
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNABLE FRACTIONAL SUPERLETS WITH A
SPECTRO-TEMPORAL EMOTION ENCODER FOR
SPEECH EMOTION RECOGNITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Speech emotion recognition (SER) hinges on front-ends that expose informative
time-frequency (TF) structure from raw speech. Classical short-time Fourier and
wavelet transforms impose fixed resolution trade-offs, while prior ”superlet” vari-
ants rely on integer orders and hand-tuned hyperparameters. We revisit TF anal-
ysis from first principles and formulate a learnable continuum of superlet trans-
forms. Starting from DC-corrected analytic Morlet wavelets, we define superlets
as multiplicative ensembles of wavelet responses and realize learnable fractional
orders via softmax-normalized weights over discrete orders, computed as a log-
domain geometric mean. We establish admissibility (zero mean) and continu-
ity in order and frequency, and characterize approximate analyticity by bounding
negative-frequency leakage as a function of an effective cycle parameter. Build-
ing on these results, we introduce the Learnable Fractional Superlet Transform
(LFST), a fully differentiable front-end that jointly optimizes (i) a monotone, log-
spaced frequency grid, (ii) frequency-dependent base cycles, and (iii) learnable
fractional-order weights, all trained end-to-end. LFST further includes a learn-
able asymmetric hard-thresholding (LAHT) module that promotes sparse, de-
noised TF activations while preserving transients; we provide sufficient conditions
for boundedness and stability under mild cycle and grid constraints. To exploit
LFST for SER, we design the Spectro-Temporal Emotion Encoder (STEE), which
consumes two-channel TF maps, magnitude S and phase-congruency κ, through
a compact multi-scale stack with residual temporal and depthwise-frequency
blocks, Adaptive FiLM gating, axial (time-axis) self-attention, global attentive
pooling, and a lightweight classifier. The full LFST+STEE system is trained in a
standard train-validate-test regime using focal loss with optional class rebalancing,
and is validated on IEMOCAP, EMO-DB, and the private NSPL-CRISE dataset
under standard protocols. By unifying a principled, learnable TF transform with a
compact encoder, LFST+STEE replaces ad hoc front-ends with a mathematically
grounded alternative that is differentiable, stable, and adaptable to data, enabling
systematic ablations over frequency grids, cycle schedules, and fractional orders
within a single end-to-end model. The source code for this paper is shared in this
anonymous repository: https://anonymous.4open.science/r/LFST-for-SER-C5D2.

1 INTRODUCTION

Human speech carries dense affective information that conveys intent, mood, and social cues. Au-
tomatic speech emotion recognition (SER) aims to infer this affective state from acoustic signals
and underpins applications in conversational agents, mental-health monitoring, and human–robot
interaction. A core scientific difficulty is the non-stationary nature of speech: emotionally salient
patterns emerge across disparate time scales, from rapid pitch modulations and micro-prosodic cues
to slower spectral-envelope dynamics, often with overlap, masking, or background noise (Rosen,
1992; El Ayadi et al., 2011; Wani et al., 2021; Schuller, 2018). Effective front-ends must therefore
expose time–frequency (TF) structure that balances temporal precision with spectral clarity, while
remaining robust and learnable from data.
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Traditional SER pipelines rely on fixed TF representations such as short-time Fourier transform
(STFT) spectrograms or mel-spectrograms, which enforce a window-dependent trade-off: longer
windows sharpen frequency resolution while smearing short events, whereas shorter windows do
the opposite. Wavelet transforms partially alleviate this by analyzing low frequencies with long
wavelets and high frequencies with short ones, yielding a multiresolution analysis (Mallat, 1989).
Yet, the effective number of cycles is typically fixed across the spectrum, so frequency resolution
degrades at high frequencies; more importantly, both STFT and classical wavelet front-ends bake
in a priori TF compromises that cannot adapt to the signal statistics or task demands (Rosen, 1992;
El Ayadi et al., 2011). In SER practice, these front-ends are often followed by deep classifiers, or
replaced with raw-waveform models, but the front-end/encoder interface remains largely heuristic
(Fayek et al., 2017; Dai et al., 2017; Nfissi et al., 2022).

We revisit TF analysis from first principles and consider multiplicative ensembles of DC-corrected,
approximately analytic Morlet responses at a common center frequency. Intuitively, combining
short (few-cycle) and long (many-cycle) wavelets by a log-domain geometric mean can approach
the temporal acuity of short wavelets while recovering the frequency concentration afforded by long
wavelets Moca et al. (2021). Extending the order of this ensemble beyond integers yields a contin-
uum that avoids discrete ”banding” artifacts and permits smooth trade-offs across frequency Bârzan
et al. (2021). Concretely, we realize fractional orders via softmax-normalized weights over dis-
crete orders; this convex combination produces an effective (learned) order per frequency. We study
three properties crucial for a principled front-end: (i) admissibility via zero-mean, DC-corrected
wavelets; (ii) continuity with respect to order and frequency grid; and (iii) approximate analytic-
ity, in the sense that negative-frequency leakage decays with an effective cycle parameter, yielding
well-behaved magnitude and phase.

Motivated by these considerations, we introduce the Learnable Fractional Superlet Transform
(LFST), a fully differentiable TF front-end that optimizes: (i) a monotone, log-spaced frequency
grid with learnable positive increments and anchored endpoints; (ii) frequency-dependent base cy-
cles (ensured ≥ 1 by a softplus parameterization); and (iii) fractional order weights (softmax over
order logits). For each order and frequency, LFST uses DC-corrected Morlet filters with magni-
tude L1-normalization, aggregates responses multiplicatively via a weighted log-sum/exponential,
and computes a phase-congruency map κ by summing order-weighted unit phasors. A learnable
asymmetric hard-thresholding (LAHT) module acts on the magnitude map to promote sparse, de-
noised TF activations while preserving transients. Practical stability is enforced through safe pa-
rameterizations and numerics (e.g., capped exponents, log-domain accumulation, bounded gates).
All parameters are trained end-to-end by backpropagation together with the downstream network,
turning the TF compromise from a fixed design choice into a data-driven inductive bias. To ex-
ploit LFST representations, we design a compact Spectro-Temporal Emotion Encoder (STEE) that
consumes two-channel TF maps, magnitude S and phase-congruency κ, and processes them with a
depthwise-temporal stem, spectral residual blocks and hybrid TF blocks (depthwise along frequency
and time with pointwise mixing), squeeze–excitation, and an Adaptive FiLM frequency gate. The
FiLM gate derives per-sample channel weights from per-frequency statistics of S and κ (means and
log-stds over time) fused with the effective order, enabling content- and order-aware modulation. We
further apply axial (time-axis) self-attention (local windowed by default) and conclude with atten-
tive statistics pooling (learned weighted mean and standard deviation) and a lightweight classifier.
Variable-duration utterances are handled by dynamic padding and explicit masks passed through
LFST and the encoder.

Contributions. (1) We formulate a continuum of multiplicative wavelet ensembles and develop
LFST, a mathematically grounded, differentiable TF transform with fractional-order weighting, a
learnable monotone log-frequency grid, and frequency-dependent cycle schedules. (2) We provide
regularity conditions (admissibility, continuity, approximate analyticity) and numerically stable pa-
rameterizations (softplus, bounded gates, log-domain aggregation) that justify stable optimization
and bounded activations. (3) We integrate LFST with a simple yet effective STEE encoder, com-
bining hybrid TF convolutions, Adaptive FiLM gating driven by (S, κ, oeff), axial time-attention,
and attentive statistics pooling, for end-to-end SER from raw waveforms using focal loss with op-
tional class rebalancing. (4) We evaluate on IEMOCAP (Busso et al., 2008), EMO-DB Burkhardt
et al. (2005), and the private NSPL-CRISE dataset under standard protocols, reporting accuracy,
macro-F1, precision, and recall for fair comparability (Tharwat, 2020; Hossin & Sulaiman, 2015).
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2 RELATED WORK

Early speech emotion recognition (SER) relied on handcrafted acoustic features (prosody, spectral,
voice quality) paired with conventional classifiers (SVMs, GMMs, HMMs). These pipelines estab-
lished feasibility but required expert feature selection and often failed to generalize across speakers
and contexts, leading to performance plateaus that motivated learned representations (El Ayadi et al.,
2011; Schuller, 2018).

