HierarchicalMCTS: From State-Level to Plan-Level
Search for Enhanced Zero-Shot LLLM Reasoning

Anonymous ACL submission

Abstract

Large Language Models (LLMs) exhibit limita-
tions in complex, multi-step reasoning tasks.
This paper introduces a framework that en-
hances LLM problem-solving by incorporat-
ing explicit planning via a modified Monte
Carlo Tree Search (HierarchicaMCTS). Our
approach decouples planning from execution,
using modified MCTS to hierarchically search
the space of complete reasoning plans, guided
by evaluation agents that assess logical con-
sistency and feasibility. We also explore the
use of smaller LLMs for planning and larger
ones for execution to improve efficiency. Ex-
periments on six reasoning benchmarks show
that HierarchiaMCTS planning significantly
improves accuracy, achieving a 24.18% average
improvement over zero-shot Chain-of-Thought
methods. Notably, the smaller-larger LLM con-
figuration maintains 90.70% of the full perfor-
mance while reducing computational cost by
73%. These findings highlight the importance
of explicit, search-based planning for LLMs
and suggest a path towards more robust and ef-
ficient reasoning systems for complex problem-
solving. Codes are anonymously available
at https://anonymous.4open.science/r/
HierarchicalMCTS-9C@D.

1 Introduction

Despite remarkable advances in natural language
understanding tasks through auto-regressive gener-
ation (Brown et al., 2020; Chowdhery et al., 2023),
current Large Language Models (LLMs) face in-
herent limitations that significantly impact their
reasoning capabilities. The auto-regressive nature
of these models, where each step depends solely on
previous outputs, leads to three critical challenges:
(1) error propagation, where initial mistakes cas-
cade and amplify through the reasoning chain, (2)
logical inconsistency, where subsequent deduc-
tions may contradict earlier steps due to the lack of
global context, and (3) myopic planning, where

Planning Type Method Comment Model GSM8K
. Zero-Shot CoT Qwen2.5-7B-it 80.89
NoPlanning ¢ i ma et al., 2022) Zero-Shot [a3 -8Bt 57.32
Graph SWAP Llama3-8B-it 78.10

Fine-Tuned

Planning (Xiong et al., 2024) Mistral-7B-It 54.00
Plan-and-Solve
(Kojima et al., 2022) Zero-Shot GPT-3 56.40
Least-to-Most Task-Specific GPT-3 62.39
(Zhou et al., 2023) Prompt (1-shot)
Auto Tree-of-Thought Task-Specific g
Regressive (Yao et al., 2023) Prompt GPT4 90.00
Planning Meta Reasoning Zero-Shot GPT-4 92.10
(Gao et al., 2024) GPT-3.5 78.10
Arrange & Execute . Qwen2-7B-it 82.11
(Qiu et al., 2024) Fine-Tuned /w388t 77.03
RAP Llama-33B 48.80
(Hao et al., 2023) 4 Shots Qwen2.5-7B-it 83.09
(Vanila MCTS) Llama3.1-8B-it ~ 75.06
Hierarchical HierarchicalMCTS Qwen2.5-7B-it 90.14
. Zero-Shot R
Planning (Ours) Llama3.1-8B-it 77.28

Table 1: Accuracy(%) Comparison of Planning Meth-
ods on GSMS8K. Our HierarchicalMCTS framework demon-
strates substantial improvements in problem-solving accu-
racy through systematic plan optimization. In zero-shot set-
tings, our approach consistently outperforms existing methods,
achieving +4.635% higher accuracy than vanilla MCTS while
costing only 2.84% of its computational resources (detailed
in Table 6). This significant efficiency gain, combined with
improved accuracy, validates the effectiveness of our hierar-
chical planning strategy. More benchmark results are further
documented in Table 2. Results from original publications are
denoted in italics.

models focus only on immediate, local transitions
without maintaining a comprehensive view of the
solution space. While increasingly sophisticated
LLMs have been developed to mitigate these chal-
lenges in auto-regressive generation, even state-of-
the-art (SOTA) models like GPT-4 (OpenAl-Team,
2024) continue to exhibit these fundamental lim-
itations, particularly when confronted with tasks
demanding complex multi-step reasoning and main-
tenance of logical consistency across extended de-
ductive chains.

While recent approaches have attempted to ad-
dress these challenges through techniques like
Chain-of-Thought (CoT) prompting (Wei et al.,
2022) and various task decomposition methods (Pa-
tel et al., 2022; Zhou et al., 2023; Zebaze et al.,

https://anonymous.4open.science/r/HierarchicalMCTS-9C0D
https://anonymous.4open.science/r/HierarchicalMCTS-9C0D
https://anonymous.4open.science/r/HierarchicalMCTS-9C0D

(a) Planning Stage etre emre

f ;_.a ;_" L_’. ;_.

.h.l. ...l

O Reasoning State ' PIannlng State

ROt

|:| Complete Plan for Problem-Solving

‘-,

Red Color indicates Incorrect State

"‘\A.'"'
3
3

.

‘ Deeper Color indicates Higher Probability Yeus®

(b) Problem-Solving Stage

(No explicit plan guidance)

(1) Directly Solve with CoT

(2.1) Searching Plan W|th CoT

" e :
..t\‘:‘ - H
. :
. . :
‘. ‘0

(2.2) Searching Plan with Vanilla MCTS: Searchmg with HierarchicalMCTS :

(2) Auto-Regressively Plan and Solve

"'#

..."

RN

(3) Hierarchically Plan and Solve

Figure 1: A comparative analysis of three LLM problem-solving approaches: (1) Direct CoT solving (Kojima et al., 2022),
which interleaves planning and executing but inherently propagates errors through its reasoning chain; (2) Auto-regressive
planning (Wang et al., 2023a; Hao et al., 2023), which separates planning from execution but generates potentially suboptimal
plans due to its state-by-state search constraints of auto-regressive generation; and (3) Our HierarchicalMCTS framework,
which systematically explores the complete plan space plan-by-plan through hierarchical search guided by LLM agent rewards.
The darkness of shading indicates the joint probability of correct reasoning at each state. Experimental results demonstrate
HierarchicalMCTS’s superior performance (+24.18% vs. Zero-shot CoT; +4.635% vs. vanilla MCTS), achieved through more
effective plan optimization via hierarchical exploration and global plan assessment.

2024), they remain constrained by the underlying
auto-regressive architecture. Similarly, plan-and-
solve frameworks (Wang et al., 2023a; Yao et al.,
2023; Hao et al., 2023), though more structured,
inherit these limitations as they still rely on step-
by-step generation, as illustrated in Figure 1. The
key issue lies in their inability to maintain global
consistency and optimize across the entire solution
space, leading to suboptimal plans and deteriorat-
ing performance in complex reasoning scenarios.
This persistent challenge underscores the critical
need for external, systematic search methods
that can overcome the internal limitations of
auto-regressive generation, thereby enabling the
identification of globally optimal reasoning plans.
To address this challenge, two fundamental re-
search questions guide our investigation:
RQ1: Can external systematic search methods
effectively identify optimal plans while avoiding
LLMs’ auto-regressive limitations?
RQ2: Can smaller LLMs efficiently guide larger
LLMs in execution using optimally searched plans?

Approach In this work, we address these re-
search questions by introducing HierarchicalM-
CTS, a novel framework that fundamentally shifts
the search paradigm from individual reasoning
steps (state-level) to complete reasoning plans
(plan-level). Our key innovation lies in utilizing a
modified MCTS where each search node represents
an entire reasoning plan, enabling global plan op-

timization before execution. This approach stands
in stark contrast to existing state-by-state planning
methods that typically rely on auto-regressive gen-
eration, making them susceptible to error accumu-
lation and suboptimal solutions. By treating com-
plete plans as atomic search units, we can systemat-
ically optimize plan quality—a crucial determinant
of reasoning performance—through hierarchical
exploration. The search process is guided by spe-
cialized evaluation agents that assess both the log-
ical consistency and practical feasibility of these
complete plans, providing structured refinement
through quantitative scores and qualitative feed-
back. This dual evaluation mechanism ensures that
only coherent and feasible plans are explored in the
search space, leading to more reliable reasoning
outcomes. To rigorously validate our approach, we
conduct three comprehensive experiments: (1) a
comparative analysis of HierarchicalMCTS against
standard methods and SOTA baselines, (2) an in-
vestigation of the relationship between plan qual-
ity and reasoning outcomes, and (3) an efficiency
analysis of various model configurations. These
experiments empirically demonstrate not only the
superior performance of our hierarchical planning
approach but also its practical viability and robust-
ness across diverse reasoning tasks.

