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Abstract

Large Language Models (LLMs) exhibit limita-001
tions in complex, multi-step reasoning tasks.002
This paper introduces a framework that en-003
hances LLM problem-solving by incorporat-004
ing explicit planning via a modified Monte005
Carlo Tree Search (HierarchicalMCTS). Our006
approach decouples planning from execution,007
using modified MCTS to hierarchically search008
the space of complete reasoning plans, guided009
by evaluation agents that assess logical con-010
sistency and feasibility. We also explore the011
use of smaller LLMs for planning and larger012
ones for execution to improve efficiency. Ex-013
periments on six reasoning benchmarks show014
that HierarchialMCTS planning significantly015
improves accuracy, achieving a 24.18% average016
improvement over zero-shot Chain-of-Thought017
methods. Notably, the smaller-larger LLM con-018
figuration maintains 90.70% of the full perfor-019
mance while reducing computational cost by020
73%. These findings highlight the importance021
of explicit, search-based planning for LLMs022
and suggest a path towards more robust and ef-023
ficient reasoning systems for complex problem-024
solving. Codes are anonymously available025
at https://anonymous.4open.science/r/026
HierarchicalMCTS-9C0D.027

1 Introduction028

Despite remarkable advances in natural language029

understanding tasks through auto-regressive gener-030

ation (Brown et al., 2020; Chowdhery et al., 2023),031

current Large Language Models (LLMs) face in-032

herent limitations that significantly impact their033

reasoning capabilities. The auto-regressive nature034

of these models, where each step depends solely on035

previous outputs, leads to three critical challenges:036

(1) error propagation, where initial mistakes cas-037

cade and amplify through the reasoning chain, (2)038

logical inconsistency, where subsequent deduc-039

tions may contradict earlier steps due to the lack of040

global context, and (3) myopic planning, where041

Planning Type Method Comment Model GSM8K

No Planning
Zero-Shot CoT

(Kojima et al., 2022)
Zero-Shot

Qwen2.5-7B-it 80.89
Llama3.1-8B-it 57.32

Graph
Planning

SWAP
(Xiong et al., 2024)

Fine-Tuned
Llama3-8B-it 78.10
Mistral-7B-It 54.00

Auto
Regressive
Planning

Plan-and-Solve
(Kojima et al., 2022)

Zero-Shot GPT-3 56.40

Least-to-Most
(Zhou et al., 2023)

Task-Specific
Prompt

GPT-3
62.39

(1-shot)

Tree-of-Thought
(Yao et al., 2023)

Task-Specific
Prompt

GPT-4 90.00

Meta Reasoning
(Gao et al., 2024)

Zero-Shot
GPT-4 92.10

GPT-3.5 78.10

Arrange & Execute
(Qiu et al., 2024)

Fine-Tuned
Qwen2-7B-it 82.11
Llama3-8B-it 77.03

RAP
(Hao et al., 2023)
(Vanila MCTS)

4 Shots
Llama-33B 48.80

Qwen2.5-7B-it 83.09
Llama3.1-8B-it 75.06

Hierarchical
Planning

HierarchicalMCTS
(Ours) Zero-Shot

Qwen2.5-7B-it 90.14
Llama3.1-8B-it 77.28

Table 1: Accuracy(%) Comparison of Planning Meth-
ods on GSM8K. Our HierarchicalMCTS framework demon-
strates substantial improvements in problem-solving accu-
racy through systematic plan optimization. In zero-shot set-
tings, our approach consistently outperforms existing methods,
achieving +4.635% higher accuracy than vanilla MCTS while
costing only 2.84% of its computational resources (detailed
in Table 6). This significant efficiency gain, combined with
improved accuracy, validates the effectiveness of our hierar-
chical planning strategy. More benchmark results are further
documented in Table 2. Results from original publications are
denoted in italics.

models focus only on immediate, local transitions 042

without maintaining a comprehensive view of the 043

solution space. While increasingly sophisticated 044

LLMs have been developed to mitigate these chal- 045

lenges in auto-regressive generation, even state-of- 046

the-art (SOTA) models like GPT-4 (OpenAI-Team, 047

2024) continue to exhibit these fundamental lim- 048

itations, particularly when confronted with tasks 049

demanding complex multi-step reasoning and main- 050

tenance of logical consistency across extended de- 051

ductive chains. 052

While recent approaches have attempted to ad- 053

dress these challenges through techniques like 054

Chain-of-Thought (CoT) prompting (Wei et al., 055

2022) and various task decomposition methods (Pa- 056

tel et al., 2022; Zhou et al., 2023; Zebaze et al., 057
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(1) Directly Solve with CoT (2) Auto-Regressively Plan and Solve (3) Hierarchically Plan and Solve

(b) Problem-Solving Stage

(a) Planning Stage

(2.1) Searching Plan with CoT

Searching with HierarchicalMCTS

Reasoning State Planning State 

Red Color indicates Incorrect State

Deeper Color indicates Higher Probability

(2.2) Searching Plan with Vanilla MCTS

Complete Plan for Problem-Solving

(No explicit plan guidance)

Figure 1: A comparative analysis of three LLM problem-solving approaches: (1) Direct CoT solving (Kojima et al., 2022),
which interleaves planning and executing but inherently propagates errors through its reasoning chain; (2) Auto-regressive
planning (Wang et al., 2023a; Hao et al., 2023), which separates planning from execution but generates potentially suboptimal
plans due to its state-by-state search constraints of auto-regressive generation; and (3) Our HierarchicalMCTS framework,
which systematically explores the complete plan space plan-by-plan through hierarchical search guided by LLM agent rewards.
The darkness of shading indicates the joint probability of correct reasoning at each state. Experimental results demonstrate
HierarchicalMCTS’s superior performance (+24.18% vs. Zero-shot CoT; +4.635% vs. vanilla MCTS), achieved through more
effective plan optimization via hierarchical exploration and global plan assessment.

2024), they remain constrained by the underlying058

auto-regressive architecture. Similarly, plan-and-059

solve frameworks (Wang et al., 2023a; Yao et al.,060

2023; Hao et al., 2023), though more structured,061

inherit these limitations as they still rely on step-062

by-step generation, as illustrated in Figure 1. The063

key issue lies in their inability to maintain global064

consistency and optimize across the entire solution065

space, leading to suboptimal plans and deteriorat-066

ing performance in complex reasoning scenarios.067

This persistent challenge underscores the critical068

need for external, systematic search methods069

that can overcome the internal limitations of070

auto-regressive generation, thereby enabling the071

identification of globally optimal reasoning plans.072

To address this challenge, two fundamental re-073

search questions guide our investigation:074

RQ1: Can external systematic search methods075

effectively identify optimal plans while avoiding076

LLMs’ auto-regressive limitations?077

RQ2: Can smaller LLMs efficiently guide larger078

LLMs in execution using optimally searched plans?079

Approach In this work, we address these re-080

search questions by introducing HierarchicalM-081

CTS, a novel framework that fundamentally shifts082

the search paradigm from individual reasoning083

steps (state-level) to complete reasoning plans084

(plan-level). Our key innovation lies in utilizing a085

modified MCTS where each search node represents086

an entire reasoning plan, enabling global plan op-087

timization before execution. This approach stands 088

in stark contrast to existing state-by-state planning 089

methods that typically rely on auto-regressive gen- 090

eration, making them susceptible to error accumu- 091

lation and suboptimal solutions. By treating com- 092

plete plans as atomic search units, we can systemat- 093

ically optimize plan quality—a crucial determinant 094

of reasoning performance—through hierarchical 095

exploration. The search process is guided by spe- 096

cialized evaluation agents that assess both the log- 097

ical consistency and practical feasibility of these 098

complete plans, providing structured refinement 099

through quantitative scores and qualitative feed- 100

back. This dual evaluation mechanism ensures that 101

only coherent and feasible plans are explored in the 102

search space, leading to more reliable reasoning 103

outcomes. To rigorously validate our approach, we 104

conduct three comprehensive experiments: (1) a 105

comparative analysis of HierarchicalMCTS against 106

standard methods and SOTA baselines, (2) an in- 107

vestigation of the relationship between plan qual- 108

ity and reasoning outcomes, and (3) an efficiency 109

analysis of various model configurations. These 110

experiments empirically demonstrate not only the 111

superior performance of our hierarchical planning 112

approach but also its practical viability and robust- 113

ness across diverse reasoning tasks. 114

Findings Our comprehensive evaluation across 115

six reasoning benchmarks demonstrates that Hierar- 116

chicalMCTS significantly advances LLM problem- 117
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solving capabilities in both effectiveness and effi-118

