and factor 2 of HSDN are
similar in every factor. Also, factor 1 and factor 7 have highly similar score distribution over clus-
ters. This implies that some factors of HSDN are correlated. 3) While scores in (a) are distributed
to various clusters and factors, scores in (b) are concentrated on factor 4,5 and 6. Since only few
factors are actively reflected while others do not, HSDN fails to utilize different factors effectively.
This experiment result is notable since Natural-HNN could capture different context per factor even
without factor discrimination loss Ldis while HSDN failed to capture different factors and failed to
use them properly even if it adopted factor discrimination loss. Thus, we can consider naturality
guidance as an effective criterion for disentanglement.
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D BASIC CONCEPTS IN CATEGORY THEORY

D.1 CATEGORY THEORY

Category theory (Fong & Spivak, 2018; Leinster, 2016) is widely used to represent and analyze the
structure or relation of a system. Instead of focusing on the details, category theory takes bird’s
eye view to see global structure and patterns. Recently, category theory is used to explain learning
mechanism of machine learning methods (Bergomi & Vertechi, 2022; Lewis, 2019; Gavranović,
2019; Fong & Johnson, 2019; Fong et al., 2019; Cruttwell et al., 2022; Shiebler et al., 2021; de Haan
et al., 2020; Barbiero et al., 2023; Yuan, 2023b; Dudzik et al., 2023; Dudzik & Veličković, 2022;
Yuan, 2023a). In this paper, we only use simple, fundamental concepts of category theory: category,
functor, natural transformation and product.

D.2 CATEGORY

𝐴𝐴 𝐹𝐹(𝐴𝐴)

𝐵𝐵 𝐹𝐹(𝐵𝐵)
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(a) Category (b) Functor

Category 𝔻𝔻 Category 𝔼𝔼

Figure 11: Category and Functor
A category C is contains four components: collection of objects, morphisms, composition rule and
identities.

• Collection of objects : ObpCq (ex : {A,B,C} in Figure 11 (a))
• For every pair of objects A,B P ObpCq, there exists a set HomCpA,Bq. Element of the set is

morphism and is denoted as: f : A Ñ B.
• For every three objects A,B,C P ObpCq, morphisms f P HomCpA,Bq (i.e. f : A Ñ B) and

g P HomCpB,Cq (i.e. g : B Ñ C), composition rule holds : f o
9 g “ g ˝ f P HomCpA,Cq12.

• For every object A P ObpCq, there exists an identity morphism idA P HomCpA,Aq satisfying the
following : idA

o
9 f “ f “ f o

9 idB for morphism f : A Ñ B.

Fig. 11 (a) shows an example of a category with three objects (A,B,C). For each object, there
is an identity morphism (idA, idB, idC). For every object pair, there is morphism (f , g, f o

9 g) with
composition rules.

One of the most important categories is Set. In Set, the objects are sets and morphisms are functions
mapping two sets. The composition rule is satisfied since a composition of two functions becomes a
function. Another important category is category of relations, which is denoted as Rel. The objects
of Rel are sets and relations R Ď A ˆ B are morphisms between objects A and B. Partially ordered
set or poset can be considered as a category where objects are sets and morphisms are partial orders
ď. Since partial order is a kind of a relation, we can consider this category is a kind of Rel.

In Section 3, we analyzed hypergraph message passing framework, and found that, as nodes (con-
sidering node as set) are included in hyperedges, hypergraph message passing framework has poset
structure with inclusion maps between them. We will define it PISet, a category for poset with
inclusion morphisms (object is a set, morphisms are inclusions). Since inclusions are partial orders,
which is also a relation, we can consider PISet as a kind of Rel category.

We can define our own category, similar to the one in a prior work (Sheshmani & You, 2021),
such that objects are vector representations and their (linear or non-linear) transformations are
morphisms. We will call this a ‘category of Deep Learning Representations’ and denote DLRep.

12Two notations f o
9 g and g ˝ f have the same meaning : “applying f first, and then applying g”
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Figure 12: Natural transformation. Identity morphisms are omitted in the figure for simplicity.