Findings Our comprehensive evaluation across
six reasoning benchmarks demonstrates that Hierar-
chicalMCTS significantly advances LLM problem-

solving capabilities in both effectiveness and effi-
ciency. In terms of effectiveness, the framework
achieves a remarkable 24.18% average accuracy
improvement over zero-shot CoT prompting, with
particularly strong performance in complex arith-
metic tasks. This substantial gain stems from two
key innovations: the decoupling of planning from
execution, and the systematic exploration of com-
plete reasoning plans through hierarchical search.
The method’s superiority is evidenced by its con-
sistent outperformance of structured CoT plan-and-
solve baselines across all six benchmarks, vali-
dating the advantages of global plan optimization
over incremental reasoning. Regarding efficiency,
our analysis reveals a striking discovery: deploy-
ing smaller LLMs (1.5B parameters) for planning
in conjunction with larger models (>70B parame-
ters) for execution maintains 90.70% of full per-
formance while reducing computational costs by
73%. This finding has significant implications for
practical deployment, demonstrating that sophis-
ticated reasoning capabilities can be achieved in
resource-constrained settings.

Key contributions include:
1. Effectiveness: A novel HierarchicalMCTS
framework that systematically optimizes complete
reasoning plans through specialized evaluation
agents, achieving superior accuracy (+24.18%)
over existing methods and addressing fundamental
limitations in current LLM reasoning approaches.
2. Efficiency: An innovative hybrid architecture
combining smaller models for planning with larger
models for execution, reducing computational costs
by 73% while maintaining 90.70% of full perfor-
mance, enabling practical deployment in resource-
constrained environments.
3. Theoretical Foundation: A rigorous analysis
of planning-reasoning decomposition in LLMs,
demonstrating how hierarchical plan optimization
through MCTS leads to more robust reasoning out-
comes compared to interleaved approaches.
4. Empirical Validation: Comprehensive experi-
mental results across six diverse reasoning bench-
marks demonstrating consistent improvements:
24.18% average accuracy increase over zero-shot
CoT and superior performance to structured base-
lines in all benchmarks.

2 Related Work

Prompting Techniques. Prompt-based methods
emerged as a powerful technique to enhance LLM

reasoning capabilities by providing explicit instruc-
tions and examples that guide model behavior.
Chain-of-Thought (CoT) prompting (Wei et al.,
2022) pioneered this approach by eliciting step-
by-step reasoning, enabling LLMs to break down
complex problems into manageable steps. This
success inspired various extensions including sys-
tematic task decomposition (Patel et al., 2022) and
least-to-most prompting (Zhou et al., 2023) that
further structure the reasoning process. However,
these methods face fundamental limitations due to
their reliance on auto-regressive generation: they
lack a global view of the solution, leading to po-
tential logical inconsistencies (Wang et al., 2023b),
error propagation (Gero et al., 2023), and reason-
ing failures particularly in extended sequences (Wei
et al., 2022; Google-Team, 2023).

Planning Approaches. Recent frameworks at-
tempt to address these limitations by separating
planning from execution. Plan-and-Solve (Wang
et al., 2023a) introduced explicit problem decom-
position, while subsequent work focused on plan
quality improvement through various strategies:
Least-to-Most (Zhou et al., 2023) via stepwise de-
composition, Meta Reasoning (Gao et al., 2024)
through dynamic meta-information selection, and
Arrange & Execute (Qiu et al., 2024) using fine-
tuned planning models. Despite these advances,
their reliance on auto-regressive generation leads
to suboptimal solutions and error accumulation due
to inherent state-by-state search limitations.

Search-Based Planning. Search-based meth-
ods have emerged as a promising direction for
overcoming auto-regressive limitations. Tree-of-
Thoughts (Yao et al., 2023) pioneered systematic
plan exploration, while RAP (Hao et al., 2023)
introduced MCTS for stepwise plan optimization.
SWAP (Xiong et al., 2024) further advanced this
through graph-based planning. Besides, MCTS
itself has demonstrated remarkable success in com-
plex decision spaces, particularly in gaming (Sil-
ver et al., 2016), through its balanced exploration-
exploitation framework (Chaslot et al., 2008). Re-
cent applications to LLM planning (OpenAl, 2024;
Wang et al., 2024) show promise but face signif-
icant challenges: vast generation spaces compli-
cate effective sampling, while evaluation costs limit
computational scalability.

Research Gaps and Our Contribution. Cur-
rent approaches face two key limitations: planning

methods remain constrained by sequential reason-
ing, while traditional MCTS struggles with vast
action spaces and computational costs. Our work
addresses these challenges through two key inno-
vations: (1) hierarchical plan-level search with spe-
cialized evaluation agents, and (2) efficient model
scaling that leverages smaller models for search
and larger models for execution. This represents a
fundamental shift from state-level to plan-level op-
timization, enhancing reasoning capabilities while
maintaining computational efficiency.

3 HierarchicalMCTS

Current LLM architectures face fundamental lim-
itations in complex reasoning tasks due to their
auto-regressive nature, particularly when global
consistency is required. We introduce Hierarchi-
calMCTS, a framework that enhances LLM reason-
ing through systematic optimization of complete
reasoning plans via modified Monte Carlo Tree
Search. By decoupling planning from execution
and implementing specialized evaluation agents,
our approach addresses core limitations in auto-
regressive generation.

3.1 From State-Level to Plan-Level Search

The LLM problem-solving process can be modeled
probabilistically: given a problem X and context
Cproblem» the objective is to generate a solution
Y. Traditional CoT methods directly model this
as P(Y'| X, Cproblem), combining planning and rea-
soning into a single step. This conflation, coupled
with auto-regressive generation, leads to error prop-
agation where early mistakes cascade through the
solution process.

Plan-and-Solve methods (Wang et al., 2023a)
attempt to separate planning and execution by de-
composing context C' into problem description
C1p7"oblem and Plan Cplan:

P(Y|X7 C) = P(Y|X, Cproblemv Cplan) (D

However, these methods remain constrained by
auto-regressive plan generation, inheriting CoT’s
limitations in maintaining global consistency and
optimal plan identification.

We propose that a high-quality plan C,, en-
ables solution Y to be conditionally independent
of problem X, implying the plan’s critical role in
problem-solving. This leads to our two-stage ap-
proach:

1. Planning (P(Cpian|Cprobiem)): Systematically
search and optimize reasoning steps through Hier-
archicalMCTS to generate a comprehensive plan.
2. Execution (P (Y| X, Cpropiem, Cpian)): Gener-
ate solution guided by the optimized plan.

HierarchicalMCTS transforms traditional MCTS
by operating on complete reasoning plans rather
than individual steps. By treating plans as atomic
search units and employing specialized evaluation
agents for logical consistency and feasibility as-
sessment, our approach enables systematic opti-
mization toward globally optimal solutions while
addressing error propagation and myopic planning
limitations.

3.2 Plan-Level Search and Optimization

Within our probabilistic framework, the system be-
gins with an LLM-generated base plan Cj as the
root node. For a given problem P, HierarchicalM-
CTS explores the solution space to discover an
optimized plan C* that maximizes the probability
of correct solution generation Y, enabling global
optimization before execution while efficiently nav-
igating potential reasoning pathways.

Expansion. When reaching a leaf node (repre-
senting plan C), HierarchicalMCTS expands the
search tree through structured plan refinement, gen-
erating complete variant plans rather than individ-
ual steps. The expansion process utilizes a plan
refinement operator Re fine(Cy, feedback, M),
which leverages both the LLM planner M and
evaluation agent feedback to synthesize improved
plans Cy41. This process enables comprehensive
optimization through iterative refinement - for in-
stance, in mathematical problem-solving, an initial
plan Cy merely stating "Extract numerical values"
might evolve through feedback into increasingly
sophisticated strategies that incorporate relation-
ship analysis, equation formulation, and systematic
solution approaches. By maintaining focus on com-
plete plan evolution rather than incremental modi-
fications, this hierarchical refinement mechanism
facilitates global optimization of reasoning strate-
gies while preserving plan coherence and structural
integrity throughout the search process.

