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Figure 1. We extend 3D Gaussian splatting to human animation, introducing a unified Gaussian-based
representation for both humans and environments. This enables dynamic synthesis of human–scene interactions
and photorealistic rendering with the Gaussian splatting algorithm, demonstrating a new direction for neural
scene representations in animation.

ABSTRACT

We present a novel framework for animating humans in 3D scenes using 3D Gaus-
sian Splatting (3DGS), a neural scene representation that has recently achieved
state-of-the-art photorealistic results for novel-view synthesis but remains under-
explored for human-scene animation and interaction. Unlike existing animation
pipelines that use meshes or point clouds as the underlying 3D representation, our
approach introduces the use of 3DGS as the 3D representation to the problem of
animating humans in scenes. By representing humans and scenes as Gaussians,
our approach allows for geometry-consistent free-viewpoint rendering of humans
interacting with 3D scenes. Our key insight is that the rendering can be decoupled
from the motion synthesis and each sub-problem can be addressed independently,
without the need for paired human-scene data. Central to our method is a Gaussian-
aligned motion module that synthesizes motion without explicit scene geometry,
using opacity-based cues and projected Gaussian structures to guide human place-
ment and pose alignment. To ensure natural interactions, we further propose a
human–scene Gaussian refinement optimization that enforces realistic contact and
navigation. We evaluate our approach on scenes from Scannet++ and the Super-
Splat library, and on avatars reconstructed from sparse and dense multi-view human
capture. Finally, we demonstrate that our framework allows for novel applications
such as geometry-consistent free-viewpoint rendering of edited monocular RGB
videos with new animated humans, showcasing the unique advantage of 3DGS for
monocular video-based human animation.

1 INTRODUCTION

Human animation in 3D scenes is essential for applications ranging from video gaming and computer-
generated imagery (CGI) to robotics. Recent research has made significant progress on generating
humans in 3D scenes (Hassan et al., 2019; Jiang et al., 2024a; Hassan et al., 2021b; Zhao et al., 2023;
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Hwang et al., 2025), where humans are typically represented as either 3D skeletons or meshes, while
background scenes are represented as meshes or point clouds. These representations are compact and
versatile, capable of modeling a wide variety of surfaces. However, a fundamental limitation persists:
there is almost always a domain gap between rendered results and real images due to limitations in
lighting, materials, and geometric fidelity.

In parallel, neural scene representations have emerged, beginning with NeRF (Mildenhall et al., 2020)
and recently 3D Gaussian Splatting (Kerbl et al., 2023), enabling photorealistic rendering of objects,
humans, and full 3D scenes from novel viewpoints or in novel poses. Yet, despite their success in
rendering quality, neural representations have seen little to no adoption in human-scene animation
pipelines, which continue to rely on mesh and point cloud–based frameworks.

Gaussian Splatting as a 3D representation for human-scene animation, in theory offers natural
advantages over existing mesh based representations: First, 3DGS enables photorealistic rendering
of human-scene interactions with superior lighting and material fidelity. Second, 3DGS allows for
reconstructing scenes with only a monocular video (Ling et al., 2024) captured from a mobile phone,
thus allowing for applications such as geometry consistent free viewpoint rendering of videos with
new humans, personalized content creation and gaming in scenes from mobile-captured videos. Such
applications are difficult with a mesh based representation as estimating meshes, or pointclouds
from only monocular scene videos remains challenging (Wang et al., 2025). This motivates the
central question addressed in this paper: Can neural scene representations—specifically Gaussian
Splatting—be effectively used as a 3D representation for human animation in 3D scenes? (Fig. 1).

Several obstacles prevent a direct extension of 3DGS to human animation in 3D scenes. First, most
existing work on human–scene interaction synthesis (Hassan et al., 2021b; Jiang et al., 2024a; Hwang
et al., 2025; Zhao et al., 2023) assumes paired human motion data with scene geometry. Such
datasets are difficult to collect at scale, and conversion from mesh-based annotations into Gaussians is
non-trivial. Second, human-scene animation requires motion synthesis that respects both the structure
of the scene and the natural dynamics of the human pose, which for a non-mesh representation
remains non-trivial. Furthermore, unlike meshes, 3DGS does not provide explicit topology or clean
geometry, complicating tasks like surface-based contact modeling.

