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ABSTRACT

Optimization problems with norm-bounding constraints appear in various appli-
cations, from portfolio optimization to machine learning, feature selection, and
beyond. A widely used variant of these problems relaxes the norm-bounding con-
straint through Lagrangian relaxation and moves it to the objective function as
a form of penalty or regularization term. A challenging class of these models
uses the zero-norm function to induce sparsity in statistical parameter estima-
tion models. Most existing exact solution methods for these problems use ad-
ditional binary variables together with artificial bounds on variables to formulate
them as a mixed-integer program in a higher dimension, which is then solved
by off-the-shelf solvers. Other exact methods utilize specific structural proper-
ties of the objective function to solve certain variants of these problems, making
them non-generalizable to other problems with different structures. An alterna-
tive approach employs nonconvex penalties with desirable statistical properties,
which are solved using heuristic or local methods due to the structural complexity
of those terms. In this paper, we develop a novel graph-based method to glob-
ally solve optimization problems that contain a generalization of norm-bounding
constraints. This includes standard £,-norms for p € [0,00) as well as non-
convex penalty terms, such as SCAD and MCP, as special cases. Our method
uses decision diagrams to build strong convex relaxations for these constraints in
the original space of variables without the need to introduce additional auxiliary
variables or impose artificial variable bounds. We show that the resulting con-
vexification method, when incorporated into a spatial branch-and-cut framework,
converges to the global optimal value of the problem under mild conditions. To
demonstrate the capabilities of the proposed framework, we conduct preliminary
computational experiments on benchmark sparse linear regression problems with
challenging nonconvex penalty terms that cannot be modeled or solved by existing
global solvers.

1 INTRODUCTION

Norm-bounding constraints are often used in optimization problems to improve model stability and
guide the search towards solutions with desirable properties. For example, in machine learning,
norm-bounding constraints are imposed as a form of regularization to reduce overfitting and induce
sparsity in feature selection models Hastie et al.| (2009). Other uses of these constraints include
improving the numerical stability of optimization algorithms Nocedal & Wright| (2006), control-
ling the complexity of the solution space Bertsekas| (1999), and enhancing the interpretability of
parameter estimation [Zou & Hastie| (2005). While norm-bounding constraints defined by £,,-norm
for p > 1 fall within the class of convex programs, making them amenable to solution techniques
from numerical optimization Nocedal & Wright| (2006)) and convex optimization |[Bertsekas| (2015
literature, constraints involving ¢,-norm for p € [0, 1) or their nonconvex proxies belong to the class
of mixed-integer nonlinear (nonconvex) programs (MINLPs), posing greater challenges for global
solution approaches.
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The challenge to solve problems with ¢,-norm for p € (0, 1) stems from the nonconvexity of this
function, which necessitates the addition of new constraints and auxiliary variables to decompose the
function into smaller terms with simpler structures. These terms are convexified separately through
the so-called factorable decomposition, the predominant convexification technique in existing global
solvers; see |Bonami et al.| (2012)); Khajavirad et al.| (2014)) for a detailed account. In contrast, the
challenge in solving problems with ¢y-norm, also referred to as best-subset selection problem, is due
to the discontinuity of the norm function, which necessitates the introduction of new binary variables
and (often) artificial bounds on variables to reformulate it as a mixed-integer program (MIP) that can
be solved by existing MIP solvers |Bertsimas et al.| (2016)); |[Dedieu et al.| (2021). Other exact meth-
ods for solving these problems are highly tailored to exploit the specific structural properties of the
objective function, often making them unsuited for problems with different structures [Bertsimas &
Parys| (2020); [Hazimeh et al.| (2022)); Xie & Deng| (2020). One of the most common applications
of the best-subset selection problem is in sparse parameter estimation, where the goal is to limit the
number of nonzero parameters Hastie et al. (2015)); Pilanci et al.[(2015). Other applications of prob-
lems with {y-norm constraints include compressive sensing, metabolic engineering, and portfolio
selection, among others; see Jain|(2010) and references therein for an exposition on these applica-
tions. Perhaps the most challenging class of these problems, from a global optimization perspective,
involves nonconvex penalty functions that exhibit desirable statistical properties, such as variable
selection consistency and unbiasedness [Fan & Li| (2001); |[Zhang & Zhang| (2012). The complexity
of these problems is partly attributed to the algebraic form of their penalty functions, which are
often difficult to model as standard mathematical programs that can be solved by a global solver.
For example, the smoothly clipped absolute deviation (SCAD) [Fan & Li (2001) and the minimax
concave penalty (MCP) [Zhang| (2010) functions include integration in their definition, an operator
that is inadmissible in existing global solvers such as BARON [Tawarmalani & Sahinidis| (2005). As
a result, the existing optimization approaches for these problems mainly consist of heuristic and lo-
cal methods Mazumder et al.| (2011); Zou & L1/ (2008). Various works in the literature have studied
the favorable properties of global solutions of these statistical models, which are often not achiev-
able by local methods or heuristic approaches [Fletcher et al.|(2009); Hazimeh & Mazumder| (2020);
Wainwright| (2009). This advocates for the need to develop global optimization methods that, de-
spite being computationally less efficient and scalable compared to heuristic or local methods, can
provide deeper insights into the true statistical characteristics of optimal estimators across various
models. Consequently, these insights can facilitate the development of new models endowed with
more desirable properties; see the discussion in [Fan & Li| (2001) for an example of the process to
design a new model.

In this paper, we introduce a novel global optimization framework for a generalized class of norm-
bounding constraints based on the concept of decision diagrams (DDs), which are special-structured
graphs that draw out latent variable interactions in the constraints of the MINLP models. We refer
the reader to Section [2|for a brief background on DDs, to|Bergman et al.| (2016) for an introduction
to DDs, and to [Castro et al.| (2022) for a recent survey on DD-based optimization. One of the
most prominent advantages of DD-based solution methods compared to alternative approaches is the
ability of DDs to model complex constraint forms, such as nonconvex, nonsmooth, black-box, etc.,
while capturing their underlying data structure through a graphical representation. In this work, we
exploit these properties of DDs to design a framework to globally solve optimization problems that
include norm-bounding constraints, which encompass a variety of challenging nonconvex structures.