Deep learning models enabled end-to-end feature learning from spectrograms or raw audio. Trige-
orgis et al. (2016) introduced an early raw-waveform CNN-RNN system, while subsequent work
combined 1D/2D CNNs with LSTM/GRU layers to capture spectro-temporal patterns and long-
range dependencies Zhao et al. (2019). Raw-waveform architectures (e.g., CNN-n-GRU) further
showed that learned time-domain filters with gating can surpass fixed spectral features Nfissi et al.
(2022). Collectively, deep learning improved accuracy and reduced reliance on manual features.

Emotion-relevant cues are inherently spectro-temporal, making TF analysis central to SER.
STFT/mel representations impose a fixed window trade-off between temporal precision and fre-
quency resolution, whereas wavelet transforms offer multiresolution analysis via scale dilation.
Wavelet TF features (DWT, wavelet packets) have aided SER and can outperform STFT in some
regimes Vasquez-Correa et al. (2016); nevertheless, conventional wavelets lose frequency discrimi-
nation at higher bands because shorter wavelets contain fewer cycles, motivating more flexible TF
front-ends.

Superlets (Moca et al., 2021) geometrically combine multiple wavelets with increasing cycles at a
common center frequency, preserving temporal acuity while sharpening frequency resolution; this
super-resolution proved effective for detecting fast neural oscillations. Fractional superlets extend
the order beyond integers via weighted geometric means, avoiding discrete order jumps and reduc-
ing banding artifacts (Bârzan et al., 2021). However, prior superlet formulations fixed parameters
(cycles, weights) heuristically and were not designed as differentiable, learnable front-ends for end-
to-end training, leaving a gap our approach addresses.

Differentiable front-ends parameterize TF decompositions and learn them jointly with the classifier.
LEAF uses parametric Gabor filters and compressive pooling to approximate and then refine mel-
like representations (Zeghidour & Grangier, 2021), while SincNet employs learnable sinc-based
bandpass filters as a transparent Fourier front-end (Ravanelli & Bengio, 2018). Wavelet-inspired
layers push this further: SigWavNet learns FDWT wavelets and coefficient thresholding for SER
(Nfissi et al., 2025), and a multi-level wavelet packet transform with CNN/GRU proved effective for
high-risk suicide calls (Nfissi et al., 2024). In contrast, our LFST leverages the superlet principle to
learn per-band frequency grids, base cycles, and fractional-order weights with multiplicative (log-
domain) aggregation, yielding a more flexible TF tiling than fixed bases or globally parameterized
filterbanks.

Large self-supervised encoders such as wav2vec 2.0 and HuBERT achieve strong SER performance
after fine-tuning (Baevski et al., 2020; Hsu et al., 2021), with comprehensive evaluations reporting
notable gains (Wagner et al., 2023). Yet these models are compute-intensive and comparatively
opaque. Our physics-inspired LFST-STEE offers a complementary, lightweight, and interpretable
alternative that can operate standalone or alongside such encoders.

Fixed front-ends (STFT, mel, CWT) impose a single resolution; classical wavelets remain hand-
tuned; and CNN/RNNs on fixed spectrograms inherit these compromises. Learnable front-ends
(LEAF, SincNet) improve frequency modeling but still lack a continuously adaptable super-
resolution mechanism across bands (Zeghidour & Grangier, 2021; Ravanelli & Bengio, 2018). Prior
wavelet-based neural approaches often predefine filter shapes or levels (Nfissi et al., 2025; 2024),
and traditional superlets were not differentiable within GPU-centric training (Moca et al., 2021;
Bârzan et al., 2021). Our work formulates fractional superlets in a fully differentiable, end-to-end
learnable front-end. LFST thus learns emotion-tailored TF patterns with a continuous trade-off be-
tween time and frequency resolution and integrates with a compact STEE encoder to directly serve
the classification objective.

3
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3 PROPOSED METHOD

3.1 PROBLEM SETUP AND NOTATION

We consider supervised SER from raw audio. Let x : R→R be a finite-energy waveform (x∈L2)
sampled at rate rs; continuous time is t and the discrete index is n. Our goal is a time–frequency (TF)
representation with F bands over [fmin, fmax], denoted {Sfi(t)}Fi=1. Angular frequency is ω=2πf ;
convolution is ∗; complex conjugation is (·)∗. Symbols are summarized in Appendix Table 4.

Morlet CWT foundation. We use DC-corrected, approximately analytic Morlet wavelets with
Gaussian envelope. For frequency f and cycle count c, with σ = c/(ksdf) (default ksd=5),

ψf,c(t) = g(t;σ) ej2πft − e−
1
2 (2πfσ)

2

g(t;σ), g(t;σ) = exp
(
−t2/(2σ2)

)
, (1)

which enforces zero mean (admissibility). In our implementation, Morlets are magnitude-
normalized (L1 by default; L2 optional) and built with σ = c/(ksdf), exactly as in the papers’
modified Morlet parameterization. Wavelet coefficients and the classical scalogram are:

Wf,c(t) = (x ∗ ψ∗
f,c)(t) ∈ C, |Wf,c(t)|2. (2)

Using one global c fixes a uniform TF trade-off (small c: temporal acuity; large c: frequency selec-
tivity), motivating multi-c constructions.

Classical superlets (integer order). (Moca et al., 2021)

A (multiplicative) superlet of order o at center frequency f is the set:
SLf,o = {ψf,c | c = c1, c2, . . . , co}, c1< · · ·<co, (3)

typically under a multiplicative cycle schedule ck = c1 ·k. The superlet response is the geometric
mean (GM) of the individual wavelet responses; with analytic Morlets the per-wavelet response
includes the usual

√
2 factor (immaterial for relative magnitudes):

R
[
SLf,o

]
= o

√√√√ o∏
k=1

R[ψf,ck ], R[ψf,ck ] =
√
2x ∗ ψf,ck . (4)

To form a magnitude TF map (the SLT),

S
(o)
f (t) =

(
o∏

k=1

∣∣Wf,ck(t)
∣∣)1/o

, Lx,c1,o(t, ω) =
∣∣SLTx,c1,o(t, ω)∣∣2. (5)

Integer adaptive superlets (ASLT) increase o with frequency via a rounded schedule, producing the
well-known “banding.”

Fractional superlets (adjacent-order mixing; not fully continuous). (Bârzan et al., 2021)

To reduce banding, fractional superlets define a fractional order of = oi+α with oi ∈ N, α ∈ [0, 1),
and mix only orders {1, . . . , oi, oi+1}:

FSLTx,c1,of (t, ω) =

[
Rx

(
c1[oi+1]; t, ω

)α oi∏
k=1

Rx

(
c1k; t, ω

)]1/of
, (6)

withRx the analytic wavelet response magnitude. The order schedule of (ω) is linear without round-
ing, so the representation is smooth within each interval of ∈ [oi, oi+1), but the participating set
of cycles still changes discretely at integers; hence FSLT is adjacent-order piecewise, not a fully
continuous mixture across all orders.

3.2 LEARNABLE FRACTIONAL SUPERLET TRANSFORM (LFST)

We go beyond FSLT by learning (i) a per-band fractional mixture over all orders via a simplex of
weights, (ii) a strictly monotone log-frequency grid with exact endpoints, and (iii) a per-band base
cycle count. We also produce a weighted, differentiable phase-congruency channel and apply a
learnable asymmetric hard-threshold (LAHT) denoiser to magnitudes only, as illustrated in Fig. 1.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 1: LFST front-end. Learnable log-spaced frequencies and softmax order weights yield an
effective order oeff . Magnitudes are geometrically aggregated into S∈RB×F×T ; phase congruency
κ ∈ [0, 1]B×F×T comes from weighted unit phasors. A length mask is applied; LAHT is applied
only to S; channels are stacked as S2 = [S,κ], and oeff is forwarded for FiLM.