ciency. In terms of effectiveness, the framework119

achieves a remarkable 24.18% average accuracy120

improvement over zero-shot CoT prompting, with121

particularly strong performance in complex arith-122

metic tasks. This substantial gain stems from two123

key innovations: the decoupling of planning from124

execution, and the systematic exploration of com-125

plete reasoning plans through hierarchical search.126

The method’s superiority is evidenced by its con-127

sistent outperformance of structured CoT plan-and-128

solve baselines across all six benchmarks, vali-129

dating the advantages of global plan optimization130

over incremental reasoning. Regarding efficiency,131

our analysis reveals a striking discovery: deploy-132

ing smaller LLMs (1.5B parameters) for planning133

in conjunction with larger models (>70B parame-134

ters) for execution maintains 90.70% of full per-135

formance while reducing computational costs by136

73%. This finding has significant implications for137

practical deployment, demonstrating that sophis-138

ticated reasoning capabilities can be achieved in139

resource-constrained settings.140

Key contributions include:141

1. Effectiveness: A novel HierarchicalMCTS142

framework that systematically optimizes complete143

reasoning plans through specialized evaluation144

agents, achieving superior accuracy (+24.18%)145

over existing methods and addressing fundamental146

limitations in current LLM reasoning approaches.147

2. Efficiency: An innovative hybrid architecture148

combining smaller models for planning with larger149

models for execution, reducing computational costs150

by 73% while maintaining 90.70% of full perfor-151

mance, enabling practical deployment in resource-152

constrained environments.153

3. Theoretical Foundation: A rigorous analysis154

of planning-reasoning decomposition in LLMs,155

demonstrating how hierarchical plan optimization156

through MCTS leads to more robust reasoning out-157

comes compared to interleaved approaches.158

4. Empirical Validation: Comprehensive experi-159

mental results across six diverse reasoning bench-160

marks demonstrating consistent improvements:161

24.18% average accuracy increase over zero-shot162

CoT and superior performance to structured base-163

lines in all benchmarks.164

2 Related Work165

Prompting Techniques. Prompt-based methods166

emerged as a powerful technique to enhance LLM167

reasoning capabilities by providing explicit instruc- 168

tions and examples that guide model behavior. 169

Chain-of-Thought (CoT) prompting (Wei et al., 170

2022) pioneered this approach by eliciting step- 171

by-step reasoning, enabling LLMs to break down 172

complex problems into manageable steps. This 173

success inspired various extensions including sys- 174

tematic task decomposition (Patel et al., 2022) and 175

least-to-most prompting (Zhou et al., 2023) that 176

further structure the reasoning process. However, 177

these methods face fundamental limitations due to 178

their reliance on auto-regressive generation: they 179

lack a global view of the solution, leading to po- 180

tential logical inconsistencies (Wang et al., 2023b), 181

error propagation (Gero et al., 2023), and reason- 182

ing failures particularly in extended sequences (Wei 183

et al., 2022; Google-Team, 2023). 184

Planning Approaches. Recent frameworks at- 185

tempt to address these limitations by separating 186

planning from execution. Plan-and-Solve (Wang 187

et al., 2023a) introduced explicit problem decom- 188

position, while subsequent work focused on plan 189

quality improvement through various strategies: 190

Least-to-Most (Zhou et al., 2023) via stepwise de- 191

composition, Meta Reasoning (Gao et al., 2024) 192

through dynamic meta-information selection, and 193

Arrange & Execute (Qiu et al., 2024) using fine- 194

tuned planning models. Despite these advances, 195

their reliance on auto-regressive generation leads 196

to suboptimal solutions and error accumulation due 197

to inherent state-by-state search limitations. 198

Search-Based Planning. Search-based meth- 199

ods have emerged as a promising direction for 200

overcoming auto-regressive limitations. Tree-of- 201

Thoughts (Yao et al., 2023) pioneered systematic 202

plan exploration, while RAP (Hao et al., 2023) 203

introduced MCTS for stepwise plan optimization. 204

SWAP (Xiong et al., 2024) further advanced this 205

through graph-based planning. Besides, MCTS 206

itself has demonstrated remarkable success in com- 207

plex decision spaces, particularly in gaming (Sil- 208

ver et al., 2016), through its balanced exploration- 209

exploitation framework (Chaslot et al., 2008). Re- 210

cent applications to LLM planning (OpenAI, 2024; 211

Wang et al., 2024) show promise but face signif- 212

icant challenges: vast generation spaces compli- 213

cate effective sampling, while evaluation costs limit 214

computational scalability. 215

Research Gaps and Our Contribution. Cur- 216

rent approaches face two key limitations: planning 217
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methods remain constrained by sequential reason-218