To address these challenges, we offer a novel perspective for human–scene animation, grounded in two
key insights: First, rendering of humans and scenes in 3DGS can be decoupled from motion synthesis.
That is, we can reconstruct humans and scenes independently, animate humans in a canonical space,
and then place them back into reconstructed 3DGS scenes. This is common in classical graphics
pipelines for meshes, where canonical models are animated via skinning or rigging, and has recently
been adopted for animatable 3DGS avatars as well. However, prior work has primarily studied such
Gaussian avatars in isolation. In contrast, our contribution is to extend this paradigm to human–scene
animation, where avatars must not only be animated but also consistently placed and rendered inside
reconstructed 3DGS scenes. Second, motion synthesis can itself be decoupled from explicit geometry:
even though 3DGS does not provide watertight surfaces, we show that its opacity fields and projected
Gaussian structures offer sufficient cues to guide human placement.

Our framework proceeds in two stages. First, we reconstruct humans as animatable Gaussians from
either multiview capture using an off-the-shelf module. These Gaussians are then posed using a
Gaussian-aligned motion module (Sec. 3.2), which computes scene-aligned motion parameters by
relying on opacity-based culling and orthographic projection of scene Gaussians for path finding.
Our core contribution is the migration and adaptation of traditional scene-mesh human interaction
techniques (including RL-based locomotion and motion transitions) to 3DGS. To further ensure
realistic interactions, we introduce a human–scene Gaussian refinement optimization (Sec. 3.3)
that adjusts the placement and motion of humans for natural contact and navigation within the scene.

To showcase the applicability of our method on diverse datasets, we present results on scenes from the
Scannet++ dataset (Yeshwanth et al., 2023) and from scenes downloaded from the publicly available
SuperSplat 3DGS library (SuperSplat). To demonstrate the efficacy of our method on different Avatar
reconstruction datasets, we also showcase results on Avatars from the BEHAVE (Bhatnagar et al.,
2022) and Avatarrex datasets (Zheng et al., 2023). The results from BEHAVE demonstrate that our
method works on avatars reconstructed from sparse camera setups. We finally demonstrate the utility
of our presented framework for geometry consistent free viewpoint rendering of monocular videos
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with new animated humans on several monocular videos from the DL3DV dataset (Ling et al., 2024),
showcasing the unique advantage of 3DGS for casual video-based human animation.

To summarize our contributions are as follows:

• We introduce the 3D Gaussian Splatting representation to the classical Computer Graphics
problem of animating humans in 3D environments

• We demonstrate that our framework can be used for geometry consistent free viewpoint
rendering of monocular videos edited with new animated humans

• We introduce a novel Gaussian aligned motion module for motion synthesis in scenes
represented as 3D Gaussians

• We introduce a human scene Gaussian refinement optimization for correct placement of hu-
man Gaussians in scenes represented using 3DGS leading to better contact and interactions.

2 RELATED WORK

Neural Rendering Following the publication of NeRF (Mildenhall et al., 2020), there has been
significant research on Neural Rendering (Xie et al., 2022b). Nerf is limited by its computational
complexity and despite several follow-up improvements (Müller et al., 2022; Barron et al., 2022;
2023; Tancik et al., 2023), the high computational cost of NeRF rermain. 3DGS introduced in (Kerbl
et al., 2023) addresses this limitation by representing scenes with an explicit set of primitives shaped
as 3D Gaussians, extending previous work (Lassner & Zollhöfer, 2021). 3DGS rasterizes Gaussian
primitives into images using a splatting algorithm (Westover, 1992). 3DGS originally designed
for static scenes has been extended to dynamic scenes (Shaw et al., 2023; Luiten et al., 2024; Wu
et al., 2024; Lee et al., 2024; Li et al., 2023a), slam-based reconstruction, (Keetha et al., 2024),
mesh reconstruction (Huang et al., 2024; Guédon & Lepetit, 2024) and NVS from sparse cameras
(Mihajlovic et al., 2024).

Human Reconstruction and Neural Rendering Mesh-based templates (Pavlakos et al., 2019; Loper
et al., 2015) have been used to recover 3D human shape and pose from images and video (Bogo et al.,
2016; Kanazawa et al., 2018). However, this does not allow for photoreal renderings. In (Alldieck
et al.; 2019) recover a re-posable human avatar from monocular RGB. However their use of a mesh
template also does not allow for photorealistic renderings. Implicit functions (Mescheder et al., 2019;
Park et al., 2019) have also been utilized to reconstruct detailed 3D clothed humans (Chen et al.,
2021; Alldieck et al., 2021; Saito et al., 2020; He et al., 2021; Huang et al., 2020; Deng et al., 2020).
However, they are also unable to generate photorealistic renderings and are often not reposable.
Several works (Peng et al., 2021; Guo et al., 2023; Weng et al., 2022; Jiang et al., 2022; Habermann
et al., 2023; Zhu et al., 2024; Li et al., 2022; Liu et al., 2021; Xu et al., 2021) build a controllable
NeRF that produces photorealistic images of humans from input videos. Unlike us, they do not model
human-scene interactions. With the advent of 3DGS, several recent papers use a 3DGS formulation
(Kocabas et al., 2023; Qian et al., 2024; Moreau et al., 2024; Abdal et al., 2024; Zielonka et al.,
2023; Moon et al., 2024; Li et al., 2024b; Pang et al., 2024; Lei et al., 2023; Hu et al., 2024; Li et al.,
2024a; Zheng et al., 2024; Jiang et al., 2024b; Dhamo et al., 2024; Qian et al., 2023; Xu et al., 2024;
Junkawitsch et al., 2025) to build controllable human or face avatars. Unlike our method, they do not
model human-scene interactions. Prior works have also extended the 3DGS formulation to model
humans along with their environment, (Xue et al., 2024; Zhan et al., 2024; Mir et al., 2025), but
unlike us, they either do not focus on human animation in 3D scenes.

