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Abstract
In the fact verification domain, the accu-001
racy and efficiency of evidence retrieval are002
paramount. This paper presents a novel ap-003
proach to enhance the fact verification process004
through a Multi-stage ReRanking (M-ReRank)005
paradigm, which addresses the inherent limita-006
tions of single-stage evidence extraction. Our007
methodology leverages the strengths of ad-008
vanced reranking techniques, including dense009
retrieval models and list-aware rerankers, to010
optimise the retrieval and ranking of evidence011
of both structured and unstructured type. We012
demonstrate that our approach significantly013
outperforms previous state-of-the-art models,014
achieving a recall rate of 93.63% for Wikipedia015
pages. The proposed system not only improves016
the retrieval of relevant sentences and table017
cells, but also enhances the overall verification018
accuracy. Through extensive experimentation019
on the FEVEROUS dataset, we show that our020
M-ReRank pipeline achieves substantial im-021
provements in evidence extraction, particularly022
increasing the recall of sentences by 7.85%, ta-023
bles by 8.29% and cells by 3% compared to the024
current state-of-the-art on the development set.025

1 Introduction026

The proliferation of false and misleading informa-027

tion, fuelled by the rapid progress in artificial in-028

telligence (AI), poses a significant societal threat,029

as highlighted in the World Economic Forum’s re-030

port (WEF, 2024). For example, the widespread031

mis/dis-information about COVID-19 vaccines has032

caused a surge in anti-vaccination sentiment online,033

leading to low vaccination coverage (Islam et al.,034

2021). A recent study shows that low-veracity035

media-induced overconfidence exacerbates the ad-036

verse effects of widespread misinformation (i.e.,037

fake news), especially in current global election038

scenarios (Kartal and Tyran, 2022). To combat this,039

researchers are focusing on developing automatic040

fact verification systems to prevent disinformation041

from spreading online (Guo et al., 2022).042

Claim:
The San Luis Obispo Railroad Museum located at San Luis Obispo, California
(founded in 1772), opened in 2013, features different track displays and a
museum store that sellls railroad books, lanterns and other items.
Label: SUPPORTS

Gold sentences:
There is a children's play area incorporating hands-on train tables and a Museum Store offering
railroad books, lanterns, and clothing, and other items.

The San Luis Obispo Railroad Museum, in San Luis Obispo, California, was founded to preserve
and present the railroad history of California, and specifically the Central Coast, by collecting,
restoring, displaying, and operating historic railroad equipment.

Opened in 2013, the museum occupies the restored former Southern Pacific Freighthouse (built
1894) at 1940 Santa Barbara Avenue, adjacent to the Union Pacific main line and about one-quarter
mile south of the San Luis Obispo Amtrak station.

Founded in 1772 by Spanish Franciscan Junípero Serra, San Luis Obispo is one of California's
oldest European-founded communities.

A standard-gauge display track extends along the east side of the building, and a short narrow-
gauge display track is on the west side.

Gold tables
San Luis Obispo Railroad Museum

Established 2013

Location 1940 Santa Barbara Ave
San Luis Obispo, California

Type Railroad museum

San Luis Obispo, California

Country United States

State California

County San Luis Obispo

Government Body San Luis Obispo City Council

Figure 1: An example in FEVEROUS: The blue, yellow
and green rectangle contains claim, sentence evidence,
and table evidence, respectively. Arrows depict the
interaction between two pieces of text. Keywords are
underlined to show claim-evidence overlap and boldly
highlighted to indicate intra-evidence interactions.

To answer the increasing demand for such sys- 043

tems, a number of datasets have been released, 044

ranging from claims collected from fact-checking 045

websites, e.g. LIAR (Wang, 2017), to complex 046

collections of claims associated with proof-of- 047

evidences, e.g. FEVER (Thorne et al., 2018), 048

CLEF CheckThat! (Nakov et al., 2021), SemEval 049

(Wang et al., 2021), FEVEROUS (Aly et al., 2021). 050

In this paper, we focus on solving the FEVEROUS 051

task, where the challenge is not only to extract 052

evidence sentences/table cells from millions of pas- 053

sages (Wikipedia), but also combine them to verify 054

a given claim. Unlike other datasets, FEVEROUS 055

proposes a real-world scenario where the evidence 056

could be in both structured (e.g. Tables, lists) or 057

unstructured format (e.g. sentences, paragraphs). 058
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Key advancements on FEVEROUS task are not059