ing, while traditional MCTS struggles with vast219

action spaces and computational costs. Our work220

addresses these challenges through two key inno-221

vations: (1) hierarchical plan-level search with spe-222

cialized evaluation agents, and (2) efficient model223

scaling that leverages smaller models for search224

and larger models for execution. This represents a225

fundamental shift from state-level to plan-level op-226

timization, enhancing reasoning capabilities while227

maintaining computational efficiency.228

3 HierarchicalMCTS229

Current LLM architectures face fundamental lim-230

itations in complex reasoning tasks due to their231

auto-regressive nature, particularly when global232

consistency is required. We introduce Hierarchi-233

calMCTS, a framework that enhances LLM reason-234

ing through systematic optimization of complete235

reasoning plans via modified Monte Carlo Tree236

Search. By decoupling planning from execution237

and implementing specialized evaluation agents,238

our approach addresses core limitations in auto-239

regressive generation.240

3.1 From State-Level to Plan-Level Search241

The LLM problem-solving process can be modeled242

probabilistically: given a problem X and context243

Cproblem, the objective is to generate a solution244

Y . Traditional CoT methods directly model this245

as P (Y |X,Cproblem), combining planning and rea-246

soning into a single step. This conflation, coupled247

with auto-regressive generation, leads to error prop-248

agation where early mistakes cascade through the249

solution process.250

Plan-and-Solve methods (Wang et al., 2023a)251

attempt to separate planning and execution by de-252

composing context C into problem description253

Cproblem and plan Cplan:254

P (Y |X,C) = P (Y |X,Cproblem, Cplan) (1)255

However, these methods remain constrained by256

auto-regressive plan generation, inheriting CoT’s257

limitations in maintaining global consistency and258

optimal plan identification.259

We propose that a high-quality plan Cplan en-260

ables solution Y to be conditionally independent261

of problem X , implying the plan’s critical role in262

problem-solving. This leads to our two-stage ap-263

proach:264

1. Planning (P (Cplan|Cproblem)): Systematically 265

search and optimize reasoning steps through Hier- 266

archicalMCTS to generate a comprehensive plan. 267

2. Execution (P (Y |X,Cproblem, Cplan)): Gener- 268

ate solution guided by the optimized plan. 269

HierarchicalMCTS transforms traditional MCTS 270

by operating on complete reasoning plans rather 271

than individual steps. By treating plans as atomic 272

search units and employing specialized evaluation 273

agents for logical consistency and feasibility as- 274

sessment, our approach enables systematic opti- 275

mization toward globally optimal solutions while 276

addressing error propagation and myopic planning 277

limitations. 278

3.2 Plan-Level Search and Optimization 279

Within our probabilistic framework, the system be- 280

gins with an LLM-generated base plan C0 as the 281

root node. For a given problem P , HierarchicalM- 282

CTS explores the solution space to discover an 283

optimized plan C∗ that maximizes the probability 284

of correct solution generation Y , enabling global 285

optimization before execution while efficiently nav- 286

igating potential reasoning pathways. 287

Expansion. When reaching a leaf node (repre- 288

senting plan Ct), HierarchicalMCTS expands the 289

search tree through structured plan refinement, gen- 290

erating complete variant plans rather than individ- 291

ual steps. The expansion process utilizes a plan 292

refinement operator Refine(Ct, feedback,M), 293

which leverages both the LLM planner M and 294

evaluation agent feedback to synthesize improved 295

plans Ct+1. This process enables comprehensive 296

optimization through iterative refinement - for in- 297

stance, in mathematical problem-solving, an initial 298

plan C0 merely stating "Extract numerical values" 299

might evolve through feedback into increasingly 300

sophisticated strategies that incorporate relation- 301

ship analysis, equation formulation, and systematic 302

solution approaches. By maintaining focus on com- 303

plete plan evolution rather than incremental modi- 304

fications, this hierarchical refinement mechanism 305

facilitates global optimization of reasoning strate- 306

gies while preserving plan coherence and structural 307

integrity throughout the search process. 308

Simulation and Reward. While traditional 309

MCTS relies on stochastic rollouts for state eval- 310

uation, such an approach proves inadequate for 311

assessing abstract reasoning plans. Our frame- 312

work instead implements specialized evaluation 313
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agents, E, that provide both quantitative assess-314

ment and qualitative feedback. Two critical agents315

form the core of this evaluation system: a Logical316

Consistency Agent that examines plan coherence317

and identifies logical contradictions (e.g., "Step 3318

contradicts Step 2"), and a Feasibility Agent that319

analyzes practical implementability and execution320

constraints (e.g., "Step 4 requires iterative solving321

but lacks termination conditions"). Both agents out-322

put normalized scores between 0 and 1, enabling323

systematic comparison and optimization of candi-324

date plans while providing actionable insights for325

refinement.326

These specialized agents generate both quanti-327

tative assessments (score ∈ [0, 1]) and qualitative328

feedback in the form of detailed critiques. To guide329

the MCTS search process, we employ a weighted330

reward function that synthesizes these evaluations:331

Reward(C) = w1 ·LogicalConsistency(C) +w2 ·332

Feasibility(C) where weights w1 and w2 (with333

w1+w2 = 1) reflect the relative importance of log-334

ical soundness and practical implementability. This335

dual-nature reward mechanism serves two critical336

functions: the numerical scores drive the quantita-337

tive optimization within MCTS, while the textual338

critiques inform the qualitative refinement of plans339

during the Expansion phase, ensuring a balanced340

approach to plan improvement.341

Selection and Backpropagation. Node selection342

(choosing which plan to expand) uses the Upper343

Confidence Bound 1 algorithm (Auer, 2002):344

UCB1(C) = Q(C) + Cexp

√
lnNparent

NC
(2)345

Here, Q(node) is the average evaluation score346

of the plan at that node, N(node) and N(parent)347

denote visitation frequencies, and C is a constant348

that balances exploration and exploitation. This349

ensures that computational resources are focused350

on the most promising regions of the plan space.351

The reward signal, obtained from the evaluation352

agents, is then backpropagated up the MCTS tree,353

updating the value estimates of all nodes along the354

path from the root to the newly expanded node.355

After evaluating a selected plan, the reward356

signal propagates upward through the tree, up-357

dating each node’s value estimate via Q(C) ←358

(Q(C) · (NC − 1) + Reward(C))/NC . This dy-359

namic process ensures that promising plan varia-360

tions receive increased attention while maintain-361

ing sufficient exploration of alternative approaches. 362

The recursive nature of these updates gradually re- 363

fines the search tree’s value estimates, steering the 364

algorithm toward optimal reasoning plans through 365

iterative improvement and assessment. 366

The complete pseudocode for HierarchicalM- 367

CTS is provided in Appendix A.6. 368

4 Experiments 369

To rigorously evaluate our framework, we con- 370

duct two complementary experimental investiga- 371

tions: (1) a systematic evaluation of HierarchicalM- 372

CTS against standard baselines and state-of-the-art 373

methods across diverse reasoning tasks, and (2) 374

an in-depth analysis of efficiency trade-offs be- 375

tween different model configurations to identify 376

optimal resource utilization strategies for practical 377

deployment. Through these experiments, we aim 378

to demonstrate both the effectiveness of hierarchi- 379

cal planning in enhancing LLM reasoning and its 380

practical viability in resource-constrained settings. 381

4.1 Experimental Setup 382

Benchmark Selection. We evaluate our ap- 383

proach using a carefully curated set of bench- 384

marks that assess two fundamental dimensions 385

of LLM reasoning. For mathematical reason- 386

ing, we employ five complementary datasets: 387

GSM8K (Cobbe et al., 2021) for multi-step prob- 388

lem solving, AddSub (Hosseini et al., 2014) for 389

basic arithmetic operations, MultiArith (Roy and 390

Roth, 2015) for complex numerical relationships, 391

SVAMP (Patel et al., 2021) for structural variations, 392

and SingleEq (Koncel-Kedziorski et al., 2015) for 393

equation formulation. For commonsense reasoning, 394

we include CommonsensQA (Talmor et al., 2019) 395

to evaluate contextual understanding and knowl- 396

edge application. This combination enables rig- 397

orous assessment of both structured mathematical 398

thinking and flexible reasoning capabilities. 399

Model Selection. Our implementation uses two 400

state-of-the-art language models: Qwen 2.5 (Yang 401

et al., 2024) and Llama 3.1 (Llama-Team, 2024). 402

All experiments are conducted on the SGLang plat- 403

form (Zheng et al., 2024), with detailed protocols, 404

code implementations, and configurations provided 405

in Appendix A.1 to ensure reproducibility. 406

Baselines Selection. We compare our approach 407

against three methodological categories: (1) Direct 408

reasoning methods: Zero-shot CoT prompting (Ko- 409
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Benchmark Addsub CommonsensQA GSM8K MultiArith SingleEq SVAMP
Method Type Model

Zero-Shot(ZS) CoT
(Kojima et al., 2022)

Qwen2.5-7B-it 85.06 63.72 80.89 95.33 77.17 83.40
Llama3.1-8B-it 28.61 63.80 57.32 38.17 39.76 27.00
Avg. 56.84 63.76 69.10 66.75 58.47 55.20

CoT Plan
(Wang et al., 2023a)

Qwen2.5-7B-it 87.59 78.62 88.84 98.33 93.70 91.90
Llama3.1-8B-it 78.23 57.14 74.77 91.58 84.65 79.20
Avg. 82.91 67.88 81.81 94.96 89.18 85.55
Chagnes over ZS CoT 26.07 4.12 12.71 28.21 30.71 30.35

HierarchicalMCTS
(Ours)

Qwen2.5-7B-it 88.10 79.20 90.14 98.67 92.91 92.90
Llama3.1-8B-it 80.51 68.57 77.28 92.76 87.99 81.20
Avg. 84.31 73.88 83.71 95.72 90.45 87.05
Chagnes over ZS CoT 27.47 10.12 14.61 28.97 31.98 31.85

Table 2: Accuracy(%) Comparison of Different Problem-solving Methods with LLM. The Modified MCTS Plan consistently
outperforms ZS CoT with an average improvement of 24.18%, and shows superior results compared to CoT Plan in all 6
benchmarks. Results suggest that decoupling planning from execution improves problem-solving accuracy and optimal plan
searched by our approach can yield substantial performance gains. Best results are highlighted in bold.

