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Abstract

We predicted KRAS mutation status on non-small cell lung cancer (NSCLC) H&E images
from foundation model embeddings. We evaluated a variety of attention-based multiple
instance learning (MIL) models and aggregation strategies for a tilewise linear classifier.
MIL with self-attention performed the best (AUC=0.822) followed by the minimum over
tiles classified with the linear model (AUC=0.810). Self-attention was necessary for MIL
to surpass tilewise linear classification when a wide range of aggregation techniques was
considered.

Keywords: KRAS, NSCLC, multiple instance learning, foundation model, adenocarci-
noma, squamous cell carcinoma, histopathology, mutation

1 Introduction

Genetic testing has proven vital for informing prognosis and treatment strategy for a wide
range of cancers Planchard et al. (2018). However, these tests are expensive, have high
turnaround time, and exhaust scarce tissue Rusch et al. (2018). Since genetic alterations
correlate with phenotypic signatures in tumor cells and their microenvironments, recent
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work has sought to predict genetic signatures directly from routinely stained H&E slides
Coudray et al. (2018); Chen et al. (2020); Kather et al. (2020). In addition to aiding in
clinical application, relationships between histology and genomics could also help elucidate
novel biological mechanisms and biomarkers.

Lung cancer is the most common cancer globally Bray et al. (2024). Approximately 85%
of lung cancers are classified as non-small cell lung cancer (NSCLC), of which lung ade-
nocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) are the two predominant
subtypes Ganti et al. (2021). Identification of genetic mutations in NSCLC - in particular
KRAS, EGFR, and ALK - are vital for treatment decisions and enrollment in clinical trials
Planchard et al. (2018). Kristen rat sarcoma (KRAS) is the most commonly mutated iso-
form of rat sarcoma (RAS), the most frequently mutated oncogene in human cancer Reck
et al. (2021). While KRAS normally acts as a switch for activating downstream pathways,
point mutations can cause dysregulation due to a constitutively active GTP-bound state
Reck et al. (2021).

Recent work has predicted these and other common LUAD genetic mutations from
H&E images with varying degrees of success Kather et al. (2020); Coudray et al. (2018).
For example, in one study, an AUC of 0.733 was achieved for KRAS classification in LUAD
Coudray et al. (2018).

Recent therapies have proven effective for treating NSCLC with p.G12C KRAS mutation
Skoulidis et al. (2021); Jänne et al. (2022). While KRAS mutations are much more common
in LUAD (prevalence 30%) than LUSC (prevalence 1-7%) Skoulidis and Heymach (2019);
Acker et al. (2021), a single model identifying KRAS mutations in NSCLC H&E images
could help the entire eligible patient population.

Due to the large size of histopathology slides, images must first be partitioned into
thousands of tiles from which information can later be recombined Chen et al. (2022).
One approach assigns slidewise labels to all tiles to train a model that classifies them
independently. An aggregation strategy is then required to obtain a slidewise score from
tilewise scores Bilal et al. (2023). In another approach known as multiple instance learning
(MIL), labels are applied to an entire bag of tiles simultaneously. An attention mechanism
learns to identify and weigh the relative importance of tiles, and additional mechanisms
such as self-attention can also learn to capture relationships between tiles Ilse et al. (2018);
Rymarczyk et al. (2021). MIL models learn to output a single slidewise score from each
bag, so an independent aggregation strategy is not required during inference.