Simulation and Reward. While traditional
MCTS relies on stochastic rollouts for state eval-
uation, such an approach proves inadequate for
assessing abstract reasoning plans. Our frame-
work instead implements specialized evaluation

agents, F/, that provide both quantitative assess-
ment and qualitative feedback. Two critical agents
form the core of this evaluation system: a Logical
Consistency Agent that examines plan coherence
and identifies logical contradictions (e.g., "Step 3
contradicts Step 2"), and a Feasibility Agent that
analyzes practical implementability and execution
constraints (e.g., "Step 4 requires iterative solving
but lacks termination conditions"). Both agents out-
put normalized scores between 0 and 1, enabling
systematic comparison and optimization of candi-
date plans while providing actionable insights for
refinement.

These specialized agents generate both quanti-
tative assessments (score € [0, 1]) and qualitative
feedback in the form of detailed critiques. To guide
the MCTS search process, we employ a weighted
reward function that synthesizes these evaluations:
Reward(C') = w; - LogicalConsistency(C') + ws -
Feasibility(C') where weights w; and ws (with
w1 +wg = 1) reflect the relative importance of log-
ical soundness and practical implementability. This
dual-nature reward mechanism serves two critical
functions: the numerical scores drive the quantita-
tive optimization within MCTS, while the textual
critiques inform the qualitative refinement of plans
during the Expansion phase, ensuring a balanced
approach to plan improvement.

Selection and Backpropagation. Node selection
(choosing which plan to expand) uses the Upper
Confidence Bound 1 algorithm (Auer, 2002):

In N, parent

UCBI(C) = Q(C) + Ceyp Ne

2)
Here, QQ(node) is the average evaluation score
of the plan at that node, N (node) and N (parent)
denote visitation frequencies, and C is a constant
that balances exploration and exploitation. This
ensures that computational resources are focused
on the most promising regions of the plan space.
The reward signal, obtained from the evaluation
agents, is then backpropagated up the MCTS tree,
updating the value estimates of all nodes along the
path from the root to the newly expanded node.
After evaluating a selected plan, the reward
signal propagates upward through the tree, up-
dating each node’s value estimate via Q(C) <+
(Q(C) - (N¢ — 1) + Reward(C'))/N¢. This dy-
namic process ensures that promising plan varia-
tions receive increased attention while maintain-

ing sufficient exploration of alternative approaches.
The recursive nature of these updates gradually re-
fines the search tree’s value estimates, steering the
algorithm toward optimal reasoning plans through
iterative improvement and assessment.

The complete pseudocode for HierarchicalM-
CTS is provided in Appendix A.6.

4 Experiments

To rigorously evaluate our framework, we con-
duct two complementary experimental investiga-
tions: (1) a systematic evaluation of HierarchicalM-
CTS against standard baselines and state-of-the-art
methods across diverse reasoning tasks, and (2)
an in-depth analysis of efficiency trade-offs be-
tween different model configurations to identify
optimal resource utilization strategies for practical
deployment. Through these experiments, we aim
to demonstrate both the effectiveness of hierarchi-
cal planning in enhancing LLLM reasoning and its
practical viability in resource-constrained settings.

4.1 Experimental Setup

Benchmark Selection. We evaluate our ap-
proach using a carefully curated set of bench-
marks that assess two fundamental dimensions
of LLM reasoning. For mathematical reason-
ing, we employ five complementary datasets:
GSMSK (Cobbe et al., 2021) for multi-step prob-
lem solving, AddSub (Hosseini et al., 2014) for
basic arithmetic operations, MultiArith (Roy and
Roth, 2015) for complex numerical relationships,
SVAMP (Patel et al., 2021) for structural variations,
and SingleEq (Koncel-Kedziorski et al., 2015) for
equation formulation. For commonsense reasoning,
we include CommonsensQA (Talmor et al., 2019)
to evaluate contextual understanding and knowl-
edge application. This combination enables rig-
orous assessment of both structured mathematical
thinking and flexible reasoning capabilities.

Model Selection. Our implementation uses two
state-of-the-art language models: Qwen 2.5 (Yang
et al., 2024) and Llama 3.1 (Llama-Team, 2024).
All experiments are conducted on the SGLang plat-
form (Zheng et al., 2024), with detailed protocols,
code implementations, and configurations provided
in Appendix A.1 to ensure reproducibility.

Baselines Selection. 'We compare our approach
against three methodological categories: (1) Direct
reasoning methods: Zero-shot CoT prompting (Ko-

Benchmark Addsub CommonsensQA GSMS8K MultiArith SingleEq SVAMP

Method Type Model
Qwen2.5-7B-it 85.06 63.72 80.89 95.33 77.17 83.40
Zero-Shot(ZS) CoT [353 1-8B-it 28.61 63.80 57.32 38.17 39.76 27.00
(Kojima et al., 2022) Avg. 56.84 63.76 69.10 66.75 58.47 55.20
Qwen2.5-7B-it 87.59 78.62 88.84 98.33 9370 91.90
CoT Plan Llama3.1-8B-it 78.23 57.14 74.77 91.58 84.65 79.20
Wang et al, 20230 A% 82.91 67.88 81.81 94.96 89.18 85.55
(Wang etal., 20233) cpuones over ZS CoT 26.07 4.12 12.71 28.21 30.71 30.35
Qwen2.5-7B-it 88.10 79.20 90.14 98.67 92.91 92.90
HierarchicalMCTS Llama3.1-8B-it 80.51 68.57 77.28 92.76 87.99 81.20
o Avg. 84.31 73.88 83.71 95.72 9045 87.05
(Ours) Chagnes over ZS CoT ~ 27.47 10.12 14.61 28.97 31.98 31.85

Table 2: Accuracy(%) Comparison of Different Problem-solving Methods with LLM. The Modified MCTS Plan consistently
outperforms ZS CoT with an average improvement of 24.18%, and shows superior results compared to CoT Plan in all 6
benchmarks. Results suggest that decoupling planning from execution improves problem-solving accuracy and optimal plan
searched by our approach can yield substantial performance gains. Best results are highlighted in bold.

jima et al., 2022) serves as our foundational base-
line. (2) Plan-and-solve frameworks: Including
vanilla CoT planning (Wang et al., 2023a), Meta
Reasoning (Gao et al., 2024), and Arrange & Ex-
ecute (Qiu et al., 2024). These methods separate
planning from execution but remain constrained
by auto-regressive generation. (3) Search-based
methods: Including RAP (Hao et al., 2023), Tree-
of-Thought (Yao et al., 2023), and SWAP (Xiong
et al., 2024), which employ systematic exploration
strategies. Our HierarchicalMCTS framework rep-
resents a novel extension of this category, focusing
on effective and efficient plan optimization.

Fair Comparison Consideration. To ensure fair
comparison, we exclude task-specific approaches
like PromptAgent (Wang et al., 2024) that rely on
specialized architectures. Given the challenge of
fairly transferring task-specific and few-shot meth-
ods across benchmarks, we focus our compara-
tive analysis on GSM8k (Cobbe et al., 2021), a
widely adopted benchmark in the field. For meth-
ods with public implementations, we report per-
formance from original publications; for zero-shot
methods (CoT and CoT Plan), we follow official
implementations and parameters as specified in re-
cent work (Kong et al., 2024; Kojima et al., 2022;
Hao et al., 2024).

4.2 RQ1: Effectiveness of HierarchicalMCTS

Methods Comparison. Table 1 provides a de-
tailed comparison on the challenging GSM8K
benchmark, which evaluates mathematical rea-
soning capabilities. Our HierarchialMCTS plan-
ning approach achieved accuracies of 90.14% with
Qwen2.5-7B-it and 77.28% with Llama3.1-8B-it,
surpassing all comparable methods using similar

LLMs. The results highlight key limitations of
existing approaches. For instance, Least-to-Most
prompting, which relies on LLMs’ sequential rea-
soning, failed with both Qwen and Llama models
due to infinite loops, indicating inherent constraints
in LLMs’ native reasoning capabilities and the need
for controlled search frameworks. Our approach
showed notable improvements over vanilla MCTS
implemented in RAP, which achieved 83.09% with
Qwen2.5-7B-it and 75.06% with Llama3.1-8B-
it. This improvement stems from our special-
ized evaluation agents and structured plan refine-
ment techniques. While direct comparisons with
Least-to-Most prompting and ToT are limited by
their use of larger models (GPT-3 and GPT-4), our
method achieves comparable or superior results
using smaller models, advancing the optimization
between model size and performance.