jima et al., 2022) serves as our foundational base-410

line. (2) Plan-and-solve frameworks: Including411

vanilla CoT planning (Wang et al., 2023a), Meta412

Reasoning (Gao et al., 2024), and Arrange & Ex-413

ecute (Qiu et al., 2024). These methods separate414

planning from execution but remain constrained415

by auto-regressive generation. (3) Search-based416

methods: Including RAP (Hao et al., 2023), Tree-417

of-Thought (Yao et al., 2023), and SWAP (Xiong418

et al., 2024), which employ systematic exploration419

strategies. Our HierarchicalMCTS framework rep-420

resents a novel extension of this category, focusing421

on effective and efficient plan optimization.422

Fair Comparison Consideration. To ensure fair423

comparison, we exclude task-specific approaches424

like PromptAgent (Wang et al., 2024) that rely on425

specialized architectures. Given the challenge of426

fairly transferring task-specific and few-shot meth-427

ods across benchmarks, we focus our compara-428

tive analysis on GSM8k (Cobbe et al., 2021), a429

widely adopted benchmark in the field. For meth-430

ods with public implementations, we report per-431

formance from original publications; for zero-shot432

methods (CoT and CoT Plan), we follow official433

implementations and parameters as specified in re-434

cent work (Kong et al., 2024; Kojima et al., 2022;435

Hao et al., 2024).436

4.2 RQ1: Effectiveness of HierarchicalMCTS437

Methods Comparison. Table 1 provides a de-438

tailed comparison on the challenging GSM8K439

benchmark, which evaluates mathematical rea-440

soning capabilities. Our HierarchialMCTS plan-441

ning approach achieved accuracies of 90.14% with442

Qwen2.5-7B-it and 77.28% with Llama3.1-8B-it,443

surpassing all comparable methods using similar444

LLMs. The results highlight key limitations of 445

existing approaches. For instance, Least-to-Most 446

prompting, which relies on LLMs’ sequential rea- 447

soning, failed with both Qwen and Llama models 448

due to infinite loops, indicating inherent constraints 449

in LLMs’ native reasoning capabilities and the need 450

for controlled search frameworks. Our approach 451

showed notable improvements over vanilla MCTS 452

implemented in RAP, which achieved 83.09% with 453

Qwen2.5-7B-it and 75.06% with Llama3.1-8B- 454

it. This improvement stems from our special- 455

ized evaluation agents and structured plan refine- 456

ment techniques. While direct comparisons with 457

Least-to-Most prompting and ToT are limited by 458

their use of larger models (GPT-3 and GPT-4), our 459

method achieves comparable or superior results 460

using smaller models, advancing the optimization 461

between model size and performance. 462

Benchmark-Wide Comparison. Table 2 demon- 463

strates the effectiveness of our HierarchicalMCTS 464

planning approach across all benchmarks. The 465

method achieved an average accuracy improvement 466

of 24.18% over zero-shot CoT, showing statistically 467

significant performance gains. Our approach out- 468

performed the CoT plan-and-solve baseline in all 469

six benchmarks, with particularly strong results 470

in mathematical reasoning tasks (AddSub, Multi- 471

Arith, SingleEq, SVAMP), where maintaining logi- 472

cal consistency across multiple calculation steps is 473

crucial. Notably, even in commonsense reasoning 474

tasks (CommonsensQA), we observed substantial 475

improvements, likely due to our method’s ability 476

to systematically decompose knowledge applica- 477

tion into coherent steps. This consistent pattern 478

of improvement suggests that HierarchicalMCTS 479

6



Model
Max Depth Number of Rollouts

1 3 5 7 10 20 50 100 1 3 5 7 10 20

Llama3.1-8B-it 74.22 75.97 76.12 76.42 76.80 76.42 77.18 77.41 79.08 76.88 76.04 76.57 76.19 77.48
Qwen2.5-7B-it 87.64 88.17 88.02 88.40 88.32 88.48 88.55 88.78 89.01 89.76 89.08 89.23 90.14 89.92

Table 3: Performance Comparison of Language Models

Model Evaluator Addsub CommonsensQA GSM8K MultiArith SingleEq SVAMP

Qwen2.5-7B-it Feasibility 88.1 71.3 89.5 97.7 91.5 92.2
Qwen2.5-7B-it Logical Consistency 86.6 70.9 89.2 97.2 91.5 91.4
Qwen2.5-7B-it Combined (Ours) 88.1 79.2 90.1 98.7 92.9 92.9

Table 4: Performance Cmparison of Different Evaluation Agents for MCTS.

planning is especially valuable for tasks requiring480

precise, multi-step reasoning processes, where its481

structured approach to plan optimization can effec-482

tively guide complex problem-solving.483

These findings advance LLM research in several484

ways. First, they provide compelling evidence that485

separating planning from execution significantly486

improves LLM reasoning capabilities. The sub-487

stantial performance gains achieved by our Hier-488

archialMCTS planning approach demonstrate that489

a dedicated planning phase, guided by hierarchi-490

cal search, enhances the accuracy and reliability of491

LLM-based problem-solving. Second, our results492

underscore the critical importance of plan quality.493

The success of MCTS stems from its ability to494

explore and refine possible plans, guided by spe-495

cialized evaluation agents that assess both logical496

consistency and feasibility. This highlights oppor-497

tunities for further research into plan generation498

and evaluation methods.499

Ablation Study. Table 3 shows that increasing500

search tree depth improves performance up to a501

point, suggesting initial search steps are more crit-502

ical. The number of rollouts also impacts perfor-503

mance, with diminishing returns as the number504

increases. For Qwen2.5-7B-it, increasing rollouts505

from 1 to 10 improves accuracy from 89.01% to506

90.14%, but further increasing to 20 only yields a507

marginal improvement to 89.92%. Table 4 shows508

that combined evaluation agents (feasibility and509

logical consistency) yield the best results. For in-510

stance, on GSM8K, the combined agent achieves511

90.1% accuracy, compared to 89.5% (feasibility)512

and 89.2% (logical consistency) alone.513

Our findings demonstrate that separating plan-514

ning from execution and using HierarchicalMCTS515

to search for optimal plans significantly enhances516

LLM reasoning. The substantial performance gains517

highlight the importance of plan quality and the518

effectiveness of MCTS, guided by specialized eval- 519

uation agents. 520

4.3 RQ2: Efficiency of HierarchicalMCTS 521

Building on the findings of Section 4.2, which 522

demonstrated the significant benefits of MCTS 523

planning for LLMs, we investigate the crucial trade- 524

off between computational efficiency and perfor- 525

mance. A key question emerges: Can strategically 526

combining small and large LLMs enhance both the 527

efficiency and effectiveness of MCTS-based plan- 528

ning? 529

To address this question, we implemented a 530

heterogeneous model approach within the MCTS 531

framework, utilizing smaller LLMs (Qwen2.5- 532

1.5B-it and Gemma-2-2b-it (Gemma-Team, 2024)) 533

for plan generation and a larger LLM (Qwen2.5- 534

72B-it) for plan evaluation or execution. This 535

approach was systematically evaluated across the 536

benchmarks detailed in Section 4.1, examining var- 537

ious model size combinations for each role in the 538

planning process. 539

Table 5 reveals compelling patterns across differ- 540

ent model configurations. The synergistic relation- 541

ship between small and large models emerges 542

as a key finding: using a smaller LLM for plan- 543

ning with a larger LLM for execution yielded 544

substantial performance gains across all datasets. 545

The Qwen2.5-1.5B-it (planner) + Qwen2.5-72B-it 546

(evaluator+executor) configuration achieved an av- 547

erage improvement of 23.87% compared to using 548

Qwen2.5-1.5B-it alone, validating this complemen- 549

tary approach. 550

This heterogeneous approach also offers substan- 551

tial efficiency gains. Using smaller LLMs for plan- 552

ning and evaluation with a larger LLM for execu- 553

tion (Qwen2.5-1.5B + Qwen2.5-1.5B + Qwen2.5- 554

72B) reduced GPU time to 27% of that required 555

when using large LLMs throughout, while main- 556
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Benchmark Addsub CommonsensQA GSM8K MultiArith SingleEq SVAMP GPU Sec. Eff. Ratio
Planner Model Evaluator Model Executor Model

