
Title: Competing theories of probabilistic computations in the brain. 

Scientific question 
How does neural activity represent probability distributions and how are probabilistic 
computations implemented in neural circuits? 

Background 
Behavioral experiments consistently show that humans and animals reason probabilistically 
when presented with noisy, ambiguous, or incomplete information [Knill96]. This requires a 
neural representation of probability distributions and neural circuits capable of implementing the 
operations of probabilistic inference in a manner consistent with that representation. Currently, 
there exist three principal hypotheses: 
 

1. The ​probabilistic population code (PPC)​ [Ma06, Beck08] assumes that different 
(possibly nonlinear) functions of neural activity encode the natural parameters of 
posterior distributions. Efficient use of a PPC predicts three ubiquitously observed 
cortical phenomena independent of the specific probabilistic computation (generative 
model) being performed:  (1) fixed Fano factors, (2) amplitude encoding of confidence, 
and (3) linear evidence integration [Beck11]. From a computational perspective, PPCs 
have also been shown to be naturally incorporated into complex inference schemes 
based on Free Energy minimization [Friston10] as well as message passing and 
predictive coding schemes [Rao99, Beck12, Pitkow 17].  
 

2. The ​distributed distributional code (DDC)​ [Zemel98,Sahani03,Pitkow12] also 
assumes that neural activity encodes uncertainty parametrically, like a PPC, but here the 
uncertainty is encoded as a set of expectations of non-linear encoding functions with 
respect to the represented distribution. These expectations can be thought of as 
generalised moments of the distribution or as the mean parameters of a corresponding 
exponential family distribution. Importantly, DDCs do not require that the represented 
distribution is from a tractable parametric family. The computational appeal of DDCs is 
that they are very well suited to such computations and translate the often intractable 
integrals to learning simple linear mappings. Recent work has shown that they can 
support accurate inference and learning in hierarchical generative models [Vertes18] 
and allow for generalising successor features and value function computation to partially 
observed settings [Vertes19]. Performing inference with DDCs in dynamical 
environments has been shown to account for psychophysics data related to perceptual 
phenomena called postdiction, i.e. inferences about past percepts [Wenliang19]. 
 

3. Neural sampling codes​ [Hoyer03, Fiser10] assume that neural activity represents 
samples from the represented posterior distributions. It directly corresponds to a 



powerful and widely used class of machine learning algorithms (MCMC). Specific neural 
sampling models differ mainly in their choices for the mapping between random 
variables being represented and neural responses. Continuous latents could be 
represented by firing rates [Hoyer03], membrane potentials [Orban16, Echeveste19], or 
linear projections of instantaneous population firing rates [Savin14]; binary latents could 
be represented by spikes and post-synaptic potentials [Buesing11]. Sampling makes 
general predictions about the structure of neural variability and its link to uncertainty 
[Berkes10, Orban16] and was shown to explain neural response means and covariability 
in V1, as a function of stimulus features [Orban16] and behavioral task [Haefner16].  

Challenge or controversy 
Even though these proposals have been around, in some form, for many years there is 
substantial debate and controversy regarding which is the best candidate for the cortical neural 
code. There are multiple reasons for this lack of consensus:  

a. Differences in the inferred variables: while studies advocating for PPCs typically focus on 
inference over concrete task-relevant stimulus variables like orientation, neural sampling 
models typically focus on inference over abstract latents in a generative model of the 
inputs. 

b. Differences in the language used to describe inferred variables, e.g. task-defined 
variables like orientation (PPC) compared to neural sampling and DDCs representing 
latent variables in a generative model of the stimulus (but distinct from it). 

c. Lack of an agreed upon means to determine what variables are being represented in a 
given population of neurons. 

d. There are no agreed upon experimental knobs to manipulate uncertainty about variables 
represented in a given area.  Moreover, most studies often relied on assumptions about 
what manipulations change subjective uncertainty about task-defined variables. 

e. Proponents of the different hypotheses typically compare their predictions against 
different aspects of neural data (e.g. means and variance across multiple brain areas 
during multisensory and evidence integration tasks for PPCs, means and covariances for 
neurons performing inference in image models with neural sampling). 

f. Difference in the role of optimality principles: while PPCs stress statistical optimality from 
a probabilistic decoding perspective, neural sampling typically focuses on how to encode 
a posterior for use in a MCMC sampling-based inference algorithm. 

g. The implicit, and possibly false, assumption that these hypotheses are universal in 
cortex, despite the fact that machine learning solutions suggest that different data 
structures and approximate inference algorithms may be better suited at different 
computational stages for optimal decision making.  

h. The need for further assumptions beyond the nature of the representation to compare 
models to empirical data, and to each other. For instance, in special cases the very 
same system can be explained as performing sampling in a specific generative model 
while also interpreting the output through the lens of a PPC [Shivkumar18]. Similar 
relationships may exist between PPCs and DDCs, as well as DDCs and sampling, 



suggesting that there might be equivalence classes that cut across the three main 
proposals considered here that are not yet understood. 
 