The main contribution of this paper is the development of a global solution framework through
the lens of DDs, which has the following advantages over existing global optimization tools and
techniques.

(i) Our framework is applicable to a generalized definition of the norm functions that includes
£,-norm with p € [0, 0), as well as nonconvex penalty terms, such as SCAD and MCP, as
special cases.

(i) The devised method guarantees convergence to a global optimal solution of the underlying
optimization model under mild conditions.

(iii) The proposed approach provides a unified framework to handle different norm and penalty
types, ranging from convex to nonconvex to discontinuous, unlike existing techniques that
employ a different tailored approach to model and solve each norm and penalty type.
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(iv) Our framework models the norm-bounding constraints and solves the associated optimiza-
tion problem in the original space of variables without the need to introduce additional
auxiliary variables, unlike conventional approaches in the literature and global solvers that
require the introduction of new auxiliary variables for ¢,-norms for p € [0, 1).

(v) Our approach can model and solve nonconvex penalty functions that contain irregular oper-
ators, such as the integral in SCAD and MCP functions, which are considered intractable in
state-of-the-art global solvers, thereby providing the first global solution method for such
structures.

(vi) The developed framework does not require artificial large bounds on the variables, which
are commonly imposed when modeling £y-norms as a MIP.

(vii) Our algorithms can be easily incorporated into solution methods for optimization problems
with a general form of objective function and constraints, whereas the majority of existing
frameworks designed for £y-norm or nonconvex penalty terms heavily rely on the problem-
specific properties of the objective function and thus are not generalizable to problems that
have different objective functions and constraints.

(viii) Our approach can be used to model the regularized variant of the problems where the norm
functions are moved to the objective function through Lagrangian relaxation and treated as

a weighted penalty.
Notation. Vectors of dimension n € N are denoted by bold letters such as cx, and the non-negative
orthant in dimension n is referred to as R}. We define [n] := {1,2,...,n}. We refer to the convex
hull of a set P C R™ by conv(P). For a sequence {t1,ts, ...} of real-valued numbers, we refer to
its limit inferior as liminf,,_, t,,. For a sequence {P;, P, ...} of monotone non-increasing sets

inR", ie. PL D Py, D .. . we denote by {Pj} J P the fact that this sequence converges (in the
Hausdorff sense) to the set P C R™. For x € R, we define (z)4 := max{0,x}.

2 BACKGROUND ON DDs

In this section, we present basic definitions and results relevant to our DD analysis. A DD D is a
directed acyclic graph denoted by the triple (U4, .A,1) where U is a node set, A is an arc set, and
l: A — Ris an arc label mapping for the graph components. This DD is composed of n € N
arc layers Ay, Ao, ..., A,, and n + 1 node layers Uy ,Us, . . . ,U,+1. The node layers U; and Uy, 41
contain the root r and the terminal ¢, respectively. In any arc layer j € [n] := {1,2,...,n}, an
arc (u,v) € Aj; is directed from the tail node v € U; to the head node v € U;;. The width of
D is defined as the maximum number of nodes at any node layer I/;. DDs have been traditionally
used to model a bounded integer set P C Z" such that each r-t arc-sequence (path) of the form
(a1,...,a,) € Ay x ... x A, encodes a point cx € P where I(a;) = z; for j € [n], that is cz
is an n-dimensional point in P whose j-th coordinate is equal to the label value I(a;) of arc the a;.
For such a DD, we have P = Sol(D), where Sol(D) represents the set of all r-¢ paths.

The graphical property of DDs can be exploited to optimize an objective function over a discrete
set P. To this end, DD arcs are weighted in such a way that the weight of an r-¢ path, obtained by
the summation of the weights of its arcs, encoding a solution cx € P equals the objective function
value evaluated at cx. Then, a shortest (resp. longest) -t path for the underlying minimization
(resp. maximization) problem is found through a polynomial-time algorithm to obtain an optimal
solution of the underlying integer program.

If there is a one-to-one correspondence between the r-t paths of the DD and the discrete set P, we
say that the DD is exact. It s clear that the construction of an exact DD is computationally prohibitive
due to the exponential growth rate of its size. To address this difficulty, the concept of relaxed and
restricted DDs were developed in the literature to keep the size of DDs manageable. In a relaxed
DD, if the number of nodes in a layer exceeds a predetermined width limit, a subset of nodes are
merged into one node to reduce the number of nodes in that layer and thereby satisfy the width limit.
This node-merging operation is performed in such a way that all feasible solutions of the exact DD
are maintained, while some new infeasible solutions might be created during the merging process.
Optimization over this relaxed DD provides a dual bound to the optimal solution of the original
integer program. In a restricted DD, the collection of all 7-¢ paths of the DD encode a subset of the
feasible solutions of the exact DD that satisfies the prescribed width limit. Optimization over this
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restricted DD provides a primal bound to the optimal solution of the original integer program. The
restricted and relaxed DDs can be successively refined through a branch-and-bound framework until
their primal and dual bounds converge to the optimal value of the integer program.

As outlined above, DDs have been traditionally used to model and solve discrete optimization prob-
lems. Recently, through a series of works |Davarnial (2021); Salemi & Davarnial (2022; [2023)), the
extension of DD-based optimization to mixed-integer programs was proposed together with applica-
tions in new domains, from energy systems to transportation, that include a mixture of discrete and
continuous variables. In this paper, we make use of some of the methods developed in those works
to build a global solution framework for optimization problems with norm-bounding constraints.

3 SCALE FUNCTION

In this section, we introduce the scale function as a generalization of well-known norm functions.

Definition 1. For cx € R", define the “scale” function n(cx) = 3, n 1i(x;), wheren; : R — R
is a real-valued univariate function such that

(i) ni(z) = 0 ifand only if x = 0,
(ii) ni(x1) < ni(xa) for 0 < 1 < 9 (monotone non-decreasing),
(iii) ni(x1) > ni(z2) for x1 < xo < 0 (monotone non-increasing).