only on improving the claim verification procedure060

(Hu et al., 2022), but also focusing on evidence re-061

trieval in various formats (Hu et al., 2023; Wu et al.,062

2023). The DCUF, a fact-verfication model intro-063

duced by (Hu et al., 2022), performs interaction of064

evidence in each format to improve the final veri-065

fication accuracy, leaving the evidence extraction066

within each format separately. Recent works, e.g.067

UnifEE (Hu et al., 2023), SEE-ST (Wu et al., 2023),068

give attention to evidence extraction focusing either069

on individual format or interaction across various070

format. They mostly look for lexical (word-based)071

or semantic (meaning-based) overlaps between the072

claim and evidence pieces. They do not take into073

account how different pieces of evidence might074

relate to one another within the same format.075

Figure 1 illustrates an example from FEVER-076

OUS, where the goal is to extract both unstructured077

(e.g., sentences) and structured (e.g., tables or cells)078

evidence to verify a claim. The figure highlights079

two types of overlap: between the claim and its as-080

sociated evidence, and among the evidence pieces081

themselves. Recognising interactions among evi-082

dence is crucial for determining the retrieval score083

of individual evidence. Critical evidence may not084

have obvious overlaps with the claim, but their rel-085

evance becomes clear when viewed in the context086

of other evidence. For instance, one piece of ev-087

idence might state the “Railroad Museum” is in088

“San Luis Obispo, California”, while another men-089

tions it opened in the year “2013”. The underutili-090

sation of interactions among these evidence pieces091

can lead to the omission of crucial information092

that could otherwise strengthen the verification pro-093

cess. Therefore, leveraging interactions between094

candidate evidence in each format is essential for095

effective evidence extraction.096

In this paper, we propose the Multi-stage Rerank-097

ing (M-ReRank) paradigm, which exploits over-098

lapping among connected evidence candidates as099

collaborative filtering (Zhang et al., 2022b, 2023)100

to improve evidence extraction, thereby achieving101

higher accuracy in veracity prediction. To the best102

of our knowledge, this has been largely unexplored103

in the fact-verification domain. We design a novel104

pipeline, M-ReRank, which comprises a sequence105

of robust rerankers, e.g. Cross-Encoder (improved106

recall) (Humeau et al., 2019), HybRank (collabora-107

tive assessment) (Zhang et al., 2023), and HLATR108

(list-aware reranking) (Zhang et al., 2022b). It109

helps improve the first and second steps in FEVER- 110

OUS, i.e. wiki-page retrieval and evidence extrac- 111

tion. Experiments on FEVEROUS show that our 112

M-ReRank model significantly enhances evidence 113

extraction performance and, consequently, boosts 114

final fact verification scores. Detailed ablation ex- 115

periments exhibit the effectiveness of M-ReRank 116

in evidence extraction, showcasing how each com- 117

ponent contributes to the overall improvement. A 118

case study further highlights its role in accurately 119

retrieving and utilising evidence for verification. 120

The contributions of this work can be sum- 121

marised as follows: (i) We propose a Multi-stage 122

ReRanking (M-ReRank) pipeline investigating how 123

the retrieval and reranking architectures influence 124

the evidence retrieval process. (ii) We show how 125

evidence extraction can be improved by leverag- 126

ing the relationships that exist among the evi- 127

dence through collaborative filtering and list-aware 128

reranking. (iii) Experiments show that our pro- 129

posed multi-stage reranking significantly outper- 130

forms previous works on both the evidence extrac- 131

tion and the final verification accuracy. Detailed 132

analysis reveals that our M-ReRank performs well 133

in retrieving multi-hop evidence and combining 134

evidence in both formats (sentences and tables). 135

2 Background 136

2.1 Multi-stage Text Retrieval 137

Traditionally, information retrieval has relied on 138

lexical methods such as TFIDF and BM25 (Robert- 139

son and Zaragoza, 2009), treating queries and docu- 140

ments as sparse bag-of-words vectors and matching 141

them at the token level. Recently, text retrieval sys- 142

tems armed with pre-trained language models have 143

become a dominant paradigm to improve the over- 144

all performance where queries and documents are 145

encoded into dense contextualised semantic vec- 146

tors (Ren et al., 2021; Zhang et al., 2022a), and 147

performing retrieval with optimised vector search 148

algorithms (Johnson et al., 2021). 149

Recent approaches in reranking concatenate 150

query-passage pairs and input them into a Trans- 151

former pre-trained on large corpora, allowing for 152

more nuanced relevance estimation and improved 153

retrieval outcomes through enhanced interaction 154

(Humeau et al., 2019; Nogueira and Cho, 2020). 155

However, these methods typically treat each candi- 156

date passage in isolation, neglecting the contextual 157

information in the retrieved passage list. Some 158

learning to rank techniques (Rahimi et al., 2016) 159
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and pseudo-relevance feedback approaches (Zhai160

and Lafferty, 2001; Zamani et al., 2016) leverage161

the ordinal relationship or list-wise context of re-162

trieved documents for enhanced retrieval, a need163

corroborated in multi-stage retrieval systems (Liu164

et al., 2022). HybRank (Zhang et al., 2023) inves-165

tigates collaboration among the candidate text in166

the retrieval lists and shows that collaborative filter-167

ing improves the precision of retrieval systems by168

exploiting linguistic aspects of sparse and dense re-169

trieval methods. HLATR (Zhang et al., 2022b) has170

shown improved performance as a multi-stage text171

retrieval system by coupling features from both re-172

trieval and reranking stages. We combine HybRank173

and HLATR in our M-ReRank pipeline.174

2.2 Multi-stage Evidence Reranking for175

Fact-Verification176

Multi-stage text retrieval can be highly beneficial177

for fact verification by enabling a more comprehen-178

sive and nuanced approach to rank the evidences179

and assess the veracity of claims or statements. Ev-180

idences in the same format also provide context181

information to each other. Past works on FEVER-182

OUS mainly rely on using a single-stage evidence183

extraction (Aly et al., 2021; Bouziane et al., 2021;184

Saeed et al., 2021; Hu et al., 2022). Some meth-185

ods propose to fuse evidence in different formats186

to leverage cross-format dependence but still leave187

the evidence extraction within each format separate188

(Hu et al., 2023; Wu et al., 2023). Utilising the189

collaboration that exists among candidate evidence190

has largely been unexplored for fact verification.191

Intuitively, for a specific claim, a set of evidence192

relevant to the claim tends to describe the same en-193

tities, events and relations (Lee et al., 2019), while194

irrelevant ones address a variety of unrelated topics.195

2.3 FEVEROUS Task & Dataset196

We use FEVEROUS1 as the test bed for our ap-197

proach because it is the only open-domain fact198

verification benchmark, to our knowledge, that in-199

tegrates both unstructured and structured evidence.200

FEVEROUS has two main objectives: first, to ex-201

tract sentences and table cell evidence from English202

Wikipedia and second, to predict the veracity of203

a given claim labelled as SUPPORTS, REFUTES,204

or NOT ENOUGH INFO (NEI). Each claim in the205

FEVEROUS dataset can be verified in multiple206

ways, represented by different evidence sets, each207

1https://fever.ai/dataset/feverous.html

potentially comprising multiple pieces of evidence. 208

For a response to be considered correct, partici- 209

pating systems only need to provide one complete 210

evidence set. Hence, a prediction is considered cor- 211

rect only if at least one complete gold evidence set 212

E is a subset of the predicted evidence Ê and the 213

predicted label is correct. Statistics for the FEVER- 214

OUS dataset are provided in Appendix A. 215

3 Our Approach 216

The aim of the FEVEROUS open-domain fact ver- 217

ification (Aly et al., 2021) benchmark’s task is to 218

verify a claim c based on content from Wikipedia. 219

We follow the widely-adopted three-step pipeline, 220

which involves i) retrieving relevant pages from the 221

Wikipedia dump, ii) extracting sentences and table 222

cells as evidence from these pages, and iii) predict- 223

ing the veracity label of the given claim based on 224

the compiled evidence set. In this work, we explore 225

improving the first and second steps—wiki-page 226

retrieval and evidence extraction—by employing 227

our multi-stage retrieval pipeline. 228

In the three-step pipeline, as shown in Figure 2, 229

the Wikipedia pages are first retrieved and refined 230

by our M-ReRank approach. The top five pages are 231

then used to extract evidence of both formats in the 232

second step. We train the models in the M-ReRank 233

pipeline separately for page, sentence and table 234

retrieval. Combining the first five sentences and 235

five tables, we use SEE-ST’s (Wu et al., 2023) cell- 236

retriever to extract potential cell evidence. Finally, 237

at the verification step (third), we utilise DCUF 238

(Hu et al., 2022), a method that converts evidence 239

into dual-channel encodings to verify the claim. 240

3.1 Wikipedia page retrieval 241

Firstly, given a claim c, a set of relevant Wikipedia 242

pages P=[p1, p2, ..., pnp ] are retrieved from TFIDF 243

and BM25-based retrieves to narrow down the 244

search space from millions of pages to a few hun- 245

dred (Robertson and Zaragoza, 2009). We combine 246

the results of TFIDF and BM25 and keep the top 247

np documents. TFIDF is effective at capturing the 248

importance of terms within a document and across 249

the corpus, while BM25 is a probabilistic model 250

that adjusts term weights based on term frequency 251

saturation and document length normalisation. The 252

retrieved pages are further reordered by robust up- 253

stream retrievers in the proposed M-ReRank, as 254

depicted in Figure 2 (Step-1). 255
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Sent-Evidence
(Wikipedia)

