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Abstract

Agentic tool use has gained traction with the rise of agentic tool calling, yet
most existing work overlooks the complexity of multi-turn tool interactions. We
introduce OrchDAG, a synthetic data generation pipeline that models tool execution
as directed acyclic graphs (DAGs) with controllable complexity. Using this dataset,
we benchmark model performance and propose a graph-based reward to enhance
RLVR training. Experiments show that the dataset presents a challenging but
solvable benchmark, and the proposed reward is effective when combined with
GRPO-style algorithms, highlighting the importance of leveraging topological
structure and data complexity in multi-turn tool use.

1 INTRODUCTION

Large Language Models (LLMs) ([3, 5, 6, 26, 36]) have been at the forefront of advancing artificial
intelligence, marking significant breakthroughs in diverse fields. The planning capabilities of LLMs,
particularly their ability to use tools ([33, 34]), enable them not only to execute commands and
perform web searches but also to enhance their advanced mathematical reasoning abilities. LLM
Compiler [12] and its subsequent work ([7, 8]) propose constructing tooling usage as a directed acyclic
graph (DAG) to enable the parallel execution of independent tools, thereby improving tool-calling
efficiency. CodeAct [28] and CodePlan [29] propose leveraging the generation of pseudo-Python code
to outline high-level reasoning processes for complex multi-step reasoning tasks, where each tool
usage is represented as a function call within the code. ReWOO [30] proposes a modular framework
that decouples the reasoning process from the external observations of each tool usage, thereby
reducing token consumption and improving efficiency. [15] clusters the provided tools into groups
of toolkits, plans at the toolkit level, and replans by selecting tools within the same toolkit if error
comes out. [17] proposes a method called Predictive-Decoding, which leverages Model Predictive
Control from the optimal control field to mitigate early errors in planning and promote non-myopic
planning, thereby enhancing overall accuracy. ReasonFlux [31] proposes a framework in which the
LLM reasons over template fields, executes tools based on the templates, and employs reinforcement
learning to improve planning accuracy using an action completion reward.

In the agentic setting, LLMs are evolving beyond purely textual reasoning toward dynamic agents
capable of planning, tool use, and multi-step (also multi-turn) execution. The introduction of Group
Relative Policy Optimization (GRPO) [22] further inspired the development of Reinforcement
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Learning with Verifiable Reward (RLVR) for agentic tool use, driven by its efficiency. The xLAM
[37] suite introduces purpose-built “large action models” optimized for function calling, offering
strong baselines and open resources for multi-turn tool execution. Llama-Nemotron [2] extends this
trajectory with efficient reasoning modes and scalable inference, enabling models to dynamically
switch behaviors across long conversations. ToolRL [19] systematically studies reinforcement
learning reward designs—covering granularity, temporal structure, and signal types—to improve
generalization in multi-turn tool-integrated reasoning, while OTC [27] complements this by explicitly
balancing accuracy and tool-call efficiency to maintain productivity over prolonged interactions.
Kimi K2 [25] shows that stabilizing long-context training and using multi-stage RL leads to robust
performance across multi-round software engineering, math, and agentic tasks. These works highlight
that advancing agentic LLMs in multi-turn settings requires not only larger or more efficient models,
but also principled reward design, cost-aware tool-use strategies, and scalable system pipelines.

Recent advances in evaluating agentic models have led to new benchmarks and environments for
assessing performance in realistic, interactive scenarios. ACEBench [4] overcomes limits of prior
evaluations by introducing a structured benchmark with Normal, Special, and Agent categories to
test atomic-level tool use across simple, complex, multi-agent, and ambiguous instruction settings.
Complementing this, BFCL (v3) [18] standardizes function-calling benchmarks across real-world
contexts, supporting serial and parallel invocations in multiple languages through an AST-based
evaluation. τ -Bench, τ2-Bench, and UserBench [32, 1, 20] together extend evaluation from structured
tool–user interactions to controlled bidirectional agent cooperation and finally to fully user-centric,
dynamic environments, progressively enriching the realism and robustness of agent assessment.