Qwen2.5-1.5B-it Qwen2.5-1.5B-it Qwen2.5-1.5B-it 75.70 58.72 64.29 86.50 83.66 72.10 2914.4 2.322
Gemma2-2B-it Gemma2-2B-it Gemma2-2B-it 81.52 17.16 52.67 86.83 86.02 69.40 2893.6 2.064

Qwen2.5-1.5B-it Qwen2.5-1.5B-it Qwen2.5-72B-it 88.86 78.49 86.96 96.83 95.28 90.70 3481.6 2.727
Qwen2.5-72B-it Qwen2.5-1.5B-it 86.58 68.36 81.35 92.50 88.78 81.40 7735.2 1.061
Qwen2.5-72B-it Qwen2.5-72B-it 90.63 80.71 92.80 98.67 94.88 92.00 8844.0 1.156

Gemma2-2B-it Gemma2-2B-it Qwen2.5-72B-it 91.39 77.72 88.48 97.67 95.67 92.30 3335.2 2.983
Qwen2.5-72B-it Gemma2-2B-it 90.89 34.64 79.83 95.00 92.13 84.00 7793.6 1.039
Qwen2.5-72B-it Qwen2.5-72B-it 92.41 78.54 92.42 98.33 95.87 93.00 8899.2 1.138

Qwen2.5-72B-it Qwen2.5-72B-it Qwen2.5-72B-it 91.14 83.95 94.62 98.67 95.08 93.40 12888.0 0.821

Table 5: Performance Comparison of Different LLMs for Planning and Execution. Results shows that using smaller models
for planning and larger models for execution with HierarchicalMCTS enhances efficiency. ‘GPU Sec.’ represents the total GPU
time (in seconds) needed to complete the six benchmarks. ‘Eff. Ratio’ is calculated as the ratio of GPU seconds to the average
accuracy of the six benchmarks, given by GPU Sec.

Avg. Acc.×100
. The highest ratio, indicating better efficiency, is highlighted in bold.

Method Model GSM8K GPU Sec. Eff. Ratio

Vanila MCTS (RAP)
(Hao et al., 2023)

Qwen2.5-7B-it 83.09 25612.0 0.324
Llama3.1-8B-it 75.06 23296.0 0.322

HierarchicalMCTS
(Ours)

Qwen2.5-7B-it 90.14 546.4 16.497
Llama3.1-8B-it 77.28 566.4 13.644

Table 6: Performance and Efficiency Comparison of Dif-
ferent MCTS Planning Methods. Our Modified MCTS Plan
outperforms Vanila MCTS (RAP) in its official implementa-
tion with only 2.84% of the GPU seconds required to complete
GSM8K benchmark.

taining 90.70% of full performance (vs. 93.40%).557

This configuration also outperformed using only558

smaller LLMs (90.70% vs. 72.10%) with just a559

19.46% increase in computational cost. The com-560

petitive performance of Gemma-2-2b-it, despite561

its smaller size, indicates that model architecture562

and training methodology significantly influence563

effectiveness beyond parameter count.564

These findings demonstrate that strategic combi-565

nations of small and large LLMs can significantly566

enhance MCTS-based planning efficiency while567

maintaining high performance. This approach of-568

fers clear advantages in computational efficiency569

and resource optimization, particularly valuable for570

resource-constrained applications. Future research571

should explore techniques to optimize model com-572

binations and develop methods to maintain plan-573

ning quality while further reducing computational574

overhead.575

5 Conclusion576

This paper introduces HierarchicalMCTS, a frame-577

work that fundamentally advances LLM problem-578

solving by integrating hierarchical MCTS with spe-579

cialized evaluation agents for systematic plan opti-580

mization. Our comprehensive experimental evalua-581

tion demonstrates significant improvements across582

diverse reasoning benchmarks, achieving an aver-583

age accuracy gain of 24.18% over zero-shot CoT584

methods. The framework shows particular efficacy 585

in complex arithmetic and commonsense reasoning 586

tasks, where maintaining logical consistency across 587

extended deductive chains is crucial. 588

Our investigation yields three insights that ad- 589

vance the field’s understanding of LLM reasoning. 590

First, explicit search-based planning outperforms 591

implicit reasoning approaches, as evidenced by su- 592

perior performance across all benchmarks. This 593

finding challenges the assumption that increasingly 594

LLM architectures alone can overcome fundamen- 595

tal limitations in complex reasoning tasks. Second, 596

our results establish a strong correlation between 597

plan quality and reasoning accuracy, validating 598

the effectiveness of hierarchical optimization in 599

generating robust solution strategies. Third, our 600

hybrid architecture, which deploys smaller LLMs 601

for planning and larger ones for execution, main- 602

tains 90.70% of full performance while reducing 603

GPU time by 73%. This breakthrough in efficiency 604

demonstrates a viable pathway for practical deploy- 605

ment in resource-constrained environments. 606

These findings open several promising research 607

directions at the intersection of classical AI and 608

modern language models. The success of com- 609

bining systematic search techniques with LLMs 610

suggests opportunities for integrating other tradi- 611

tional AI methods, particularly in areas requiring 612

structured reasoning. Future work could explore 613

adaptive evaluation strategies that dynamically ad- 614

just to problem complexity, automated plan repair 615

mechanisms for handling execution failures, and 616

extensions to more diverse reasoning scenarios. 617

Due to space limitations, we place discussion in 618

Appendix A.2. More broadly, our results advance 619

the development of AI systems capable of reliable 620

complex problem-solving through principled, hier- 621

archical reasoning approaches. 622
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Ethical Considerations623

This research enhances LLM problem-solving via624

MCTS planning. While our benchmark datasets625

pose minimal direct ethical concerns, the potential626

impact of improved AI problem-solving necessi-627

tates broader ethical consideration.628

Integrating MCTS introduces unique challenges.629

Unlike CoT methods, MCTS explores a wider630

range of plans, some potentially ethical yet log-631

ically sound. For instance, directly plan and ex-632

ecuting a toxic action could be rejected by LLM633

with alignment to ethical principles. However, if634

the search objective is to find such a plan, MCTS635

may escape the LLM’s ethical constraints. In this636

context, Mitigation strategies warrant investigation.637

Incorporating fairness constraints into MCTS, ad-638

versarial training for agents, and human-in-the-loop639

plan review could enhance ethical outcomes.640

Limitations641

While our HierarchialMCTS planning approach642

demonstrates significant improvements in LLM643

problem-solving capabilities, it is important to ac-644

knowledge several limitations of our current work.645

Firstly, the computational cost of MCTS, partic-646

ularly for larger language models, remains a sig-647

nificant challenge. Although we have shown that648

using smaller models for planning can mitigate this649

issue to some extent, further research is needed to650

optimize the efficiency of MCTS in the context of651

LLMs. Future work could explore pruning tech-652

niques or more sophisticated heuristics to reduce653

the search space without compromising plan qual-654

ity.655

Secondly, our study primarily focused on a656

specific set of benchmark datasets. While these657

datasets cover a range of problem types, they may658

not fully represent the diversity of real-world prob-659

lems that LLMs might encounter. Expanding our660

evaluation to a broader set of tasks and domains661

would provide a more comprehensive assessment662

of our method’s generalizability and robustness.663

Despite these limitations, we believe that our664

work represents a significant step forward in en-665

hancing the problem-solving capabilities of LLMs.666

By explicitly addressing these challenges, we hope667

to inspire further research that will lead to even668

more powerful and reliable AI systems capable of669

tackling complex real-world problems.670
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A Appendix873