Tab-Evidence
(Wikipedia)

Cross-Encoder
Sent-Recall

(RoBERTa)

Table-Encoder
Tab-Recall

(TAPAS)

Sparse-Dense
Reranker

(HybRank)

Sparse-Dense
Reranker

(HybRank)

List-Aware
Reranker

(HLATR)

List-Aware
Reranker

(HLATR)

Graph-based
Cell-Retrieval

(SEE-ST)

Verdict Predictor
(DCUF)

CLAIM
Wikipedia 

Pages
(BM25+TFIDF)

Cross-Encoder
Sent-Recall

(RoBERTa)

Sparse-Dense
Reranker

(HybRank)

List-Aware
Reranker

(HLATR)

Step-1: Wikipedia Page Retrieval

Step-2: Evidence Retrieval

Step-3: Veracity Prediction

Figure 2: Overview of the pipelined Evidence-Retrieval and Verdict Prediction for a given claim.

3.2 Evidence Retrieval256

Top five pages from the previous step are selected to257

extract the relevant evidence for veracity prediction.258

We use cross-encoder (Humeau et al., 2019) to ex-259

tract k sentences S={si}ki=1 and TAPAS2 based260

SEE-ST (Wu et al., 2023) model to extract n ta-261

bles T={ti}ni=1. The set of initial sentence and ta-262

ble evidence are then reordered by our M-ReRank263

(see Figure 2). All the models in the proposed264

multi-stage pipeline are trained separately using the265

FEVEROUS dataset’s train and dev splits. Based266

on the extracted sentence/table evidence, we use267

the Graph-based cell retriever by (Wu et al., 2023),268

which leverages the row and column semantics of269

tables to retrieve r cell evidence C={ci}ri=1.270

3.3 Multi-stage ReRanking (M-ReRank)271

Once the initial set of documents, e.g. pages,272

sentences, tables, are retrieved, the proposed M-273

ReRank framework reorders them by prioritising274

their relevance to the given claim based on con-275

textual understanding and semantic similarity. Ini-276

tially, unstructured candidates like sentences, are277

reranked using a Cross encoder (Humeau et al.,278

2019). Subsequently, we utilise advanced rerankers279

HybRank (Zhang et al., 2023) and HLATR (Zhang280

et al., 2022b) in the pipeline. HybRank lever-281

ages both sparse and dense information to enhance282

reranking, while HLATR integrates retrieval and283

reranking features for hybrid list-aware reranking.284

For tables, the reranking pipeline starts with the285

SEE-ST model (Wu et al., 2023), which is effective286

in capturing the row and column relevance of ta-287

bles, thereby achieving a more precise extraction of288

structured candidates. As depicted in Figure 2, the289

retrieved tables are further reranked sequentially by290

HybRank and HLATR. Both rerankers take the flat-291

tened table as input. After all reranking stages, the292

retrieved tables and sentences are used to retrieve293

cells by SEE-ST’s cell-retriever.294

2TAPAS: Table Parser (Herzig et al., 2020)

The proposed pipeline is discussed in detail in 295

the following subsections. 296

3.3.1 Cross Encoder with Contrastive 297

Learning 298

(Humeau et al., 2019) showed that cross-encoders 299

typically outperform bi-encoders on sentence scor- 300

ing tasks by enabling rich interactions between 301

the claim and candidate evidence. In this stage, 302

the claim and evidence are jointly encoded us- 303

ing a transformer architecture into a single vec- 304

tor as Es=RoBERTa(claim, cand), “cand” repre- 305

sents the candidate evidence. The scoring mech- 306

anism involves reducing this embedding through 307

multiple layers including dropout (D), linear lay- 308

ers (L1, L2), and activation functions (relu R, sig- 309

moid σ) to obtain a final score S(claim, cand) = 310

σ(L2(R(L1(D(Es))))). The network is trained 311

using contrastive learning criteria, aiming to min- 312

imise a margin ranking loss between pairs of posi- 313

tive x1 and negative x2 candidate evidence: 314

MRL(x1, x2, y) = max(0,−y · (x1 − x2)) (1) 315

where x1 and x2 are the predicted scores of pos 316

and neg evidence. y is set to 1, indicating a positive 317

candidate ranked higher than the negative. 318

3.3.2 Table Parser Contrastive Learning 319

SEE-ST (Wu et al., 2023) showed that leveraging 320

both row and column semantics significantly im- 321

proves the recall of structured evidence, e.g. ta- 322

bles, table-cells. SEE-ST begins by extracting ta- 323

bles from selected Wikipedia pages targeting the 324

most relevant rows and columns for the given claim, 325

thereby minimising confusion from irrelevant cells. 326

First, the claim and table pair are fed to TAPAS, a 327

pre-trained table model aware of table structures 328

(Herzig et al., 2020), to generate table embed- 329

ding. Parallely, TAPAS tokenizer also provides 330

row (Rpool) and column (Cpool) pooling matrix as 331

Et, Rowpool, Colpool=TAPAS(claim,table) which 332
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are later used for estimating table, row and column333

losses Lr, Lc, respectively, and final loss L:334

Lr = CrE(R(L(RpoolEt)))

Lc = CrE(R(L(CpoolEt)))

Lt = σ(R(L(Et)))

Lt = MRL(Ltpos, Ltneg, 1)