The definition of the scale function 7)(cx) does not impose any assumption on the convexity, smooth-
ness, or even continuity of the terms involved in the function, leading to a broad class of possible
functional forms. In fact, as a special case, this function takes the form of the nonconvex penalty
function outlined in|Fan & Li/(2001); Zhang|(2010), which is commonly used as a regularization fac-
tor in the Lagrangian formulations of statistical estimation problems. Next, we show that two of the
most prominent instances of such penalty functions, namely SCAD and MCP, are scale functions.

Proposition 1. Consider the SCAD penalty function p>°**(cz,cX, cy) = >0, p3(2i, Ni, v3)
where \; > 0 and y; > 2, for i € [n], are degree of regularization and nonconvexity parameters,
respectively, and pi* (z;, \i, i) = \; folmil min{l, (v; —y/\i)+ /(v — 1) }dy. Similarly, consider

3

the MCP penalty function p"F (cz, e, ey) = Y i, P (x4, Niyvi) where N\; > 0 and ~; > 0

are degree of regularization and nonconvexity parameters, respectively, and P (z;, Nj,vi) =

Ai fo‘m(l — y/(\i7vi))+dy. Then, p*°(cx, e\, ey) and p"°F(cx, e, ey) are scale functions in
cz.

Proof. We show the result for p5¢*?(cx, ¢, ) as the proof for p" (cx, e, ¢y) follows from simi-
lar arguments. It is clear that pF (0, \;, ;) = 0. Further, since min{1, (v; —y/\:)+ /(i —1)} > 0

K2

MCP (

for v; > 2, we conclude that the integral function \; foll"l min{1, (y; — y/Ni)+ /(v — 1)}dy is

non-decreasing over the interval [0, co) for |z;| as A; > 0, proving the result. O

As a more familiar special case, we next show how the ¢,-norm constraints for all p € [0, c0) can
be represented using scale functions.
Proposition 2. Consider a norm-bounding constraint of the form ||cx||, < (8 for some 3 > 0 and
p € [0,00), where ||cx||, denotes the {,-norm. Then, this constraint can be written as n(cx) < 3
for a scale function n(cx) such that

(i) ifp € (0,00), then n;(x;) = ¥ and B = /37,
(ii) if p =0, then n;(z;) = 0 for x; = 0, and n;(x;) = 1 for x; # 0, and B = B.

Proof. (i) Using the definition |lcz|l, = (X,cn \xi|p)1/p for p € (0,00), we can rewrite
constraint ||cz||, < Bas Y,y |2i|P < 8P = B by raising both sides to the power of p.
The left-hand-side of this inequality can be considered as n(cx) = > .. 7i(x;) where
ni(z;) = |z;|P. Since ;(z;) satisfies all three conditions in Definition [1} we conclude that
n(cx) is a scale function.
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(ii) Using the definition |[cz|[o = >,y I(x;) where I(z;) = 0if 2; = 0, and I(z;) = 1if
x; # 0, we can rewrite constraint |[cz||o < B as ),y ni(xi) < B where n;(z;) = I(x;).
Since 7;(z;) satisfies all three conditions in Definition[I] we conclude that n(cz) is a scale
function.

O

We note that ¢..-norm is excluded in the definition of scale function, as constraints of the form
llex||oc < B can be broken into multiple separate constraints bounding the magnitude of each
component, i.e., |z;| < 3 fori € [n].

4 GRAPH-BASED CONVEXIFICATION METHOD

In this section, we develop a novel convexification method for the feasible regions described by a
scale function. We present these results for the case where the scale functions appear in the con-
straints of the optimization problem. The extension to the case where these constraints are relaxed
and moved to the objective function as a penalty term follows from similar arguments. In the re-
mainder of the paper, we refer to a constraint that imposes an upper bound on a scale function as a
norm-bounding constraint.

4.1 DD-BASED RELAXATION

Define the feasible region of a norm-bounding constraint over the variable domains as F = {cz €
[T, [1%,u'] | n(cx) < B}. Foreach i € [n], define L; to be the index set for sub-intervals [1%, u?]

for j € L; that span the entire domain of variable ;, i.e., ;o [1%,uf] = [1%,u']. Algorithm

gives a top-down procedure to construct a DD that provides a relaxation for the convex hull of F,
which is proven next.

Algorithm 1: Relaxed DD for a norm-bounding constraint

Data: Set 7 = {cz € [[I",[1°,u’] | n(cz) < B}, and the domain partitioning intervals L; for i € [n]
Result: ADDD = (U, A, l(.))
create the root node 7 in the node layer U/, with state value s(r) = 0
create the terminal node ¢ in the node layer U, 41
forall i € [n—1,u €U, j € L;do
if u; < 0 then v
create a node v with state value s(v) = s(u) + n;(uj) (if it does not already exist) in the node
layer U; 1
else if 1; > 0 then _
create a node v with state value s(v) = s(u) + 1:(1}) (if it does not already exist) in the node
layer U; 11
else
L create a node v with state value s(v) = s(u) (if it does not already exist) in the node layer U;+1
| add two arcs from u to v with label values 1; and u;- respectively
forall u € Uy, j € Ly, do
if uj < 0 then _
L calculate 5 = s(u) + 7:(u})
else if 15 > 0 then ‘
L calculate 5 = s(u) 4+ 7:(1%)
else
| calculate 5 = s(u)
if 5 < 3 then _ _
L add two arcs from wu to the terminal node ¢ with label values 1} and u} respectively
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Proposition 3. Consider F = {cxz € [[_,[1%,u’]|n(cxz) < B} where n € N. Let D be the
DD constructed via Algorithm I for some domain partitioning sub-intervals L; for i € [n]. Then,
conv(F) C conv(Sol(D)).

