
CRACKING THE CODE: EVALUATING ZERO-SHOT
PROMPTING METHODS FOR PROVIDING PROGRAM-
MING FEEDBACK

Niklas Ippisch & Markus Herklotz
LMU Munich, Germany

Anna-Carolina Haensch
LMU Munich, Germany
University of Maryland, College Park, MD, USA

Jan Simson, Jacob Beck & Malte Schierholz
LMU Munich, Germany
Munich Center for Machine Learning (MCML), Germany

ABSTRACT

We introduce an evaluation framework to assess the feedback given by large lan-
guage models (LLMs) under different prompt engineering techniques and con-
duct a case study, systematically varying prompts to examine their influence on
feedback quality for common programming errors in R. Our findings suggest that
prompts recommending a stepwise approach improve precision, whereas omitting
explicit details on which data to analyze can bolster error identification.

1 BACKGROUND

Even though large language models (LLMs) are increasingly used to support students and develop-
ers with programming tasks (Pankiewicz & Baker, 2023), how to elicit optimal feedback from these
models remains underexplored in research (Dai et al., 2023) and results of prompt engineering eval-
uations are often contradictory regarding possible differences between prompts (Jacobsen & Weber,
2023; Mungoli, 2023; Sahoo et al., 2024; Tang et al., 2024; Wang et al., 2024). Moreover, it remains
uncertain whether the quality of responses to prompt engineering strategies is context-sensitive. In
this work, we are interested in how to best elicit feedback on basic errors typically made by be-
ginners when learning the R programming language (R Core Team, 2021). R is well-known for its
steep learning curve (Çetinkaya Rundel & Rundel, 2018; Rode & Ringel, 2019; Tucker et al., 2022),
especially as it may be students’ first programming experience. When equipping students with an
LLM to provide feedback, the feedback-quality is crucial since it can significantly influence the in-
dividual as well as their future behavior (Hattie & Timperley, 2007) and response reliability varies
(Mozannar et al., 2023). To assess LLM feedback quality across different prompts, we created a
structured evaluation framework and systematically varied different prompt engineering techniques
(Marvin et al., 2024). Our contribution is twofold: First, we present our evaluation framework,
which utilizes the feedback frame of Ryan et al. (2020) and can be applied beyond our study to
similar contexts; second, we apply this framework to a focused use case, analyzing feedback on
common beginner errors in R programming.

2 METHODS AND DATA

To reduce costs and response times, we focused our evaluation on different zero-shot prompting
methods (see Appendix C for exact wordings): In zero-shot Chain of Thought prompting (Wei
et al., 2023) a stepwise process is suggested; these steps, in the form of sub-tasks, are made explicit
in Prompt Chaining (Wu et al., 2022). Tree of Thought prompting (Yao et al., 2023a) does not

1

divide the task into sub-tasks but rather into different areas, which the LLM processes sequentially
while discarding irrelevant ones. Lastly, ReAct prompting (Yao et al., 2023b) enforces reasoning
by dividing the task into different thoughts and actions. We also included a baseline prompt for
comparison, which we developed iteratively by trial and error (the criteria here were comparable
to the criteria below, but were not formalized at that point). Prompts were sent to GPT-3.5-turbo
through the Microsoft Azure API directly in R.

We identified five errors commonly encountered by beginners in introductory courses to statistical
programming and used these to develop test cases, deliberately crafted to include specific errors (see
Appendix B for details). Ryan et al. (2020) suggest that next to just stating if something is right or
wrong, feedback should also focus on the response as well as on the underlying concept in order
to be meaningful. Hence, we also investigated besides whether (a) the problem has been detected
or not, (b) if the concrete error has been described and (c) if there is an explanation as to why that
error occurred. Additionally for our case of users troubleshooting problems, the response should
suggest (d) how to resolve the error, (e) be concise, and (f) avoid unrelated suggestions that may
confuse beginners. One author verified these criteria awarding one point per fulfillment. Thus, with
ten iterations per problem, five problems and six criteria a maximum score of 300 points per prompt
was possible.

3 RESULTS

Table 1 shows the summarized results. Overall, all prompts performed well, with overall ratings
above 0.85, but there are subtle differences between the prompts (see also table 2 in Appendix A for
detailed results). All responses detected the error, and all but one (Chain of Thought) were within
200 tokens.