Humans and Scenes Human-scene interaction is a recurrent topic of study in computer vision and
graphics. Early works (Fouhey et al., 2014; Wang et al., 2017; Gupta et al., 2011) model affordances
and human-object interactions using monocular RGB. The collection of several recent human-scene
interaction datasets (Hassan et al., 2021a; Guzov et al., 2021; Hassan et al., 2019; Savva et al., 2016;
Taheri et al., 2020; Bhatnagar et al., 2022; Jiang et al., 2024a; Cheng et al., 2023; Zhang et al., 2022)
has allowed the computer vision community to make significant progress in joint 3D reconstruction
of human-object interactions (Xie et al., 2022a; 2023; 2024a; Zhang et al., 2020). These datasets have
also led to the development of methods that synthesize object conditioned controllable human motion
(Zhang et al., 2022; Starke et al., 2019b; Hassan et al., 2021c; Diller & Dai, 2024). All these methods
represent humans and scenes as 3D meshes and inherit the limitations of mesh-based representations
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Figure 2: Using a latent motion model and 3DGS scene representation, we synthesize human motion that
confirms with the 3D scene Gaussians using Gaussian-aligned motion module. We adapt RL based controllers
and latent optimization for 3DGS scenes. We further refine these Gaussians for correct placements and contact.
These composited human and scene Gausssians can be rendered from any viewpoint to generate photoeal images.

including their inability to generate photorealistic images, while our method allows for photorealistic
renderings of humans and scenes.

Human Animation Human animation is another extensively studied problem in vision and graphics.
Motion matching (Reitsma & Pollard, 2007), learned motion matching (Clavet, 2016; Holden et al.,
2020) and motion graphs (Lee et al., 2002; Fang & Pollard, 2003; Kovar et al., 2008; Safonova et al.,
2004; Safonova & Hodgins, 2007) are common methods employed in the video-gaming industry
for generating kinematic motion sequences. Deep learning variants (Holden et al., 2017; Starke
et al., 2019a; 2021; 2020) have also gained popularity. Diffusion Models (Tevet et al., 2023) have
emerged as a powerful paradigm for human motion synthesis. Several follow-up works extend
the original Motion Diffusion model with physics(Yuan et al., 2023), blended-positional encoding
(Barquero et al., 2024), and for fine-grained controllable motion synthesis (Karunratanakul et al.,
2023; Pinyoanuntapong et al., 2024; Xie et al., 2024b). Reinforcement learning (Zhang & Tang,
2022; Zhao et al., 2023) is another oft-used paradigm used for motion synthesis. Diffusion models
have also been used as latent-motion models (Zhao et al., 2025) but unlike us, they only focus on
clean, noise-free mesh-based scene representations and ignore the rendering aspects of human-scene
interaction leading to limited rendering quality and photorealism.

3 METHOD

We present a method that enables virtual humans represented using Gaussian splats to navigate and
interact in complex environments reconstructed as 3D Gaussian scenes. Our framework consists of
three key components: (1) Gaussian Reconstruction: We reconstruct both scenes and humans as 3D
Gaussians from RGB images. For scenes, we use standard 3DGS reconstruction, while for humans,
we learn human Gaussian representations that can be animated with different SMPL poses (Sec. 3.1).
(2) Gaussian-Aligned Motion Synthesis: Central to our approach is a novel Gaussian-aligned
motion module (Sec. 3.2), which uses the reconstructed scenes (Sec. 3.1) and a latent-variable based
motion synthesis framework (using RL and latent space optimization adapted to 3DGS) to synthesize
motion parameters aligned with the 3DGS scenes (3) Differentiable Contact Refinement in 3DGS:
We use the synthesized human motion data to animate human Gaussians and apply a novel refinement
algorithm for correct human-scene interaction (Sec. 3.3) (Fig. 3). The refinement module detects
contact frames from motion data and optimizes translation vectors to enforce proper contact between
human and scene Gaussians while maintaining temporal smoothness and avoiding penetrations.
These composed Gaussians can be rendered from any camera viewpoint to produce videos of humans
interacting with diverse scenes. Figure 2 provides an overview.