Proof. Tt suffices to show that 7 C conv(Sol(D)) since the convex hull of a set is the smallest
convex set that contains it. Pick ¢x € F. It follows from the deﬁmtlon of F that > 1, n;(Z;) < B.

For each i € [n], let j; be the index of a domain sub-interval [17.,u}.] in L; such that 1z <7z; <

. Such index exists because Z € [1%,u’] = |, er, [17,u’] where the inclusion follows from the
fact that z € F, and the equality follows from the definition of domain partitioning. Next, we show
that D includes a node sequence u1, Uz, . .., Un41, Where u; € U; for i € [n + 1], such that each
node u; is connected to ;41 via two arcs w1th labels 11* and u’. for each i € [n]. We prove the

result using induction on the node layer index k € [n] in the node sequence uj, ug, ..., Un+1. Lhe
induction base k = 1 follows from line 1 of Algorithm [I]as the root node r can be considered
as u1. For the inductive hypothesis, assume that there exists a node sequence w1, us, . .., ur of D
with u; € U; for j € [k] such that each node w; is connected to u;41 via two arcs with labels 1;

and ué-: for each ¢ € [k — 1]. For the inductive step, we show that there exists a node sequence
Up, U, -« - Uk, Uk+1 Of D with uj € Z/l for j € [k + 1] such that each node u; is connected to
Uj41 via two arcs with labels 11* and u .. for each i € [k]. We consider two cases. For the first
case, assume that k < n — 1. Then the for-loop lines 3-10 of Algorithm [I]imply that node wy, is
connected to another node in the node layer Uy 1, which can be considered as w41, via two arcs
with labels [ ’2 and uk because the conditions of the for-loop are satisfied as follows: k € [n — 1]
due to the assumptlon of the first case, uy, € U, because of the inductive hypothesis, and j; € Ly by
construction. For the second case of the inductive step, assume that & = n. It follows from lines 1-10
of Algorithm|[]that the state value of node w; 1 for i € [k — 1] is calculated as s(u;+1) = s(u;) +7;
where s(u1) = 0 because of line 1 of the algorithm, and where ; is calculated depending on the sub-
interval bounds ll* and u . according to lines 4-9 of the algorithm. In particular, v; = 771( ) if

ujf <0,7 = 771(1}/‘*) if 13 > 0, and ; = 0 otherwise. As a result, we have s(uy) = Zi:1 ~;. On
the other hand, since 7(cz) is a scale function, according to Definition[I] we must have 7;(0) = 0,
ni(z1) < mi(w2) for 0 < x1 < wo, and n;(x1) > ni(z2) for 21 < 29 < 0 for each i € [n]. Using
the fact that 1. <2 < uj > We consider three cases. (i) Ifu o < 0, then z; < ul. <0, and
thus 771(@) > nl(u]:) = ;. (i) If 1; > 0, then 7; > l;i > O and thus 7;(z;) > 171(1;1’) = ;.
(iii) If uf. > O and 1%. < 0, then 1:(Z;) > 0 = ~;. Considering all these cases, we conclude that
~vi < n;(Z;) for each ¢ € [k — 1]. Therefore, we can write that s(ug) = Zf:’f vi < Zf;ll ni (Z;).
Now consider lines 11-18 of the for-loop of Algorithm for ug € U and ji; € Li. We compute
5 = s(ug) + &, wWhere i, is calculated as described previously. Using a similar argument to that
above, we conclude that v, < 1 (Zx). Combining this result with that derived for s(uy ), we obtain
that s = S°F v < 3% 0i(%;) < B, where the last inequality follows from the fact that cx € F.
Therefore, lines 18—19 of Algorithm|1|imply that two arcs with label values lk* and u j» connect node

uy, to the terminal node ¢ which can be considered as uy.1, completing the desired node sequence.
Now consider the collection of points ¢z" for s € [2"] encoded by all paths composed of the above-
mentioned pair of arcs with labels 1’* and u .. between each two consecutive nodes u; and w;1

in the sequence w1, ug, ..., Upt1- Therefore cx" € Sol(D) for k € [2"]. It is clear that these
points also form the vertices of an n-dimensional hyper-rectangle defined by []7"_,[1 GG |. By

construction, we have that cx € H?zl[ G ; ], i.e., ¢z is a point inside the above hyper-rectangle.
As a result, ¢z can be represented as a convex combination of the vertices ¢z” for k € [2"] of the
hyper-rectangle, yielding ¢z € conv(Sol(D)). O

In view of Proposition [3] note that the variable domains are not required to be bounded, as the state
value calculated for each node of the DD is always finite. This allows for the construction of the
entire DD layers regardless of the specific values of the arc labels. This property is specifically
useful when DDs are employed to build convex relaxations for problems that do not have initial
finite bounds on variables, such as statistical estimation models where the parameters can take any
value in R.
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Remark 1. The size of the DD obtained from Algorithm[l|could grow exponentially when the num-
ber of variables and sub-intervals in the domain partitions increases. To control this growth rate,
there are two common approaches. The first approach involves controlling the size of the DD by
reducing the number of sub-intervals in the domain partitions of variables at certain layers. For
example, assume that the number of nodes at each layer of the DD grows through the top-down
construction procedure of Algorithm[I|until it reaches the imposed width limit W at layer k. Then,
by setting the number of sub-intervals for the next layer k + 1 to one (i.e., |Lyt1| = 1), the al-
gorithm guarantees that the number of nodes at layer k + 1 will not exceed W. The second ap-
proach involves controlling the size of the DD by creating a “relaxed DD’ through merging nodes
at layers that exceed the width limit W. In this process, multiple nodes {vy, v, ..., v}, for some
k € N, in a layer are merged into a single node v in such a way that all feasible paths of the
original DD are maintained. For the DD constructed through Algorithm[l| choosing the state value
s(0) = minj—y_x{s(v;)} provides such a guarantee for all feasible paths of the original DD to
be maintained, because this state value underestimates the state values of each of the merged nodes,
producing a relaxation for the norm-bounding constraint n(cz) < f3; see Appendix and references
therein for an exposition to DD relaxations.