A.1 Implementation Details874

A.1.1 Experimental Details and875

Hyperparameter Settings876

This appendix provides essential details regarding877

the experimental setup. Table 7 outlines the default878

hyperparameter values used in our experiments,879

specifically those reported in Tables 2 and 5. These880

values were selected based on preliminary experi-881

ments aimed at balancing computational cost with882

the quality of generated plans: Exploration Weight883

(C = 1.0) controls the balance between exploration884

and exploitation; Maximum Depth (10) limits the885

search tree’s depth; and Number of Rollouts (8)886

determines the number of simulations per node ex-887

pansion.888

A.1.2 Code Implementation889

To ensure reproducibility and facilitate fair compar-890

isons, we have made our code and demo available891

Hyperparameter Default Value

Exploration Weight (C) 1.0
Q Initialization 0
Maximum Depth 10
Number of Rollouts 8

Table 7: Default Hyperparameter Values for our Hierar-
chicalMCTS

on an anonymous GitHub repository. All experi- 892

ments were conducted using the official Docker 893

container lmsysorg/sglang from the SGLang 894

platform (Zheng et al., 2024) with 8 NVIDIA H800 895

GPUs. 896

For benchmarking, we utilized the official imple- 897

mentations of the methods proposed by Wei et al. 898

(2022), Wang et al. (2023a), and Hao et al. (2023). 899

We remastered the CoT and Plan-and-Solve ap- 900

proaches using the authors’ code to ensure accurate 901

replication of their results. This approach guaran- 902

tees that our comparisons are conducted on a level 903

playing field, thereby strengthening the validity of 904

our findings. 905

A.2 Discussion 906

A.2.1 Differences between Planning and 907

Reasoning 908

This section elaborates on the conceptual differ- 909

ences between planning and reasoning, a distinc- 910

tion that is fundamental to this research. 911

Planning is the process of formulating a high- 912

level strategy or sequence of steps to achieve a 913

goal. It is forward-looking, focusing on the overall 914

approach and considering multiple possible paths 915

before selecting the most promising one. In the 916

context of LLMs, planning involves generating a 917

structured outline of the reasoning process. 918

Reasoning, in contrast, is the process of exe- 919

cuting the individual steps outlined in the plan. It 920

involves performing calculations, making deduc- 921

tions, and drawing inferences based on the given 922

information and the chosen plan. Reasoning is pri- 923

marily concerned with the accuracy and logical 924

consistency of each step within the predetermined 925

framework. 926

Several key aspects highlight the differences be- 927

tween planning and reasoning. 928

Temporal Relationship Planning occurs before 929

execution, setting the stage for reasoning. Reason- 930

ing follows planning, involving the actual execu- 931

tion of the planned steps. 932
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Error Propagation Characteristics Errors in933

planning impact the overall strategy, potentially934

leading to systemic failures. However, such er-935

rors are often easier to detect and correct before936

execution begins. In contrast, errors in reasoning937

occur at individual calculation or deduction steps.938

These mistakes can compound through the reason-939

ing chain, making them harder to detect until reach-940

ing incorrect conclusions.941

Cognitive Load Planning requires holistic under-942

standing and strategic thinking. It focuses on the943

relationships between steps and considers multiple944

possible approaches to achieve the goal. Reasoning,945

on the other hand, demands precise execution of946

logical operations. It concentrates on the accuracy947

of individual steps, following the predetermined948

path set by the plan.949

Adaptability Planning is more flexible and can950

be modified based on initial results. It allows for951

alternative approaches and can incorporate feed-952

back from preliminary attempts. Reasoning is more953

rigid, as it must follow established logical rules and954

maintain consistency within the chosen approach.955

It is also limited by the constraints of the selected956

method.957

Our HierarchicalMCTS leverages these differ-958

ences by explicitly separating planning from exe-959

cution. By using our approach to hierarchically ex-960

plore and optimize plans, we address the challenges961

of error propagation and logical inconsistency of-962

ten encountered in LLM reasoning. Understanding963

these distinctions is crucial for developing more964

robust and reliable LLM-based reasoning systems.965

A.2.2 Hierarchical Planning vs.966

Auto-Regressive Planning967

This section provides a comparative analysis be-968

tween our proposed HierarchicalMCTS planning969

and existing auto-regressive planning methods. We970

will examine the theoretical frameworks underpin-971

ning each approach, highlighting both their mech-972

anistic differences and their distinct optimization973

objectives.974

Auto-regressive planning, mirroring the token-975

by-token generation process of LLMs, implicitly976

treats planning as a Markov Decision Process.977

Here, each planning step represents a state, and978

generating the next step is viewed as an action. A979

critical limitation is the reliance on the Markov980

property, where each step depends solely on its im-981

mediate predecessor. This method tends to make982

locally optimal choices through a greedy approach 983

at each step, neglecting the overall plan’s optimality. 984

This step-by-step search is analogous to a greedy 985

search of possible planning states, a fundamental 986

limitation that leads to error propagation and sub- 987

optimal plans. 988

The most prominent consequence of this greedy, 989

state-level approach is the compounding of errors. 990

Since each planning step relies only on the pre- 991

vious one, errors occurring early in the plan are 992

propagated through subsequent steps, making it 993

difficult to converge on a correct solution. More- 994

over, this inherently sequential nature prevents the 995

model from backtracking to correct prior errors. 996

Therefore, despite being easy to implement in ex- 997

isting LLM architectures, this greedy, state-level 998

method is ultimately inadequate for complex plan- 999

ning tasks. 1000

In contrast, HierarchicalMCTS reframes plan- 1001

ning as a global optimization problem. Rather than 1002

viewing planning as a series of individual steps, 1003

it explicitly explores the space of complete plans 1004

as unified entities, enabling the evaluation of plan 1005

quality as a whole. By utilizing a modified MCTS, 1006

guided by specialized evaluation agents that serve 1007

as reward functions, HierarchicalMCTS explores 1008

the plan space in a best-first manner, promoting the 1009

discovery of globally optimal strategies. This is in 1010

stark contrast to the greedy, step-by-step approach 1011

of auto-regressive planning. 1012

Furthermore, unlike the sequential nature of 1013

auto-regressive planning, MCTS allows for back- 1014

tracking and error correction by exploring multiple 1015

planning alternatives. This enables the model to 1016

adapt and refine plans prior to execution. For ex- 1017

ample, while an auto-regressive planner might in- 1018

correctly derive "2+2=4, then 4*3=12" when asked 1019

to "compute 2+2*3", a HierarchicalMCTS planner 1020

would explore alternative plans, as review agent 1021

will feasibility check the plan and reject the incor- 1022

rect one. By reframing the planning problem as 1023

global optimization, HierarchicalMCTS provides 1024

a more robust planning strategy and a theoretical 1025

shift in perspective compared to auto-regressive 1026

methods. 1027

A.2.3 Vanilla MCTS vs HierarchicalMCTS 1028

This section provides a critical comparison between 1029

vanilla MCTS and our proposed HierarchicalM- 1030

CTS, highlighting the fundamental limitations of 1031

vanilla MCTS when applied to LLM planning and 1032

underscoring the targeted solutions offered by our 1033
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approach.1034