(i) Learned order weights and geometric aggregation. For each band fi and order o ∈
{1, . . . , O} we learn logits θi,o and softmax weights:

wi,o =
exp(θi,o)∑
o′ exp(θi,o′)

,
∑
o

wi,o = 1, wi,o ≥ 0, (7)

and define Wi,o(t) = (x ∗ ψ∗
fi,co(fi)

)(t). The LFST magnitude is the log-domain weighted GM:

Sfi(t) = exp

(
O∑

o=1

wi,o log
(
|Wi,o(t)|+ ε

))
, oeff(fi) =

O∑
o=1

owi,o ∈ [1, O], (8)

which strictly generalizes FSLT: instead of adjacent-order mixing, LFST learns a full simplex over
orders at each band. Implementation details: we accumulate

∑
o wi,o log |Wi,o| stably (per-order

streaming; no [B,F,O, T ] tensors), then exponentiate with a capped exponent (e.g., ≤ 20) to avoid
overflow.

Complex convolution and numerics. We implement analytic convolution with real 1-D convs
by convolving with (ℜψ, −ℑψ) (cross-correlation equivalence), align length (“same” padding plus
symmetric crop/pad), and compute magnitudes with a small floor (e.g., 10−12) to avoid division by
zero in unit-phasor calculations used for κ; all steps are in the released code.

(ii) Learned log-frequency grid. We learn a strictly increasing grid with exact endpoints by dis-
tributing positive deltas in log-frequency:

log fi = log fmin+

i−1∑
j=1

δj , δj ∝ softplus(ϑδ,j), f1 = fmin, fF = fmax, f1< · · ·<fF . (9)

This is implemented by softplus-positivity, normalization to (log fmax− log fmin), and a cumulative
sum; fi = exp(log fi) is returned.

(iii) Learned cycle schedule. We preserve the classical multiplicative structure but learn the per-
band base cycles:

c1(fi) = 1 + softplus(ϑc,i) ≥ 1, co(fi) = o · c1(fi), o = 1, . . . , O. (10)

The Morlet time-spread σ then follows σ = c/(ksdf) (Eq. 15), and wavelets are DC-corrected and
L1/L2 normalized before convolution.

(iv) Weighted phase congruency. We quantify cross-order phase alignment at each (fi, t) via the
same learned weights wi,o:

κfi(t) =

∥∥∥∥∥
O∑

o=1

wi,o
Wi,o(t)

|Wi,o(t)|+ ε

∥∥∥∥∥
2

∈ [0, 1]. (11)

In code we compute unit phasors per order and accumulate weighted real/imag parts; the final norm
is clamped to [0, 1]. κ is concatenated with S to form a two-channel TF input and, together with
oeff , conditions a per-frequency Adaptive FiLM gate in the encoder.

5
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Figure 2: Encoder. DW/PW conv stem → spectral residual block → two TF-hybrid blocks with
SE2D. An adaptive FiLM gate conditions on stats of S, κ, and oeff . Features are temporally down-
sampled, passed through axial self-attention, mean-pooled over frequency, then pooled by attentive
stats to yield an embedding; a linear head outputs logits.

3.3 LEARNABLE ASYMMETRIC HARD THRESHOLDING (LAHT).

Applied only to S (never κ), LAHT is an element-wise, smooth hard-threshold. It has independent,
learnable branches; since S≥0, only the positive branch is active in practice (the negative branch is
kept for generality).

Thresholds. With raw parameters α, β, b+, b− ∈R, bounded biases via tanh (scale bmax>0), and a
small ε>0,

τ+ = softplus
(
softplus(α)+bmax tanh(b+)

)
+ε, τ− = softplus

(
softplus(β)+bmax tanh(b−)

)
+ε,

(12)
then clamp τ±∈ [ε, τmax]. Thresholds are shared across TF bins.

Gate. We use a stable fast-sigmoid with slope γ>0: σγ(z) = 1
2

(
tanh

(
γ
2 z
)
+ 1
)
, which yields

near-binary gating without discontinuities.

Mapping. For u∈R, let u+=max(u, 0) and u−=max(−u, 0). The asymmetric LAHT is:

LAHT(u) = σγ(u+ − τ+)u+ − σγ(u− − τ−)u−. (13)

Entrywise on S, small coefficients are driven toward 0, while large coefficients pass with unit gain
(since σγ→1 as u+≫τ+); because S≥0, the second term vanishes.

3.4 SPECTRO-TEMPORAL EMOTION ENCODER (STEE)

The LFST yields a two–channel TF tensor S2 = [S;κ ] ∈ RB×2×F×T (Sec. 3.2). The STEE (Fig.
2), maps S2 to an utterance representation via lightweight, TF–aware blocks:

(1) Temporal depthwise stem. A depthwise 2D convolution along time only (1 × kt), followed
by 1×1 mixing, BN, GELU, and dropout:

X0 = PW
(
DW(1×kt)(S2)

)
∈ RB×C×F×T .

This extracts per–band temporal micro–patterns without early cross–band mixing.

(2) Spectral residual block. A depthwise frequency convolution (kf × 1) with residual path
and two 1×1 pointwise layers (BN+GELU+Dropout inside the block). This captures short–range
cross–band correlations while preserving T .

(3) TF–hybrid residual block + SE. A residual block that sums a depthwise (kf×1) with a
depthwise (1×kt) branch, followed by 1×1 mixing; then squeeze–excitation (SE) across (F, T )
to reweight channels globally, and a second identical TF–hybrid block. These steps learn local TF
motifs (e.g., short vertical/horizontal ridges) and calibrate channel salience.

(4) Adaptive FiLM frequency gating (see Fig. 3). We modulate channels using LFST
side–information. For each frequency f we form:

ϕ(f) =
[
St(f), logσt(S)(f), κt(f), logσt(κ)(f), oeff(f)

]
,

6
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Figure 3: FiLM gate. Per-frequency features fuse {meant, log stdt} of S and κ with oeff via
Linear(5→1), then project F →C→C with GELU and sigmoid to form a gate in RB×C×1×1 that
multiplicatively modulates encoder activations.

where (·)t and σt(·) are time–mean and (unbiased) std. A small MLP fuses {ϕ(f)}Ff=1 into a
channel gate g ∈ (0, 1)C via a per–frequency linear, a projection RF→RC , GELU, and a sigmoid;
we apply X ← g ⊙X. This conditions processing on the LFST’s band–wise analysis regime (via
oeff ) and order–aligned phase reliability (via κ).

(5) Temporal downsampling and time–only attention. We reduce sequence length by fixed
striding along time (t 7→ t:s:T ; non–learnable subsampling), then apply local multi–head
self–attention along time only with window wt. Concretely, we first average over frequency,
X̃ = meanF (X) ∈ RB×C×T ′

, apply 1D attention on T ′. This captures long–range temporal
dependencies at linear cost in T ′ and F .

(6) Attentive statistics pooling and projection. We average over frequency, Xt = meanF (X) ∈
RB×C×T ′

, then use attentive statistics pooling (ASP) over time: frame weights at =
softmax(w⊤Xt) yield:

µ =
∑
t

at Xt, σ =

√∑
t

at (Xt − µ)⊙2 + ε,

and we form h = [µ;σ] ∈ R2C . A Linear→LayerNorm→GELU (with dropout) projects h to
z ∈ RD, followed by a linear classifier.

Complexity. All convolutions are depthwise or 1×1. Attention is 1D and local, so the dominant
cost scales as O(C,F, T ′ + C, T ′wt), far below 2D attention’s O((FT )2).