3.1 GAUSSIAN RECONSTRUCTION

Scene Gaussians. Given monocular or multi-view video of a static scene, we model the environment
as a set of NS anisotropic 3D Gaussians GS = {(µi,Σi, αi, ci)}NS

i=1, where each Gaussian has
center µi ∈ R3, covariance Σi ∈ R3×3, opacity αi ∈ (0, 1), and possibly view-dependent color ci.
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Under the camera projection Πt, each Gaussian projects to an ellipse with screen-space covariance
Σ2D

i,t = JtΣiJ
⊤
t , where Jt = ∂Πt

∂x

∣∣
µi

and ui = Πt(µi). Its pixel contribution at u is gi,t(u) =

exp
(
− 1

2 (u−ui)
⊤(Σ2D

i,t )
−1(u−ui)

)
, yielding effective opacity α̂i,t(u) = αi gi,t(u). The rendered

image is obtained via front-to-back alpha compositing,

Ît(u) =
∑

i∈St(u)

( ∏
j∈St(u), j<i

(
1− α̂j,t(u)

))
α̂i,t(u) ci,

where St(u) denotes the depth-sorted splats overlapping pixel u. Parameters Θ = {µi,Σi, αi, ci}
are optimized with the standard 3DGS photometric loss across frames.

Human Gaussians. We learn deformable human Gaussian representations from multi-view images
that can be animated with different SMPL poses. Our approach consists of three key steps:

Step 1: Canonical Gaussian parameterization on SMPL. Given multi-view images of a person
performing diverse poses, we learn a mapping from SMPL poses to 3D Gaussians in posed space.
Following (Li et al., 2023b), we place Gaussians on the 2D manifold of the SMPL surface by con-
structing an approximate front–back UV atlas via orthographic projections of the SMPL mesh. Let β
denote SMPL shape and θt the pose at time t. We rasterize pose-conditioned features into a pose map
Pt ∈ RH×W×C - denoted using M(β,θt). A per-identity StyleUNet fϕ predicts a set of canonical
human Gaussians anchored on the SMPL surface: GC

t = fϕ(Pt) =
{
(xC

k ,Σ
C
k , ck, αk)

}NH

k=1
.

Step 2: Skinning to posed space (LBS). We obtain posed Gaussians by applying linear blend skinning
(LBS) to canonical Gaussians GC

t with SMPL joint transformations {(Rb(θt), tb(θt))}Bb=1 and
vertex/bone weights wkb inherited from the SMPL surface by using nearest neighbour sampling from
Canonical Gaussians to SMPL vertices. With GP

t = {(xP
k ,Σ

P
k , αk, ck)}NH

k=1 we denote the posed
human Gaussians at time t. During training, we render these posed Gaussians using standard 3DGS
and supervise using multi-view images and cameras.

Step 3: Pose-to-Gaussian inference (test-time). Following (Li et al., 2023b), we compute the
top K ∈ [10, 20] PCA components of training pose maps {Pt}, yielding mean P̄ and basis QK .
At inference, poses synthesized by our Gaussian-aligned motion module (Sec. 3.2) are first pro-
jected to this subspace and then mapped to posed Gaussians: P̃y = P̄ + QKzy GP

y =

LBSθy

(
fϕ(π

(
M(β,θy)

)
)
)
. Here we use π to denote the projection to the subspace operation and y

to indicate a test-time pose. For further details please see supplementary materials.

3.2 GAUSSIAN-ALIGNED MOTION SYNTHESIS

We introduce a Gaussian-aligned motion module that synthesizes controllable human motion directly
in 3DGS scenes. Our key novelty is twofold: (i) we deploy reinforcement learning (RL) in Gaussian
space by deriving reliable scene cues from opacity-weighted projections (no meshes or paired
human–scene data required); and (ii) we couple RL locomotion with a deterministic latent optimizer
for precise, contact-sensitive transitions in 3DGS scenes.

Design overview. We reuse a strong latent motion backbone trained on large scale mocap dataset
and add two 3DGS-specific controllers: an RL locomotion policy that navigates between waypoints
while avoiding scene Gaussians, and a deterministic latent-space optimizer that executes short,
fine-grained actions near targets (e.g., stop, sit, grasp) before returning control to RL. While this
explicit decomposition is not typical in existing motion synthesis frameworks, we find it especially
effective in 3DGS settings, as this allows us to exploit the fact that in 3DGS scenes much of the
raw scene detail can be abstracted to (i) a set of paths for navigation and (ii) action points (e.g.,
sitting locations, grasping targets provided by an animator) at which specific behaviors are executed -
thus allowing for scene-aware motion synthesis without human-scene paired data. Both submodules
operate consistently in the latent space of a learned motion model (Zhao et al., 2025).

