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ABSTRACT

Learning informative representations of phylogenetic tree structures is essential for
analyzing evolutionary relationships. Classical distance-based methods have been
widely used to project phylogenetic trees into Euclidean space, but they are often
sensitive to the choice of distance metric and may lack sufficient resolution. In this
paper, we introduce phylogenetic variational autoencoders (PhyloVAEs), an unsu-
pervised learning framework designed for representation learning and generative
modeling of tree topologies. Leveraging an efficient encoding mechanism inspired
by autoregressive tree topology generation, we develop a deep latent-variable
generative model that facilitates fast, parallelized topology generation. Phylo-
VAE combines this generative model with a collaborative inference model based
on learnable topological features, allowing for high-resolution representations of
phylogenetic tree samples. Extensive experiments demonstrate PhyloVAE’s ro-
bust representation learning capabilities and fast generation of phylogenetic tree
topologies.

1 INTRODUCTION

Phylogenetic trees are the foundational structure for describing the evolutionary processes among
individuals or groups of biological entities. Reconstructing these trees based on collected biological
sequences (e.g., DNA, RNA, protein) from observed species, also known as phylogenetic inference
(Felsenstein, 2004), is an essential discipline of computational biology (Fitch, 1971; Felsenstein,
1981; Yang & Rannala, 1997; Ronquist et al., 2012).

Large collections of trees obtained from these approaches (e.g., posterior samples from MCMC runs
(Ronquist et al., 2012)), however, are often difficult to summarize or visualize due to the discrete
and non-Euclidean nature of the tree topology space1. Yet, the importance of being able to do so in
practice has spurred substantial research in this direction. The classical approach to visualize and
analyze distributions of phylogenetic trees is to calculate pairwise distances between the trees and
project them into a plane using multidimensional scaling (MDS) (Amenta & Klingner, 2002; Hillis
et al., 2005; Jombart et al., 2017). However, these approaches have the shortcoming that one can not
map an arbitrary point in the visualization to a tree, and therefore do not form an actual visualization
of the relevant tree space. Furthermore, their effectiveness heavily depends on the choice of distance
metric and can sometimes exhibit counterintuitive behaviors (Kuhner & Yamato, 2015), and the
visualizations can suffer from poor resolution, where distinct sets of trees overlap within the same
regions (Hillis et al., 2005; Whidden & Matsen IV, 2015) (see Figure 4 in Section 5.2 for an example).
Recently, several vector representation methods have been developed for tree topologies (Liu, 2021;
Penn et al., 2023). However, these representations only provide raw features whose dimension
scales to the tree topology size and hence may fail to deliver concise and useful information of
tree topologies. In general, finding good representations of tree topologies that preserve essential
information for downstream tasks (e.g., comparison, visualization, clustering) remains challenging.

On the other end of the spectrum lie much more recent methods to perform density estimation on sets
of phylogenetic trees (Larget, 2013; Zhang & Matsen IV, 2018; Xie & Zhang, 2023). These methods
are very high resolution, as can be seen by the excellent fit that they offer to empirical distributions

1In phylogenetic terminology, a tree topology is just the discrete graph-theoretic component of the tree
without additional information such as edge lengths.
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of phylogenetic trees. However, these methods do not lend themselves to representation learning
and visualization, and it is difficult to understand what they are telling us about the structure of the
phylogenetic tree shape distribution.

In this paper, we introduce phylogenetic variational autoencoders (PhyloVAEs), which is an unsuper-
vised learning framework that for the first time allows both representation learning and generative
modeling of phylogenetic tree topologies in a satisfying and useful way. Inspired by the tree topology
generating process outlined in ARTree (Xie & Zhang, 2023), we first encode a tree topology into an
integer vector representing the corresponding edge decisions, through a linear-time algorithm. Based
on this encoding mechanism, we develop a deep latent-variable generative model for tree topologies,
together with an inference model for the posterior distribution of the latent variable given the tree
topology using learnable topological features (Zhang, 2023). In this way, PhyloVAE provides a latent
space representation that can be easily visualized like the previous MDS method, but at the same time
it is a probabilistic model that gives a high-resolution representation of the tree topology distribution.
We summarize our main contributions as follows:

• We propose the first representation learning framework for phylogenetic tree topologies with deep
models, which has more capacity to distinguish different shapes of tree topologies compared to
traditional distance-based methods (see Section 5.2 for an example). Moreover, the generative
nature of PhyloVAE also allows us to map an arbitrary point in the latent space to a tree topology
(Figure 3), which is impossible for current methods.