4 EXPERIMENTS & RESULTS

4.1 DATASETS

IEMOCAP Busso et al. (2008): approximately 12 hours of 16 kHz multimodal dyadic interactions
across 5 male-female sessions (10,039 utterances; average 4.5 s). Labels include anger, happiness,
sadness, and neutral (plus others), with dimensional ratings and class imbalance. Following prior
work Jin et al. (2015); Kim et al. (2013), we merge happy+excited and exclude rare classes (disgust,
fear, surprise). EMO-DB Burkhardt et al. (2005): 535 studio-quality German utterances (average
5 s) from 10 professional actors (5 male, 5 female) simulating seven emotions: anger, boredom, dis-
gust, anxiety/fear, happiness, sadness, and neutral. NSPL-CRISE: real telephony segments (8 kHz)
from one month of National Suicide Prevention Lifeline calls. With IRB approval and anonymiza-
tion, trained researchers annotated the first and last calls per high-frequency caller (confidence 1–5),
yielding 738 angry, 435 fearful/concerned/worried (FCW), 753 happy, 738 sad, and 909 neutral.

4.2 TRAINING AND EVALUATION PROTOCOL

Setup. Audio is resampled to 16 kHz (IEMOCAP/EMO-DB) or 8 kHz (NSPL-CRISE) and peak-
normalized. LFST is initialized with fmin ≈ 50–60Hz and fmax just below Nyquist Por et al.
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Table 1: Classification reports on IEMOCAP, EMO-DB, and NSPL-CRISE.

(a) IEMOCAP

Class Prec. Rec. F1
Angry 0.714 0.864 0.782
Happy 0.977 0.780 0.868
Neutral 0.964 0.936 0.950
Sad 0.821 0.935 0.874
Acc. 0.875
Macro avg 0.869 0.879 0.868
Weighted avg 0.890 0.875 0.877

(b) EMO-DB

Class Prec. Rec. F1
Anger 1.000 0.949 0.974
Anx./Fear 0.905 0.905 0.905
Boredom 0.952 0.833 0.889
Disgust 0.824 0.933 0.875
Happiness 0.909 0.952 0.930
Neutral 0.917 0.917 0.917
Sadness 0.800 0.889 0.842
Acc. 0.914
Macro avg 0.901 0.911 0.904
Weighted avg 0.918 0.914 0.914

(c) NSPL-CRISE

Class Prec. Rec. F1
Angry 0.767 0.757 0.762
FCW 0.711 0.727 0.719
Happy 0.922 0.776 0.843
Neutral 0.753 0.802 0.777
Sad 0.704 0.760 0.731
Acc. 0.769
Macro avg 0.771 0.765 0.766
Weighted avg 0.776 0.769 0.771

Figure 4: Confusion matrices for emotion recognition. (a) EMO-DB, (b) IEMOCAP, and (c) NSPL-
CRISE datasets. Values are in %.

(2019) (7,600 at 16 kHz; 3,800–4,000 at 8 kHz); its exponential parametrization enforces 0≤fmin≤
fmax ≤ Nyquist. Variable-length inputs are batch-wise time-padded with masks so padding does
not affect (S, κ). LFST: K = 96 log-spaced bands, O = 8, ksd = 5, window L = 1024. STEE:
dh = 128; kernels kt = 9, kf = 5; three spectral residual blocks, one TF-hybrid (SE), Adaptive
FiLM, axial self-attention (4 heads, window 128) after stride-8 downsampling; dropout p = 0.10
in conv blocks and ASP. Training: AdamW (lr 10−3, cosine decay; wd 10−4), mixed precision,
elementwise clipping ±1.0; focal loss (γ=2) with αy∝1/freq(y); gradients flow through all LFST
parameters and LAHT. Results are averaged over 10 seeds (mean±std). We report accuracy and
F1-score/precision/recall on held-out 10% tests, with 80% for training and 10% for validation.

4.3 RESULTS & STATE-OF-THE-ART (SOTA) COMPARISION

Summary. Across all corpora, LFST+STEE is accurate and well-calibrated (Table 1, Fig. 4). IEMO-
CAP (4-class): Acc = 0.875, F1= 0.868, 95% CIs (Acc [0.846, 0.902], F1 [0.839, 0.897]), Co-
hen’s κ = 0.833. EMO-DB (7-class): Acc = 0.914, F1= 0.904, CIs (Acc [0.864, 0.957], F1
[0.847, 0.947]), κ = 0.898. NSPL-CRISE (5-class, telephony): Acc = 0.769, F1= 0.766, CIs (Acc
[0.725, 0.811], F1 [0.722, 0.811]), κ = 0.708. Small gaps between macro and weighted averages
indicate the class-bias. Thus, LFST+STEE outperforms other SOTA SER methods as presented in
Table 2 on the three datasets.

Per-class trends. IEMOCAP: Neutral/Sad recalls 0.936/0.935; Happy recall 0.780 with confusion
to Angry (17.7%; Fig. 4b). EMO-DB: class-wise performance is uniformly strong; a mild Bore-
dom↔Neutral ambiguity persists (e.g., 4.2% boredom→neutral), yet all classes exceed 0.83 F1.
NSPL-CRISE: narrowband/noisy conditions lower scores; main confusions are FCW→Sad/Neutral
(15.9%/6.8%) and Angry→Neutral/Sad (12.2%/12.2%) (Fig. 4c).

Ablation-driven reading. The learned fractional order-mixture sharpens narrowband, quasi-
stationary content (boosting Neutral/Sad) while preserving temporal acuity for transients (An-
gry/Happy). The phase-congruency channel (κ) discounts broadband impulses (fewer Happy false
positives), and LAHT suppresses low-SNR TF activations, especially helpful on NSPL-CRISE.
The learned log-frequency grid concentrates resolution near pitch/formants, aligning with strong
Happy/Neutral precision on IEMOCAP/EMO-DB.
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Table 2: Compared methods on NSPL-CRISE (D1), IEMOCAP (D2), and EMO-DB (D3). Best
results in bold.

(a) SOTA comparison across D1 and D2

Metric Accuracy (%) F1-score (%)
Dataset D1 D2 D1 D2
Mirsamadi et al.
Mirsamadi et al. (2017)

51.3 63.5 52.1 63.8

Li et al.
Li et al. (2019)

68.7 81.6 69.3 82.1

Chen et al.
Chen et al. (2018)

59.6 64.8 60.2 65.2

Zhao et al.
Zhao et al. (2019)

67.2 52.1 67.9 52.4

LFST+STEE (ours) 76.9 87.5 76.6 86.8

(b) SOTA comparison on EMO-DB (D3)

Method Accuracy (%) F1-score (%)
Liu et al.
Liu & Kexin (2022)

89.13 89.4

Tuncer et al.
Tuncer et al. (2021)

88.35 88.35

Parlak et al.
Parlak et al. (2014)

87.2 N/A

Ancilin et al.
Ancilin & Milton (2021)

81.5 N/A

LFST+STEE (ours) 91.4 90.4

Table 3: Comparison of LFST+STEE with capacity-matched baselines across three datasets.

D1 NSPL D2 IEMOCAP D3 EMO-DB
Method Acc F1 Acc F1 Acc F1
STFT+STEE 73.1 72.7 84.8 84.0 89.0 88.2
Wavelet+STEE (Morlet) 74.6 74.6 85.4 84.8 90.1 89.5
Fixed superlet+STEE 74.9 74.7 86.0 85.1 90.1 89.8
LEAF+STEE 72.5 72.1 84.9 84.1 89.0 88.2
LFST+STEE (ours) 76.9 76.6 87.5 86.8 91.4 90.4

Statistical validation. McNemar tests vs. a majority-class baseline are decisive: p < 10−80 (IEMO-
CAP), p < 10−30 (EMO-DB), p < 10−40 (NSPL), confirming that gains are not priors attributable.

4.4 BASELINES (SAME STEE)

Under the same STEE backbone (Table 3), the choice of front-end induces characteristic error
profiles. With STFT+STEE, the lower joint time–frequency concentration increases confusions
between Happy↔Angry on IEMOCAP, Boredom↔Neutral on EMO-DB, and FCW→Sad/Neutral
on NSPL. Using Wavelet+STEE (Morlet c = 3) improves harmonic tracking but offers poorer
burst acuity; consequently, pitch-driven errors (notably Happy/Neutral) are reduced, while tran-
sient “Angry” errors rise. A Fixed superlet+STEE front-end yields tighter TF tiles than CWT
yet lacks learned order weights, leading to behavior that falls between Wavelet and LFST. Finally,
LEAF (Zeghidour & Grangier, 2021) +STEE, a generic learnable filterbank, tends, under our com-
pact STEE, to behave similarly to STFT.