Latent motion backbone. We adopt a latent motion prior, following prior work (Zhao et al., 2025)
trained on AMASS (Punnakkal et al., 2021; Mahmood et al., 2019). Specifically, the model learns
a compact motion-primitive space with a transformer VAE trained on mocap data, and places a
diffusion prior in this latent space. Given motion history H and a future motion segment X, the
encoder E outputs a Gaussian posterior qϕ(z | H,X) = N (µ, σ2I) with reparameterized sample
z = µ+ σ ⊙ ε where ε ∼ N (0, I). The decoder D reconstructs motion as X̂ = D(H, z). On this
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latent space, a denoiser G operates with forward process

q(zτ | zτ−1) = N (
√
1− βτ zτ−1, βτ I)

and predicts the clean code ẑ0 = G(zτ , τ,H, c), where c is an optional text embedding. During
inference we sample zτmax

∼N (0, I), perform about τmax≈10 denoising steps to obtain ẑ0, decode
X̂ = D(H, ẑ0), and update H with the last H frames for autoregressive sampling. This latent
backbone is reused; our contribution lies in coupling it with 3DGS-specific controllers.

Scene-adapted RL locomotion in 3DGS. Our insight here is that locomotion policies trained in
mesh-based synthetic environments (Zhao et al., 2023) can be used in 3DGS reconstructions when
combined with our scene adaptation. We cast navigation as an MDP whose action space is the latent
space of the motion model. The policy outputs a start-noise z

(τmax)
RL,i , which a frozen G,D map to a

short motion clip, ensuring stable rollouts. At step i, the agent observes state si = (Hi,gi,ηi, ci)
where Hi is motion history, gi a goal cue, ηi a scene cue, and ci a text embedding. The policy
samples ai ∼ πθ(· | si), interpreted as z

(τmax)
RL,i . The resulting clip Xi updates the history Hi+1.

Rewards ri = r(si, ai, si+1) encourage waypoint progress, obstacle avoidance, and kinematic
plausibility. Training follows synthetic mesh-based environments as in (Zhao et al., 2023), while our
contribution is the deployment in 3DGS. For deployment in 3DGS scenes (which lack meshes), we
approximate navigation regions via orthographic projection: (i) compute PCA of Gaussian centers to
align a top-down view, (ii) threshold opacities to filter floaters, (iii) render a binary map of obstacles
and run A* for pathfinding. The policy consumes an egocentric occupancy grid/walkability map
M ∈ {0, 1}N×N centered on the agent. For each grid cell u, we compute its nearest-neighbor
distance d(u) to filtered Gaussians and mark M(u) = 1 if d(u) > τ , else 0. Despite being
approximate, this provides sufficiently reliable local context for navigation in 3DGS scenes. For
inference during locomotion, we fix text cue ci to ”walk”. For details please see supp mat.

Latent optimization for transitions in 3DGS. Once the agent reaches the vicinity of an action point,
control switches from RL to deterministic latent-space optimization for fine-grained actions such as
stopping, sitting, or grasping. Following (Zhao et al., 2025), we adopt a deterministic DDIM sampler
(no step-skipping), which defines a fixed rollout (see supp. mat.) M = ROLLOUT(Zopt,Hseed,C),
where Zopt is the terminal noise variable, Hseed the seed history, and C a fixed text cue (“sit”, “grab”).
We optimize Zopt by minimizing

L(Zopt) = F (Π(M),guser) + Cons(M)

with gradient updates Z(k+1)
opt = Z

(k)
opt − η∇ZoptL(Z

(k)
opt ), where Π(·) projects the rollout onto task-

relevant variables, F measures goal satisfaction, and Cons adds continuity, collision, and smoothness
constraints.

For position-only goals guser (e.g., sitting or grabbing at a user-provided point), we synthesize a short
f -frame snippet M = (M1, . . . ,Mf ) starting from the locomotion end state Mloc

end. In this setting, F
corresponds to the reach and stop terms, with Lreach = ∥xf (j

⋆)−g∥22 and Lstop = ∥vf (j
⋆)∥22, while

Cons corresponds to start-continuity Lstart = ∥M1 −Mloc
end∥22, collision Lcoll =

∑
b∈Bf

[−ϕ(b)]2+,

and smoothness Lsmooth = 1
f−1

∑f
t=2 ∥Mt −Mt−1∥22. The final objective is therefore

L = Lreach + λvLstop + λstartLstart + λcollLcoll + λsLsmooth

Here j⋆ is an anchor joint (e.g., pelvis), xf ,vf are its pose and velocity at frame f , Bf are sampled
SMPL points at frame f , and ϕ(·) is a differentiable signed-distance proxy to 3DGS Gaussians .
After completing the action, the same formulation synthesizes the exit transition (e.g., sit → walk),
after which locomotion resumes. Though our method can synthesize actions which mimic “picking
up”, or “grabbing” in the scene it cannot lift actual objects from the scene - as we assume that the
scene remains static throughout.