While prior work has explored vanilla MCTS1035

for LLM planning (Hao et al., 2023; Wang et al.,1036

2024), closer examination reveals crucial limita-1037

tions inherited from its state-level, auto-regressive1038

nature. These limitations prevent vanilla MCTS1039

from effectively addressing the unique challenges1040

in LLM reasoning, highlighting the necessity of1041

HierarchicalMCTS. Specifically, three main limita-1042

tions plague vanilla MCTS in the context of LLMs:1043

Searching objective First, vanilla MCTS typi-1044

cally searches for states of the plan directly, thereby1045

mirroring the step-by-step nature of auto-regressive1046

methods. This makes it equally susceptible to error1047

propagation, local optima, and lack of a global per-1048

spective by only considering the current state, not1049

the entire plan. This is a fundamental limitation as1050

it does not overcome the limitations of state-level1051

planning.1052

Unbounded action space Second, unlike tradi-1053

tional Reinforcement Learning (RL) where action1054

spaces are constrained, vanilla MCTS for LLMs1055

faces an unbounded action space, where the LLM1056

can generate any possible next state. This uncon-1057

trollable search space makes it extremely difficult1058

for vanilla MCTS to converge to an optimal plan1059

due to the sparse reward signal and infinite branch-1060

ing.1061

Exploration vs Exploitation Third, while1062

MCTS is designed to explore the search space,1063

balancing exploration and exploitation in vanilla1064

MCTS often leads to premature cutoffs, especially1065

when planning for LLMs. This is because it1066

searches for the most promising next step, not the1067

most promising overall plan, leading to premature1068

convergence to local optima, limiting the explo-1069

ration of superior plans.1070

In contrast, HierarchicalMCTS is explicitly de-1071

signed to overcome these limitations in a Evolution-1072

ary Algorithms way. By changing the search objec-1073

tive from states of the plan to complete plans, we1074

transform the search from a state-by-state decision-1075

making process to a global plan optimization pro-1076

cess. This shift removes the limitations inherent to1077

auto-regressive and vanilla MCTS planners.1078

This critical shift allows the model to assess the1079

entire reasoning trajectory before execution, en-1080

abling a global optimization of complete plans, and1081

allowing more powerful search by reframing the1082

objective from "most promising next step" to "most1083

Benchmark Last Letters Object Tracking
Method Type Model

Zero-Shot(ZS) CoT
(Kojima et al., 2022)

Qwen2.5-7B-it 21.00 74.80
Llama3.1-8B-it 26.40 49.33
Avg. 19.20 62.07

CoT Plan
(Wang et al., 2023a)

Qwen2.5-7B-it 55.20 79.33
Llama3.1-8B-it 15.40 57.94
Avg. 35.30 68.64
Chagnes over ZS CoT 16.10 6.57

HierarchicalMCTS
(Ours)

Qwen2.5-7B-it 56.60 79.33
Llama3.1-8B-it 12.80 55.43
Avg. 34.70 67.38
Chagnes over ZS CoT 15.50 5.31

Table 8: Accuracy(%) Comparison on Sequential Rea-
soning Benchmarks. Our evaluation compares Hierarchi-
calMCTS against baseline methods on sequential reasoning
tasks. Results demonstrate that our MCTS-enhanced Chain-of-
Thought approach achieves comparable performance to CoT
Plan, particularly in tasks requiring structured planning and
systematic reasoning.

promising plan." For instance, while vanilla MCTS 1084

might incrementally build a plan "2+2=4; then..." 1085

for "2+2*3", HierarchicalMCTS explores complete 1086

plans, such as "calculate multiplication, calculate 1087

addition" and "calculate addition then multiplica- 1088

tion," selecting the one with the highest logical 1089

consistency and feasibility, thus bypassing local 1090

optima. By redesigning the search space and objec- 1091

tive, HierarchicalMCTS unlocks the full potential 1092

of MCTS in LLM planning, providing a more ef- 1093

fective solution for complex reasoning tasks. 1094

A.3 Extended Results 1095

To provide a more comprehensive assessment of 1096

our framework’s capabilities, we conducted addi- 1097

tional experiments on sequential reasoning bench- 1098

marks. As shown in Table 8, we evaluated Hier- 1099

archicalMCTS against baseline methods on tasks 1100

requiring structured tracking of information over 1101

multiple steps. While maintaining comparable per- 1102

formance to CoT Plan, these results reveal interest- 1103

ing patterns in the efficacy of hierarchical planning 1104

for different reasoning modalities. The relatively 1105

smaller gains on sequential tasks compared to math- 1106

ematical reasoning suggest that the benefits of plan- 1107

level optimization may vary based on task structure 1108

and cognitive demands. 1109

A.4 Count Characters: Example 1110

We present two examples of the Count Characters 1111

task, illustrating the application of CoT, Plan-and- 1112

Solve, and MCTS planning methods. Figure 6 1113

demonstrates the CoT, Plan-and-Solve approach, 1114

and MCTS planning process. These examples 1115

provide a detailed step-by-step breakdown of the 1116

problem-solving process, highlighting the differ- 1117

ences between the two methods. 1118
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A.5 Prompt Templates for Task Execution,1119

Evaluation Agents1120

Task Execution Prompt The Task Execution1121

prompt instructs the LLM to execute a given plan1122

to solve a problem. The LLM follows the plan1123

step-by-step and outputs the final answer formatted1124

within a box using the \boxed{} command.1125

Feasibility Evaluation Prompt The Feasibility1126

Agent evaluates the feasibility of a given plan by1127

checking the logical consistency of each step. The1128

agent provides feedback on the plan’s feasibility1129

and assigns a score between 0 and 100 based on1130

the number of logical inconsistencies found. We1131

use regex to extract the score from the agent’s re-1132

sponse and normalize it to a scale of 0 to 1. Prompt1133

templates for the Feasibility Evaluation Agent are1134

shown in Figure 3.1135

Logical Consistency Evaluation Prompt Logi-1136

cal Consistency Agent evaluates the logical consis-1137

tency of a given plan by checking the correctness1138

of each step. The agent provides feedback on the1139

plan’s logical consistency and assigns a score be-1140

tween 0 and 100 based on the number of logical1141

inconsistencies found. We use same way to ex-1142

tract and normalize to process the socre. Prompt1143

templates for the Logical Consistency Evaluation1144

Agent are shown in Figure 4.1145
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Task Execution Prompt

System: You are a highly capable AI assistant tasked with solving problems by meticulously following a provided plan.
User:
### Problem
{question text}
### Plan
{plan text}
### Task
1. Execute the plan to solve the given problem.
2. Format your final answer within a box: \boxed{Your final answer}

Figure 2: Task Execution Prompt

Feasibility Evaluation Prompt

System: You are a powerful agent tasked with validating the feasibility of plans. Given a question and corresponding plan,
evaluate the plan’s feasibility step by step. You should provide a score between 0 and 100, where 100 indicates that the plan is
completely feasible and 0 means that the plan is completely infeasible. Your score should be placed in a box: \boxed{Your
score}.
User:
## Question
{question text}

## Plan
{plan text}

## Your Task
Please evaluate the feasibility of the plan based on the question step by step. You should provide a score between 0 and 100,
where 100 indicates that the plan is completely feasible and 0 means that the plan is completely infeasible. Your score should
be placed in a box: \boxed{Your score}. Now, Let’s verify the feasibility of the plan step by step.

Figure 3: Feasibility Evaluation Prompt

Logical Consistency Evaluation Prompt

System: You are a powerful agent tasked with validating the logical consistency of plans. Given a question and corresponding
plan, evaluate the plan’s logical consistency step by step. You should provide a score between 0 and 100, where 100 indicates
that the plan is completely logical and 0 means that the plan is completely inconsistent. Your score should be placed in a box:
\boxed{Your score}.
User:
## Question
{question text}

## Plan
{plan text}

## Your Task
Please evaluate the logical consistency of the plan based on the question step by step. After your evaluation, provide a
score between 100 and 0, where 100 indicates that the plan is completely logical and 0 means that the plan is completely
inconsistent. Your score should be placed in a box: \boxed{Your score}. Now, Let’s verify the logical consistency of the plan
step by step.