D.3 FUNCTOR

Functor is a structure preserving map between categories. Objects and morphisms in one category
are mapped to objects and morphisms in different category, respectively. Figure 11 (b) shows an
example of a functor mapping from category D to category E. Each object in category D (i.e.,
A,B,C) is mapped to objects in category E (i.e., FpAq,FpBq,FpCq). The morphisms, including
identity morphism, and their compositions in category D (i.e., idA, idB, idC, f , g, f o

9g) are also mapped
to morphisms in category E (i.e., FpidAq,FpidBq,FpidCq,Fpf q,Fpgq,Fpf q o

9 Fpgq). In a metaphorical
sense, functors serve as bridges that connect two distinct realms while maintaining an identical
compositional structure13.

One example can be a functor mapping from Set to DLRep. Each set (object) in Set is mapped to a
vector representation (object) in DLRep. Functions (morphisms) in Set are mapped to transforma-
tions (morphism) between vector representations in DLRep. This functor is related to representation
learning, since entities (i.e. concept or set) are mapped to their vector representations preserving
their compositional structure (relation).

D.4 NATURAL TRANSFORMATION

Given two functors mapping from one category to another category, i.e., F and G : D Ñ E, nat-
ural transformation is a way of relating these two functors using morphisms in target category E.
Specifically, for each object A P D, there exists a morphism αA : FpAq Ñ GpAq in E. The natural
transformation must satisfy the following condition. For every morphism f : A Ñ B in D,

Fpf q o
9 αB “ αA o

9 Gpf q (2)

must hold. This condition is called the naturality condition. Figure 12 shows an example of natural
transformation. Functors F and G map objects and morphisms in category D to category E. Natural
transformation α : F ñ G maps FpAq and FpBq with αA and maps GpAq and GpBq with αB. The
objects and morphisms mapped by two functors as well as natural transformation α all belong to
the category E. Thus, natural transformation can be seen as a way of relating different views using
morphisms in E14.

D.5 PRODUCT

Product of Objects

Let C be a category. For two objects X1,X2 P ObpCq, one can define product of two objects X1 ˆ X2

with morphisms p1 : X1 ˆ X2 Ñ X1 and p2 : X1 ˆ X2 Ñ X2 which are called projections. Then, the
composition of objects in Figure 13 must be satisfied. Given object Y P ObpCq with two morphisms
f1 : Y Ñ X1 and f2 : Y Ñ X2, there exists a unique morphism called pairing xf1, f2y : Y Ñ X1 ˆ X2

13The typical example of deep learning method using this concept is sheaf neural network (Hansen & Geb-
hart, 2020), motivated from cellular sheaf (Hansen & Ghrist, 2019). There are also numerous studies in data
science with a similar perspective (Mansourbeigi, 2018; Vepstas, 2019; Kvinge et al., 2021).

14One typical example of deep learning method using this concept is Natural Graph Networks (de Haan et al.,
2020).
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X1 X2

f1 f2

p2p1

Y

f = ⟨ f 1 , f2⟩

X = X1×X2

Figure 13: Product of objects.

that satisfies the composition : f1 “ xf1, f2y o
9 p1 and f2 “ xf1, f2y o

9 p2. Note that pairing xf1, f2y is
often called as product of morphisms. However to differentiate the concept we introduce below, we
will call it pairng, following the recent work (Zhang & Sugiyama, 2023).

Product of Morphisms

X1

f1

Y1

p1 p2
X = X1 X2

f 1 f 2

Y = Y1 Y2

X2

f2

Y2q2q1

×

×
×

Figure 14: Product morphisms.

Let C be a category. For objects X1,X2,Y1,Y2 P obpCq and morphisms f1 : X1 Ñ Y1 and f2 : X2 Ñ

Y2, we can define product of morphisms f1 ˆ f2 : X1 ˆ X2 Ñ Y1 ˆ Y2 :“ xp1
o
9 f1, p2 o

9 f2y satisfying
the compositional structure shown in Figure 14.
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E ADDITIONAL EXPLANATION IN DETAILS

Note that the basic concepts in category theory are described in Appendix D.

E.1 DISENTANGLED REPRESENTATION LEARNING

Entangled and Disentangled Representation Disentangled representation learning aims to sepa-
rate the factor that is related to the variations of the data. For example, some might try to discover
the factor that affects the color of an object or the factor that affects the background of an image.
In graph neural networks, interactions between entities are usually entangled. In other words, inter-
actions usually contain various factor behind connections but are not explicitly separated. Previous
works like DisenGCN (Ma et al., 2019) tried to disentangle the factor behind the connections.