5 CONCLUSION

We introduced LFST, a learnable fractional superlet transform front-end, paired with a compact
STEE encoder for speech emotion recognition. By jointly learning the log-frequency grid, fractional
order mixture, and phase-congruency weighting under physically motivated constraints, the model
adapts time–frequency resolution to speech structure while remaining fully differentiable end-to-
end. Capacity-matched ablations (STFT, CWT, fixed superlets, LEAF) indicate consistent gains,
especially in challenging telephony conditions, driven by sharper quasi-stationary cues, preserved
temporal acuity, and reduced broadband artifacts. These findings suggest that learning the analysis
front-end itself is an effective and interpretable route to robust SER, with promising extensions to
in-the-wild data, cross-lingual transfer, and broader paralinguistic tasks.

Reproducibility Statement. All components are specified mathematically and architecturally in the
main paper §3 (LFST, LAHT, and STEE), with training and evaluation settings consolidated in §4.2
”Training and Evaluation Protocol” section and metric/statistical procedures in §4.3 ”Results”. And
all Appendix sections §5. Source code at: https://anonymous.4open.science/r/LFST-for-SER-C5D2.
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TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A NOTATION AND PRELIMINARIES

This appendix provides all technical details necessary to reproduce the Learnable Fractional Su-
perlet Transform (LFST) and the Spectro–Temporal Emotion Encoder (STEE) used in our work.
We first summarize our notation and assumptions, then derive the LFST from first principles, pro-
vide gradient derivations, give pseudocode for the full system, and describe the datasets, training
protocol, and reproducibility package. The source code of this work is shared in this repository:
https://anonymous.4open.science/r/LFST-for-SER-C5D2.

A.1 SIGNAL MODEL AND CONVENTIONS

Let x : R→ R be a real-valued, finite–energy speech waveform. Throughout we assume x ∈ L2(R)
and is sampled at rate rs (Hz). Continuous time is denoted by t ∈ R and discrete sample index by
n ∈ Z; the two are related by t = n/rs. We consider a finite analysis window of length L samples
centred at t = 0. Frequencies f are in Hertz and angular frequency ω = 2πf . We write convolution
by (f ∗ g)(t) =

∫
f(τ)g(t− τ) dτ and complex conjugation by z̄.

The goal of LFST is to produce, for a set of F frequency bands {fi}Fi=1, two maps S ∈ RB×F×T

and κ ∈ [0, 1]B×F×T for a batch of B waveforms of (possibly varying) length T . Here S is a
magnitude map highlighting spectro–temporal energy and κ quantifies phase congruency across
orders. A length mask m ∈ {0, 1}B×1×T can optionally be supplied to zero–out padded positions;
operations in LFST and STEE obey the mask.

Throughout we normalise Morlet wavelets by either their ℓ1 or ℓ2 norm, as specified. We denote the
order of a superlet by o ∈ {1, . . . , O}, with O the maximum order. Table 4 summarises all symbols.

A.2 SYMBOL TABLE

Table 4: Summary of notation. Shapes refer to the implementation with batch size B, number of
frequencies F and time steps T .

Symbol Definition/Meaning Domain/Shape

x(t), x[n] Real–valued input waveform R or RB×1×T

rs Sampling rate positive scalar (Hz)
L Wavelet kernel length odd integer samples
ψf,c(t) DC–corrected Morlet wavelet with centre frequency f and cycles c C; see Eq. (15)
g(t;σ) Gaussian envelope exp(−t2/(2σ2)) R
σ Time spread of Morlet; σ = c/(ksdf) positive scalar
ksd Bandwidth constant controlling trade–off fixed constant
fi ith analysis frequency R, strictly increasing
F Number of frequency bands integer
c1(fi) Base cycles at band i ≥ 1 (learnable)
co(fi) Cycles of order o at band i: co = oc1 ≥ 1
O Maximum order integer (8 in experiments)
wi,o Softmax–normalised weight of order o at band i ≥ 0,

∑
o wi,o = 1

oeff(fi) Effective order
∑

o owi,o ∈ [1, O]
Wi,o(t) Analytic wavelet response (x ∗ ψ̄fi,co)(t) CB×F×T

Sfi(t) LFST magnitude at (fi, t): geometric mean of |Wi,o| weighted by w RB×F×T
≥0

κfi(t) Phase congruency at (fi, t) [0, 1]B×F×T

m Optional length mask {0, 1}B×1×T

α, β, b± LAHT threshold hyper–parameters real scalars (learned)
C Number of channels in STEE integer (128 in experiments)
kt, kf Kernel sizes (time/frequency) odd integers
γ Slope of LAHT sigmoid positive scalar (fixed)
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B DERIVATION OF THE LEARNABLE FRACTIONAL SUPERLET TRANSFORM

We derive LFST starting from analytic Morlet wavelets, then classical (integer) superlets, fractional
superlets, and finally our learnable construction. We give explicit admissibility, normalization, sta-
bility, and differentiability results, and align each step with the implemented model.

B.1 ANALYTIC MORLET WAVELETS

For a target frequency f > 0 and a number of cycles c ≥ 1, let:

g(t;σ) = exp
(
− t2

2σ2

)
, σ =

c

ksd f
, ksd > 0 (we use ksd = 5). (14)

Define the DC-corrected analytic Morlet:

ψf,c(t) = g(t;σ) ej2πft − e−
1
2 (2πfσ)

2︸ ︷︷ ︸
:=κ(f,σ)

g(t;σ). (15)

Admissibility (zero-mean). Using
∫
R g(t;σ) e

j2πft dt =
√
2π σ e−

1
2 (2πfσ)

2

and
∫
R g(t;σ) dt =√

2π σ, we have: ∫
R
ψf,c(t) dt =

√
2π σ e−

1
2 (2πfσ)

2

− κ(f, σ)
√
2π σ = 0.

Hence ψf,c is zero-mean (admissible). In practice, we discretize with an odd window L samples:
ψf,c[n] = ψf,c

(
n
rs

)
for n = −(L− 1)/2, . . . , (L− 1)/2 at sampling rate rs.

Normalization. We normalise each discrete wavelet to unit ℓ1 or unit ℓ2 norm:

ψf,c ←
ψf,c

∥ψf,c∥p
, p ∈ {1, 2}.

This equalises the per-filter gain.

B.2 CONTINUOUS WAVELET TRANSFORM AND SCALOGRAM

For a real signal x, the analytic CWT at (f, c) is:

Wf,c(t) =
(
x ∗ ψ̄f,c

)
(t), scalogram: |Wf,c(t)|2. (16)

Implementation note. The code uses 1D cross-correlation (no time-reversal) with real and imaginary
parts handled separately. For analytic Morlets with near-symmetric envelope, this differs from true
convolution by a negligible phase offset; exact convolution can be obtained by time-reversing the
kernel.

B.3 CLASSICAL SUPERLETS (INTEGER ORDER)

Let c1 < c2 < · · · < co (typically ck = c1 k). Define Rf,ck(t) = (x ∗ ψ̄f,ck)(t). The order-o
superlet response is the (complex) geometric mean:

R
(
SLf,o

)
(t) =

(
o∏

k=1

Rf,ck(t)

)1/o

, S
(o)
f (t) =

∣∣R(SLf,o)(t)
∣∣ = ( o∏

k=1

|Rf,ck(t)|

)1/o

. (17)

This emphasizes components consistently present across scales and suppresses scale-inconsistent
energy.

B.4 FRACTIONAL SUPERLETS

Let of ∈ R and write of = oi+α with oi = ⌊of⌋ ∈ N, α ∈ [0, 1). A fractional superlet interpolates
between orders oi and oi+1:

FSLTf,of (t) =

(
Rf,c1[oi+1](t)

α
oi∏

k=1

Rf,c1k(t)

)1/of

. (18)

This removes integer-order banding but still changes the participating set at integer boundaries.
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B.5 LEARNABLE FRACTIONAL SUPERLET TRANSFORM (LFST)

To learn the time–frequency tradeoff from data and avoid piecewise mixing, we introduce smooth,
learnable order weights.