Benchmark-Wide Comparison. Table 2 demon-
strates the effectiveness of our HierarchicalMCTS
planning approach across all benchmarks. The
method achieved an average accuracy improvement
of 24.18% over zero-shot CoT, showing statistically
significant performance gains. Our approach out-
performed the CoT plan-and-solve baseline in all
six benchmarks, with particularly strong results
in mathematical reasoning tasks (AddSub, Multi-
Arith, SingleEq, SVAMP), where maintaining logi-
cal consistency across multiple calculation steps is
crucial. Notably, even in commonsense reasoning
tasks (CommonsensQA), we observed substantial
improvements, likely due to our method’s ability
to systematically decompose knowledge applica-
tion into coherent steps. This consistent pattern
of improvement suggests that HierarchicalMCTS

Max Depth

Model 1 3 5 7 10 20

Number of Rollouts
50 100 ‘ 1 3 5 7 10 20

Qwen2.5-7B-it

87.64 88.17 88.02 88.40 88.32 8848 8855 88.78

89.01 89.76 89.08 89.23 90.14 89.92

Llama3.1-8B-it 74.22 7597 76.12 7642 76.80 7642 77.18 7741 ‘ 79.08 76.88 76.04 76.57 76.19 77.48

Table 3: Performance Comparison of Language Models

Model Evaluator Addsub CommonsensQA GSM8K MultiArith SingleEq SVAMP
Qwen2.5-7B-it Feasibility 88.1 71.3 89.5 97.7 91.5 92.2
Qwen2.5-7B-it Logical Consistency 86.6 70.9 89.2 97.2 91.5 91.4
Qwen2.5-7B-it Combined (Ours) 88.1 79.2 90.1 98.7 92.9 92.9

Table 4: Performance Cmparison of Different Evaluation Agents for MCTS.

planning is especially valuable for tasks requiring
precise, multi-step reasoning processes, where its
structured approach to plan optimization can effec-
tively guide complex problem-solving.

These findings advance LLM research in several
ways. First, they provide compelling evidence that
separating planning from execution significantly
improves LLM reasoning capabilities. The sub-
stantial performance gains achieved by our Hier-
archialMCTS planning approach demonstrate that
a dedicated planning phase, guided by hierarchi-
cal search, enhances the accuracy and reliability of
LLM-based problem-solving. Second, our results
underscore the critical importance of plan quality.
The success of MCTS stems from its ability to
explore and refine possible plans, guided by spe-
cialized evaluation agents that assess both logical
consistency and feasibility. This highlights oppor-
tunities for further research into plan generation
and evaluation methods.

Ablation Study. Table 3 shows that increasing
search tree depth improves performance up to a
point, suggesting initial search steps are more crit-
ical. The number of rollouts also impacts perfor-
mance, with diminishing returns as the number
increases. For Qwen2.5-7B-it, increasing rollouts
from 1 to 10 improves accuracy from 89.01% to
90.14%, but further increasing to 20 only yields a
marginal improvement to 89.92%. Table 4 shows
that combined evaluation agents (feasibility and
logical consistency) yield the best results. For in-
stance, on GSM8K, the combined agent achieves
90.1% accuracy, compared to 89.5% (feasibility)
and 89.2% (logical consistency) alone.

Our findings demonstrate that separating plan-
ning from execution and using HierarchicalMCTS
to search for optimal plans significantly enhances
LLM reasoning. The substantial performance gains
highlight the importance of plan quality and the

effectiveness of MCTS, guided by specialized eval-
uation agents.

4.3 RQ2: Efficiency of HierarchicalMCTS

Building on the findings of Section 4.2, which
demonstrated the significant benefits of MCTS
planning for LLMs, we investigate the crucial trade-
off between computational efficiency and perfor-
mance. A key question emerges: Can strategically
combining small and large LLMs enhance both the
efficiency and effectiveness of MCTS-based plan-
ning?

To address this question, we implemented a
heterogeneous model approach within the MCTS
framework, utilizing smaller LLMs (Qwen2.5-
1.5B-it and Gemma-2-2b-it (Gemma-Team, 2024))
for plan generation and a larger LLM (Qwen2.5-
72B-it) for plan evaluation or execution. This
approach was systematically evaluated across the
benchmarks detailed in Section 4.1, examining var-
ious model size combinations for each role in the
planning process.

Table 5 reveals compelling patterns across differ-
ent model configurations. The synergistic relation-
ship between small and large models emerges
as a key finding: using a smaller LLM for plan-
ning with a larger LLM for execution yielded
substantial performance gains across all datasets.
The Qwen2.5-1.5B-it (planner) + Qwen2.5-72B-it
(evaluator+executor) configuration achieved an av-
erage improvement of 23.87% compared to using
Qwen2.5-1.5B-it alone, validating this complemen-
tary approach.

This heterogeneous approach also offers substan-
tial efficiency gains. Using smaller LLMs for plan-
ning and evaluation with a larger LLM for execu-
tion (Qwen2.5-1.5B + Qwen2.5-1.5B + Qwen2.5-
72B) reduced GPU time to 27% of that required
when using large LLMs throughout, while main-

Benchmark

Planner Model Evaluator Model ~Executor Model

Addsub CommonsensQA

GSM8K MultiArith ~ SingleEq SVAMP ‘ GPU Sec. Eff. Ratio

Qwen2.5-1.5B-it Qwen2.5-1.5B-it Qwen2.5-1.5B-it 75.70 58.72 64.29 86.50 83.66 72.10 2914.4 2.322
Gemma2-2B-it ~ Gemma2-2B-it ~ Gemma2-2B-it 81.52 17.16 52.67 86.83 86.02 69.40 2893.6 2.064
Qwen2.5-1.5B-it Qwen2.5-1.5B-it Qwen2.5-72B-it 88.86 78.49 86.96 96.83 95.28 90.70 3481.6 2.727
Qwen2.5-72B-it Qwen2.5-1.5B-it 86.58 68.36 81.35 92.50 88.78 81.40 7735.2 1.061
Qwen2.5-72B-it Qwen2.5-72B-it 90.63 80.71 92.80 98.67 94.88 92.00 8844.0 1.156
Gemma2-2B-it ~ Gemma2-2B-it ~ Qwen2.5-72B-it 91.39 77.72 88.48 97.67 95.67 92.30 33352 2.983
Qwen2.5-72B-it Gemma2-2B-it 90.89 34.64 79.83 95.00 92.13 84.00 7793.6 1.039
Qwen2.5-72B-it Qwen2.5-72B-it 92.41 78.54 92.42 98.33 95.87 93.00 8899.2 1.138
Qwen2.5-72B-it Qwen2.5-72B-it Qwen2.5-72B-it 91.14 83.95 94.62 98.67 95.08 93.40 ‘ 12888.0 0.821

Table 5: Performance Comparison of Different LLMs for Planning and Execution. Results shows that using smaller models
for planning and larger models for execution with HierarchicalMCTS enhances efficiency. ‘GPU Sec.” represents the total GPU
time (in seconds) needed to complete the six benchmarks. ‘Eff. Ratio’ is calculated as the ratio of GPU seconds to the average

accuracy of the six benchmarks, given by %.
Method Model GSM8K GPU Sec. Eft. Ratio
Vanila MCTS (RAP) Qwen2.5-7B-it 83.09 25612.0 0.324
(Hao et al., 2023) Llama3.1-8B-it 75.06 23296.0 0.322
HierarchicalMCTS Qwen2.5-7B-it 90.14 546.4 16.497
Llama3.1-8B-it 77.28 566.4 13.644

(Ours)

Table 6: Performance and Efficiency Comparison of Dif-
ferent MCTS Planning Methods. Our Modified MCTS Plan
outperforms Vanila MCTS (RAP) in its official implementa-
tion with only 2.84% of the GPU seconds required to complete
GSMB8K benchmark.

taining 90.70% of full performance (vs. 93.40%).
This configuration also outperformed using only
smaller LLMs (90.70% vs. 72.10%) with just a
19.46% increase in computational cost. The com-
petitive performance of Gemma-2-2b-it, despite
its smaller size, indicates that model architecture
and training methodology significantly influence
effectiveness beyond parameter count.