Recently, DisGNN (Zhao et al., 2022) tried to disentangle edge types during message passing pro-
cess of GNNs. The paper considered interaction types (colleague or neighbors as an example) as
factors of edges and tried to integrate disentanglement during message passing process. This kind
of disentanglement for message passing is the goal of Natural-HNN.

Disentangling as product in category theory

Disentangling methods try to separate an entity into the factors that consists the entity. Thus, it can
be analyzed with concept with product in category theory, which was explained in Appendix D.
Although recent work (Zhang & Sugiyama, 2023) analyzed the concept of disentanglement, we are
going to analyze it in our way, since the paper (Zhang & Sugiyama, 2023) covers disentanglement of
generative factors, which does not suit for message passing framework. The difference comes from
the fact that, generative factor disentanglement is based on equivariance property, whose morphisms
maps an object to itself. Since message passing maps one object to the other object, we need our
own way of analyzing disentanglement15.

Xdis
c Xdis = Xdis × Xdis

c d Xdis
d Hdis

c
Hdis = Hdis ×Hdis Hdis

d

Xen

αX
αX,dαX,c

Hen

αH
αH,c αH,d

pdpc pdpc c d

(a) Disentangling for X (b) Disentangling for H

Figure 15: Disentangling as product of objects.

In section 3, we have seen that disentangling the entangled representation can be seen as a natural
transformation between two representations. The Figure 15 shows the disentanglement as product
of objects. The entangled representation for X (Xen) can be converted to disentangled representa-
tion Xdis through natural transformation αX “ xαX,c, αX,dy. Since disentangled representation is
a collection of factor representations, it can be represented as a product of factor representations
Xdis

c ˆ Xdis
d . The projections pc, pd can extract factor representations Xdis

c ,Xdis
d . This process is the

same as applying αX,c, αX,d respectively. This is the same for disentangling H.

Figure 16 shows how morphisms between disentangled node representations and disentangled hy-
peredge representations are separated. Disentangling morphisms can be explained with the concept
of product of morphisms. In the Figure 16, f dis

c , f dis
d represents factor specific morphisms or factor

specific message passing. The product of two morphisms, f dis
c ˆ f dis

d , corresponds to message passing
for entire factors. What is different from Figure 14 is that we use the same projections pc instead of
using two different projections p1, q1. This is due to the fact that Xdis and Hdis both are disentangled
representation, meaning that the same projection can extract the same factor for both X,H.

Implementation as MLP

15Actually, the biggest difference is that, in generative factor, factor specific morphisms can be independently
mapped to itself. However, in message passing, we need to map all factor related morphisms from one object
(X) to the other (H). If only some of them are used independently, it will be mapped to the another object (not
H).
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Hdis
c cHdis = Hdis Hdis

d Hdis
d

Xdis
c cXdis = Xdis Xdis

d
Xdis

d

pdpc

f dis
c

pc pd

cf dis f dis
d f dis

d

×

×
×

Figure 16: Morphism of products in disentanglement.

Usually, disentangling entangled representation is implemented with MLP. Let’s suppose the desired
output size of disentangled representation (i.e., output size of a vector that concatenated every factor
representations) is d. Usually, K number of factor-specific MLPs (which outputs vector with size d

K )
are used to extract factor representations. This corresponds to Xdis

c ,Xdis
d in Figure 15. As we have

seen above, it is same as applying αX
o
9 pc, αX

o
9 pd. This can be implemented as using one MLP

(which outputs vector with size d), which corresponds to αX and then chunking the disentangled
representations into factor representations. Chunking operation can be considered as projections
(pc, pd). Thus, although we explained as using K factor specific MLPs in Section 4, we actually
use one MLP (which outputs vector with size d) in actual implementation. Thus, the concatenation
operation for hv is not used in the implementation as applying a single MLP equals to the operation
of applying K separate MLPs and then concatenating them.