Many previous classifiers process H&E tiles directly Coudray et al. (2018); Kather et al.
(2020); Chen et al. (2020). Recently, embeddings derived from self-supervised foundation
models have proven an effective starting point for a wide range of downstream pathology
tasks, such as tumor grading and region of interest (ROI) retrieval Vorontsov et al. (2023);
Chen et al. (2024); Lai et al. (2023). Such techniques involve pretraining on a large corpus of
unlabeled data and enable rapid finetuning to a range of downstream tasks on small amounts
of labeled data. The low-dimensionality of such embeddings enables direct comparison
between simple techniques such as linear regression and more sophisticated attention-based
MIL approaches.
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Train Validation Test

Mutation Status
KRAS+ 65 47 27
KRAS- 402 187 214

Cancer Subtype
LUAD 226 119 118
LUSC 241 115 123

Table 1: Dataset composition by partition

LUAD LUSC

Mutation Status
KRAS+ 131 8
KRAS- 332 471

Table 2: Dataset composition by cancer subtype

2 Materials and Methods

Our dataset consisted of 942 NSCLC cases from The Cancer Genome Atlas
(TCGA, https://www.cancer.gov/tcga) with 1,038 corresponding H&E stained tissue slide
images and KRAS mutation status, whereby KRAS+ indicates any KRAS mutation and
KRAS- indicates wild-type. The cases were randomly split into train, validation, and test
partitions, with compositions described in Tables 1 and 2. From each case, 2,048 tiles of
size 224x224 were randomly sampled at 20X magnification from all tissue regions. If a case
contained multiple slides, tiles were sampled across all slides.

Each tile was converted to a 384 dimensional embedding using a foundation model. The
foundation model was trained on 6,249 H&E whole slide images (WSIs) from a wide range
of TCGA studies through the masked siamese networks self-supervised approach, and has
been previously published Lai et al. (2023). The train, validation, and test partitions of our
dataset follow the dataset partitions used for the development of the foundation model to
avoid data leakage.

We trained a variety of models to predict KRAS mutation status from these embeddings.
We trained a tilewise logistic regression model with three aggregation strategies:

1. Tilewise mean

2. Percentage of tiles above dataset quantile, qd

3. Tilewise score at slidewise quantile, qs

The tilewise mean and percentage of positively classified tiles have previously been used
for prediction of mutation status in LUAD Coudray et al. (2018). We extend this approach
by exploring a range of values for qd, as well as qs; we trade off targeting a small subset
of especially high and low scoring tiles hypothesized to contain the most signal, with a
larger subset of more representative tiles. Values for qs were evaluated at 10% increments,
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including the 0th and 100th quantiles for evaluation of the minimum and maximum tile
scores, respectively. Values for qd were obtained by considering values at 10% increments
of all tiles in the validation set.

We also trained three variations of an attention-based MIL model Ilse et al. (2018):

1. Baseline Ilse et al. (2018)

2. Self-attention Rymarczyk et al. (2021)

3. Additive MIL Javed et al. (2022)

The baseline attention-based MIL model consists of a single gated attention mechanism
followed by a fully-connected output Ilse et al. (2018). The self-attention MIL introduces a
self-attention layer before the gated attention mechanism to capture dependencies between
tiles Rymarczyk et al. (2021). Additive MIL applies the final fully-connected layer to tilewise
features before aggregation, rather than after Javed et al. (2022), such that the additive
effect of each tile on the final slidewise score can be observed directly.

All MIL models were trained on bags of 2,048 patches. A dropout layer set attention
weights to 0 with frequency 20%. Models were trained with the Adam optimizer Kingma and
Ba (2014) (β=0.9, β2=0.99, ϵ=1e-7) and an exponentially decaying learning rate with linear
warmup (α=1e-6 with 5000 warmup steps, decay rate = 0.9, and 10,000 steps per decay).
An L2 regularization was used (λ=1e-4). The best epoch was selected by performance on
the validation set. Confidence intervals (95%) were obtained by bootstrapping over 1000
samplings.

3 Experiments and Results

AUC (95% CI)

Linear Model Aggregation Techniques
Tilewise mean 0.767 (0.672, 0.855)
Percentage of tiles above dataset median (qd = 0.5) 0.753 (0.651, 0.836)
Minimum tile score (qs = 0) 0.810 (0.727, 0.879)

MIL Model
Baseline 0.753 (0.663, 0.837)
Additive MIL 0.776 (0.679, 0.849)
Self-attention 0.822 (0.743, 0.884)

Table 3: Results for a selection of aggregation techniques for the linear model and MIL
models.