3.3 DIFFERENTIABLE CONTACT REFINEMENT IN 3DGS

After animating the reconstructed human Gaussians with synthesized human motion data (Sec. 3.2),
we place them into the reconstructed 3DGS scene. Here we want to highlight that we never use
the SMPL mesh. We use the “SMPL pose” (the joint angles of the 24 SMPL joints or the 54
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Figure 3: With (left) and right (without) refinment of Gaussians

SMPL-X joints) - to drive the 3DGS avatar. A naive composition of posed human Gaussians with
scene Gaussians often leads to floor/geometry penetration and inconsistent contacts. We introduce a
contact-aware refinement that solves for small, physically meaningful translations of a sparse set of
human Gaussians so that contacts are respected and penetrations are reduced. (Fig. 3)

We first note that mapping SMPL pose to 3D Gaussians is fundamentally different from mapping
SMPL pose to 3D SMPL mesh. Mapping SMPL pose to a mesh is just a linear blend skinning
operation that maps canonical SMPL mesh vertices to posed SMPL vertices - hence the SMPL pose
can usually be easily optimized to maintain contact with the scene. This is not the case with 3D
human Gaussians. Mapping SMPL pose to 3D human Gaussians involves a forward pass through the
learnt network - and then applying LBS to the output Gaussians. If we were to optimize the SMPL
pose for correct contact this would entail getting a gradient through the neural network that maps
SMPL pose to 3D Gaussians - which would probably be difficult to converge. Instead we optimize
per-Gaussian offsets as the Gaussians (after being output by the network) are already placed close
enough to reasonable locations in the 3d scene; thus we can simply optimize per gaussian offsets -
with heavy regularization for correct contact. We describe the setup in detail below.

Setup. Let the posed human Gaussians at time t be GP
t = {(xP

k ,Σ
P
k , αk, ck)}NH

k=1, and the scene
Gaussians be GS . Our goal is to refine a subset of the human Gaussians by per-frame translations
Tk,t to achieve (i) contact where appropriate and (ii) separation elsewhere.

Contact detection and indexing. From synthesized SMPL motion, we detect contact frames for a set
of body joints using simple kinematic cues. For joint cwith position pc,t, velocity vc,t = pc,t−pc,t−1

and acceleration ac,t = vc,t−vc,t−1, a frame is marked as contact if δc,t = (|vyc,t| < τv)∧(ayc,t < τa),
where y is the vertical axis. Because human Gaussian templates have identity-dependent counts
and no global correspondence, we lift SMPL contact vertices V SMPL

c (e.g., feet, hip) to the human
Gaussians via nearest-neighbour search in the canonical space: i⋆ = argmink ∥xC

k−u∥2, u ∈ V SMPL
c .

The resulting index set Ic specifies which human Gaussians may be refined at contact.

Scene proximity in Gaussian space. We measure scene proximity using a soft nearest-neighbour
distance to scene Gaussians

dβ(x) = − 1
β log

( NS∑
j=1

exp
(
− β ∥x− µj∥

))
,

where µj are scene Gaussian centers and β controls softness. This provides stable gradients for
contact/separation without requiring explicit meshes.

Refinement objective. For a contact Gaussian k ∈ Ic at frame t with indicator δc,t, we optimize a
translation Tk,t and update x̃P

k,t = xP
k,t +Tk,t by minimizing

T⋆
k,t = argmin

T
λs ∥xP

k,t +T− µj(k,t)∥22 + λd ψ(x
P
k,t +T, δc,t) + λr ∥T∥22,

where µj(k,t) is the nearest scene Gaussian center and

ψ(x, δ) =

{
dβ(x)

2, δ = 1 (enforce contact)
hr

(
dβ(x)

)2
, δ = 0 (enforce separation)

with hr(d) = max(0, r − d).
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Figure 4: Qualitative results: Our method generates diverse motions across scenes and identities.