4.2 OUTER APPROXIMATION

The next step after constructing a DD that provides a relaxation for the convex hull of a set is to
obtain an explicit description of the convex hull of the DD solution set to be implemented inside
an outer approximation framework to find dual bounds. Recently, Davarnial (2021); Davarnia &
Van Hoeve|(2020) proposed efficient methods to obtain such convex hull descriptions for DDs in the
original space of variables through a successive generation of cutting planes. In Appendix [A.T] we
present a summary of those methods that are applicable for the DD built by Algorithm [I]

5 SPATIAL BRANCH-AND-CUT

In global optimization of MINLPs, a divide-and-conquer strategy, such as spatial branch-and-bound,
is employed to achieve convergence to the global optimal value of the problem. The spatial branch-
and-bound strategy reduces the variables’ domain through successive partitioning of the original
box domains of the variables. These partitions are often rectangular in shape, dividing the variables’
domain into smaller hyper-rectangles as a result of branching. For each such partition, a convex
relaxation is constructed to calculate a dual bound. Throughout this process, the dual bounds are
updated as tighter relaxations are obtained, until they converge to a specified vicinity of the global
optimal value of the problem. To prove such converge results, one needs to show that the convexifi-
cation method employed at each domain partition converges (in the Hausdorff sense) to the convex
hull of the feasible region restricted to that partition; see [Belotti et al.| (2009); Ryoo & Sahinidis
(1996)); Tawarmalani & Sahinidis| (2004) for a detailed account of spatial branch-and-bound meth-
ods for MINLPs.

As demonstrated in the previous section, the convexification method used in our framework involves
generating cutting planes for the solution set of the DDs obtained from Algorithm [l We refer to
the spatial branch-and-bound strategy incorporated into our solution method as spatial branch-and-
cut (SB&C). In this section, we show that the convex hull of the solution set of the DDs obtained
from Algorithm [I|converges to the convex hull of the solutions of the original set F as the partition
volume reduces. First, we prove that reducing the variables’ domain through partitioning produces
tighter convex relaxations obtained by the proposed DD-based convexification method described in
Sectiondl

Proposition 4. Consider F; = {cx € P;|n(cx) < B} for j = 1,2, where n(cz) is a scale
function, and P; = []'_,[1%,u}] is a box domain of variables. For each j = 1,2, let D; be the
DD constructed via Algorithm for a single sub-interval [13, uz] fori € [n]. If P, C Py, then
conv(Sol(Ds)) C conv(Sol(Dy)).

Proof. Since there is only one sub-interval [15, u}] for the domain of variable z; for i € [n], there
is only one node, referred to as u;, at each node layer of D, according to Algorithm [I] Following
the top-down construction steps of this algorithm, for each ¢ € [n — 1], u; is connected via two arcs
with label values 1% and u) to u;;1. There are two cases for the arcs at layer i = n based on the
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value of s calculated in lines 12-17 of Algorithm For the first case, assume that 5 > (3. Then,
the if-condition in line 18 of Algorithm E] is not satisfied. Therefore, node u,, is not connected to
the terminal node ¢ of Ds. As a result, there is no r-t path in this DD, leading to an empty solution
set, i.e., conv(Sol(D3)) = Sol(D2) = 0. This proves the result since ) C conv(Sol(D;)). For
the second case, assume that § < (. Then, the if-condition in line 18 of Algorithm [I|is satisfied,
and node u,, is connected to the terminal node ¢ of D, via two arcs with label values 13 and uf.
Therefore, the solution set of D» contains 2" points encoded by all the r-t paths of the DD, each
composed of arcs with label values 1% or uf for i € [n]. It is clear that these points correspond to
the extreme points of the rectangular partition P, =[], [14,u}]. Pick one of these points, denoted
by c¢x. We show that ¢z € conv(Sol(Dy)). It follows from lines 1-10 of Algorithm |1] that each
layer ¢ € [n] includes a single node v;. Further, each node v; is connected to v; 1 via two arcs
with label values 1} and u! for i € [n — 1]. To determine whether v,, is connected to the terminal
node of D;, we need to calculate 5 (which we refer to as § to distinguish it from that calculated
for Dy) according to lines 12—17 of Algorithm (I} Using an argument similar to that in the proof of
Proposition [3| we write that 5 = S| s(v;), where s(v;) = m;(ui) if u} < 0, s(v;) = n;(1}) if
1} > 0, and s(v;) = 0 otherwise for all ¢ € [n], and s(v1) = 0. On the other hand, we can similarly
calculate the value of 5 for Dy as 5 = >, s(u;), where s(u;) = n;(ub) if uy <0, s(u;) = n;(13)
if 15 > 0, and s(u;) = 0 otherwise for all i € [n], and s(u;) = 0. Because P, C P;, we have that
1} < 1% < ub < uf foreach i € [n]. Consider three cases. If u < 0, then either ui < 0 which
leads to s(v;) = 1;(u}) < m;(uv}) = s(u;) due to monotone property of scale functions, or uj > 0
which leads to s(v;) = 0 < n;(ub) = s(u;) as in this case 1§ < 14 < u} < 0. If 15 > 0, then
either 1% > 0 which leads to s(v;) = 7;(1%) < 7;(1%) = s(u;) due to monotone property of scale
functions, or 1¢ < 0 which leads to s(v;) = 0 < 1;(1%) = s(u;) as in this case u} > u} > 1% > 0.
If ub > 0 and 15 < 0, then s(v;) = s(u;) = 0. As a result, s(v;) < s(u;) for all cases and for
all i € [n]. Therefore, we obtain that 5 = > | s(v;) < Y1 s(u;) = 5§ < f3, where the last
inequality follows from the assumption of this case. We conclude that the if-condition in line 18 of
Algorithm [1|is satisfied for D, and thus v,, is connected to the terminal node of Dy via two arcs
with label values 17 and u}. Consequently, Sol(D;) includes all extreme points of the rectangular
partition P; encoded by the r-t paths of this DD. Since P, C P, the extreme point ¢x of P is in
conv(Sol(Dy)), proving the result. O

While Proposition 4] implies that the dual bounds obtained by the DD-based convexification frame-
work can improve through SB&C as a result of partitioning the variables’ domain, additional func-
tional properties for the scale function in the norm-bounding constraint are required to ensure con-
vergence to the global optimal value of the problem. Next, we show that a sufficient condition to
guarantee such convergence is the lower semicontinuity of the scale function. This condition is
not very restrictive, as all £,-norm functions for p € [0, 00) as well as typical nonconvex penalty
functions, such as those described in Proposition[I] satisfy this condition.