The self-attention MIL model performed best overall, predicting KRAS mutation status
with AUC=0.822 (0.743, 0.884) (Table 3). The baseline MIL model achieved AUC=0.753
(0.663, 0.837) and the additive MIL model achieved AUC=0.776 (0.679, 0.849).
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Figure 1: Comparison of aggregation strategies for obtaining slidewise from tilewise KRAS
mutation status predictions

The tilewise linear model predicted KRAS mutation status best when aggregating by
the minimum tilewise score, with AUC=0.810 (0.727, 0.879) (Figure 1). Aggregating by the
tilewise mean achieved AUC=0.767 (0.727, 0.879). The worst predictive power was achieved
via the maximum score, with AUC=0.732 (0.629,0.825). All other aggregation strategies
resulted in AUCs between 0.750 (0.652, 0.842) and 0.789 (0.713, 0.853). In general, metrics
sensitive to particularly high and low tile scores outperformed those that considered larger
numbers of tiles.

We qualitatively examined the highest attention tiles for the self-attention MIL model
and highest and lowest scored tiles for the tilewise linear model. Figure 2 shows some
representative examples on KRAS+ and KRAS- slides. On both KRAS+ and KRAS- slides,
the highest attention patches exhibited a mixture of tumor and benign tissue, including
alveolar-like epithelium and macrophages.

The most positively scored tiles on both KRAS+ and KRAS- slides frequently exhib-
ited glandular and mucinous patterns of LUAD as well as tumor-stromal interfaces (TSIs)
and tumor-infiltrating lymphocytes (TILs). The most negatively scoring tiles on KRAS-
slides (true negatives) consistently depicted flattened, poorly-differentiated tumor cells and
intercellular bridges characteristic of LUSC. The most negatively scoring tiles on KRAS+
slides (false negatives) were more varied.

We further examined the spatial distribution of attention scores and tilewise predictions
for characteristic KRAS+ and KRAS- slides in Figure 3. Non-tumor regions had the lowest
attention scores and the most variation in tilewise prediction. Tumor regions had fairly
uniform patterns of attention scores and tilewise predictions, though with some slides expe-
riencing significantly more variation. In Figure 3, for example, the KRAS+ tumor received
a broad range of attention scores and prediction values, while the KRAS- tumor received
consistently high attention scores and low prediction values.
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Figure 2: Representative examples of the highest attention tiles of the self-attention MIL
model and most confidently predicted KRAS+ and KRAS- tiles of the linear
model.

4 Discussion and Conclusion

We trained a variety of models to predict KRAS mutation status from NSCLC H&E em-
beddings, further validating the use of foundation model embeddings for downstream tasks.

MIL techniques did not automatically outperform simpler tilewise classification. Previ-
ous work has found tilewise classification to exceed more sophisticated MIL pipelines, but
with feature extractors trained on different datasets Ghaffari Laleh et al. (2022). A wide
range of aggregation techniques was needed to more accurately identify the advantages of
MIL training, as was an additional self-attention mechanism. Baseline attention-based MIL
architectures may have difficulty learning aggregations that focus on very few tiles, such as
minimum or maximum score.

Surprisingly, the highest attention patches did not exhibit features clearly associated
with KRAS or cancer subtype. Analysis of minimum-scoring tiles, however, revealed defin-
ing characteristics of LUSC, in which KRAS mutations are rare. Analysis of positively
predicted patches revealed characteristics specific to LUAD, including glandular and muci-
nous patterns, as well as TILs and TSIs. Mucinous patterns and TILs have been associated
with KRAS mutation in LUAD Kadota et al. (2014); Rekhtman et al. (2013).
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Figure 3: Spatial distribution of self-attention MIL attention scores and tilewise linear
model predictions on characteristic KRAS+ and KRAS- slides. Attention scores
have been normalized per slide.