Given these multiple formidable challenges it is hard for any one lab to address them on their 
own, instead requiring a larger collaborative effort as proposed here. 

Concrete outcomes 
This central goal of this collaboration is to investigate the relationships between the currently 
proposed alternatives and, if possible, derive empirically testable differential predictions.  
Specific aims: 

1. Create a common language by which to describe all proposals. 
2. Lay out the key intuitions and assumptions behind each framework. 
3. Derive commonalities and differences leading to either a Venn diagram of proposals, or, 

if appropriate, a space of models in which the different proposals occupy different parts. 
4. Agree on a list of desiderata for a neural code for distributions (e.g. flexibility, learnability, 

efficiency, time/neuron constraints). 
5. If possible, identify predictions for each coding framework that are independent of the 

generative model and the details of the inference algorithm employed. 
6. Identify potential implications for plasticity and learning in neural circuits. 
7. Design critical experiments to differentiate between mutually exclusive aspects of the 

proposals. 

Benefits to the community 
1. A deeper understanding of the existing proposals for how probabilities are represented 

by neural responses will allow us to design experiments to falsify any or all of them. 
2. A major advance in our understanding of the nature of the neural code and the 

applicability of Bayesian inference framework for understanding neural computation will 
provide potential inspiration for representations and inference algorithms used in AI. 

  



Roles of core members 
Jeff Beck (PPC) 
Jeff was one of the original developers of theoretical justifications for PPCs and has investigated 
them in a wide variety of computational contexts such as cue combination, evidence integration, 
visual search, coordinate transformation, object tracking, odor demixing, and blind source 
separation [Ma06, Beck08, Beck11, Beck12].  
Ralf Haefner (neural sampling) 
Ralf has developed neural sampling based models to explain neural and psychophysical data 
and compared them to alternative representation schemes like PPCs and DDCs [Haefner16, 
Shivkumar18, Lange20a, Lange20b]. 
Xaq Pitkow (PPC/DDC) 
Xaq has developed generalizations of PPCs and DDCs to multivariate probabilistic graphical 
models [Pitkow12, Raju16], and analysis frameworks that can identify the nonlinear 
computational dynamics implied by neural data [Pitkow17]. He also connects these perceptual 
models to rational action planning through closed-loop control [Raju16, Pitkow17, Wu20]. 
Cristina Savin (neural sampling) 
Cristina works on probabilistic computation in neural circuits, with a focus on learnable 
probabilistic representations [Munk18], and probabilistic inference in memory systems 
[Savin14b]. She has developed a spike-based distributed sampling scheme [Savin14] and new 
hypothesis testing methods for generative-model-agnostic sampling predictions [Fiser13].  
Eszter Vértes (DDC) 
Eszter has worked on combining DDCs with algorithms for learning generative models and 
learning to perform inference in them [Vertes18]. She has further shown that DDCs allow for 
generalising successor features to partially observable settings [Vertes19]. 

Senior advisors:  
Mate Lengyel (sampling) 
Alex Pouget (PPC) 
Rajesh Rao (predictive coding) 
Maneesh Sahani (DDC) 
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All core members agree to the requirements outlined in the call for proposals: 
 

● Incorporating feedback from the community and potentially welcoming new CCN 
community members to the GAC based on their written commentary to the GAC 
proposal 

● Running an online kickoff workshop for CCN2020, inclusive of both founding core GAC 
members and those new members who joined through the community feedback process 

● Writing the position paper to be submitted ~December 2020 to a curated special issue, 
to be accompanied by commentary pieces authored by attendees of the CCN2020 
kickoff workshop 

● Attending and presenting progress at the following CCN2021 
 
In place of signatures: 
 
Ralf Haefner 
Jeff Beck 
Xaq Pitkow 
Cristina Savin 
Eszter Vertes 
  