Prior work on tool use has mainly studied general real-world APIs [21], such as send email or make
calendar, along with related functions in web search systems like Manus. Meanwhile, current multi-
turn settings mainly focus on computer-use tasks [18], such as manipulating files in the operating
system. In industrial settings, however, an agent may need to work with hundreds of domain tools,
including APIs and pipeline endpoints, and may also interact with other domain agents to produce
a complete answer to a user query. The complexity usually arises from three aspects: (1) the
dependencies among tools can be intricate, (2) the output of a tool is often represented as a JSON
file with many fields, and (3) a key output field from one tool may serve as an input to another,
but with different field names. Moreover, in multi-turn settings, the environment may execute the
required tools but encounter time-outs or runtime errors in their responses. Therefore, it is important
to construct a dataset that not only evaluates current models but also pushes their capabilities in
complex multi-turn tool interaction, which is essential for building robust and reliable agents.

In summary, this work makes several pivotal contributions:

• We design a synthetic multi-turn data generation pipeline OrchDAG for agentic tool use, where
each round of tool execution for a user query is represented as a DAG. The complexity of the
generated data is controlled by a pipeline hyperparameter.

• Using the constructed dataset, we first evaluate the current model’s performance and then introduce
a graph-based reward derived from the DAG for RLVR training.

• Extensive experiments show the effectiveness of our approach, emphasizing the value of incorpo-
rating the topological structure of tool execution graphs and the importance of controlling data
complexity in multi-turn tool use.

2 PRELIMINARY

2.1 LLM Reasoning with Tools for Multi-turn Settings

For the first turn, given a user query x and a pretrained LLM ρθ(·), the LLM generates an tool
execution plan represented as a graph with p = {P1, . . . ,Pn} ∼ ρθ(p | T ,D, x), where p is
the plan list after topological sorting, T is the set of available tools, and D is the collection of
descriptions for all available tools. At each step t, the LLM generates an intermediate reasoning
output rt ∼ ρθ(rt | T ,D, x, p,O1, . . . ,Ot−1) and executes the plan step Pt to obtain the observation
Ot. The final response is then generated as R ∼ ρθ(R | T ,D, x, p,O1, . . . ,On).

In later turns, a user may issue an irrelevant query requiring a completely new tool execution graph, or
a dependent query that builds on partial outputs from earlier tool executions or responses. Additionally,
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some tools may return errors (e.g., timeouts), requiring unfinished execution paths from prior queries
to be rescheduled.

2.2 Tool Execution as DAG

Given a plan p generated by the LLM, we represent it as a directed graph G = (V, E), where
V = (v1, . . . , vn) is the set of nodes and E = (e1, . . . , em) is the set of edges. The node v1
corresponds to the user query, and vn represents the final node that aggregates observations and
returns the response. The intermediate nodes v2, . . . , vn−1 correspond to tool calls, each associated
with an attribute that stores its tool payload in JSON format. An edge ei ∈ E denotes a dependency
between two tools, where an output key from the source tool serves as an input key to the target tool.

We represent the tool graph as an ordered list of tasks in a JSON-like text style. Each task contains
four fields : task_id, toolname, payload, and dependencies. A task can be associated with
multiple dependencies. A task can be expressed as {task_id: task_4, toolname: name, payload:
{param1: val1, param2: $2.outputkey1, param3: $3.outputkey4}, dependencies: [task_2,
task_3]}.

3 METHODOLOGY

In real-world domains, API specifications and orchestrations are often considerably more complex,
making it challenging for LLMs pretrained on general public data to generate accurate and reliable
plans for diverse user queries. Drawing inspiration from LLMCompiler [12, 8], for queries involving
complex tool interactions, it is advantageous to first construct a tool execution DAG. This DAG serves
as a blueprint for executing tools sequentially or in parallel, with subsequent replanning guided by
both the execution results of the current DAG and any new user queries in later turns.