Proposition 5. Consider a scale function n(cx) = Y., ni(x;), where n;(x) : R — Ry is lower
semicontinuous for i € [n], i.e., iminf,_,, n;(x) > n;(xo) for all zy € R. Define F; = {cx €
Pj|n(cx) < B} for j € N, where P; = [[;_,[1},u}] is a bounded box domain of variables.
For j € N, let D; be the DD associated with F; that is constructed via Algorithm || for single
sub-interval [1%,u}] for i € [n]. Assume that {Py, Py, ...} is a monotone decreasing sequence of
rectangular partitions of the variables domain created through the SB&C process, i.e., P; O Pjyq
foreach 7 € N. Let cx € R" be the point in a singleton set to which the above sequence converges
(in the Hausdorff sense), i.e., {P;} | {cx}. Then, the following statements hold:

(i) Ifn(cz) < B, then { conv(Sol(D;))} | {cz}.
(ii) Ifn(cx) > B, then there exists m € N such that Sol(D;) = () for all j > m.

Proof. (i) Assume that n(cx) < f. Consider j € N. First, note that 7; C conv(F;) C
conv(Sol(D;)) according to Proposition [3] Next, we argue that Sol(D;) C P;. There
are two cases. For the first case, assume that the if-condition in line 18 of Algorithm E] is
violated. Then, it implies that there are no r-t paths in Dy, i.e., Sol(Dj) =0 C P;. For
the second case, assume that the if-condition in line 18 of Algorithmis satisfied. Then,
it implies that Sol(D;) contains the points encoded by all r-¢ paths in D; composed of arc
label values 1% or u’ for each i € [n], i.e., Sol(D;) C P;. As aresult, conv(Sol(D;)) C
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P;. It follows from Proposition 4] that the sequence {conv(Sol(Dy)), conv(Sol(Dy)),... }
is monotone non-increasing, i.e., conv(Sol(D;)) 2 conv(Sol(D,11)) for j € N. On
the other hand, we can write 7, = {cz € R"|n(cz) < S} N P; by definition. Since
{P;} | {cz}, we obtain that {F;} | {cz € R"|n(cz) < p} N {cx} = {cx} since
n(cx) < 5 by assumption. Therefore, based on the previous arguments, we can write that
F; C conv(Sol( i) € Pj. Because {F;} | {cx} and {P;} | {cx}, we conclude that

{conv (Sol(D;))} | {ex}.

(ii) Assume that n(c¢z) > (. Since the sequence of domain partitions {P;} is a monotone
decreasing sequence that converges to {cﬁc} we can equivalently write that the sequence
of variable lower bounds {1, 12, ... } in these partitions is monotone non-decreasing and
it converges to 7; for i € [n], i.e., 1§ < 13 < ..., and lim;j_, 1] = Z;. Similarly,
the sequence of variable upper bounds {u¢,u, ...} in these partitions is monotone non-
increasing and it converge to Z; for i € [n], ie., uj > ub > ..., and lim; u; =
Z;. The assumption of this case implies that n(cz) = Y. n;(Z;) > B. Define ¢ =
2iam@)=B - . For each DD Dj for j € N, using an argument similar to that of
Proposition we can calculate the value s in line 11-17 of Algorithmas 5= s(v)
where v; is the single node at layer ¢ € [n] of D;. In this equation, considering that the
variable domain is [1%,u’] for each i € [n], we have s(v1) = 0, and s(v;) = 7;(uf) if
wy <0, s(v;) = ni(1) if 15 > 0, and 5(v;) = 0 otherwise. Because 7;(x;), for i € [n],
is lower semicontinuous at Z; by assumption for every real z; < 7;(Z;), there exists a
nonempty neighborhood R; = (1%,4%) of #; such that 772( ) > z; forall z € R;. Set
z; = n;(Z;) — €. On the other hand since limj_,oo 1% = 7; and lim; o v’ = Iy, by

3
definition of sequence convergence, there exists m; € N such that 1}, > 1% and u, <’

Pick m = maxle[ jm;. It follows that, for each i € [n], we have n;(x) > z; = ni(Z:) —

for all z € [1,,ul,]. Now, consider the value of s(v;) at layer i € [n] of D,,. There are
three cases. If u/, < 0, then s(v;) = n;(w?,) > n:(%;) —e. If 1%, > 0, then s(v;) =
ni(1%,) > 771(572) e. Ifu!, > 0and 1!, < 0, then s(v;) = ni(O) =0 > n(z;) — €
as 0 € [17,,u’,]. Therefore, s(vl) > 1;(Z;) — € for all cases. Using the arguments given
previously, we calculate that 5 = > | s(v;) > Y., 7;(Z;) — ne = j3, where the last
equality follows from the definition of €. Since s > [, the if-condition in line 18 of
Algorithm [T]is not satisfied, and thus node v,, is not connected to the terminal node in DD
Dy, implying that Sol(D,,) = (). Finally, it follows from Proposition 4 that Sol(D;) C
conv(Sol(D;)) C conv(Sol(D,,)) = 0, for all j > m, proving the result.

J

O

The result of Proposition [5] shows that the convex hull of the solution set represented by the DDs
constructed through our convexification technique converges to the feasible region of the under-
lying norm-bounding constraint during the SB&C process. If this constraint is embedded into an
optimization problem whose other constraints also have a convexification method with such conver-
gence results, it can guarantee convergence to the global optimal value of the optimization problem
through the incorporation of SB&C.