These findings demonstrate that strategic combi-
nations of small and large LL.Ms can significantly
enhance MCTS-based planning efficiency while
maintaining high performance. This approach of-
fers clear advantages in computational efficiency
and resource optimization, particularly valuable for
resource-constrained applications. Future research
should explore techniques to optimize model com-
binations and develop methods to maintain plan-
ning quality while further reducing computational
overhead.

5 Conclusion

This paper introduces HierarchicalMCTS, a frame-
work that fundamentally advances LLM problem-
solving by integrating hierarchical MCTS with spe-
cialized evaluation agents for systematic plan opti-
mization. Our comprehensive experimental evalua-
tion demonstrates significant improvements across
diverse reasoning benchmarks, achieving an aver-
age accuracy gain of 24.18% over zero-shot CoT

The highest ratio, indicating better efficiency, is highlighted in bold.

methods. The framework shows particular efficacy
in complex arithmetic and commonsense reasoning
tasks, where maintaining logical consistency across
extended deductive chains is crucial.

Our investigation yields three insights that ad-
vance the field’s understanding of LLM reasoning.
First, explicit search-based planning outperforms
implicit reasoning approaches, as evidenced by su-
perior performance across all benchmarks. This
finding challenges the assumption that increasingly
LLM architectures alone can overcome fundamen-
tal limitations in complex reasoning tasks. Second,
our results establish a strong correlation between
plan quality and reasoning accuracy, validating
the effectiveness of hierarchical optimization in
generating robust solution strategies. Third, our
hybrid architecture, which deploys smaller LL.Ms
for planning and larger ones for execution, main-
tains 90.70% of full performance while reducing
GPU time by 73%. This breakthrough in efficiency
demonstrates a viable pathway for practical deploy-
ment in resource-constrained environments.

These findings open several promising research
directions at the intersection of classical Al and
modern language models. The success of com-
bining systematic search techniques with LLMs
suggests opportunities for integrating other tradi-
tional Al methods, particularly in areas requiring
structured reasoning. Future work could explore
adaptive evaluation strategies that dynamically ad-
just to problem complexity, automated plan repair
mechanisms for handling execution failures, and
extensions to more diverse reasoning scenarios.
Due to space limitations, we place discussion in
Appendix A.2. More broadly, our results advance
the development of Al systems capable of reliable
complex problem-solving through principled, hier-
archical reasoning approaches.

Ethical Considerations

This research enhances LLM problem-solving via
MCTS planning. While our benchmark datasets
pose minimal direct ethical concerns, the potential
impact of improved Al problem-solving necessi-
tates broader ethical consideration.

Integrating MCTS introduces unique challenges.
Unlike CoT methods, MCTS explores a wider
range of plans, some potentially ethical yet log-
ically sound. For instance, directly plan and ex-
ecuting a toxic action could be rejected by LLM
with alignment to ethical principles. However, if
the search objective is to find such a plan, MCTS
may escape the LLM’s ethical constraints. In this
context, Mitigation strategies warrant investigation.
Incorporating fairness constraints into MCTS, ad-
versarial training for agents, and human-in-the-loop
plan review could enhance ethical outcomes.

Limitations

While our HierarchialMCTS planning approach
demonstrates significant improvements in LLM
problem-solving capabilities, it is important to ac-
knowledge several limitations of our current work.

Firstly, the computational cost of MCTS, partic-
ularly for larger language models, remains a sig-
nificant challenge. Although we have shown that
using smaller models for planning can mitigate this
issue to some extent, further research is needed to
optimize the efficiency of MCTS in the context of
LLMs. Future work could explore pruning tech-
niques or more sophisticated heuristics to reduce
the search space without compromising plan qual-
ity.

Secondly, our study primarily focused on a
specific set of benchmark datasets. While these
datasets cover a range of problem types, they may
not fully represent the diversity of real-world prob-
lems that LLMs might encounter. Expanding our
evaluation to a broader set of tasks and domains
would provide a more comprehensive assessment
of our method’s generalizability and robustness.

Despite these limitations, we believe that our
work represents a significant step forward in en-
hancing the problem-solving capabilities of LLMs.
By explicitly addressing these challenges, we hope
to inspire further research that will lead to even
more powerful and reliable Al systems capable of
tackling complex real-world problems.

References

Peter Auer. 2002. Using confidence bounds for
exploitation-exploration trade-offs. Journal of Ma-
chine Learning Research, 3(Nov):397-422.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Guillaume Chaslot, Sander Bakkes, Istvan Szita, and
Pieter Spronck. 2008. Monte-carlo tree search: A
new framework for game ai. In Proceedings of the
AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment, volume 4, pages 216—
217.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1-113.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Peizhong Gao, Ao Xie, Shaoguang Mao, Wenshan
Wu, Yan Xia, Haipeng Mi, and Furu Wei. 2024.
Meta reasoning for large language models. Preprint,
arXiv:2406.11698.

Gemma-Team. 2024. Gemma 2: Improving open
language models at a practical size. Preprint,
arXiv:2408.00118.

Zelalem Gero, Chandan Singh, Hao Cheng, Tristan Nau-
mann, Michel Galley, Jianfeng Gao, and Hoifung
Poon. 2023. Self-verification improves few-shot clin-
ical information extraction. In ICML 3rd Workshop
on Interpretable Machine Learning in Healthcare
(IMLH).

Google-Team. 2023. Beyond the imitation game: Quan-
tifying and extrapolating the capabilities of language
models. Transactions on Machine Learning Re-
search.

Shibo Hao, Yi Gu, Haotian Luo, Tianyang Liu, Xiyan
Shao, Xinyuan Wang, Shuhua Xie, Haodi Ma,
Adithya Samavedhi, Qiyue Gao, Zhen Wang, and
Zhiting Hu. 2024. LLM reasoners: New evaluation,
library, and analysis of step-by-step reasoning with

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2406.11698
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://openreview.net/forum?id=SBbJICrglS
https://openreview.net/forum?id=SBbJICrglS
https://openreview.net/forum?id=SBbJICrglS
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=h1mvwbQiXR
https://openreview.net/forum?id=h1mvwbQiXR
https://openreview.net/forum?id=h1mvwbQiXR
https://openreview.net/forum?id=h1mvwbQiXR

large language models. In ICLR 2024 Workshop on
Large Language Model (LLM) Agents.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen
Wang, Daisy Wang, and Zhiting Hu. 2023. Rea-
soning with language model is planning with world
model. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 8154-8173, Singapore. Association for Com-
putational Linguistics.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 523-533, Doha, Qatar. Association for Com-
putational Linguistics.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199-22213. Curran Associates, Inc.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-
tional Linguistics, 3:585-597.

Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li, Yong
Qin, Ruiqi Sun, Xin Zhou, Enzhi Wang, and Xiao-
hang Dong. 2024. Better zero-shot reasoning with
role-play prompting. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 4099-4113.

Llama-Team. 2024. The llama 3 herd of models.
Preprint, arXiv:2407.21783.

OpenAl. 2024. Openai ol system card.

OpenAl-Team. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080-2094.

Pruthvi Patel, Swaroop Mishra, Mihir Parmar, and
Chitta Baral. 2022. Is a question decomposition unit
all we need? In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing, pages 4553-4569.

Yuli Qiu, Jiashu Yao, Heyan Huang, and Yuhang Guo.
2024. Optimizing chain-of-thought reasoning: Tack-
ling arranging bottleneck via plan augmentation.
Preprint, arXiv:2410.16812.

10

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1743-1752.

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, loannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering
the game of go with deep neural networks and tree
search. nature, 529(7587):484-489.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149-4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhigiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023a. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2609-2634.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Hao-
tian Luo, Jiayou Zhang, Nebojsa Jojic, Eric Xing, and
Zhiting Hu. 2024. Promptagent: Strategic planning
with language models enables expert-level prompt op-
timization. In The Twelfth International Conference
on Learning Representations.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023b. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824-24837. Curran Associates,
Inc.