3.1 OrchDAG – Synthetic Data Generation Pipeline for Multi-Turn Tool Use

As discussed in Section 1, the design of the data generation pipeline follows several key principles to
better reflect real-world tool-use scenarios: (1) the complexity of the tool execution DAG for each
synthetic user query should be controllable through pipeline hyperparameters, (2) the system prompt
provided to the LLM must include irrelevant tools (both schema and description) so that the model
learns to identify and select only the relevant ones, (3) the output payload of each tool should contain
multiple fields, typically four or five, and (4) at least one key output field from a tool should serve as
an input to another tool, but with a different field name, to capture schema misalignment commonly
observed in practice.

Moreover, in multi-turn settings, the data should capture scenarios where certain nodes in the tool
execution DAG fail. When the user issues a follow-up query, the corresponding DAG in the dataset
should exclude nodes that have already been executed in the previous turn, while reusing their
available results whenever applicable. In light of these requirements, we develop a graph-based data
generation pipeline implemented with LangGraph 2, accompanied by a set of validation functions to
ensure the quality of the generated data points.

As shown in Figure 1, the data generation pipeline begins by collecting real high-quality tools
from existing benchmarks, Specifically, we leverage APIGEN [16] and TOOLACE [14]. To ensure
sufficient complexity, we retain only examples where the final answer involves more than two distinct
functions represented in JSON format. Notably, we extract tools directly from the answers rather than
from the system-prompt tool lists. This design choice eliminates the need for additional categorization
or clustering steps, which could introduce unnecessary uncertainty, while naturally yielding a smaller
and more coherent set of related tools. After filtering, APIGEN contributes 2,542 data points and
TOOLACE contributes 1,005.

For each data point, suppose it contains four real tools; these are placed as the first layer of the tool
execution DAG. Based on the hyperparameters of the DAG (height and width), we then randomly
sample a topological order to obtain a DAG template (see Figure 1). According to this template,
we synthesize the tools for each node layer by layer under the following conditions: (1) each input
key must depend on an output key from one of its parent nodes in the DAG, and (2) the field names

2https://langchain-ai.github.io/langgraph/
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Figure 1: Data Generation Pipeline for a single turn

should not remain identical across instances but instead vary randomly. After populating the DAG
template, we obtain the tool execution DAG, which is then used to prompt the LLM to generate
the corresponding user query, conditioned on the DAG and a few-shot set of examples. Finally, we
augment the system prompt with irrelevant tools to encourage the model to discriminate among
available options.

Single turn generation 

pipeline

Tools Timeout from previous turn

User asks a query which needs previous 
ToolCall but also new tools

User asks an irrelevant queries which only 
need new tools

random

Figure 2: Extension of single-turn data generation pipeline to multi-turn settings

We further extend the generation pipeline to the multi-turn setting by attaching three additional
nodes to the final node (see Figure 2), with only one being activated during generation. These nodes
correspond to three possible multi-turn scenarios : (1) the user issues a completely irrelevant query,
(2) the user poses a query that requires a new set of tools while also depending on the previous final
response or intermediate tool outputs, and (3) a tool execution error occurs, such as a timeout. In
case (1), the outcome is a completely new DAG; in case (2), the new DAG must explicitly encode
cross-turn dependencies through the task identifiers from the previous DAG; and in case (3), the
resulting DAG reduces to a partial subgraph of the original DAG. We adopt the final data generation
format introduced in ToolRL [19]. An example of a generated data sample is shown in Figure 3.1.

The quality of the data, particularly the synthetic data, is critical. To ensure reliability, we incorporate
a rule-based verification mechanism into the generation pipeline. All tools, plan DAGs, tool calls,
and observations produced by the LLM are required to be in JSON format. The first verification layer
checks JSON validity. For plan DAGs, we apply AST [18] matching at each node to guarantee that
the LLM only references the provided tools with the correct argument names. We further validate
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symbolic arguments by comparing each referenced key against the JSON schema of the predecessor’s
output. Every tool call is verified against the plan DAG and the preceding tool call observations,
ensuring adherence to the plan and the correct use of return values as inputs for dependent calls.
Likewise, each observation is matched to its corresponding tool call, and its return value is checked
against the tool’s JSON schema. If any verification step fails during generation, the LLM is required
to restart the process.