Figure 4: Logical Consistency Evaluation Prompt
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A.6 Pseudocode for HierarchicalMCTS

Algorithm 1 HierarchicalMCTS
Require: Problem P , initial plan C0, LLM-based planner M , evaluators set E, LLM executor L
Ensure: Optimal plan C∗, Solution Y
1: root← Node(C0, 0, 0) ▷ Initialize root node with initial plan, Q=0, N=0
2: leaf_queue← [root] ▷ Initialize leaf queue with the root node
3: while leaf_queue is not empty do
4: path← SelectPromissingPath(root) ▷ Get the path from root to current leaf
5: leaf ← Dequeue(leaf_queue, path) ▷ Get the next leaf node from the queue by path
6: if not IsTerminal(leaf) then ▷ Terminate if the plan is optimal (all eval agents give full socre) or reaches the max depth
7: Expand(leaf) ▷ Add child nodes to current leaf
8: for each child in leaf.children do
9: scores, feedback ← Evaluate(child, P,E) ▷ Use LLM Agnet evaluator to review current plan

10: Backpropagate(path, scores) ▷ Update Q and N along the path
11: Enqueue(leaf_queue, child) ▷ Add the new child nodes to the queue
12: end for
13: end if
14: end while ▷ Stop seaching if all plans in search tree has been fully explored
15: C∗ ← SelectBestPlan(root) ▷ Select the plan with highest value
16: Y ← ExecutePlan(P,C∗, L)
17: return C∗, Y

18: function EXPAND(node)
19: modified_plan← ModifyPlan(node.plan, node.feedback,M) ▷ Use LLM to modify plan based on the feedback
20: new_node← Node(modified_plan, node.problem) ▷ Create a new node based on modified plan
21: node[children]← {new_node, new_node, new_node} ▷ Add the new nodes as children of current node
22: end function

23: function EVALUATE(plan, P,E)
24: scores← {} ▷ Initialize an empty dictionary to store evaluation scores
25: feedback ← [] ▷ Initialize an empty list to store feedback text
26: for each evaluator in E do
27: score, feedback← evaluator.evaluate(P,C) ▷ Get evaluation score and text, as detailed in Appendix A.5
28: scores[evaluator.class_name]← score ▷ Store the score with evaluator name
29: feedback.append(feedback) ▷ Store the feedback text
30: end for
31: return scores, feedback ▷ Return all scores and feedback
32: end function
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Count Characters: Example 1

Problem: how many R’s are there in the word “Strawberry”?

—

CoT Prompt: Let’s think step by step.

CoT Result:
Here’s how to count the ’R’s in "strawberry":
1. **Identify the ’R’s:** Look for the letter ’R’ in the word.
2. **Count:** There are **two** ’R’s in the word "strawberry".

—

Planning Prompt:
To count the R’s in "strawberry." we can iterate throuoh each letter of the word, Initially, we’ll set a counter to zero, for each leter encountered, we’ll check if itis an "R" character. If it is,
we’ll increment our counter, This proess will continwe until we’ve examined all letters in the word, allowing us to determine the final count of "R’s present.

Planning Result:
Following the plan:
1. **Initialize counter:** ‘r_count = 0‘.
2. **Iterate through the word:** Check each letter of "strawberry" for ’R’.
3. **Increment counter:** If the letter is ’R’, increment the counter (‘r_count = r_count + 1‘).
4. **Final Count:** The word "strawberry" contains **3** ’R’s.

—

MCTS Planning:
1. **Define the task:** Our goal is to count the number of "R’s present within the word "strawberry."
2. **Iterate through the word:** We will examine each letter of "strawberry" one at a time.
3. **Check for "R":** If the letter is an "R", increment a counter to keep track of our count.
4. **Increment counter:** If the letter is an "R", increment a counter to keep track of our count.
5. **Complete iteration:** We will continue this process until we have examined every letter.
6. **Return the count:** After processing all letters, the counter will hold the final number of "R’s.

MCTS Planning Result:
Here’s the breakdown:
1. **Define the task:** We need to count how many "R’s are in "strawberry".
2. **Iterate through the word:** Let’s examine each letter:
* **s** - Not an R, counter remains 0.
* **t** - Not an R, counter remains 0.
* **r** - **It’s an R! Increment the counter to 1.**
* **a** - Not an R, counter remains 1.
* **w** - Not an R, counter remains 1.
* **b** - Not an R, counter remains 1.
* **e** - Not an R, counter remains 1.
* **r** - **It’s an R! Increment the counter to 2.**
* **r** - **It’s an R! Increment the counter to 3.**
* **y** - Not an R, counter remains 3.
3. **Complete iteration:** After examining all letters, the counter holds **3** R’s.
4. **Result:** There are **3** R’s in the word "strawberry".

Figure 5: Character counting example
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Count Characters: Example 2

Problem: how many R’s are there in the word "Pneumonoultramicroscopicsilicovolcanoconiosis"?
—
CoT Prompt: Let’s think step by step.
CoT Result:
1. **Identify the letter:** We’re looking for the letter ’R’.
2. **Scan the word:** Carefully read through the word "Pneumonoultramicroscopicsilicovolcanoconiosis".
3. **Count the occurrences:** Count each instance of the letter ’R’. There is only one ’R’.
Therefore, there is only **one** ’R’ in the word "Pneumonoultramicroscopicsilicovolcanoconiosis".
—
Planning Prompt:
To count the R’s in "Pneumonoultramicroscopicsilicovolcanoconiosis." we can iterate throuoh each letter of the word, Initially, we’ll set a counter to zero, for each leter encountered,
we’ll check if itis an "R" character. If it is, we’ll increment our counter, This proess will continwe until we’ve examined all letters in the word, allowing us to determine the final
count of "R’s present.
Planning Result:
Following the plan:
1. **Initialization:** Set a counter to zero (e.g., ‘r_count = 0‘).
2. **Iteration:** Iterate through each letter of the word "Pneumonoultramicroscopicsilicovolcanoconiosis".
3. **Comparison:** For each letter, check if it is equal to "R".
4. **Increment:** If the letter is "R", increment the counter (‘r_count = r_count + 1‘).
5. **Final Count:** After iterating through all letters, the value of ‘r_count‘ will be the total number of "R"s.
Let’s apply this to the word:
The word "Pneumonoultramicroscopicsilicovolcanoconiosis" contains **one** "R".
—
MCTS Planning Prompt:
1. **Define the task:** Our goal is to count the number of "R’s present within the word "strawberry."
2. **Iterate through the word:** We will examine each letter of "strawberry" one at a time.
3. **Check for "R":** If the letter is an "R", increment a counter to keep track of our count.
4. **Increment counter:** If the letter is an "R", increment a counter to keep track of our count.
5. **Complete iteration:** We will continue this process until we have examined every letter in the word.
6. **Return the count:** After processing all letters, the counter will hold the final number of "R’s in the word.
MCTS Planning Result:
Okay, let’s adapt your plan to count the R’s in "Pneumonoultramicroscopicsilicovolcanoconiosis":
**Define the task:** Our goal is to count the number of "R’s" present within the word "Pneumonoultramicroscopicsilicovolcanoconiosis".
**Iterate through the word:** We will examine each letter of "Pneumonoultramicroscopicsilicovolcanoconiosis" one at a time.
Let’s start with a counter set to 0.
* **P** - Not an R, counter remains 0.
* **n** - Not an R, counter remains 0.
* **e** - Not an R, counter remains 0.
* **u** - Not an R, counter remains 0.
* **m** - Not an R, counter remains 0.
* **o** - Not an R, counter remains 0.
* **n** - Not an R, counter remains 0.
* **o** - Not an R, counter remains 0.
* **u** - Not an R, counter remains 0.
* **l** - Not an R, counter remains 0.
* **t** - Not an R, counter remains 0.
* **r** - **It’s an R! Increment the counter to 1.**
* **a** - Not an R, counter remains 1.
* **m** - Not an R, counter remains 1.
* **i** - Not an R, counter remains 1.
* **c** - Not an R, counter remains 1.
* **r** - **It’s an R! Increment the counter to 2.**
* **o** - Not an R, counter remains 2.
* **s** - Not an R, counter remains 2.
* **i** - Not an R, counter remains 2.
* **l** - Not an R, counter remains 2.
* **i** - Not an R, counter remains 2.
* **c** - Not an R, counter remains 2.
* **o** - Not an R, counter remains 2.
* **v** - Not an R, counter remains 2.
* **o** - Not an R, counter remains 2.
SKIP FOR SPACE

**Complete iteration:** We have now processed all letters, and the counter holds the final number of "R’s" in the word.
**Result:** There are **2** R’s in the word "Pneumonoultramicroscopicsilicovolcanoconiosis".

Figure 6: Count Characters Example of “R” in the word “Pneumonoultramicroscopicsilicovolcanoconiosis” with
MCTS Planning.
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