Learnable order weights. At each band fi we learn logits θi,1:O and set:

wi,o =
eθi,o∑O

o′=1 e
θi,o′

,

O∑
o=1

wi,o = 1, wi,o ≥ 0. (19)

This yields a smooth weighted geometric mean (below) and an effective order:

oeff(fi) =

O∑
o=1

owi,o ∈ [1, O]. (20)

Learnable frequency grid (monotone log-spacing). Let fmin, fmax > 0 and learn positive in-
crements on the log-scale. Given parameters θδ,1:(F−1), define δj = softplus(θδ,j) > 0 and:

∆j =
δj∑F−1

k=1 δk

(
log fmax − log fmin

)
, j = 1, . . . , F − 1, (21)

log fi = log fmin +

i−1∑
j=1

∆j , i = 1, . . . , F, (empty sum = 0), (22)

fi = exp(log fi). (23)

Lemma (monotonicity and exact endpoints). If fmax > fmin, then ∆j > 0 and log f1 = log fmin,
log fF = log fmax, and log f1 < · · · < log fF . Proof. δj > 0 ⇒ ∆j > 0 and the cumulative sum
telescopes to log fmax at i = F ; strictly positive increments ensure strict monotonicity.

Learnable cycle schedule. For band i, set:

c1(fi) = 1 + softplus(ϑc,i) (≥ 1), co(fi) = o · c1(fi). (24)

LFST magnitude and phase congruency. Let Wi,o(t) = (x ∗ ψ̄fi,co(fi))(t). With ε > 0 small,

Sfi(t) = exp

(
O∑

o=1

wi,o log
(
|Wi,o(t)|+ ε

))
, (25)

κfi(t) =

∥∥∥∥∥
O∑

o=1

wi,o
Wi,o(t)

|Wi,o(t)|+ ε

∥∥∥∥∥
2

∈ [0, 1]. (26)

Equation (25) is the weighted geometric mean of stabilized magnitudes; (26) measures phase align-
ment across orders.

Basic properties.

• (Scaling) For anyA > 0,Wi,o scales linearly: Wi,o[Ax] = AWi,o[x]. Hence log(|W |+ε)
shifts by logA (for |W | ≫ ε), and Sfi(t) scales approximately by A:

S
(Ax)
fi

(t) = exp
(∑

o

wi,o log
(
A|Wi,o|+ ε

))
≈ AS(x)

fi
(t).

• (Range of κ) Each summand in (26) is a vector of norm in (0, 1]. By the triangle inequality
and

∑
o wi,o = 1, κ ≤ 1. Nonnegativity is clear.

• (Concentration) By Jensen, exp(
∑

o wi,o logmo) ≤
∑

o wi,omo for mo > 0, so the
geometric mean is never larger than the arithmetic mean; this penalizes outlier magnitudes
and concentrates persistent energy.
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B.6 DIFFERENTIABILITY AND GRADIENTS

All parameterizations use smooth maps (exponential/softplus/softmax), so S and κ are C∞ in both
Θ and x. We record useful derivatives.

Gradients w.r.t. order logits. Let gi,o(t) = log
(
|Wi,o(t)| + ε

)
and denote ⟨g⟩i =

∑
o wi,ogi,o.

Then:
∂Sfi(t)

∂θi,o
= Sfi(t)wi,o

(
gi,o(t)− ⟨g⟩i(t)

)
,

∣∣∣∣∂Sfi(t)

∂θi,o

∣∣∣∣ ≤ Sfi(t)∆g, (27)

where ∆g = maxo gi,o −mino gi,o is finite when x and wavelets are bounded. This is the standard
softmax-log-mean gradient; it is numerically stable.

Gradients w.r.t. convolutional parameters. For any scalar parameter ζ of ψfi,co (e.g. fi, c1),

∂Sfi(t)

∂ζ
= Sfi(t)

O∑
o=1

wi,o
1

|Wi,o(t)|+ ε

∂|Wi,o(t)|
∂ζ

, (28)

and
∂|W |
∂ζ

=
ℜ
(
W ∂W

∂ζ

)
|W |

(for |W | > 0),
∂Wi,o

∂ζ
= x ∗ ∂ψ̄fi,co

∂ζ
. (29)

Thus only ∂ψ/∂ζ is needed. Writing ω = 2πf , κ = exp[− 1
2 (ωσ)

2], we obtain:

∂ψ

∂f
= g

(
j 2πt ejωt

)
−

(∂κ
∂f

)
︸ ︷︷ ︸

−κ (2π)ω σ2

g, (30)

∂ψ

∂σ
=
(

∂g
∂σ

)(
ejωt − κ

)
− g

(
∂κ
∂σ

)
︸ ︷︷ ︸
−κω2σ

,
∂g

∂σ
= g

t2

σ3
. (31)

Chain rule handles c1 and f via σ = c
ksdf

with ∂σ
∂c = 1

ksdf
and ∂σ

∂f = − c
ksdf2 = −σ

f , and
co = o c1(fi) with c1(fi) = 1 + softplus(ϑc,i). The frequency-grid derivatives follow from
fi = exp(log fi) and the cumulative-softplus construction of log fi.

Differentiability of κ. Using κ =
∥∥∑

o wi,o Ui,o

∥∥
2

with Ui,o =Wi,o/(|Wi,o|+ ε),

∂κ

∂ζ
=
ℜ
〈∑

o wi,o Ui,o,
∑

o wi,o
∂Ui,o

∂ζ

〉
∥
∑

o wi,o Ui,o∥2
,

∂U

∂ζ
=

(|W |+ ε) ∂W
∂ζ −W

∂|W |
∂ζ

(|W |+ ε)2
.

All terms are smooth due to ε > 0.

B.7 STABILITY (LIPSCHITZ BOUNDS)

Let ∥ · ∥∞ be the sup norm and assume unit-ℓ1 wavelet normalization (the ℓ2 case is analogous). By
Young’s inequality, ∥Wi,o∥∞ ≤ ∥x∥∞ ∥ψi,o∥1 = ∥x∥∞. Moreover, on [ε, ∥x∥∞ + ε] the slope of
log is ≤ 1/ε, so for each (i, o, t),

Lip
(
x 7→ log(|Wi,o(t)|+ ε)

)
≤ 1

ε .

As
∑

o wi,o = 1, the weighted sum has the same bound, and exp has slope at most ∥x∥∞ + ε on the
image interval. Therefore:

Lip
(
x 7→ Sfi(t)

)
≤ ∥x∥∞ + ε

ε
, (32)

and x 7→ κfi(t) is also Lipschitz due to bounded, smooth composition. Choosing ε not too small
improves worst-case constants while preserving sensitivity.
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B.8 COMPLEXITY AND MEMORY

For batch size B, F bands, order cap O, and T time steps, LFST performs, per order, two real
1D correlations for F filters, i.e. O(BF T ) MACs per order; streaming over O gives O(BFOT )
time and O(BF T ) activation memory (since order accumulation is in-place). This matches the
implementation, which allocates reusable buffers and collapses the order loop.

B.9 IMPLEMENTATION ALIGNMENT AND NUMERICAL NOTES

• Cross-correlation vs. convolution. The code uses cross-correlation with (ℜψ,−ℑψ); ex-
act convolution can be emulated by time-reversing ψ. The effect on analytic Morlets is
negligible in practice.

• Stabilization. The code adds a small constant (10−12) inside magnitude computations and
caps the exponent in (25) before exponentiation to avoid overflow; these are now docu-
mented.

• Normalization. Both ℓ1 and ℓ2 wavelet normalizations are supported; experiments use ℓ1
unless stated otherwise.

• Frequency endpoints. The log-grid construction ensures monotonicity and exact end-
points provided log fmax > log fmin. In practice, parameterize log fmax = log fmin +
softplus(η) to guarantee this.

• Phase congruency channel. κ is computed from unit phasors and not denoised by LAHT;
only S is passed through LAHT in the implementation (as assumed here).