L = αtLr + βtLc + γtLt

(2)335

Since a cell represents the intersection of a row336

and a column, its relevance can be determined by337

analysing both dimensions. During inference, the338

table score is estimated through various criteria, e.g.339

Lr+Lc, Lr×Lc, Lr or Lc. For the Table retrieval340

task, Lr × Lc provides higher retrieval accuracy:341

S(claim, table) = Lr × Lc (3)342

3.3.3 HybRank343

HybRank (Zhang et al., 2023) utilises the strategy344

of collaborative filtering (Goldberg et al., 1992)345

by incorporating lexical and semantic properties346

of both sparse and dense retrievers in reranking.347

We utilise BM25 as sparse and RoBERTa as dense348

retriever to rerank the candidates for a given claim349

through a 3-stage process:350

(a) Retrieval Stage:351

Sparse Retrieval: Given the claim c and the can-352

didate d, the BM25 score is obtained by summing353

the BM25 weights over the terms that co-occurred354

in c and d. Refer to (Robertson and Zaragoza,355

2009) for more details about BM25.356

Dense Retrieval: The relevance score is esti-357

mated as the dot product of encoded claim c and358

candidate d, with Sd(c, d) = E(c)⊤E(d), where359

E(·) denotes the encoder (RoBERTa) which deter-360

mines the embedding of claim and candidate text.361

(b) Collaborative Filtering Stage: The collab-362

orative filtering stage leverages the sparse and363

dense scores between candidates, distinguishing364

positive ones in the retrieval list. For each can-365

didate and claim, a sequence of similarity scalars366

xdi=[si1, si2, ..., siL] ∈ R is estimated with a set of367

Top-L anchors from both sparse and dense scores.368

After applying softmax and min-max normalisa-369

tion, the sparse and dense scores are stacked in a370

dual channel manner xij = [s
sparse
ij , sdense

ij ] ∈ R2.371

Thus, the similarity sequence vector becomes like372

Xdi = [xi1, xi2, ..., xiL] ∈ RL×2. This dual-373

channel similarity vector is transformed to D di-374

mensions with a trainable projection layer eij =375

xijW , where W ∈ R2×L is a learnable parameter 376

and eij ∈ RD are embedded similarities. There- 377

after, candidate di becomes a sequence of similar- 378

ity embeddings Edi = [ei1, ei2, ..., eiL] ∈ RL×D, 379

which consists of candidate di similarity informa- 380

tion with anchor list. As a result, we obtain a total 381

of Nd + 1 collaborative sequences, where each 382

sequence corresponds to either a candidate or a 383

query and incorporates both lexical and semantic 384

similarity information with respect to L anchors. 385

(c) Aggregation Reranking Stage: To perform 386

anchor-wise interaction, we gather the j-th similar- 387

ity embedding e∗j from the claim sequence and all 388

candidate sequences, refining them using a Trans- 389

former encoder as: 390

e′cj , e
′
1j , . . . , e

′
Ndj

= Transinter(ecj ; e1j ; . . . ; eNdj)
(4) 391

where, e′∗j ∈ RD. This transforms the similarity 392

embedding sequence E∗ to E′
∗. We transform these 393

sequences into dense vectors by consolidating the 394

refined similarity embeddings. Specifically, we add 395

a [CLS] token at the beginning of the collaborative 396

sequence, process it through another Transformer 397

encoder, and take the output of the [CLS] token as 398

the representation of candidate di and claim c as: 399

hdi = Transaggr([CLS]⊕ E′
di
)[CLS] (5) 400

401
hc = Transaggr([CLS]⊕ E′

c)[CLS] (6) 402

where [CLS] ∈ R1×D and ⊕ denotes the concate- 403

nation operation. Finally, the dot product between 404

encoded vector hdi of candidate and claim vector 405

hc determines the similarity score. 406

3.3.4 HLATR 407

HLATR (Zhang et al., 2022b) improves text re- 408

trieval by combining retrieval and reranking fea- 409

tures using a lightweight transformer encoder. As 410

a retrieve-then-reranking architecture, HLATR fol- 411

lows a three-stage pipeline: (a) the Retrieval Stage 412

identifies potentially relevant documents, (b) the 413

Reranking Stage refines the relevance scores of 414

the retrieved documents, and (c) the HLATR Stage 415

consists of a multi-stage feature fusion layer and a 416

transformer encoder to further improve the ranking: 417

(a) Retrieval Stage: In the Retrieval Stage, we 418

consider the retrieved candidate documents from 419

previous modules in our pipeline, e.g. HybRank, 420

Cross-Encoder/SEE-ST, instead of using a sepa- 421

rate dense retrieval model, as the original HLATR 422

algorithm suggests. 423
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(b) Reranking Stage: The Reranking Stage fur-424

ther refines the retrieval scores using an interaction-425

based model, e.g. Cross-encoder. Each claim-426

candidate pair (c, d) is rescored as score(c, d) =427

f(E(c, d)), where, E(·,·) denotes the encoder428

(RoBERTa), and f is the score function, e.g. σ (se-429

quence classifier). Training involves a contrastive430

learning objective (Lc), optimising the model with431

groups of (c, d) pairs consisting of one positive432

candidate d+ and multiple negatives as:433

Lc = − log
exp(score(c, d+))∑
p∈Gd

exp(score(c, d))
(7)434

(c) HLATR Stage: The core of this reranking435

paradigm is the HLATR component, which fea-436

tures a multi-stage fusion layer and a transformer437

encoder. It enhances the reranking results by com-438

bining features from both retrieval and reranking439

stages, creating a comprehensive representation.440

The combined features are processed through a441

lightweight transformer encoder, which models the442

interactions among all candidates, highlighting mu-443

tual relationships. The combined relevance score444

in HLATR is formulated as: scoreHLATR(c,Dr) =445

fHLATR(EHLATR(c,Dr)) where Dr represents a446

candidates list to be reranked, EHLATR is the en-447

coder that processes the combined features, and448

fHLATR is the final relevance estimation function.449

Like the previous stage, this stage is also optimised450

with a list-wise contrastive loss, as defined by Eq 7.451

4 Experimental Evaluation452

4.1 Evaluation Metrics453

In the FEVEROUS task, two primary official454

metrics are employed: accuracy (Acc.) and the455

FEVEROUS score (F.S). Accuracy measures the456

proportion of instances for which the model cor-457

rectly predicts the veracity label. The FEVER-458

OUS score evaluates not only the correctness of459

the final veracity label but also the adequacy of460

the extracted evidence set. It quantifies the pro-461

portion of instances where the extracted evidence462

set aligns with one of the gold evidence sets, and463

the predicted veracity label matches the gold stan-464

dard. Three additional official metrics are utilised465

to assess the quality of extracted evidence sets in466

the FEVEROUS task: Evidence Precision (E-P),467

Evidence Recall (E-R), and Evidence F1 (E-F1).468

It also provides multiple gold evidence sets for469

each claim, and a piece of extracted evidence is470

deemed correct only if it is included in any of the471

Models Page Sentence Table Cell Evidence

Baseline 63 53 56 29 30
FaBULOUS 63 56.6 - 34.2 40.4
DCUF 85.20 62.54 75.59 58.41 43.22
UnifEE 85.20 75.59 75.36 67.44 55.08
SEE-ST 85.20 75.50 80.86 77.16 61.43