Siheng Xiong, Ali Payani, Yuan Yang, and Fara-
marz Fekri. 2024. Deliberate reasoning for llms as
structure-aware planning with accurate world model.
Preprint, arXiv:2410.03136.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-
qin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,

https://openreview.net/forum?id=h1mvwbQiXR
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://arxiv.org/abs/2407.21783
https://cdn.openai.com/o1-system-card.pdf
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2410.16812
https://arxiv.org/abs/2410.16812
https://arxiv.org/abs/2410.16812
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://openreview.net/forum?id=22pyNMuIoa
https://openreview.net/forum?id=22pyNMuIoa
https://openreview.net/forum?id=22pyNMuIoa
https://openreview.net/forum?id=22pyNMuIoa
https://openreview.net/forum?id=22pyNMuIoa
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/2410.03136
https://arxiv.org/abs/2410.03136
https://arxiv.org/abs/2410.03136

Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan,
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge,
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren,
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
Zhifang Guo, and Zhihao Fan. 2024. Qwen?2 techni-
cal report. Preprint, arXiv:2407.10671.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of thoughts: Deliberate problem solving
with large language models. In Advances in Neural

Information Processing Systems, volume 36, pages
11809-11822. Curran Associates, Inc.

Armel Randy Zebaze, Benoit Sagot, and Rachel Baw-
den. 2024. Tree of problems: Improving structured
problem solving with compositionality. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 18028—18047,
Miami, Florida, USA. Association for Computational
Linguistics.

Lianmin Zheng, Liangsheng Yin, Zhigiang Xie, Chuyue
Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos
Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark
Barrett, and Ying Sheng. 2024. Sglang: Efficient
execution of structured language model programs.
Preprint, arXiv:2312.07104.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H.
Chi. 2023. Least-to-most prompting enables com-
plex reasoning in large language models. In The
Eleventh International Conference on Learning Rep-
resentations.

A Appendix

A.1 Implementation Details

A.1.1 Experimental Details and
Hyperparameter Settings

This appendix provides essential details regarding
the experimental setup. Table 7 outlines the default
hyperparameter values used in our experiments,
specifically those reported in Tables 2 and 5. These
values were selected based on preliminary experi-
ments aimed at balancing computational cost with
the quality of generated plans: Exploration Weight
(C' = 1.0) controls the balance between exploration
and exploitation; Maximum Depth (10) limits the
search tree’s depth; and Number of Rollouts (8)
determines the number of simulations per node ex-
pansion.

A.1.2 Code Implementation

To ensure reproducibility and facilitate fair compar-
isons, we have made our code and demo available

11

Hyperparameter Default Value
Exploration Weight (C) 1.0

Q Initialization 0
Maximum Depth 10
Number of Rollouts 8

Table 7: Default Hyperparameter Values for our Hierar-
chicalMCTS

on an anonymous GitHub repository. All experi-
ments were conducted using the official Docker
container lmsysorg/sglang from the SGLang
platform (Zheng et al., 2024) with 8 NVIDIA H800
GPUs.

For benchmarking, we utilized the official imple-
mentations of the methods proposed by Wei et al.
(2022), Wang et al. (2023a), and Hao et al. (2023).
We remastered the CoT and Plan-and-Solve ap-
proaches using the authors’ code to ensure accurate
replication of their results. This approach guaran-
tees that our comparisons are conducted on a level
playing field, thereby strengthening the validity of
our findings.

A.2 Discussion

A.2.1 Differences between Planning and
Reasoning

This section elaborates on the conceptual differ-
ences between planning and reasoning, a distinc-
tion that is fundamental to this research.

Planning is the process of formulating a high-
level strategy or sequence of steps to achieve a
goal. It is forward-looking, focusing on the overall
approach and considering multiple possible paths
before selecting the most promising one. In the
context of LLMs, planning involves generating a
structured outline of the reasoning process.

Reasoning, in contrast, is the process of exe-
cuting the individual steps outlined in the plan. It
involves performing calculations, making deduc-
tions, and drawing inferences based on the given
information and the chosen plan. Reasoning is pri-
marily concerned with the accuracy and logical
consistency of each step within the predetermined
framework.

Several key aspects highlight the differences be-
tween planning and reasoning.

Temporal Relationship Planning occurs before
execution, setting the stage for reasoning. Reason-
ing follows planning, involving the actual execu-
tion of the planned steps.

https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://doi.org/10.18653/v1/2024.emnlp-main.1001
https://doi.org/10.18653/v1/2024.emnlp-main.1001
https://doi.org/10.18653/v1/2024.emnlp-main.1001
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM

Error Propagation Characteristics Errors in
planning impact the overall strategy, potentially
leading to systemic failures. However, such er-
rors are often easier to detect and correct before
execution begins. In contrast, errors in reasoning
occur at individual calculation or deduction steps.
These mistakes can compound through the reason-
ing chain, making them harder to detect until reach-
ing incorrect conclusions.

Cognitive Load Planning requires holistic under-
standing and strategic thinking. It focuses on the
relationships between steps and considers multiple
possible approaches to achieve the goal. Reasoning,
on the other hand, demands precise execution of
logical operations. It concentrates on the accuracy
of individual steps, following the predetermined
path set by the plan.

Adaptability Planning is more flexible and can
be modified based on initial results. It allows for
alternative approaches and can incorporate feed-
back from preliminary attempts. Reasoning is more
rigid, as it must follow established logical rules and
maintain consistency within the chosen approach.
It is also limited by the constraints of the selected
method.

Our HierarchicalMCTS leverages these differ-
ences by explicitly separating planning from exe-
cution. By using our approach to hierarchically ex-
plore and optimize plans, we address the challenges
of error propagation and logical inconsistency of-
ten encountered in LLM reasoning. Understanding
these distinctions is crucial for developing more
robust and reliable LLM-based reasoning systems.

A.2.2 Hierarchical Planning vs.
Auto-Regressive Planning

This section provides a comparative analysis be-
tween our proposed HierarchicaMCTS planning
and existing auto-regressive planning methods. We
will examine the theoretical frameworks underpin-
ning each approach, highlighting both their mech-
anistic differences and their distinct optimization
objectives.

Auto-regressive planning, mirroring the token-
by-token generation process of LLLMs, implicitly
treats planning as a Markov Decision Process.
Here, each planning step represents a state, and
generating the next step is viewed as an action. A
critical limitation is the reliance on the Markov
property, where each step depends solely on its im-
mediate predecessor. This method tends to make

12

locally optimal choices through a greedy approach
at each step, neglecting the overall plan’s optimality.
This step-by-step search is analogous to a greedy
search of possible planning states, a fundamental
limitation that leads to error propagation and sub-
optimal plans.

The most prominent consequence of this greedy,
state-level approach is the compounding of errors.
Since each planning step relies only on the pre-
vious one, errors occurring early in the plan are
propagated through subsequent steps, making it
difficult to converge on a correct solution. More-
over, this inherently sequential nature prevents the
model from backtracking to correct prior errors.
Therefore, despite being easy to implement in ex-
isting LLM architectures, this greedy, state-level
method is ultimately inadequate for complex plan-
ning tasks.

In contrast, HierarchicalMCTS reframes plan-
ning as a global optimization problem. Rather than
viewing planning as a series of individual steps,
it explicitly explores the space of complete plans
as unified entities, enabling the evaluation of plan
quality as a whole. By utilizing a modified MCTS,
guided by specialized evaluation agents that serve
as reward functions, HierarchicalMCTS explores
the plan space in a best-first manner, promoting the
discovery of globally optimal strategies. This is in
stark contrast to the greedy, step-by-step approach
of auto-regressive planning.

Furthermore, unlike the sequential nature of
auto-regressive planning, MCTS allows for back-
tracking and error correction by exploring multiple
planning alternatives. This enables the model to
adapt and refine plans prior to execution. For ex-
ample, while an auto-regressive planner might in-
correctly derive "2+2=4, then 4*3=12" when asked
to "compute 2+2*3", a HierarchicalMCTS planner
would explore alternative plans, as review agent
will feasibility check the plan and reject the incor-
rect one. By reframing the planning problem as
global optimization, HierarchicaMCTS provides
a more robust planning strategy and a theoretical
shift in perspective compared to auto-regressive
methods.

A.2.3 Vanilla MCTS vs HierarchicalMCTS

This section provides a critical comparison between
vanilla MCTS and our proposed HierarchicalM-
CTS, highlighting the fundamental limitations of
vanilla MCTS when applied to LLM planning and
underscoring the targeted solutions offered by our

approach.