Table 1: Summary of evaluation results. Cells indicate the percentage of fulfilled criteria per
prompting technique. Best performing prompting techniques per criteria are highlighted in bold.

Prompting Technique
Evaluation Criteria

Total
(a) (b) (c) (d) (e) (f)

Baseline prompt 1.00 0.86 0.86 0.86 1.00 0.66 0.873
Chain of Thought 1.00 0.88 0.84 0.88 0.98 0.76 0.89
Prompt Chaining 1.00 0.82 0.82 0.82 1.00 0.64 0.85
Tree of Thought 1.00 0.82 0.82 0.84 1.00 0.76 0.873
ReAct 1.00 0.82 0.76 0.88 1.00 0.78 0.873

Regarding typos and not loaded code, however, the performance varied more. Chain of Thought
prompting and ReAct had bigger problems in providing a correct reason for errors resulting from
typos. Despite the required line of code being present, all prompts struggled to identify cases where
the column required for executing the code was missing in the data. Chain of Thought prompting and
the baseline prompt detected missing columns more frequently, suggesting better incorporation of
provided information. Lastly, Chain of Thought prompting, Tree of Thought prompting, and ReAct
more effectively avoided irrelevant suggestions.

To summarize, it seems like there is a trade-off between higher precision (i.e., no irrelevant sugges-
tions) and better detection of the underlying error (i.e., higher scores in terms of error identification
and reason for error). Regarding precision, prompts that enforce a stepwise process (Chain of
Thought, Tree of Thought, and ReAct) seem to perform better. Prompts, in which the information to
be analyzed (e.g., script, data, etc.) are not specifically mentioned (baseline prompt and Chain of
Thought), seem to perform better regarding the error identification and reason. Two exceptions
stand out: Prompt Chaining, where a stepwise process is enforced and the data to be analyzed is
mentioned, performs worse both in terms of precision and error identification. On the other hand,
Chain of Thought prompting excelled in precision despite not explicitly specifying information to
analyze. That prompts omitting explicit data references perform better in error identification seems

2

contra-intuitive. Apparently, the LLM appears to verify column existence more reliably when data
is not explicitly mentioned, suggesting that excessive information might cause confusion.

4 CONCLUDING REMARKS

Our proposed evaluation framework provides a structured and replicable method to assess prompt
engineering strategies for programming assistance. While our study focuses on errors commonly
made by beginners in R programming, the framework is designed to be applicable across various
use cases. We encourage others to build on our approach, refining and extending it to further enhance
the effectiveness of LLMs in educational and professional settings.

URM STATEMENT

Authors NI and ACH meet the URM criteria of the ICLR 2025 Tiny Papers Track.

REFERENCES

Wei Dai, Jionghao Lin, Flora Jin, Tongguang Li, Yi-Shan Tsai, Dragan Gaševic, and Guanliang
Chen. Can large language models provide feedback to students? a case study on ChatGPT. 2023.
doi: 10.1109/ICALT58122.2023.00100.

John Hattie and Helen Timperley. The power of feedback. Review of Educational Research, 77(1):
81–112, 2007. doi: 10.3102/003465430298487.

Lucas Jasper Jacobsen and Kira Elena Weber. The promises and pitfalls of LLMs as feedback
providers: A study of prompt engineering and the quality of AI-driven feedback. 2023. doi:
10.31219/osf.io/cr257.

Ggaliwango Marvin, Nakayiza Hellen, Daudi Jjingo, and Joyce Nakatumba-Nabende. Prompt
engineering in large language models. In I. Jeena Jacob, Selwyn Piramuthu, and Przemyslaw
Falkowski-Gilski (eds.), Data Intelligence and Cognitive Informatics, pp. 387–402. Springer Na-
ture Singapore, 2024. doi: 10.1007/978-981-99-7962-2 30.

Hussein Mozannar, Jimin J Lee, Dennis Wei, Prasanna Sattigeri, Subhro Das, and David Sontag.
Effective human-AI teams via learned natural language rules and onboarding. 2023.

Neelesh Mungoli. Exploring the synergy of prompt engineering and reinforcement learning for
enhanced control and responsiveness in chat GPT. Journal of Electrical Electronics Engineering,
2(3), 2023. doi: 10.33140/JEEE.02.03.02.

Maciej Pankiewicz and Ryan S. Baker. Large language models (GPT) for automating feedback on
programming assignments, 2023.