M-ReRank (ours) 93.63 83.35 89.15 80.16 66.69

Table 1: Recall of different formats of evidence on the
development set.

gold evidence sets. For each instance, Evidence 472

Precision represents the proportion of correctly pre- 473

dicted evidence. The overall Evidence Precision 474

is determined by averaging this score across all in- 475

stances. Evidence Recall measures the proportion 476

of instances with a correctly extracted evidence 477

set, where correctness is defined by covering any 478

of the gold evidence sets. Lastly, Evidence F1 is 479

the harmonic mean of Evidence Precision and Evi- 480

dence Recall, providing a balanced assessment of 481

precision and recall in evidence extraction. 482

4.2 Implementation Details 483

Implementation details for all the algorithms used, 484

as well as training hyperparameters, are provided 485

and discussed in Appendix B. 486

4.3 Main Results 487

Evidence extraction results: Table 1 presents 488

the evidence extraction results of our M-ReRank 489

pipeline on the development set and compares it 490

with the recent state-of-the-art. Previous meth- 491

ods, such as the official baseline (Aly et al., 492

2021) and FaBULOUS (Bouziane et al., 2021), 493

employ a weaker document retrieval module, 494

i.e. BM25/TFIDF, leading to error propaga- 495

tion and lower evidence recall. Recent meth- 496

ods, DCUF, UnifEE, SEE-ST, utilise ensemble 497

of cross-encoder3 and BM25, which improved 498

page recall by 85.20%. However, limited page 499

retrieval limits the overall evidence recall and, con- 500

sequently, low accuracy in veracity prediction. Our 501

multi-stage reranking improves the page recall by 502

8.43%. Notably, M-ReRank extracts 36% more 503

gold-standard evidence compared to the official 504

baseline and 5.26% compared to the best model 505

SEE-ST. Through M-ReRank, we obtain substan- 506

tial recall jump in all formats of evidence retrieval. 507

This is also proved by our ablation study in (§4.4). 508

Overall Results: Our primary results, sum- 509

marised in Table 2, demonstrate significant per- 510

3cross-encoder/ms-marco-MiniLM-L-12-v2
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Models
Development set Test set

F.S Acc. E-P E-R E-F1 F.S Acc. E-P E-R E-F1

Official Baseline 19 53 12 30 17 17.73 48.48 10.17 28.78 15.03
EURECOM 19 53 12 29 17 20.01 47.79 13.73 33.73 19.52

Z team - - - - - 22.51 49.01 7.76 42.64 13.12
CARE 26 63 7 37 12 23 53 7 37 11
NCU 29 60 10 42 17 25.14 52.29 9.91 39.07 15.81
Papelo 28 66 - - - 25.92 57.57 7.16 34.60 11.87

FaBULOUS 30 65 8 43 14 27.01 56.07 7.73 42.58 13.08

DCUF 35.77 72.91 15.06 43.22 22.34 33.97 63.21 14.79 44.10 22.15
UnifEE 44.86 73.67 19.04 55.08 28.30 41.50 65.04 18.35 53.87 27.37
SEE-ST 49.73 74.68 10.60 61.43 18.07 44.75 65.16 9.81 60.01 16.89

M-ReRank (ours) 60.57 87.58 10.68 66.69 18.40 47.13 65.24 10.35 63.71 17.81

Table 2: Model performance on the development set and test set. F.S is FEVEROUS score and Acc. is the accuracy
of veracity labels. E-R, E-P and E-F1 are recall, precision and F1 computed based on the evidence set.

Retriever T-150 T-5

Baseline TFIDF 91.43 62.71

TFIDF (T) 92.33 69.46
BM25 (B) 90.53 71.40
Ensemble(T,B) (E) 94.87 73.98

E+Cross-encoder (C) 94.87 87.14
E+HybRank (Hy) 94.87 90.83
E+HLATR (Hl) 94.87 92.90

E+C+Hy 94.87 91.39
E+C+Hy+Hl 94.87 93.63

Table 3: Wikipedia page retrieval results with rerankers
in our M-ReRank pipeline in Top-150/5 settings.

formance improvement in evidence extraction com-511

pared to the previous best models, i.e. DCUF,512

UnifEE, SEE-ST, thereby improving feverous score513

(F.S) overall. Specifically, our model shows im-514

provements of 5.26%/3.70% in evidence recall on515

the development/test set, respectively. Adopting516

the verification approach from (Hu et al., 2022),517

we achieved accuracy rates of 87.58% on the de-518

velopment set and 65.24% on the test set. These519

gains indicate that by leveraging context informa-520

tion from other evidence in the candidate list, our521

multi-stage reranking (M-ReRank) enhances the522

accuracy of evidence extraction.523

Following the constraint on selecting the maxi-524

mum number of sentences and cells, there are two525

ways to construct an evidence set. One way is to ap-526

ply a threshold when selecting evidence with high527

precision at the expense of slightly lower recall. For528

example, a former SOTA method, UnifEE, follows529

the same criteria for high precision, but the label ac-530

curacy remains largely unaffected by changes in the531

evidence set. We employ the maximum number of532

sentences and cells as constraints, keeping higher533

evidence recall. Demonstrating the effectiveness of534

our approach, an example of evidence extraction in535

both formats is presented in Appendix D.536

T-5 Pages Retriever T-100 T-20 T-5

E

TFIDF 71.56 67.11 54.38
RoBERTa (R) 88.13 80.35 77.13
R+HybRank (HyS) 88.13 86.65 78.76
R+HLATR (HlS) 88.13 86.99 79.09
R+HyS+HlS 88.13 87.02 80.06

E+C+Hy+Hl

TFIDF 90.03 82.65 67.30
RoBERTa (R) 92.36 90.15 80.33
R+HybRank (HyS) 92.36 90.50 81.73
R+HLATR (HlS) 92.36 89.92 82.49
R+HyS+HlS 92.36 90.60 83.35

Table 4: Sentence retrieval results with various rerankers
in our M-ReRank pipeline in Top-100/20/5 settings.

T-5 Pages Retriever T-20 T-5 T-3

E

TFIDF 82.17 80.84 76.89
SEE-ST (S) 88.84 86.27 83.99
S+HybRank (HyT) 88.84 87.33 84.29
S+HLATR (HlT) 88.84 87.45 85.23
S+HyT+HlT 88.84 87.52 85.35

E+C+Hy+Hl

TFIDF 89.30 85.75 79.83
SEE-ST (S) 93.40 88.44 86.87
S+HybRank (HyT) 93.40 90.81 88.54
S+HLATR (HlT) 93.40 90.83 88.65
S+HyT+HlT 93.40 91.61 89.15

Table 5: Tables retrieval results with various rerankers
in our M-ReRank pipeline in Top-20/5/3 settings.