While prior work has explored vanilla MCTS
for LLM planning (Hao et al., 2023; Wang et al.,
2024), closer examination reveals crucial limita-
tions inherited from its state-level, auto-regressive
nature. These limitations prevent vanilla MCTS
from effectively addressing the unique challenges
in LLM reasoning, highlighting the necessity of
HierarchicaMCTS. Specifically, three main limita-
tions plague vanilla MCTS in the context of LLMs:

Searching objective First, vanilla MCTS typi-
cally searches for states of the plan directly, thereby
mirroring the step-by-step nature of auto-regressive
methods. This makes it equally susceptible to error
propagation, local optima, and lack of a global per-
spective by only considering the current state, not
the entire plan. This is a fundamental limitation as
it does not overcome the limitations of state-level
planning.

Unbounded action space Second, unlike tradi-
tional Reinforcement Learning (RL) where action
spaces are constrained, vanilla MCTS for LLMs
faces an unbounded action space, where the LLM
can generate any possible next state. This uncon-
trollable search space makes it extremely difficult
for vanilla MCTS to converge to an optimal plan
due to the sparse reward signal and infinite branch-
ing.

Exploration vs Exploitation Third, while
MCTS is designed to explore the search space,
balancing exploration and exploitation in vanilla
MCTS often leads to premature cutoffs, especially
when planning for LLMs. This is because it
searches for the most promising next step, not the
most promising overall plan, leading to premature
convergence to local optima, limiting the explo-
ration of superior plans.

In contrast, HierarchicalMCTS is explicitly de-
signed to overcome these limitations in a Evolution-
ary Algorithms way. By changing the search objec-
tive from states of the plan to complete plans, we
transform the search from a state-by-state decision-
making process to a global plan optimization pro-
cess. This shift removes the limitations inherent to
auto-regressive and vanilla MCTS planners.

This critical shift allows the model to assess the
entire reasoning trajectory before execution, en-
abling a global optimization of complete plans, and
allowing more powerful search by reframing the
objective from "most promising next step” to "most

13

Benchmark Last Letters Object Tracking

Method Type Model
Qwen2.5-7B-it 21.00 74.80
Zero-Shot(ZS) CoT 1353 1_8B-it 26.40 49.33
(Kojima et al., 2022) Avg. 19.20 62.07
Qwen2.5-7B-it 55.20 79.33
CoT PL Llama3.1-8B-it 15.40 57.94
Wane ot al. ato3a Ave 35.30 68.64
(Wang etal., 20230) Chaenes over ZS CoT 16.10 6.57
Qwen2.5-7B-it 56.60 79.33
Hi hicalMCTS Llama3.1-8B-it 12.80 55.43
ierarchica Avg. 3470 67.38

(Ours) Chagnes over ZS CoT 15.50 5.31

Table 8: Accuracy(%) Comparison on Sequential Rea-
soning Benchmarks. Our evaluation compares Hierarchi-
calMCTS against baseline methods on sequential reasoning
tasks. Results demonstrate that our MCTS-enhanced Chain-of-
Thought approach achieves comparable performance to CoT
Plan, particularly in tasks requiring structured planning and
systematic reasoning.

promising plan." For instance, while vanilla MCTS
might incrementally build a plan "2+2=4; then..."
for "2+2*3", HierarchicalMCTS explores complete
plans, such as "calculate multiplication, calculate
addition" and "calculate addition then multiplica-
tion," selecting the one with the highest logical
consistency and feasibility, thus bypassing local
optima. By redesigning the search space and objec-
tive, HierarchicalMCTS unlocks the full potential
of MCTS in LLM planning, providing a more ef-
fective solution for complex reasoning tasks.

A.3 Extended Results

To provide a more comprehensive assessment of
our framework’s capabilities, we conducted addi-
tional experiments on sequential reasoning bench-
marks. As shown in Table 8, we evaluated Hier-
archicaMCTS against baseline methods on tasks
requiring structured tracking of information over
multiple steps. While maintaining comparable per-
formance to CoT Plan, these results reveal interest-
ing patterns in the efficacy of hierarchical planning
for different reasoning modalities. The relatively
smaller gains on sequential tasks compared to math-
ematical reasoning suggest that the benefits of plan-
level optimization may vary based on task structure
and cognitive demands.

A4 Count Characters: Example

We present two examples of the Count Characters
task, illustrating the application of CoT, Plan-and-
Solve, and MCTS planning methods. Figure 6
demonstrates the CoT, Plan-and-Solve approach,
and MCTS planning process. These examples
provide a detailed step-by-step breakdown of the
problem-solving process, highlighting the differ-
ences between the two methods.

A.5 Prompt Templates for Task Execution,
Evaluation Agents

Task Execution Prompt The Task Execution
prompt instructs the LLM to execute a given plan
to solve a problem. The LLM follows the plan
step-by-step and outputs the final answer formatted
within a box using the \boxed{} command.

Feasibility Evaluation Prompt The Feasibility
Agent evaluates the feasibility of a given plan by
checking the logical consistency of each step. The
agent provides feedback on the plan’s feasibility
and assigns a score between 0 and 100 based on
the number of logical inconsistencies found. We
use regex to extract the score from the agent’s re-
sponse and normalize it to a scale of 0 to 1. Prompt
templates for the Feasibility Evaluation Agent are
shown in Figure 3.

Logical Consistency Evaluation Prompt Logi-
cal Consistency Agent evaluates the logical consis-
tency of a given plan by checking the correctness
of each step. The agent provides feedback on the
plan’s logical consistency and assigns a score be-
tween 0 and 100 based on the number of logical
inconsistencies found. We use same way to ex-
tract and normalize to process the socre. Prompt
templates for the Logical Consistency Evaluation
Agent are shown in Figure 4.

14

Task Execution Prompt

System: You are a highly capable Al assistant tasked with solving problems by meticulously following a provided plan.
User:

Problem

{question text}

#i## Plan

{plan text}

##H# Task

1. Execute the plan to solve the given problem.

2. Format your final answer within a box: \boxed{ Your final answer}

Figure 2: Task Execution Prompt

Feasibility Evaluation Prompt

System: You are a powerful agent tasked with validating the feasibility of plans. Given a question and corresponding plan,
evaluate the plan’s feasibility step by step. You should provide a score between 0 and 100, where 100 indicates that the plan is
completely feasible and 0 means that the plan is completely infeasible. Your score should be placed in a box: \boxed{ Your
score}.

User:

Question

{question text}

Plan
{plan text}

Your Task

Please evaluate the feasibility of the plan based on the question step by step. You should provide a score between 0 and 100,
where 100 indicates that the plan is completely feasible and 0 means that the plan is completely infeasible. Your score should
be placed in a box: \boxed{ Your score}. Now, Let’s verify the feasibility of the plan step by step.

J

Figure 3: Feasibility Evaluation Prompt

Logical Consistency Evaluation Prompt

System: You are a powerful agent tasked with validating the logical consistency of plans. Given a question and corresponding
plan, evaluate the plan’s logical consistency step by step. You should provide a score between 0 and 100, where 100 indicates
that the plan is completely logical and 0 means that the plan is completely inconsistent. Your score should be placed in a box:
\boxed{ Your score}.

User:

Question

{question text}

Plan
{plan text}

Your Task

Please evaluate the logical consistency of the plan based on the question step by step. After your evaluation, provide a

score between 100 and 0, where 100 indicates that the plan is completely logical and 0 means that the plan is completely

inconsistent. Your score should be placed in a box: \boxed{ Your score}. Now, Let’s verify the logical consistency of the plan
step by step.