We conclude this section with two remarks about the results of Proposition [ First, although the
above convergence results are obtained for DDs with a unit width W = 1, they can be easily
extended to cases with larger widths using the following observation. The solution set of a DD can
be represented by a finite union of the solution sets of DDs of width 1 obtained from decomposing
node sequences of the original DD. By considering the collection of all such decomposed DDs of
unit width, we can use the result of Proposition [5]to show convergence to the feasible region of the
underlying constraint. In practice, increasing the width limit of a DD often leads to stronger DDs
with tighter convex relaxations. This, in turn, accelerates the bound improvement rate, helping to
achieve the desired convergence results faster.

Second, even though the convergence results of Proposition [5] are proven for a bounded domain
of variables, the SB&C can still be implemented for bounded optimization problems that contain
unbounded variables. In this case, as is common in spatial branch-and-bound solution methods, the
role of a primal bound becomes critical for pruning nodes that contain very large (or infinity) variable
bounds, which result in large dual bounds. This is particularly evident in the statistical models that
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minimize an objective function composed of the estimation errors and a penalty function based on
parameters’ norms. In the next section, we provide preliminary computational results for an instance
of such models.

6 COMPUTATIONAL RESULTS

In this section, we present preliminary computational results to evaluate the effectiveness of our
solution framework. As previously outlined, although our framework can be applied to a broad class
of norm-type constraints with general MINLP structures, here we focus on a well-known model that
involves a challenging nonconvex norm-induced penalty function. In particular, we consider the
following statistical regression problem with the SCAD penalty function.

min  [|ey — XeB|[3 + p**(cB, e, ey), (1)
cBeRP

where n is the sample size, p is the number of features, X € R™*P? is the data matrix, cy € R"
is the response vector, ¢ € R" is the decision variables that represent coefficient parameters in
the regression model, and p5®4°(¢f3, e, ¢) is the SCAD penalty function as described in Proposi-
tion[1] It follows from this proposition that p°**?(c/3, e, ¢v) is a scale function, making the problem
amenable to our DD-based solution framework.

We note that the SCAD penalty function is chosen as a challenging nonconvex regularization struc-
ture to showcase the capabilities of our framework in handling such structures. This is an important
test feature because the SCAD penalty function is not admissible in state-of-the-art global solvers,
such as BARON, due to the presence of the integration operator. As a result, to our knowledge, our
proposed approach is the first general-purpose global solution framework for this problem class.

For our experiments, we use datasets from public repositories such as UCI Machine Learning Repos-
itory [Kelly et al.| and Kaggle [Kag. The collection of these datasets, described by their size pair
(p,m), is {(7,400), (36, 4434), (60, 207), (127,123), (147, 168), (384, 4000) }. More details about
these instances and the settings of our DD-based algorithm can be found in Appendix[A.2] Here, we
present a summary of the results of our global solution framework in Figure[T] These figures show
the solution time to achieve an optimality gap of < 5% on the vertical axis and the instance number
in the above collection on the horizontal axis; see Appendix [A.2]for detailed numerical results. We
have conducted these experiments for two different categories of (X, 7) € {(1,3), (10,30)} to con-
sider both small and large degrees of regularization and nonconvdxity for the SCAD function. These
results demonstrate the potential of our solution method in globally solving equation [I] for small to
medium-sized problem instances.

300 300
—am= (\Y)=(1,3) " (A7) = (10, 30)

250 ' 250

200 ” 7 200
\ [}

Time (seconds)
o}
2
<
,
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Figure 1: Solution time of the DD framework for selected datasets with different penalty parameters
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A APPENDIX

A.1 CONVEX HULL DERIVATION

In this section, we present a summary of the results in |Davarnial (2021)); [Davarnia & Van Hoeve
(2020) that can be used to obtain a convex hull description for the DDs constructed in Section 4.1]
We start with the description of the convex hull in an extended (lifted) space of variables.

Proposition 6. Consider a DD D = (U, A, I(.)) with solution set Sol(D) C R" that is obtained
from Algorithm (1| associated with the constraint F = {cx € []_,[1°,u']|n(ex) < B}. Define

G(D) = {(cx;cy) € R™ x RIAI |equation equation } where

> Ya— D Ya=fu Yu el (2a)
a€dt (u) a€d~ (u)
Z l(a)yq, =z, VE € [n] (2b)
ac Ay
Ya = 0, Yu € U, (2¢)
where fs = —fy = 1, f, = 0foru € U\ {s,t}, and 5 (u) (resp. 6~ (u)) denotes the set of outgoing
(resp. incoming) arcs at node u. Then, proj, G(D) = conv(Sol(D)). O

Viewing y, as the network flow variable on arc a € A of D, the formulation equation 2al-equation 23]
implies that the LP relaxation of the network model that routes one unit of supply from the root node
to the terminal node of the DD represents a convex hull description for the solution set of D in a
higher dimension. Thus, projecting the arc-flow variables cy from this formulation would yield
conv(Sol(D)) in the original space of variables. This result leads to a separation oracle that can be
used to separate any point ¢z € R™ from conv(Sol(D)) through solving the following LP.

Proposition 7. Consider a DD D = (U, A,l(.)) with solution set Sol(D) C R™ that is obtained

from Algorithmassociated with the constraint F = {cz € [[;—,[1%,u'] | n(cz) < B}. Consider a
point cx € R", and define

w* = max Z Ty — O 3)
ke[n]
Os(a) = On(a) +1(a) vk <0, Yk € [n],a € Ay 4)
s =0, &)

where t(a) and h(a) represent the tail and the head node of arc a, respectively. Then, ¢x €
conv(Sol(D)) if w* = 0. Otherwise, cx can be separated from conv(Sol(D)) via 3y TuVy <
07 where (c0*; cy*) is an optimal recession ray of equation equation@

The above separation oracle requires solving a LP whose size is proportional to the number of nodes
and arcs of the DD, which could be computationally demanding when used repeatedly inside an
outer approximation framework. As a result, an alternative subgradient-type method is proposed to
solve the same separation problem, but with a focus on detecting a violated cut faster.