The test set accuracy is typically lower than the 537

development set accuracy. This discrepancy is pri- 538

marily due to the unequal distribution of NEI (Not 539

Enough Information) claims across the different 540

splits. Our analysis of verdict prediction results re- 541

veals that DCUF underperforms on NEI instances, 542

which accounts for the accuracy gap between the 543

development and test sets. 544

4.4 Ablation Study 545

To evaluate the effectiveness of M-ReRank, we 546

conducted a series of ablation experiments focus- 547

ing on three aspects: i) Wikipedia page retrieval, 548

ii) sentence extraction, and iii) table extraction. 549
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We first examined the impact of each reranker in550

M-ReRank by applying them individually. Sub-551

sequently, we applied them in a multi-stage man-552

ner, prioritising the order based on their individual553

performance to understand the cumulative effect.554

Since M-ReRank obtains the maximum number of555

Wikipedia pages, we also experiment with extract-556

ing sentence and table evidence solely from pages557

retrieved by Ensemble(T,B), excluding M-ReRank558

for page retrieval as shown in Table 4 and Table 5.559

This allows for a fairer comparison of rankers in the560

M-ReRank pipeline for sentence and table retrieval.561

Wikipedia Page Retrieval: Table 3 presents the562

recall of various methods ranging from FEVER-563

OUS’s baseline TFIDF to all rerankers in M-564

ReRank pipeline. The FEVEROUS baseline565

achieves a 91.43% recall in the Top-150 setting566

but is unable to keep relevant in the Top-5. By567

pre-processing the text to convert Unicode char-568

acters to their nearest ASCII equivalents, we ob-569

serve a 6.75%/8.69% improvement by TFIDF(T)570

and BM25(B), respectively, in Top-5 recall. Fur-571

ther improvements are seen by applying ensem-572

ble reranking (Dwork et al., 2001) on the T and573

B results, increasing the page recall to 94.87%574

for Top-150 and 73.98% for Top-5 settings. We575

see a significant jump in page recall specific to576

Top-5 retrieval on applying Neural rankers, e.g.577

Cross-encoder, HybRank, and HLATR, by 13.16%,578

16.85%, and 18.92%, respectively. When applied579

together (E+C+Hy+Hl), they achieve the highest580

page recall of 93.63% under Top-5.581

Sentence Extraction: Table 4 depicts the ab-582

lation results on sentence retrieval. To show the583

effectiveness of M-ReRank based rerankers, we584

perform ablation with the Top-5 pages retrieved by585

earlier step via both EnsembleT,B and E+C+Hy+Hl586

settings. M-ReRank performs well for sentence587

retrieval in both scenarios. RoBERTa-based cross-588

encoder improves sentence recall in both cases589

by 22.75% and 13.03%. Using the RoBERTa re-590

sults, the other rankers, HybRank, HLATR, con-591

sistently achieve higher recall. In the E+C+Hy+Hl592

setting, the M-ReRank achieves the highest recall593

by 83.35% for sentence retrieval, which is 7.85%594

higher than the previous SOTA method.595

Table Extraction: Table 5 display the effec-596

tiveness of M-ReRank on table retrieval. Like597

the ablation experiments of sentence extraction,598

we again choose the Wikipedia pages retrieved599

via both EnsembleT,B and E+C+Hy+Hl settings600

to fairly compare the rerankers’ strength. The re- 601

trievers’ performance is compared on Top-3/5/20 602

recall. SEE-ST (Wu et al., 2023) has shown a sig- 603

nificant recall improvement of 3-7% compared to 604

the TFIDF baseline by incorporating row and col- 605

umn semantics. M-ReRank retrievers reorder the 606

table candidates in flattened form. For retrieved 607

pages in both EnsembleT,B and E+C+Hy+Hl set- 608

ting, M-ReRank consistently improves the table 609

recall, similar to that found in the sentence extrac- 610

tion. We observe a jump of 1.36% and 2.28% table 611

recall in E and E+C+Hy+Hl settings, respectively. 612

In conclusion, M-ReRank performs well on evi- 613

dence reranking, which is crucial for fact-checking 614

systems. It demonstrates superior performance in 615

the reranking of unstructured evidence, e.g. sen- 616

tences and passages, compared to structured evi- 617

dence. The reason is that structured evidence re- 618

trieval requires row and column semantics infor- 619

mation, which is crucial for structured evidence 620

retrieval. On the other hand, M-ReRank performs 621

retrieval on the flattened table. However, it is still 622

able to perform collaborative filtering by exploit- 623

ing interaction among table candidates. Further 624

analysis of the errors of M-ReRank is provided in 625

Appendix C. 626

5 Conclusion 627

In this paper, we presented M-ReRank, a multi- 628

stage reranking framework designed to enhance 629

the evidence retrieval process for fact verification 630

tasks. Our experiments on the FEVEROUS dataset 631

demonstrate that M-ReRank significantly improves 632

the recall of evidence extraction, achieving a 633

FEVEROUS-Score jump of 10.84%/2.38% on de- 634

velopment/test data compared to previous state-of- 635

the-art methods. M-ReRank pipeline comprised of 636

a sequence rerankers, e.g. Cross-Encoder/SEE-ST, 637

HybRank, HLATR. By leveraging the contextual 638

interactions among multiple evidence pieces and 639

incorporating both lexical and semantic similarities, 640

M-ReRank effectively addresses the challenges of 641

retrieving relevant evidence in both unstructured, 642

e.g. sentences and structured, e.g. tables or cells. 643

The ablation studies further validate the efficacy 644

of each reranking stage, showcasing the robust- 645

ness and adaptability of our approach. Overall, 646

M-ReRank sets a new benchmark in the domain of 647

fact verification, paving the way for more accurate 648

and reliable verification systems. 649
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6 Limitations650

Despite the promising results, our multi-stage651

reranking approach has several limitations that652

need addressing in future work. One significant653

challenge is the computational complexity intro-654

duced by the multi-stage process, which can lead to655

increased processing time and resource consump-656

tion, making real-time applications less feasible.657

Additionally, scalability issues arise when handling658

large-scale datasets like the extensive Wikipedia659

corpus, potentially impacting the system’s perfor-660

mance. The model’s reliance on high-quality data661

means that incomplete or noisy data can degrade662

retrieval and verification accuracy.663

Another limitation arises from the imbalance in664

the distribution of the three veracity labels. Specif-665

ically, as detailed in Appendix A, the NEI label666

constitutes only 3% of the training dataset, making667

it challenging for models to accurately predict this668

category.669
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A FEVEROUS Dataset Statistics854