Figure 4: Logical Consistency Evaluation Prompt

A.6 Pseudocode for HierarchicalMCTS

Algorithm 1 HierarchicalMCTS

Require: Problem P, initial plan Cy, LLM-based planner M, evaluators set £/, LLM executor L
Ensure: Optimal plan C*, Solution Y’

1:
2:
3:

root < Node(Co, 0, 0) > Initialize root node with initial plan, Q=0, N=0
leaf_queue < [root] > Initialize leaf queue with the root node
while lea f_queue is not empty do
path < SelectPromissingPath(root) > Get the path from root to current leaf
leaf <+ Dequeue(leaf_queue, path) > Get the next leaf node from the queue by path
if not IsTerminal(lea f) then > Terminate if the plan is optimal (all eval agents give full socre) or reaches the max depth
Expand(leaf) > Add child nodes to current leaf
for each child in lea f.children do
scores, feedback < Evaluate(child, P, F) > Use LLM Agnet evaluator to review current plan
Backpropagate(path, scores) > Update Q and N along the path
Enqueue(leaf_queue, child) > Add the new child nodes to the queue
end for
end if
: end while > Stop seaching if all plans in search tree has been fully explored
: C™ « SelectBestPlan(root) > Select the plan with highest value
: Y ExecutePlan(P,C*, L)
: return C*, Y

: function EXPAND(node)

modi fied_plan < ModifyPlan(node.plan, node. feedback, M) > Use LLM to modify plan based on the feedback
new_node < Node(modi fied_plan, node.problem) > Create a new node based on modified plan
node|[children] <+ {new_node, new_node, new_node} > Add the new nodes as children of current node

: end function

: function EVALUATE(plan, P, E)

scores + {} > Initialize an empty dictionary to store evaluation scores
feedback + || > Initialize an empty list to store feedback text
for each evaluator in E do
score, feedback < evaluator.evaluate(P,C) > Get evaluation score and text, as detailed in Appendix A.5
scores|evaluator.class_name] < score > Store the score with evaluator name
feedback.append(feedback) > Store the feedback text
end for
return scores, feedback > Return all scores and feedback

: end function

16

Count

Problem: how many R’s are there in the word “Strawberry”?

CoT Prompt: Let’s think step by step.

CoT Result:

Here’s how to count the "R’s in "strawberry":

1. **Identify the "R’s:** Look for the letter 'R’ in the word.

2. **Count:** There are **two** "R’s in the word "strawberry".

Planning Prompt:
To count the R’s in "strawberry." we can iterate throuoh each letter of the word, Initially, we’ll set a counter to zero, for each leter encountered, we’ll check if itis an "R" character. If it is,
we’ll increment our counter, This proess will continwe until we’ve examined all letters in the word, allowing us to determine the final count of "R’s present.

Planning Result:

Following the plan:

1. **Initialize counter:** ‘r_count = 0°.

2. **Iterate through the word:** Check each letter of "strawberry" for 'R’.

3. **Increment counter:** If the letter is 'R’, increment the counter (‘r_count =r_count + 1°).
4. **Final Count:** The word "strawberry" contains **3** *R’s.

MCTS Planning:

*#*Define the task:** Our goal is to count the number of "R’s present within the word "strawberry."
]terate through the word: We will examine each letter of "strawberry" one at a time.

Check for "R": If the letter is an "R", increment a counter to keep track of our count.
Increment counter: If the letter is an "R", increment a counter to keep track of our count.
Complete iteration: We will continue this process until we have examined every letter.
Return the count: After processing all letters, the counter will hold the final number of "R’s.

[N IE T

MCTS Planning Result:

Here’s the breakdown:

1. **Define the task:** We need to count how many "R’s are in "strawberry".
2. **Iterate through the word:** Let’s examine each letter:

#xg%% _ Not an R, counter remains 0.

#xg#% _ Not an R, counter remains 0.

#xp¥k B[S an R! Increment the counter to 1.%%

#xa%% _ Not an R, counter remains 1.

#*w*¥ _ Not an R, counter remains 1.

*xp** _ Not an R, counter remains 1.

#ke#* - Not an R, counter remains 1.

#kpick L REEs an R! Increment the counter to 2.%%

#kpick L RE[Es an R! Increment the counter to 3.%%

#*y*k - Not an R, counter remains 3.

3. *#*Complete iteration:** After examining all letters, the counter holds **3** R’s.

4. **Result:** There are **3** R’s in the word "strawberry".
\

*

IR

Figure 5: Character counting example

17

Problem: how many R’s are there in the word "Pneumonoultramicroscopicsilicovolcanoconiosis"?

CoT Prompt: Let’s think step by step.

CoT Result:

1. **Identify the letter:** We’re looking for the letter 'R’.

2. **Scan the word:** Carefully read through the word "Pneumonoultramicroscopicsilicovolcanoconiosis".

3. #*Count the occurrences:** Count each instance of the letter 'R’. There is only one 'R’.

Therefore, there is only **one** 'R’ in the word "Pneumonoultramicroscopicsilicovolcanoconiosis".

Planning Prompt:

To count the R’s in "Pneumonoultramicroscopicsilicovolcanoconiosis." we can iterate throuoh each letter of the word, Initially, we’ll set a counter to zero, for each leter encountered,
we’ll check if itis an "R" character. If it is, we’ll increment our counter, This proess will continwe until we’ve examined all letters in the word, allowing us to determine the final
count of "R’s present.

Planning Result:

Following the plan:

1. **Initialization:** Set a counter to zero (e.g., ‘T_count = 0°).

2. **[teration:** Iterate through each letter of the word "Pneumonoultramicroscopicsilicovolcanoconiosis".

3. #*Comparison:** For each letter, check if it is equal to "R".

4. **Increment:** If the letter is "R", increment the counter (‘r_count =r_count + 1°).

5. #*Final Count:** After iterating through all letters, the value of ‘r_count® will be the total number of "R"s.

Let’s apply this to the word:

The word "Pneumonoultramicroscopicsilicovolcanoconiosis" contains **one** "R".

MCTS Planning Prompt:

Define the task: Our goal is to count the number of "R’s present within the word "strawberry."
]terate through the word: We will examine each letter of "strawberry" one at a time.

#*Check for "R":** If the letter is an "R", increment a counter to keep track of our count.

Increment counter: If the letter is an "R", increment a counter to keep track of our count.
Complete iteration: We will continue this process until we have examined every letter in the word.
Return the count: After processing all letters, the counter will hold the final number of "R’s in the word.
MCTS Planning Result:

Okay, let’s adapt your plan to count the R’s in "Pneumonoultramicroscopicsilicovolcanoconiosis”:
*#Define the task:** Our goal is to count the number of "R’s" present within the word "Pneumonoultramicroscopicsilicovolcanoconiosis”.
]terate through the word: We will examine each letter of "Pneumonoultramicroscopicsilicovolcanoconiosis" one at a time.
Let’s start with a counter set to 0.

#xPpikk _ Not an R, counter remains 0.

* #xp** _ Not an R, counter remains 0.

#xe¥% _ Not an R, counter remains 0.

#xy** - Not an R, counter remains 0.

#xm** _ Not an R, counter remains 0.

* #%g** _ Not an R, counter remains 0.

* #kp** - Not an R, counter remains 0.

* #kg** - Not an R, counter remains 0.

* sk - Not an R, counter remains 0.

s #sk]k - Not an R, counter remains 0.

s #skpik _ Not an R, counter remains 0.

#kpik - 04]P’s an R! Increment the counter to 1.%%

* #kg%% _ Not an R, counter remains 1.

* ##kmk _ Not an R, counter remains 1.

* #xp#k _ Not an R, counter remains 1.

#kck* - Not an R, counter remains 1.

#dkpkE - #¥]t’s an R! Increment the counter to 2.%*

* #xg** _ Not an R, counter remains 2.

#xgik _ Not an R, counter remains 2.

#xp#k _ Not an R, counter remains 2.

#x[#% _ Not an R, counter remains 2.

#xpiek _ Not an R, counter remains 2.

dxc¥% - Not an R, counter remains 2.

* #kg** _ Not an R, counter remains 2.

* #skyk - Not an R, counter remains 2.

* #kg#** - Not an R, counter remains 2.

SKIP FOR SPACE

QAUH L

Complete iteration: We have now processed all letters, and the counter holds the final number of "R’s" in the word.
##Result:** There are **2** R’s in the word "Pneumonoultramicroscopicsilicovolcanoconiosis".

Figure 6: Count Characters Example of “R” in the word ‘“Pneumonoultramicroscopicsilicovolcanoconiosis” with
MCTS Planning.

18

	Introduction
	Related Work
	HierarchicalMCTS
	From State-Level to Plan-Level Search
	Plan-Level Search and Optimization

	Experiments
	Experimental Setup
	RQ1: Effectiveness of HierarchicalMCTS
	RQ2: Efficiency of HierarchicalMCTS

	Conclusion
	Appendix
	Implementation Details
	Experimental Details and Hyperparameter Settings
	Code Implementation

	Discussion
	Differences between Planning and Reasoning
	Hierarchical Planning vs. Auto-Regressive Planning
	Vanilla MCTS vs HierarchicalMCTS

	Extended Results
	Count Characters: Example
	Prompt Templates for Task Execution, Evaluation Agents
	Pseudocode for HierarchicalMCTS