R Core Team. R: A language and environment for statistical computing, 2021. URL https:
//www.R-project.org/.

Jacob B. Rode and Megan M. Ringel. Statistical software output in the classroom: A comparison of
r and SPSS. Teaching of Psychology, 46(4):319–327, 2019. doi: 10.1177/0098628319872605.

Anna Ryan, Terry Judd, David Swanson, Douglas P. Larsen, Simone Elliott, Katina Tzanetos,
and Kulamakan Kulasegaram. Beyond right or wrong: More effective feedback for forma-
tive multiple-choice tests. Perspectives on Medical Education, 9(5):307–313, 2020. doi:
10.1007/s40037-020-00606-z.

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal, and Aman Chadha.
A systematic survey of prompt engineering in large language models: Techniques and applica-
tions. 2024. doi: 10.48550/arXiv.2402.07927.

Yiyi Tang, Ziyan Xiao, Xue Li, Qingpeng Zhang, Esther W Chan, Ian Ck Wong, and Research Data
Collaboration Task Force. Large language model in medical information extraction from titles
and abstracts with prompt engineering strategies: A comparative study of GPT-3.5 and GPT-4.
2024. doi: 10.1101/2024.03.20.24304572.

3

https://www.R-project.org/
https://www.R-project.org/

Mary C. Tucker, T. Shaw Stacy, Ji Y. Son, and James W. Stigler. Teaching statistics and data analysis
with r. Journal of Statistics and Data Science Education, 31(1), 2022. doi: 10.1080/26939169.
2022.2089410.

Li Wang, Xi Chen, XiangWen Deng, Hao Wen, MingKe You, WeiZhi Liu, Qi Li, and Jian Li.
Prompt engineering in consistency and reliability with the evidence-based guideline for LLMs.
NPJ Digital Medicine, 7:41, 2024. doi: 10.1038/s41746-024-01029-4.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL http://arxiv.org/abs/2201.11903.

Tongshuang Wu, Michael Terry, and Carrie Jun Cai. AI chains: Transparent and controllable human-
AI interaction by chaining large language model prompts. In CHI Conference on Human Factors
in Computing Systems, pp. 1–22, 2022. doi: 10.1145/3491102.3517582.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023a.
URL http://arxiv.org/abs/2305.10601.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
ReAct: Synergizing reasoning and acting in language models, 2023b. URL http://arxiv.
org/abs/2210.03629.

Mine Çetinkaya Rundel and Colin Rundel. Infrastructure and tools for teaching computing
throughout the statistical curriculum. The American Statistician, 72(1):58–65, 2018. doi:
10.1080/00031305.2017.1397549.

4

http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2210.03629

APPENDIX

A DETAILED RESULTS OF THE EVALUATION

Table 2: Detailed evaluation results for different prompting techniques. Cells indicate the percent-
age of fulfilled criteria per prompting technique, problem and evaluation criteria. Best performing
prompting techniques per criteria are highlighted in bold.

Prompting Technique Problem Evaluation Criteria Total
(a) (b) (c) (d) (e) (f)

Baseline prompt

Working directory 1.00 0.90 0.90 0.90 1.00 0.70 0.90
Package not loaded 1.00 1.00 1.00 1.00 1.00 0.90 0.98
Code not loaded 1.00 0.40 0.40 0.40 1.00 0.40 0.60
Typos 1.00 1.00 1.00 1.00 1.00 0.60 0.93
Variable naming 1.00 1.00 1.00 1.00 1.00 0.70 0.95
Total 1.00 0.86 0.86 0.86 1.00 0.66 0.873

Chain of Thought

Working directory 1.00 1.00 0.90 1.00 1.00 0.80 0.95
Package not loaded 1.00 1.00 1.00 1.00 1.00 0.90 0.98
Code not loaded 1.00 0.60 0.60 0.60 0.90 0.50 0.70
Typos 1.00 0.80 0.70 0.80 1.00 1.00 0.88
Variable naming 1.00 1.00 1.00 1.00 1.00 0.60 0.93
Total 1.00 0.88 0.84 0.88 0.98 0.76 0.89

Prompt Chaining

Working directory 1.00 1.00 1.00 1.00 1.00 0.60 0.93
Package not loaded 1.00 1.00 1.00 1.00 1.00 0.90 0.98
Code not loaded 1.00 0.10 0.10 0.10 1.00 0.10 0.40
Typos 1.00 1.00 1.00 1.00 1.00 0.60 0.93
Variable naming 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Total 1.00 0.82 0.82 0.82 1.00 0.64 0.85