E.2 CAPTURING INHERENT HETEROGENEITY

Actually, capturing context of interaction has potential of capturing heterogeneous edge types. Let’s
consider the case of heterogeneous graph with heterogeneous edges as an example. GNNs reflect-
ing the edge types can be said as considering the context of interactions between entities. Thus,
capturing interaction context in hyperedges has potential of capturing heterogenous edge types by
considering edge types as categorized result of interaction contexts.

Hen Hdis
d

cHdis = Hdis Hdis
d

Hdis
c

Xen Xdis
d

cXdis =  Xdis Xdis
d

Xdis
c

𝛼𝛼H,c

𝛼𝛼H

𝛼𝛼H,d

pd

pc

𝛼𝛼X,c

𝛼𝛼X

𝛼𝛼X,d

f en f dis
d

pc

pd

cf dis f dis
d

f dis
c

×

×

×

: MLP
: Message

Figure 17: Entire compositional structure. Operations in the implementation are marked with color.
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E.3 INTERPRETATION FOR HYPERGRAPH MPNN

In Appendix E.1, we have seen how we can analyze disentanglement with concepts of product in the
category theory. Applying Figure 15 and Figure 16 to Figure 3 (a) gives the following result (Figure
17). Since this diagram is too complicated, we simplified the figure by extracting factor c related
components which resulted Figure 3 (b). The resulting figure is also a natural transformation as it
can be seen as a result of applying two different functors. The actual implementation (operation) are
marked as the Figure 17.

E.4 METHODOLOGY (HOW IT WORKS)

Since K MLPs are applied to nodes in a hyperedge, it extracts information related to the factors
through projection. However, simple projection does not mean that the factor is related to the in-
teraction context. In this section, we will explain how naturality condition guides, although not
guarantees, each factors to be related to interaction context. The parameters of factor encoders (K
MLPs) are guided to extract interaction context related information during training process. When a
specific factor is helpful for performance (predicting labels), the model would try to update parame-
ters of the factor encoder so that the factor information is reflected a lot in hyperedge representation.
Since relevance score αk

i is multiplied to factor representation to get hyperedge represenation (αk
i hk

ei
),

the parameters will be updated to increase relevance score αk
i . Considering that relevance score αk

i is
calculated by measuring consistency of factor representation (similarity of hyperedge factor repre-
sentation learned from two different branches), high relevance score means that the representations
are similar. Represenations learned from two branches being similar means that it is highly likely
that the naturality condition holds, implying that there exists a morphism between nodes in a hy-
peredge and the hyperedge under specific projection (type) which means the factor is related to the
interaction context. In summary, if a specific context (factor) is informative, the parameter of a fac-
tor encoder will be updated to the direction of satisfying naturality. Thus, the factor encoder will
eventually encode context-related information. When a specific factor is harmful for performance,
the opposite would happen. Since naturality condition guides in which direction to update param-
eters for each factor, although not guaranteed, it is highly likely that each factor contains different
context information.

E.5 RESULT ANALYSIS OF CAPTURING CONTEXT

Actually, Figure 8 (a) and (c) can explain the experiment result shown in Figure 5 (a,b) and Figure 9
(a,b). For example, in Figure 8 (a), we can see that cluster C0 and C1 both have common parent (C5)
and common child (P339). That’s the reason why Figure 5 (a) and (b) both detected high similarity
between those clusters. Also, in Figure 8 (a), C3 and C4 has common child. This can explain
why Figure 5 (a) and (b) both detected high similarity between two clusters. When applying these
analysis with Figure 5 (c) and Figure 9 (c), we can clearly see that HSDN failed to capture functional
similarity or hierarchy of pathways.

On the other hand, when comparing Figure 8 (b) and Figure 5 (f), we can see some similarities are
not captured. For example, in Figure 8 (b), clusters C0,C1,C2 need to have functional similarity
since they contain common children or have common parent. However, in Figure 5 (f), we can see
that HSDN failed to capture the functional similarities of those clusters. Through this result, we can
again conclude that HSDN failed to capture functional context while Natural-HNN could capture it.

Additionally, we can explain why some diagonals of heatmap do not have high value. For example,
C8 in Figure 5 (a) and (b) cannot have high similarity between pathways within cluster C8 as C8

contains all pathways. Note that performing the same analysis with Figure 8 (c), (d), Figure 9 gives
the similar result.
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