Table 1: Evaluation design. Two baselines × two protocols. HQ: highest-quality rendering settings for each
method. The same camera trajectories are used within each pairwise comparison.
Setting Dataset / Source 3DGS Scene (ours) Recons Mesh Scene (Baseline) Baseline Rendering Protocols

Baseline A Mon. Vids (same scenes) 3DGS reconstruction VGGT dense 3DGS I and II
Baseline B Replica and Curated 3DGS SuperSplat Replica Mesh I and II

For temporal coherence, we add λt
∑

t ∥Tk,t −Tk,t−1∥22. Intuitively, the objective snaps designated
contact Gaussians toward nearby scene surfaces when contact is detected, pushes them away otherwise,
penalizes large displacements, and smooths motion over time.

The refined human Gaussians G̃P
t = {(x̃P

k,t,Σ
P
k , αk, ck)}NH

k=1 are composed with GS and rendered
with the standard 3DGS rasterizer to produce photorealistic interactions (e.g., walking, sitting)
with improved contact fidelity and fewer penetrations. To the best of our knowledge, this is the
first mesh-free refinement in Gaussian space that leverages a differentiable scene-distance, remains
identity-agnostic via SMPL-to-Gaussian lifting, and operates as a lightweight post-hoc stage to
improve contact realism without retraining.

4 EXPERIMENTS

For rendering evaluation, we present two modified mesh-based baselines (Baseline A and B) and
evaluate with two evaluation protocols (I-human and II-automated). For further evaluation on motion
quality and ablations please see the supplementary.

4.1 RENDERING EVALUATION

Baseline A: For Baseline A we collect monocular videos from DL3DV (Ling et al., 2024); each
scene is reconstructed twice (once as 3DGS, once as a mesh using dense VGGT reconstruction (Wang
et al., 2025)) so that comparisons are within-scene. Using the meshes obtained using dense VGGT
reconstruction, we again use (Zhao et al., 2023) to generate SMPL-X parameters. Then we use these
parameters naively to pose human Gaussians (Sec. 3.1) in the 3D scene and render the composited
scene and human Gaussians using 3DGS. Note we do not perform any refinement. Furthermore
note that the scene mesh is only used for motion synthesis but for rendering we use the 3DGS scene
reconstruction and the posed human Gaussians. Baseline A is designed to show that a naive baseline
that composites human and scenes Gaussians does not work out-of-the-box for monocular videos
and hence provides further motivation for our algorithm. For baseline A evaluations, we render
synchronized camera trajectories per pair (identical poses, FoV, and exposure).

Baseline B: In this experiment we aim to evaluate the rendering quality of a strong mesh-based
baseline vs our 3DGS based algorithm. We use the highest quality existing mesh based 3D scenes
from the Replica (Straub et al., 2019) dataset. In the Replica Scene we use the framework in (Zhao
et al., 2023) to synthesize motion. Then we use a rigged scan from RenderPeople (along with its
texture map) (RenderPeople) animated with the synthesized motion parameters in the Replica scene
to generate the final renderings. For rendering our videos we use scenes from the Supersplat library
and Avatars from Avatarrex (Zheng et al., 2023) dataset. This experiment aims to evaluate the highest

8
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Table 2: Human preference study (win rate, %) — fraction of pairwise trials where OURS is preferred.
Baseline B compares OURS vs a mesh based baseline at highest-quality; Baseline A compares OURS (3DGS) vs
a custom baseline designed for monocular videos. Higher is better.

Replica vs 3DGS-Library (Baseline B) Monocular (Baseline A)

OURS(3DGS) vs MESH 82.1 72.9

Table 3: VLM preference study (win rate, %) — fraction of pairwise comparisons where OURS is preferred.
Baseline B compares OURS vs a mesh based baseline at highest-quality; Baseline A compares OURS (3DGS) vs
a custom baseline designed for monocular videos. Higher is better.

Replica vs 3DGS-Library (Baseline B) Monocular (Baseline A)

GPT-5 75.2 71.8
Gemini 2.5 69.1 65.9

quality rendering of a mesh based rendering vs a highest quality 3DGS renderings for the specific
setting of human-scene animation. Note comparisons are not within scene.

Here we want to highlight that finding the same scene+human combination for both our method and
Baseline B would be difficult - because the data capture pipelines for 1) 3DGS vs mesh scene 2)
3DGS vs mesh human are fundamentally different. RenderPeople uses a rig of 250 DSLR cameras
to capture a 3D human mesh - while the AvatarX dataset only uses 16 cameras and Behave dataset
uses only 4. For 3DGS Avatar reconstruction motion of about 120 seconds inside the multiview
camera setup is required while for a mesh capture only one frame is required. The way 3D scenes
are reconstructed for Replica (mesh) and SuperSplat (3DGS) are also fundamentally - the replica
reconstruction uses depth while some supersplat scenes use lidar. Additionally the replica original
images are not available so we can’t reconstruct a 3DGS splat for Replica scenes of the same quality
as the ones on SuperSplat. As such for this particular baselines comparisons are not within scene.