Our pipeline enables the generation of diverse synthetic queries derived from high-quality real APIs,
each requiring resolution through a plan DAG. The difficulty of the queries is controlled by the
topological structure of randomly generated DAG templates. Since these templates vary in structure,
a fixed workflow for synthetic data generation is impractical. Instead, the graph-based pipeline
provides a flexible end-to-end framework for producing such data. Finally, the rule-based verification
mechanism ensures reliability: it not only checks JSON validity to guarantee compatibility with
downstream benchmarks, but also leverages AST matching to validate the correctness of DAG
instantiations during data generation.

Synthetic Data Sample

System Prompt:
You are a dialogue assistant designed to leverage tool calls to solve user tasks and provide
structured responses.

Available Tools
In your response, you can use the following tools: {{Tool List}}

Steps for each turn
1. Think: Retrieve the relevant context and evaluate the current tool.
2. DAG: Produce a task list defined here 2.2
3. Respond: If a response is needed, generate one while maintaining consistency across user
queries.

Synethetic User Query: ...

</think> . . . </think> [The think block is absent in the synthetic data but included during the
training stage.]

</DAG> real DAG generated from pipeline </DAG>

<tool_call> tool call 1st DAG layer </tool_call>
<obs> observation 1st DAG layer </obs>
...
<tool_call> tool call last DAG layer </tool_call>
<obs> observation last DAG layer </obs>
</response> ... </response>

New User Query: ...

</think> . . . </think>

</DAG> new DAG based on the three scenarios defined in the multi-turn settings 3.1.
</DAG>

...

3.2 OrchDAG – Graph-based Reward Derived from the DAG for RLVR training

Due to the intricate tool interaction structure inherent in the synthetic data, the format reward, correct-
ness reward, and parameter matching reward defined in [19] may remain sparse, even when initiating
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a large number of rollouts. Moreover, this reward does not account for structural dependencies among
tools; thus, no reward is given when the LLM correctly predicts partial dependencies for these tools.

To account for structural dependencies, and given that we have access to the ground-truth DAG
during synthetic data generation, following [13], we use a weighted Graph Edit Distance (GED) as
the reward signal at each turn. GED [10] measures the distance between two graphs by applying
operations such as edge deletion, edge insertion, node insertion, or node relabeling to transform one
graph into an isomorphic form of the other.

We define the reward for each turn as

RTotal = RFormat + αRDAG, where RDAG = 1− GED(g1, g2)
GED(g1, ∅) + GED(g2, ∅)

Here g1 is the predicted DAG, g2 is the ground-truth DAG. We define the following node equivalence
when calculating GED: the tool name, parameter names, and parameter values are treated as a single
unit, and equivalence is evaluated at the level of the entire tool call. The reward RFormat is assigned
a value of 1 if the output contains the special tokens in the correct order, and 0 otherwise. α is the
hyperparameter used to balance the two types of rewards. In this reward design, we not only provide
credit to LLMs for partially correcting the path during rollouts, but also make the rewards denser
compared to the previous design. The multi-turn setting is naturally supported, as the ground-truth
DAG is available at each turn.

4 EXPERIMENTS

In this section, we describe the generated dataset, focusing on the distribution of topological difficulty
in the DAG templates and the proportion of single-turn versus multi-turn settings. For simplicity, we
restrict evaluation to the two-turn setting, leaving extensions to longer horizons for future work. To
ensure independence between training and test data, we construct them from two disjoint sets of data
points from APIGEN [16] and TOOLACE [14]., as described in 3.1.

Table 1: Synthetic Data Distribution (Height and width are hyperparameters controlling DAG
complexity, and success rate is the proportion of data that passes rule-based validation)

Type data # Multi-turn proportion Average Height Average Width Sucessful Rate

Training 1800 30% 2.50 ± 0.12 3.4 ± 0.24 0.6
Test 250 25% 2.7 ± 0.08 3.1 ± 0.14 0.7

4.1 Task Difficulty

We investigate two central questions: (1) Given the designed difficulty of our synthetic data, is the
dataset solvable in principle? A dataset that cannot be solved even by advanced closed-source models
such as Claude 4 or GPT-4o would lack practical utility. (2) If it is solvable, does the dataset offer a
sufficient level of challenge to meaningfully evaluate model performance? To begin with, we evaluate
several closed-source and open-source models by providing them with the system prompt defined in
Section 3.1, and measure whether they can correctly predict the DAG by analyzing tool dependencies.
In the multi-turn setting, models must generate the DAG by considering both the available tools and
the observations from previous turns. We use Accuracy (pass@1) to evaluate performance, as our
focus here is on assessing the task difficulty introduced by the dataset.