Tree of Thought

Working directory 1.00 1.00 1.00 1.00 1.00 0.80 0.97
Package not loaded 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Code not loaded 1.00 0.20 0.20 0.20 1.00 0.20 0.47
Typos 1.00 0.90 0.90 1.00 1.00 0.90 0.95
Variable naming 1.00 1.00 1.00 1.00 1.00 0.90 0.98
Total 1.00 0.82 0.82 0.84 1.00 0.76 0.873

ReAct

Working directory 1.00 1.00 1.00 1.00 1.00 0.90 0.98
Package not loaded 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Code not loaded 1.00 0.10 0.10 0.40 1.00 0.10 0.45
Typos 1.00 1.00 0.70 1.00 1.00 0.90 0.93
Variable naming 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Total 1.00 0.82 0.76 0.88 1.00 0.78 0.873

5

B CODE USED FOR EVALUATION

B.1 FALSE WORKING DIRECTORY

Code1:

read.csv("data/testfile")

Error message:

Error in file(file, "rt") : cannot open the connection

Problem: No folder data and no file testfile

B.2 PACKAGE NOT LOADED

Code:

plot = ggplot(data = mtcars, mapping = aes(x = hp, y = cyl)) +
geom_point()

Error message:

Error in ggplot(data = mtcars, mapping = aes(x = hp, y = cyl)) : could
not find function "ggplot"

Problem: Package ggplot2 not loaded

B.3 CODE NOT LOADED

Code:

data = mtcars
data$weight_kg = data$wt * 0.454
data$weight_kgsq = data$weight_kg ˆ2

Error message:

Error in ’$<-.data.frame’(’*tmp*, weight_kgsq, value = numeric(0)) :
replacement has 0 rows, data has 32

Problem: The middle line is not executed, hence the column weight kg does not exist

B.4 TYPOS

Code:

data = mtcars
summary[data$hp]

Error message:

Error in summary[data$hp] : object of type ’closure’ is not subsettable

Problem: Brackets instead of parentheses

1The introduced noise, the used test codes and prompt wordings can also be found on OSF: osf.io/cgzk9

6

B.5 VARIABLE NAMING

Code:

var1 = 5
var2 = 3
var3 = var_1 * var2

Error message:

Error: object ’var_1’ not found

Problem: In the third line, var 1 instead of var1 is used

C PROMPTS

C.1 SYSTEM PROMPT

Kept constant for all of the prompts below.

”You are helping students in an R programming course for beginners and give feedback on why it is
wrong, how to correct it and how to improve in the future.”

C.2 EVALUATED PROMPTS

(1) Baseline prompt
”Identify the errors (there might be multiple) and give me feedback on how to correct the issue in
maximum three sentences.”

(2) Chain of Thought
”Analyze the information provided step by step and afterwards give feedback on how to correct the
issue in maximum three sentences.”

(3) Prompt Chaining
”In the first step, analyze the script provided, loaded data and their structure, existing variables and
functions and the packages loaded. In the second step, use the error message and the relevant parts
of your analysis of the information and give feedback on how to correct the issue in maximum three
sentences.”

(4) Tree of Thought
”Assume, the error is in one of the following areas: written script and code, loaded data, loaded
variables and functions, packages. Stepwise, check whether there is an error in each of the areas
connected to the error message provided. If not, drop that area. When just one area is left, provide
feedback on how to correct the issue in maximum three sentences.”

(5) ReAct
”Thought 1 I first have to analyze the information provided and screen briefly the script, the loaded
data including the structure, the loaded packages, and the variables and functions created.
Action 1 Analyze information
Thought 2 An error message is mentioned. I should check the error message and identify, based
on the prior analysis, the relevant parts of the information provided which are linked to the error
message.
Action 2 Check error message
Thought 3 After the analysis of the information and error message, I am now able to concisely
explain why the error message occurred and how to correct it.
Action 3 End [Explain]
Question Give feedback on how to correct the issue in maximum three sentences.”

7

	Background
	Methods and Data
	Results
	Concluding remarks
	Detailed results of the evaluation
	Code used for Evaluation
	False Working Directory
	Package not Loaded
	Code not Loaded
	Typos
	Variable Naming

	Prompts
	System Prompt
	Evaluated Prompts