FEVEROUS is based on English Wikipedia, which855

contains a vast collection of 95.6 million sentences856

and 11.8 million tables. Within this dataset are857

87,026 distinct claims, each with an average length858

of 25.3 units. On average, verifying each claim859

requires referencing 1.4 sentences and 3.3 cells860

(equivalent to 0.8 tables). Notably, evidence for ver-861

ification is exclusively text-based in 34,963 cases,862

solely table-based in 28,760 cases, and a combina-863

tion of both formats in 24,667 instances. Among864

these claims, 49,115 are classified as SUPPORTS,865

33,669 as REFUTES, and the remaining 4,242 are866

categorised as NEI. Table 6 shows a detailed break-867

down of label and evidence distributions across868

various splits.869

Train Dev Test

Supported 41,835(59%) 3,908(50%) 3,372 (43%)
Refuted 27,215(38%) 3,481(44%) 2,973 (38%)
NEI 2,241 (3%) 501 (6%) 1,500 (19%)

Total 71,291 7,890 7,845

Sentences 31,607(41%) 3,745(43%) 3,589 (42%)
Cells 25,020 (32%) 2,738(32%) 2,816 (33%)
Sentence+Cells 20,865 (27%) 2,468 (25%) 2,062 (24%)

Table 6: Details of each split in FEVEROUS. First three
rows depicts the distribution of classes across the splits
and last three rows presents distribution of claims in
each split requiring only sentence evidence, cell evi-
dence, or both, respectively.

B Implementation Details870

In the document retrieval step, we retrieve np = 5871

pages from the Wikipedia dump for each claim.872

As a first step, 150 pages per claim are extracted873

by TFIDF and BM25 separately and merged to-874

gether by ensemble reranking (Dwork et al., 2001)875

to retrieve a final set of 150 pages per claim. We876

keep the top 5 pages for evidence extraction after877

Mutlistage reranking. For the evidence retriever,878

the nk=5 sentences and nt=5 tables are extracted879

from the retrieved pages, and the sentence and table880

evidence are combined to extract nr = 25 cells.881

For Cross-Encoder, we use a RoBERTa-base4882

model, finetune it with contrastive learning criteria883

where for each positive example, a negative exam-884

ple is selected to determine MarginRanking loss as885

explained in (§3.3.1). The hyperparameters are set886

as batch size of 16 and learning rate 10-5.887

4RoBERTa-base
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Figure 3: Overall error source analysis.of extracted evi-
dence set for the dev set.

For table extraction, we use SEE-ST (Wu et al., 888

2023) that encodes the claim-table pair by TAPAS- 889

base5 model. The hyperparameters are set to de- 890

fault values as mentioned in (Wu et al., 2023), i.e. 891

batch size of 8, learning rate 10-7 for TAPAS and 892

10-7 for the classifier, αt = 1 and βt = 1. 893

For cell extraction, we use SEE-ST’s evidence 894

graph approach which forms a graph of sentences 895

and cell evidence and then score each cell on the 896

basis of row and column semantics. RoBERTa-base 897

and TAPAS-base are used to encode sentence nodes 898

and cell nodes in the graph. The hyperparameters 899

are set as batch size of 4, learning rate 10-6, αc = 2, 900

βc = 2, and γc = 1. 901

In HybRank, the output of earlier step are used 902

to extract sparse features by BM25 and dense fea- 903

tures by a fine tuned RoBERTa model6. Number of 904

anchors are set to 100 for page/sentence retrieval 905

and 20 during table retrieval. The remaining hy- 906

perparameters are set to default as mentioned in 907

(Zhang et al., 2023). 908

In HLATR, retrieved candidates from the earlier 909

step are used for reranking. We fine tune a trans- 910

former model7 to be used as reranker in the second 911

step. Fine tuning hyperparameters are batch size 4, 912

train group size 16, learning rate 10-5, and number 913

of epochs 5. In HLATR’s third step, we fine tune 914

a lightweight RoBERTa-base model with reduced 915

hidden_size as 128, num_attention_heads 2, and 916

num_hidden_layers 4, with a learning rate 10-3, 917

batch size 256, and 30 epochs. 918

All experiments are done on NVIDIA RTX 4090 919

24GB type GPUs. 920

5TAPAS-base
6sentence-transformers/msmarco-bert-base-dot-v5
7CoROM-Reranking

11

https://huggingface.co/FacebookAI/roberta-base
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https://huggingface.co/sentence-transformers/msmarco-bert-base-dot-v5
https://modelscope.cn/models/iic/nlp_corom_passage-ranking_english-base/summary
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Figure 4: Error source proportions of claims with different reasoning challenges on dev set.

C Error Analysis921

To investigate error propagation within the FEVER-922

OUS pipeline, we conduct a thorough error source923

analysis for both page and evidence retrieval stages.924

We also perform the error analysis on the challenge925

type to show M-ReRank’s strength and weakness.926

C.1 Error Source Analysis927

The candidates not retrieved in any stage leads to928

error propagation in the pipeline. In the three-step929

pipeline, the Page source error is determined by in-930

stances that fail to retrieve all pages containing evi-931

dence. Further, error source can also arises when a932

specific evidence format is not fully extracted. For933

instances with a complete document set, errors are934

categorised by the format of evidence that are failed935

to be retrieved: Unstructured (sentences), Struc-936

tured (tables or cells), and Both. Figure 3 displays937

the proportion of instances with failed evidence re-938

trieval. We also show the percentage instances with939

complete evidence set as Complete. Comparing the940

results with recent models, i.e. UnifEE and SEE-941

ST, our proposed M-ReRank approach performs942

well on each evidence type. On page retrieval, M-943

ReRank decreases the error from 15.8% to 9.2%.944

The decrement is also observed in proportion of945

source error on structure and unstructured evidence 946

retrieval. It shows the effectiveness of M-ReRank 947

in evidence retrieval. 948

C.2 Analysis based on challenge types 949

In FEVEROUS challenge, the samples are also cat- 950

egorised into various challenge categories. A fact- 951

checker system’s strength should also be analysed 952

based on challenge types. These challenges en- 953

compass Multi-hop Reasoning (MR), performing 954

Numerical Reasoning (NR), Entity Disambigua- 955

tion (ED), dealing with Search terms not present in 956

claim (ST), and Combining Tables and Text (CT). 957

Any challenges outside these five categories are 958

classified as Other (OT). We evaluate M-ReRank’s 959

performance to demonstrate its capability in retriev- 960

ing evidence for claims with various challenges. M- 961

ReRank achieves higher performance on almost all 962

challenges with major improvement on Multi-hop 963

Reasoning and Combining Tables and Text chal- 964

lenges comparing SEE-ST and UnifEE as shown 965

in Figure 4. M-ReRank achieves evidence extrac- 966

tion with a recall rate of 65.43%, 57.89%, 79.66%, 967

71.52%, 71.05%, 76.75% in MR, NR, OT, ED, ST, 968

and CT, respectively, showing that the collaborative 969

filtering and modelling inter-evidence context can 970
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Claim:
The San Luis Obispo Railroad Museum located at San Luis Obispo, California (founded in 1772), opened in
2013, features different track displays and a museum store that sellls railroad books, lanterns and other items.
Label: SUPPORTS