Learnable Asymmetric Hard Thresholding (LAHT). To denoise S we use a smooth hard-
threshold with asymmetric positive/negative thresholds. Let u ∈ R be a scalar input (here, an
element of S). Given raw learnable parameters (α, β, b+, b−) and fixed constants bmax > 0, ε > 0,
define:

τ+ = softplus
(
softplus(α) + bmax tanh(b+)

)
+ ε, (33)

τ− = softplus
(
softplus(β) + bmax tanh(b−)

)
+ ε, (34)

so that τ± > 0 always. Write u+ = max(u, 0), u− = max(−u, 0) and let:

σγ(z) =
1
2

(
tanh

(
γ
2 z
)
+ 1
)
, σ′

γ(z) =
γ
4 sech2

(
γ
2 z
)
,

with slope parameter γ > 0. The LAHT mapping is:
LAHT(u) = σγ(u+ − τ+)u+︸ ︷︷ ︸

positive branch

− σγ(u− − τ−)u−︸ ︷︷ ︸
negative branch

. (35)

Since S≥0 only the positive branch is active in practice.

BASIC PROPERTIES

Lemma 1 (Positivity, asymmetry, and boundedness). For any u ∈ R, τ± > 0, and γ > 0, the
map LAHT satisfies: (i) LAHT(u) ∈ [−|u|, |u|] and sign(LAHT(u)) = sign(u) for u ̸= 0; (ii)
LAHT(u) is nondecreasing in u on [0,∞) and nonincreasing on (−∞, 0]; (iii) if τ+ = τ− then
LAHT is an odd map, LAHT(−u) = −LAHT(u).

Sketch. (i) σγ ∈ [0, 1] and u± ≥ 0, hence each branch has magnitude at most |u| and correct sign.
(ii) On u ≥ 0, LAHT(u) = σγ(u− τ+)u with derivative (below) nonnegative; symmetry yields the
negative side. (iii) follows by replacing (τ+, τ−) with a common value and noting the symmetric
form of (35).

Proposition 1 (Hard-threshold limit). As γ →∞,

LAHT(u) −→


u, u ≥ τ+,
0, 0 ≤ u < τ+,

0, −τ− < u ≤ 0,

u, u ≤ −τ−,
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i.e. LAHT converges pointwise to an asymmetric hard threshold.

Proof. σγ(z)→ ⊮{z > 0} pointwise as γ →∞. Substitute into (35).

GRADIENTS W.R.T. THE INPUT

Using u+ = max(u, 0) and u− = max(−u, 0), for u > 0,

∂ LAHT(u)

∂u
= σ′

γ(u− τ+)︸ ︷︷ ︸
≤γ/4

u + σγ(u− τ+), (36)

and for u < 0 (recall u− = −u),

∂ LAHT(u)

∂u
= σ′

γ(u− − τ−)u− + σγ(u− − τ−). (37)

At u = 0, both branches vanish and the one-sided derivatives equal σγ(−τ+) (from the right) and
σγ(−τ−) (from the left); thus LAHT is continuous at 0 and C1 at 0 iff τ+ = τ−. In our use (S ≥ 0)
only (36) matters.

Slope bounds and Lipschitz constant. Since σ′
γ(z) ≤ γ/4 for all z and 0 ≤ σγ ≤ 1,

0 ≤ ∂ LAHT(u)

∂u
≤ 1 +

γ

4
u+ (u ̸= 0).

If inputs satisfy |u| ≤ Umax (as they do when u = Sfi(t) with bounded signals), then:

Lip(LAHT) ≤ 1 +
γ

4
Umax.

Moreover, far above threshold (u ≫ τ+) the derivative approaches 1; far below, it approaches 0, so
LAHT behaves like a near-identity on strong components and a near-zero map on weak ones.

GRADIENTS W.R.T. THRESHOLD PARAMETERS

Let z+ = u+ − τ+ and z− = u− − τ−. From (35),

∂ LAHT

∂τ+
= −σ′

γ(z+)u+,
∂ LAHT

∂τ−
= +σ′

γ(z−)u−. (38)

Now differentiate thresholds by the chain rule. Writing s(x) = softplus(x) and σ(x) = 1
1+e−x ,

∂τ+
∂α

= σ
(
s(α) + bmax tanh(b+)

)
σ(α),

∂τ+
∂b+

= σ
(
s(α) + bmax tanh(b+)

)
bmax sech2(b+),

(39)
∂τ−
∂β

= σ
(
s(β) + bmax tanh(b−)

)
σ(β),

∂τ−
∂b−

= σ
(
s(β) + bmax tanh(b−)

)
bmax sech2(b−).

(40)

Combining with (38) yields

∂ LAHT

∂α
= −σ′

γ(z+)u+ σ
(
s(α) + bmax tanh(b+)

)
σ(α), (41)

∂ LAHT

∂b+
= −σ′

γ(z+)u+ σ
(
s(α) + bmax tanh(b+)

)
bmax sech2(b+), (42)

∂ LAHT

∂β
= +σ′

γ(z−)u− σ
(
s(β) + bmax tanh(b−)

)
σ(β), (43)

∂ LAHT

∂b−
= +σ′

γ(z−)u− σ
(
s(β) + bmax tanh(b−)

)
bmax sech2(b−). (44)

Implementation alignment. The code uses exactly this “double–softplus” structure and tanh-
bounded bias terms (clamped in [−bmax, bmax]) to keep thresholds positive, smooth, and numerically
stable.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

INTERPRETATION AND EFFECT ON S

For S ≥ 0, LAHT reduces to Ŝ = σγ(S − τ+)S:

• Bias-variance tradeoff: τ+ sets the denoising boundary; larger τ+ suppresses more low-
energy bins (lower variance) at the risk of discarding faint but real structure (higher bias).

• Soft hard threshold: Near threshold, the multiplicative gate σγ(S−τ+) rapidly transitions
from 0 to 1; away from threshold, the map is near-identity.

• Asymmetry capacity: Although S ≥ 0 in our pipeline, LAHT supports different τ±,
useful in contexts with signed u.

IMPLEMENTATION ALIGNMENT

• The code uses the exact double–softplus ◦ tanh parameterization above (with thresholds
softly bounded and ε added) and fixes γ.

• LAHT is applied to S (nonnegative); the κ channel bypasses LAHT (as used by FiLM).
• Thresholds are clamped to a safe numerical range, preventing exploding gates.

C ALGORITHMIC SPECIFICATION

We provide pseudocode for LFST (Algorithm 1), LAHT (Algorithm 2) and the STEE encoder (Al-
gorithm 3). All loops are over orders and frequency bins; the implementation streams over orders to
avoid storing tensors of shape [B,F,O, T ].

Algorithm 1 LFST forward pass (single batch of B signals)
Input : Batch x ∈ RB×1×T , length mask m ∈ {0, 1}B×1×T , parameters Θ defining frequencies

{fi}Fi=1, base cycles {c1(fi)} and logits θi,o.
Output: Magnitude map S ∈ RB×F×T , effective orders oeff ∈ RF , phase congruency κ ∈

[0, 1]B×F×T

Compute frequencies {fi} via softplus-normalised increments (Sec. B).
Compute base cycles c1(fi) = 1 + softplus(ϑc,i) and order cycles co(fi) = o c1(fi) for o =
1, . . . , O.

Compute weights wi,o = softmaxo(θi,o) and effective orders oeff(fi) =
∑

o owi,o.
Initialise accumulators w log← 0 ∈ RB×F×T , Reκ← 0, Imκ← 0.
for o = 1 to O do

for i = 1 to F do
Construct analytic Morlet filter ψfi,co(fi) (Eq. (15)) of length L and normalise.

Convolve x with ψ̄fi,co using real 1D convolutions to obtain {Wi,o}Fi=1 ∈ CB×F×T (real part
ℜW , imaginary part ℑW ). Align output length by symmetric cropping or padding.

Compute magnitude |Wi,o| =
√
(ℜW )2 + (ℑW )2 + ε and unit phasors ui,o =

Wi,o

|Wi,o| .
Accumulate log-magnitudes: w log ← w log+w·,o log |W·,o| (broadcast weights over B and
T ).