Spatial analysis of the models revealed relatively homogenous prediction patterns within
individual tumors, though with significant variation between cases. More work is needed to
understand tumor characteristics that result in more or less spatial consistency.

Future work would aim to reproduce these findings on an external test set. Analysis and
training of models on LUAD and LUSC subgroups separately would help differentiate signals
of KRAS mutation status from cancer subtype, though more KRAS mutant LUSC cases
are needed. Reproducing the analysis across a wide range of mutations would differentiate
general findings from those specific to KRAS mutation.
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Matija Snuderl, David Fenyö, Andre L Moreira, Narges Razavian, and Aristotelis Tsiri-
gos. Classification and mutation prediction from non-small cell lung cancer histopathology
images using deep learning. Nat. Med., 24(10):1559–1567, October 2018.

Apar Kishor Ganti, Alyssa B Klein, Ion Cotarla, Brian Seal, and Engels Chou. Update of
incidence, prevalence, survival, and initial treatment in patients with Non-Small cell lung
cancer in the US. JAMA Oncol, 7(12):1824–1832, December 2021.

Narmin Ghaffari Laleh, Hannah Sophie Muti, Chiara Maria Lavinia Loeffler, Amelie Echle,
Oliver Lester Saldanha, Faisal Mahmood, Ming Y Lu, Christian Trautwein, Rupert
Langer, Bastian Dislich, Roman D Buelow, Heike Irmgard Grabsch, Hermann Brenner,
Jenny Chang-Claude, Elizabeth Alwers, Titus J Brinker, Firas Khader, Daniel Truhn,
Nadine T Gaisa, Peter Boor, Michael Hoffmeister, Volkmar Schulz, and Jakob Nikolas
Kather. Benchmarking weakly-supervised deep learning pipelines for whole slide classifi-
cation in computational pathology. Med. Image Anal., 79:102474, July 2022.

8



Maximilian Ilse, Jakub M Tomczak, and Max Welling. Attention-based deep multiple
instance learning. February 2018.

Pasi A Jänne, Gregory J Riely, Shirish M Gadgeel, Rebecca S Heist, Sai-Hong I Ou, Jose M
Pacheco, Melissa L Johnson, Joshua K Sabari, Konstantinos Leventakos, Edwin Yau,
Lyudmila Bazhenova, Marcelo V Negrao, Nathan A Pennell, Jun Zhang, Kenna An-
deres, Hirak Der-Torossian, Thian Kheoh, Karen Velastegui, Xiaohong Yan, James G
Christensen, Richard C Chao, and Alexander I Spira. Adagrasib in Non-Small-Cell lung
cancer harboring a KRASG12C mutation. N. Engl. J. Med., 387(2):120–131, July 2022.

Syed Ashar Javed, Dinkar Juyal, Harshith Padigela, Amaro Taylor-Weiner, Limin Yu, and
Aaditya Prakash. Additive MIL: Intrinsically interpretable multiple instance learning for
pathology. June 2022.

Kyuichi Kadota, Yi-Chen Yeh, Sandra P D’Angelo, Andre L Moreira, Deborah Kuk,
Camelia S Sima, Gregory J Riely, Maria E Arcila, Mark G Kris, Valerie W Rusch,
Prasad S Adusumilli, and William D Travis. Associations between mutations and histo-
logic patterns of mucin in lung adenocarcinoma: invasive mucinous pattern and extracel-
lular mucin are associated with KRAS mutation. Am. J. Surg. Pathol., 38(8):1118–1127,
August 2014.

Jakob Nikolas Kather, Lara R Heij, Heike I Grabsch, Chiara Loeffler, Amelie Echle, Han-
nah Sophie Muti, Jeremias Krause, Jan M Niehues, Kai A J Sommer, Peter Bankhead,
Loes F S Kooreman, Jefree J Schulte, Nicole A Cipriani, Roman D Buelow, Peter Boor,
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