Sentence Evidences

Retrieval:
(1)San Luis Obispo Railroad Museum_sentence_0", 

(2)"San Luis Obispo Railroad Museum_sentence_8", 

(3)"San Luis Obispo Railroad Museum_sentence_5",  

(6)”San Luis Obispo, California_sentence_6", 

(10)”San Luis Obispo Railroad Museum_sentence_6” 

There is a children's play area incorporating hands-on train tables and a Museum Store offering
railroad books, lanterns, and clothing, and other items.

The San Luis Obispo Railroad Museum, in San Luis Obispo, California, was founded to preserve
and present the railroad history of California, and specifically the Central Coast, by collecting,
restoring, displaying, and operating historic railroad equipment.

Opened in 2013, the museum occupies the restored former Southern Pacific Freighthouse (built
1894) at 1940 Santa Barbara Avenue, adjacent to the Union Pacific main line and about one-quarter
mile south of the San Luis Obispo Amtrak station.

Founded in 1772 by Spanish Franciscan Junípero Serra, San Luis Obispo is one of California's
oldest European-founded communities.

A standard-gauge display track extends along the east side of the building, and a short narrow-
gauge display track is on the west side.

M-ReRank:
(1)San Luis Obispo Railroad Museum_sentence_8", 

(2)"San Luis Obispo Railroad Museum_sentence_5", 

(3)"San Luis Obispo Railroad Museum_sentence_0",  

(4)”San Luis Obispo, California_sentence_6", 

(5)”San Luis Obispo Railroad Museum_sentence_6” 

There is a children's play area incorporating hands-on train tables and a Museum Store offering
railroad books, lanterns, and clothing, and other items.

The San Luis Obispo Railroad Museum, in San Luis Obispo, California, was founded to preserve
and present the railroad history of California, and specifically the Central Coast, by collecting,
restoring, displaying, and operating historic railroad equipment.

Opened in 2013, the museum occupies the restored former Southern Pacific Freighthouse (built
1894) at 1940 Santa Barbara Avenue, adjacent to the Union Pacific main line and about one-quarter
mile south of the San Luis Obispo Amtrak station.

Founded in 1772 by Spanish Franciscan Junípero Serra, San Luis Obispo is one of California's
oldest European-founded communities.

A standard-gauge display track extends along the east side of the building, and a short narrow-
gauge display track is on the west side.

Multi-stage
Reranking

Table Evidences

Retrieval:

(3)"San Luis Obispo Railroad Museum_table_0", 

(8)"San Luis Obispo, California_table_0", 

Multi-stage
Reranking

San Luis Obispo Railroad Museum

Established 2013

Location 1940 Santa Barbara Ave
San Luis Obispo, California

Type Railroad museum

San Luis Obispo, California

Country United States

State California

County San Luis Obispo

Government Body San Luis Obispo City Council

M-ReRank:

(2)"San Luis Obispo Railroad Museum_table_0", 

(4)"San Luis Obispo, California_table_0", 

San Luis Obispo Railroad Museum

Established 2013

Location 1940 Santa Barbara Ave
San Luis Obispo, California

Type Railroad museum

San Luis Obispo, California

Country United States

State California

County San Luis Obispo

Government Body San Luis Obispo City Council

Figure 5: An example in FEVEROUS. The blue rectangle contains the claim. The yellow rectangle highlights the
initially retrieved evidence (Retrieval), while the green rectangle depicts the reranked evidence set by our Multi-stage
reranking (M-ReRank) paradigm. Text in red color with each evidence show order number (parenthesised) followed
by its id in the dataset. To illustrate interactions, brown arrows connect the claim to evidence, and green arrows
indicate relationships among evidence pieces. Words and phrases underlined to show interactions between the claim
and evidence, while bold highlights indicate inter-evidence interactions in the group, e.g. sentences or tables.

effectively improve the evidence retrieval.971

Our multi-stage reranking approach shows en-972

hanced evidence retrieval capabilities, particularly973

in complex, challenging scenarios. M-ReRank de-974

creases the Unstructured error by 4.71% against975

UnifEE and 2.92% against SEE-ST. For Unstruc-976

tured evidence, it reduces the errors significantly977

by 28.97% against UnifEE, while less margin of978

0.54% against SEE-ST as SEE-ST does well in979

structured evidence retrieval.980

D Case Study981

A case is shown for evidence extraction of both type982

sentence and table in Figure 5. For the claim on983

San Luis Obispo Railroad Museum, our M-ReRank984

successfully retrieves sentences and tables of evi-985

dence by reordering them what was provided in ini-986

tial retrievals. We use RoBERTa (Cross-Encoder)987

and TAPAS (SEE-ST) retrieval results, respectively,988

for unstructured and structured evidence extraction.989

The main challenge for this case is Multi-hop evi-990

dence extraction, as the evidence is to be extracted991

from multiple sources to verify the claim. For sen- 992

tence extraction, we observe that initial retrieval 993

was only able to retrieve three evidence in Top-5. 994

Through M-ReRank, the evidences are rescored 995

and retrieve those evidences in Top-5. For instance, 996

sentences with evidence id San Luis Obispo, Cali- 997

fornia_sentence_6 and San Luis Obispo Railroad 998

Museum_sentence_6, were earlier ranked six and 999

ten respectively, however, M-ReRank reranks them 1000

as four and five. Without them, fact-verification 1001

model would not be able to prove when San Luis 1002

Obispo was founded and what kind display track 1003

the Railway Museum offers. 1004

In structured evidence, the initial retrieval is 1005

unable to retrieve San Luis Obispo, Califor- 1006

nia_table_0 in Top-5, but M-ReRank reorders it 1007

to be included in Top-5 tables. It helps in identi- 1008

fying San Luis Obispo as a county in California 1009

state. This shows the robustness of M-ReRank in 1010

utilising the information of interaction among evi- 1011

dence to reorder them, thereby improving overall 1012

evidence extraction in each format. 1013
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