For completeness, we also report Qwen3 pass@64 accuracy: 20.23% for Qwen3-4B and 26.55% for
Qwen3-8B. From Table 2, we can see that GPT-4o maintains the highest accuracy for the zero-shot
setting and the three-shots setting with nearly same performance with Claude 4 in the one-shot
setting. The accuracy for GPT-4o and also for Claude 4 shows that our dataset is solvable however
the perofmrance for Claude 3.5, Qwen2.5 3B with accuracy 0, and Qwen 2.5 7B demonstrates the
challenge of our datasets to current LLMs. Comparison between the one-shot and three-shot results
shows that providing additional examples does not necessarily improve LLM performance in DAG
prediction.
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Table 2: Pass@1 Accuracy for predicting the DAG for single/multi-turn settings (All experiments
were run 10 times with the temperature of the base LLMs set to 0.1)

Models Zero Shot One shot Three shots

GPT-4o (0.18 ± 0.03) (0.22 ± 0.02) (0.24 ± 0.04)
Claude 4 (0.15 ± 0.01) (0.23 ± 0.03) (0.22 ± 0.01)

Claude 3.7 (0.16 ± 0.04) (0.18 ± 0.03) (0.23 ± 0.01)
Claude 3.5 (0.08 ± 0.02) (0.09 ± 0.03) (0.08 ± 0.03)

DeepSeek-R1 (0.12 ± 0.02) (0.14 ± 0.01) (0.11 ± 0.04)
Qwen2.5 3B (0 ± 0) (0 ± 0) (0.02 ± 0.01)
Qwen2.5 7B (0.02 ± 0.01) (0.03 ± 0.02) (0.03 ± 0.02)

4.2 Analysis of the Graph-based Reward Shaping in OrchDAG

As discussed in Section 3.2, the reward signal from ToolRL [19] can be sparse in our data., which
makes it difficult for reinforcement learning algorithms such as GRPO [22], DAPO [35], and GiGPO
[9] to efficiently improve the policy LLM, even with large rollouts. We apply ToolRL on the training
single-turn dataset and evaluate it on the test set in the single-turn setting. In this setup, we train
Qwen2.5 with GRPO using ToolRL, and convert the ToolCalls it generates into predicted DAGs, since
the outputs follow a standardized JSON format. We use 8×100 A100 GPUs with Verl [23] to complete
the training. We evaluate performance using two metrics: Accuracy/step and Accuracy/user_query.
Accuracy/step measures correctness at the step level, where each individual action in a turn is
assessed independently; a step may be correct even if the final tool execution graph is incorrect.
Accuracy/user_query measures correctness at the full query level, requiring the entire tool execution
graph to be correct.

Table 3: ToolRL Performance on OrchDAG Single-turn Test Dataset (The definitions of fine-grained
and coarse rewards are given in ToolRL

Model (Qwen2.5) Acc/step Acc/user_query

3B Coarse 0.517 0
3B Finegrained 0.540 0

7B Coarse 0.609 0
7B Finegrained 0.594 0

From Table 3, we observe that ToolRl performs reasonably well on certain steps within a single
turn; however, it struggles to maintain a coherent overview of the entire execution. In contrast, as
shown in Table 2, Qwen2.5-7B achieves 2% accuracy in predicting the DAG. This indicates that
for complex tool executions, it may be advantageous to first establish a high-level plan, such as
a DAG, to guide the subsequent execution. We subsequently fine-tune Qwen2.5 using GRPO on
the training single-turn dataset, guided by the proposed graph-based reward. We evaluate different
hyperparameter settings: the use of entropy regularization and the KL loss, the choice of rollout
number, and the number of training steps for the optimizer.