Accumulate phasor components: Reκ← Reκ+ w·,o Reu·,o, Imκ← Imκ+ w·,o Imu·,o.
Compute S = exp(min(w log)) (cap exponent to avoid overflow).
Compute κ = min

(√
(Reκ)2 + (Imκ)2, 1

)
.

Apply mask m to S and κ (elementwise multiplication).
Return (S, oeff , κ).

D DATASETS AND PREPROCESSING

We evaluate our method on three corpora: IEMOCAP, EMO-DB and NSPL-CRISE. All audio is
converted to mono, normalised to peak magnitude 1 and resampled to the task-specific sample rate
(16 kHz for IEMOCAP and EMO–DB; 8 kHz for NSPL-CRISE). We summarise key statistics in
Table 5.
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Algorithm 2 LAHT mapping (vectorised over tensor U )
Input : Tensor U ∈ R∗ (arbitrary shape), learnable raw parameters (α, β, b+, b−), slope γ and

bounds bmax, ε
Output: Thresholded tensor V of same shape

Compute τ+ = softplus(softplus(α) + bmax tanh(b+)) + ε and τ− = softplus(softplus(β) +
bmax tanh(b−)) + ε.

Split U into positive and negative parts: U+ = max(U, 0), U− = max(−U, 0).
Define fast sigmoid σγ(z) = 1

2 (tanh(
γ
2 z) + 1).

Compute gating functions: G+ = σγ(U+ − τ+), G− = σγ(U− − τ−).
Return V = G+ ⊙ U+ −G− ⊙ U−.

Algorithm 3 Spectro–Temporal Emotion Encoder (STEE) with FiLM and Axial Attention
Input : Magnitude S ∈ RB×F×T , phase congruency κ ∈ [0, 1]B×F×T , effective orders oeff ∈ RF

and encoder parameters.
Output: Utterance embedding z ∈ RB×D and logits y ∈ RB×C for C classes.

Stack magnitude and phase channels: S2 = cat(S, κ) ∈ RB×2×F×T .
(1) Temporal depthwise stem. Apply a depthwise 1× kt convolution on S2 followed by pointwise
1× 1 mixing, batch normalisation, GELU, and dropout to obtain X0 ∈ RB×C×F×T .

(2) Spectral residual block. Apply a depthwise (kf × 1) convolution, pointwise mixing, batch
normalisation, GELU and dropout; add the residual input to obtain X1.

(3) TF-hybrid blocks and squeeze–excitation. Apply a depthwise (kf×1) branch and a depthwise
(1×kt) branch in parallel, sum the outputs, project by a pointwise layer, add the residual (X1) and
apply batch normalisation, GELU and dropout; call this X2. Apply squeeze-excitation (two 1× 1
convolutions with GELU and sigmoid) to obtainX3; apply a second TF-hybrid block to obtainX4.

(4) Adaptive FiLM gate. Compute per-frequency statistics S, log σ(S), κ, log σ(κ) over time and
fuse them with oeff via a linear layer to produce a gate g ∈ (0, 1)B×C . Multiply X4 by g broad-
casting over F and T .

(5) Temporal downsampling and axial self-attention. Subsample along time by a fixed stride;
average X over frequency to obtain X̃ ∈ RB×C×T ′

; apply local multi-head self-attention along
time to capture long-range dependencies; expand the attended features back over frequency.

(6) Attentive statistics pooling and projection. Average the attended features over frequency to
obtain Xt ∈ RB×C×T ′

; compute per–frame weights by a 1D convolution and softmax; form
weighted mean µ and standard deviation σ across time; concatenate [µ;σ] ∈ RB×2C ; project
through a linear layer, layer normalisation, GELU and dropout to obtain the embedding z ∈ RB×D;
if a classifier is present, project z to logits y ∈ RB×C .

return (z, y).

For NSPL-CRISE, labels were derived from the first and last calls of high-frequency callers on
the National Suicide Prevention Lifeline over one month, with IRB approval and anonymisation.
Calls were annotated by trained raters on a 5-point confidence scale; we discarded low-confidence
samples.

Preprocessing. For each dataset, we pad shorter utterances with zeros to the longest length in the
batch and provide a binary mask to LFST and STEE so that padding does not influence magnitude
or phase. On each utterance, we compute the LFST with F frequency bands, O orders, base kernel
length L, and ksd = 5. The minimal frequency fmin and maximal fmax are initialised in the range
[50, 60]Hz and just below Nyquist, respectively; these endpoints are learnable but constrained to
remain in [0,Nyquist]. The base cycles c1(fi) are initialised to c1 cycles, and orders wi,o are
initialised uniformly.

E TRAINING AND EVALUATION PROTOCOL

We train LFST and STEE end-to-end using the AdamW optimiser (learning rate 10−3 with cosine
decay, weight decay 10−4). Training uses mixed precision and gradient clipping at ±1 to prevent
exploding gradients. The loss is the class-balanced focal loss with focusing parameter γ = 2 and
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Table 5: Speech emotion recognition datasets used in our experiments. ”Utters” denotes the number
of utterances. We follow standard class mappings and test protocols from the literature.

Dataset Sampling rate Utters Classes (after mapping)

IEMOCAP (Busso
et al., 2008)

16 kHz 10 039 angry, happy (excited merged), neutral,
sad

EMO-DB (Burkhardt
et al., 2005)

16 kHz 535 anger, boredom, disgust, anxiety/fear,
happiness, sadness, neutral

NSPL-CRISE 8 kHz 2 999 angry, fearful/concerned/worried,
happy, sad, neutral

per-class weights αy ∝ 1/freq(y). For each dataset, we split the utterances into train/validation/test
in an 80/10/10 ratio, stratified by class. We average results over 10 random seeds and report the
mean and standard deviation. All reported metrics (accuracy, F1-score, precision, recall, Cohen’s κ)
are computed on the held–out test sets. Confidence intervals (95%) are obtained by bootstrapping
test predictions.

F REPRODUCIBILITY

To reproduce our results, clone the anonymous repository and install the required dependencies
(PyTorch 2.2 or later, Python 3.10, NumPy, SciPy, scikit–learn). Experiments were run on NVIDIA
A100 GPUs with CUDA 11.8. Table 6 lists hyperparameter examples. We fix random seeds (e.g.,
1234) for NumPy and PyTorch before data loading.

Table 6: Main hyper-parameters used in our experiments.

Component Parameter Value Notes

LFST Number of bands F 96 log–spaced, learnable
Maximum order O 8 weights softmax–normalised
Window length L 1024 odd, symmetric padding
ksd 5 Morlet bandwidth constant
ε 10−12 stability constant
Initial c1 1.5 cycles per band

LAHT γ 8 sigmoid slope
bmax 5 bias bound

STEE Channels C 128 base width
Kernel sizes kt, kf 9, 5 odd for symmetry
Axial attention heads 4 local window 128 steps
Dropout rate 0.10 training only

Training Optimiser AdamW lr = 10−3, cosine decay
Batch size 16 variable per dataset
Epochs 50 early stopping on validation loss

G LIMITATIONS AND KNOWN FAILURE MODES

While LFST improves time-frequency flexibility relative to fixed front–ends, certain limitations re-
main. (i) The multiplicative nature of the superlet aggregation emphasises signals present across
all orders; very short transients may be attenuated. Increasing the number of orders O or learning
order-dependent c1 can mitigate this, but increases cost. (ii) Although we enforce monotonicity of
the frequency grid, there is no explicit constraint to keep fmin ≤ fmax besides initialisation; careful
monitoring of fmin and fmax parameters is needed during training. (iii) Convolution in PyTorch is
implemented as cross-correlation; for asymmetric wavelets this differs from the mathematical con-
volution by a time reversal. Our analytic Morlet is approximately symmetric in its envelope, so the
effect is negligible, but a true convolution could be implemented by reversing the filters. (iv) The
system is trained on limited datasets; generalising to other languages or recording conditions may
require retraining and careful data augmentation.
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