To summarize the recursive step of the separation method in Algorithm the vector ¢y(7) € R™ is
used in line 3 to assign weights to the arcs of the DD, in which a longest r-¢ path is obtained. The

solution ez corresponding to this longest path is then subtracted from the separation point cz,
which provides the subgradient value for the objective function of the separation problem at point
¢v(7). Then, the subgradient direction is updated in line 7 for a step size p,, which is then projected
onto the unit sphere on variables ¢y in line 8. It is shown that for an appropriate step size, this
algorithm converges to an optimal solution of the separation problem equation [3}-equation [5} which
yields the desired cutting plane in line 11. Since this algorithm is derivative-free, as it calculates the
subgradient values through solving a longest path problem over a weighted DD, it is very efficient
in finding a violated cutting plane in comparison to the LP equation [3l-equation [5] which makes
it suitable for implementation inside spatial branch-and-cut frameworks such as that proposed in
Section[3l

The cutting planes obtained from the separation oracles in Proposition [7] and Algorithm 2] can be
employed inside an outer approximation framework as follows. We solve a convex relaxation of

13
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Algorithm 2: A subgradient-based separation algorithm

Data: ADD D = (U, A, [(.)) representing F = {cz € []}_,[1%,u’] | n(cxz) < 8} and a point
cxT

Result: A valid inequality to separate ¢z from conv(Sol(D))

initialize 7 = 0, ¢y(®) € R?, 7* = 0, A* =0

while the stopping criterion is not met do

assing weights w, = l(a)fyl(g) to each arc a € Ay, of D for all k € [n]

find a longest -t path P(") in the weighted DD and compute its encoding point ¢z’ @
if ¢y (cx — c:vpm) > max{0, A*} then

update 7* = 7 and A* = ¢y (cz — exP”)
update o™t = ey(7) + p_ (cx — cacpm) for step size p,

find the projection cy("*1) of c¢("*1) onto the unit sphere defined by ||cy||s < 1
sett=7+1

if A* > 0 then
L return inequality ¢y ) (cx — caP” )) <0

the problem whose optimal solution is denoted by cx*. Then, this solution is evaluated at F. If
n(cx*) < B, then the algorithm terminates due to finding a feasible (or optimal) solution of the
problem. Otherwise, the above separation oracles are invoked to generate a cutting plane that sep-
arates cz™* from conv(Sol(D)). The resulting cutting plane is added to the problem relaxation, and
the procedure is repeated until no new cuts are added or a stopping criterion, such as iteration num-
ber or gap tolerance, is triggered. If at termination, an optimal solution is not returned, a spatial
branch-and-bound scheme is employed as discussed in Section [5}

A.2 SUPPLEMENTAL COMPUTATIONAL RESULTS

In this section, we give a detailed discussion about algorithmic settings and numerical results pre-
sented in Section [§] These results are obtained on a Windows 11 (64-bit) operating system, 64
GB RAM, 3.8 GHz AMD Ryzen CPU. The DD-ECP Algorithm is written in Julia v1.9 via JuMP
v1.11.1, and the outer approximation models are solved with CPLEX v22.1.0.

For the DD construction, we use Algorithm [T] together with the DD relaxation technique described
in Remark[T]with width limit W set to 10000. The merging operation merges nodes with close state
values that lie in the same interval of the state range. We set the number of sub-intervals |L;| up
to 2500 for each DD layer 7. To generate cutting planes for the outer approximation approach, we
use the subgradent method of Algorithm [2] with the stopping criterion equal to 50 iterations. The
maximum number of iterations for applying the subgradient method before invoking the branching
procedure to create new children nodes is 100. The branching process selects the variable whose
optimal value in the outer approximation model of the current node is closest to the middle point of
its domain interval, and then the branching occurs at that value. Throughout the process, a primal
bound is updated by constructing a feasible solution of the problem through plugging the current
optimal solution of the outer approximation at each node into the objective function of equation [T}
This primal bound is used to prune nodes with worse dual bounds than the current primal bound. The
stopping criterion for our algorithm is reaching a relative optimality gap of 5% which is calculated
as (primal bound — dual bound) / dual bound.

The numerical results obtained for instances we studied are presented in Tables[T]and[2] The first and
second columns of these tables include the name of the dataset and the resource (UCI or Kaggle),
respectively. The third and fourth columns represent the size of the instance. The next column
contains the best primal bound obtained for each instance. The best dual bound obtained by our
solution framework is reported in the sixth column, and the solution time (in seconds) to obtain that
bound is shown in the last column.

14
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Table 1: Computational results for penalty function parameters (X, ) = (1, 3)

Datasets
Name Resource p n Primal bound Dual bound Time (s)
Graduate Admission 2 kaggle 7 400  20.304 20.295 22.46
Statlog (Landsat Satellite) ucI 36 4434 5854.507 5853.978 49.29
Connectionist Bench (Sonar, Mines vs. Rocks) UCI 60 207 71.853 68.266 195.17
Communities and Crime ucCI 127 123 9.891 9.466 76.44
Urban Land Cover ucl 147 168 1.002 0.999 5.10
Relative location of CT slices on axial axis ucCl 384 4000 10730.592 10426.985 281.718

Table 2: Computational results for penalty function parameters (A, ~y) = (10, 30)

Datasets
Name Resource p n Primal bound Dual bound Time (s)
Graduate Admission 2 kaggle 7 400  22.234 22.125 8.97
Statlog (Landsat Satellite) ucl 36 4434 5859.670 5855.088 60.42
Connectionist Bench (Sonar, Mines vs. Rocks) UCI 60 207 110.730 105.351 18.207
Communities and Crime ucl 127 123 18.456 17.560 133.35
Urban Land Cover ucCI 147 168 10.002 9.990 8.87
Relative location of CT slices on axial axis ucCl 384 4000 16280.696 16032.315 276.858
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