We also want to acknowledge that for 3DGS animatable Avatars we require multiview video while a
mesh can be reconstructed using multiview images. However we believe that for different use-cases,
users would be willing to make the tradeoff for higher rendering quality.

Evaluation Protocol I: Human preference study We conduct a pairwise forced-choice study
measuring perceived photorealism. Each trial presents two mute videos from ours vs Baseline A
or ours vs Baseline B. Participants select the video they find more photorealistic. We generate 5
samples for both comparisons and aggregate votes by comparison. We collect 21 participants for both
Baseline A and B. We report win rate (%) of OURS over its comparator.

Evaluation Protocol II: VLM-based pairwise judgment We use two strong vision–language model
(VLM): GPT-5 (OpenAI, 2025) and Gemini2.5 (Comanici et al., 2025) as paired comparators between
still renderings. For each video pair, we uniformly sample 10 frames per method, form matched pairs
at the same timestamps, and query the VLM with “which image looks more photoreal?”. The VLM
outputs a ternary judgment {Left wins, Right wins, Tie}; we compute a VLM win rate as
the percentage of non-tied pairs favoring OURS. We randomize image order and prevent leakage by
removing textual overlays and metadata.

For the pairwise VLM study, the VLM is instructed to ignore artistic style and focus on physical
plausibility: “which image looks more photoreal? Consider geometry (straight lines, depth cues),
materials (BRDF, speculars), lighting/shadows, and absence of artifacts (flicker, halos, floaters).

Results Baseline A (Same monocular video) On the within-scene comparison (Fig. 6), OURS
outperforms the mesh baseline in both human and VLM judgments (Tables 2–3). Note that the scene
meshes reconstructed using VGGT often exhibit blocky strucutres, blocked paths and hence are not
suitable for motion synthesis, while our algorithm directly operates in Gaussian Space and doesnt
suffer from the same problems. For detailed failure modes see Supp Mat.

Baseline B (Replica Scene), HQ vs HQ. Across both evaluations (Fig. 6) OURS is preferred by
humans and by the VLM comparator (Tables 2–3) - thus clearly underscoring the central premise

9
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Figure 5: Free viewpoint rendering of edited monocular video with animated humans

Baseline A Ours Baseline B Ours
Figure 6: Visual Comparisons with Baselines

of the paper - that neural scene representations yield better rendering quality for human-scene
interaction compared to existing mesh based representations.

4.2 QUALITATIVE RESULTS AND FREE VIEWPOINT RENDERING OF EDITED VIDEOS

In Fig. 4, we show results for diverse scenes from the SuperSplat library, Scannet scenes with Avatars
from BEHAVE (sparse only 4 cameras), DNA-Rendering (Cheng et al., 2023), Avatarrex (Zheng
et al., 2023) datasets. In Fig. 5, we demonstrate that our method works for monocular RGB scene
videos and allows for free viewpoint rendering of videos edited with geometry consistent placement
of animated humans in the scene. For more results please see the supplementary.

5 CONCLUSION

We have presented, to the best of our knowledge, the first method to synthesize human interactions in
diverse 3D environments using 3D Gaussian Splatting (3DGS) as the underlying 3D representation.
Our results suggest that neural rendering is now mature enough to function as a practical component
in end-to-end 3D human–scene animation pipelines, bridging previously disjoint lines of work
in human-scene animation and neural rendering. Crucially, our pipeline operates on scenes
reconstructed from monocular RGB video and allows for applications such as monocular RGB
geometry consistent video editing. We believe this framing and evidence open new research directions
at the intersection of human animation, scene understanding, and neural rendering.

Limitations. Despite this progress, our pipeline has several limitations. First, complex and rapidly
changing illumination can cause rendering artifacts and imperfect relighting. Second, we do not
enforce full physics-based constraints, which can yield interactions that look plausible yet violate
contact, stability, or momentum conservation. Third, the range of interaction types is limited; highly
dexterous manipulation and long-horizon, multi-contact behaviors remain challenging. Fourth, we
assume access to multiview videos of a human performing diverse actions.

Outlook. Addressing these issues suggests several promising research directions: integrating stronger
lighting estimation and inverse rendering, incorporating differentiable or learned physics priors
for contact and dynamics, expanding the interaction vocabulary to richer, longer, and multi-person
scenarios and investigation how Avatars that generalize to Out-of-distribution poses can be recon-
structed from monocular videos. We hope this work provides a foundation for scalable, video-native
human–scene animation pipelines and catalyzes further advances in data, models, and evaluation for
interactive 3D human animation.
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