Table 4: Performance of Graph-Based Reward on OrchDAG Single-turn Test Dataset (We report
results using Acc/user_query as the evaluation metric. The columns indicate the number of training
steps, and n denotes the rollout number.)

Model (Qwen2.5) / Steps 15 30 45 60

3B KL n=4 0 - - -
7B n=4 0.184 0.253 0.241 -

7B KL n=4 0.184 0.276 0.276 -
7B KL Entropy n=4 0.195 0.276 0.253 -

7B KL n=8 0.23 0.33 0.402 0.391

In Table 4, we observe that model size has a clear impact on performance. Moreover, the rollout
number plays a crucial role, consistent with the intuition that larger rollout numbers enable greater
exploration [24], thereby increasing the likelihood of reaching the correct DAG. To evaluate the
effectiveness of the GED-based reward design, we conduct an ablation study using a coarser reward:
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the predicted DAG receives a reward of 1 if it exactly matches the ground-truth DAG, and 0 otherwise.
Using the 7B model with KL and n = 8, the accuracy remains 0 even after 15 training steps.

We then extend our experiments to the multi-turn setting. In this setting, we train Qwen2.5 on the
entire training set with GRPO, using both the information from previous turns and the new user query
as input, and evaluate performance on the full OrchDAG test dataset. Based on Table 4, we report
performance only at the 45th training step.

Table 5: Performance of Graph-Based Reward on OrchDAG Single/Multi-turn Test Dataset (We
report results using Acc/user_query as the evaluation metric. The columns indicate the three multi-
turn scenarios defined by 2)

Model (Qwen2.5) / Steps scenario 1 scenario 2 scenario 3

7B KL Entropy n=4 0.112 0.125 0.218
7B KL n=8 0.156 0.203 0.352

From Table 5, we observe that in the multi-turn setting, performance decreases across both experi-
mental setups. The largest drops occur in Scenario 1 (tool-calling error) and Scenario 2 (requiring
information from the previous turn), since these tasks depend not only on the new user query and
the system prompt but also on information carried over from earlier turns. In contrast, the drop in
Scenario 3 is smaller, as the new user query is completely independent of prior turns. To demonstrate
generalizability, we further evaluate the trained model on StableToolBench [11], measuring solvable
pass rates across L1, L2, and L3 categories. A task is considered successful when the predicted DAG
matches the ground truth. We choose StableToolBench for its inherent complexity in tool interactions.
In StableToolBench, GPT-4-0613 (CoT) achieves solvable pass rates of 45.5 (L1 instruction), 57.4
(L1 category), 48.8 (L1 tool), 43.0 (L2 instruction), 46.5 (L2 category), and 48.1 (L3 instruction).
Under the same evaluation, our model attains 47.1, 56.4, 47.2, 41.3, 44.8, and 50.7, respectively.

4.3 Training Insight Analysis

As shown in Table 4, performance generally improves as the number of training steps increases.
However, when we extend training beyond this range, we observe a significant drop in performance
around step 51. Inspired by DAPO [35], We hypothesize that the performance drop may be caused
by a low-entropy situation, where the model becomes overly confident and thus fails to explore
sufficiently.
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Figure 3: Performance and Entropy Analysis with DAPO and GRPO

After applying DAPO, we observe that the performance collapse no longer occurs, and the entropy
remains at a relatively higher level in the later stages of training.
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5 CONCLUSION

In summary, we introduce OrchDAG, a synthetic multi-turn data generation pipeline that models
tool execution as DAGs with controllable complexity. Leveraging this dataset, we evaluate model
performance and propose a graph-based reward to enhance RLVR training. Extensive experiments
validate the effectiveness of our approach, underscoring the importance of exploiting the topological
structure of tool execution graphs and managing data complexity in multi-turn tool use.

Nonetheless, our method remains limited in that it does not yet address multi-turn scenarios involving
implicit dependencies, such as file operations in computer-use tasks. In future work, we aim to extend
our framework to capture these implicit dependency cases.
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