• In addition to providing a high-resolution representation of the tree topologies, PhyloVAE, as a
non-autoregressive model, enjoys much faster training/generation than a previous autoregressive
model ARTree (Xie & Zhang, 2023), while maintaining the approximation performance.

• Extensive and practical experiments demonstrate the robust representation ability and generative
modeling efficiency of PhyloVAE for phylogenetic tree topologies.

2 BACKGROUND

A B

F

E

D

C

internal node

leaf node

edge

Figure 1: An example of a tree topology
with six leaf nodes. The labels of leaf
nodes are {A,B,C,D,E,F}.

Phylogenetic trees The common structure for describ-
ing evolutionary history is a phylogenetic tree, which con-
sists of a tree topology τ and the associated non-negative
edge lengths on τ . The tree topology τ is a bifurcating
tree graph (V,E), where V and E represent the sets of
nodes and edges, respectively. Tree topologies can be
either rooted or unrooted. While our focus in this paper
is on unrooted tree topologies, our proposed method can
easily accommodate rooted ones as well. We will refer to
unrooted tree topologies as “tree topologies” unless spec-
ified otherwise. In a tree topology τ , the edges in E are
undirected, and the nodes in V can have a degree of either
3 or 1. Degree 3 nodes are internal nodes representing unobserved ancestor species, while degree 1
nodes are leaf nodes representing observed species labelled with corresponding species names. An
edge connecting a leaf node to an internal node is called a pendant edge. The goal of phylogenetic
inference is to reconstruct the underlying phylogenetic trees from the sequence data (e.g., DNA,
RNA, protein) of observed species (Felsenstein, 2004), following various criteria such as maximum
likelihood (Felsenstein, 1981), maximum parsimony (Fitch, 1971), and Bayesian approaches (Yang &
Rannala, 1997; Mau et al., 1999; Larget & Simon, 1999; Ronquist et al., 2012). With N leaf nodes,
the number of possible tree topologies explodes combinatorially ((2N − 5)!!), posing significant
challenges to phylogenetic inference and related representation learning tasks. Further details on
phylogenetic models can be found in Appendix A.

ARTree for tree topology modeling In ARTree (Xie & Zhang, 2023), an autoregressive prob-
abilistic model for tree topologies, a tree topology is decomposed into a sequence of leaf node
addition actions, and the associated conditional probabilities are modeled using learnable topolog-
ical features via graph neural networks (GNNs) (Zhang, 2023). The corresponding tree topology
generating process can be described as follows. Let X = {x1, . . . , xN} denote the set of leaf nodes
with a pre-defined order. The generating process starts from the simplest and unique tree topology
τ3 = (V3, E3) that contains the first three leaf nodes x1, x2, x3, and keeps adding new leaf node as

2
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follows. Assume an intermediate tree topology τn = (Vn, En) with the first n < N leaf nodes in X ,
termed an ordinal tree topology of rank n as defined in Xie & Zhang (2023). Then, an edge en ∈ En

is selected according to a conditional distribution Q(en|e<n) computed by GNNs (e<n is the set of
previously selected edges), and τn is then extended to τn+1 by attaching the next leaf node xn+1 to
en. This process is repeated until all leaf nodes in X are attached. This way, a tree topology τ = τN
is uniquely transformed into an edge decision sequence D = (e3, . . . , eN−1), and the corresponding
ARTree-based probability is Q(τ) = Q(D) =

∏N−1
n=3 Q(en|e<n) where e<3 = ∅. While effective,

the repetitive computation of topological node embeddings and multi-round message passing steps in
GNNs also add to the computational cost of ARTree. More details are deferred to Appendix B.

Variational autoencoder The variational autoencoder (VAE) (Kingma & Welling, 2014) assumes a
generative model pθ(y, z) = pθ(y|z)p(z), where z ∈ Rd is a latent variable with a prior distribution
p(z), and an inference model qϕ(z|y) as an approximation for the intractable posterior pθ(z|y).
Given an observed data set {y1, . . . ,yM}, the generative model and inference model can be jointly
learned by maximizing the following evidence lower bound (ELBO)

L(y;θ,ϕ) = Eqϕ(z|y) log

(
pθ(y, z)

qϕ(z|y)

)
= log pθ(y)−DKL (qϕ(z|y)∥pθ(z|y)) ≤ log pθ(y) (1)

for all data points {yi : i = 1 . . . ,M}. Here, pθ(y) =
∫
Rd pθ(y, z)dz is the marginal likelihood

of y and DKL is the Kullback-Leibler (KL) divergence. To remedy the approximation of the latent
variable posterior and achieve a more flexible generative model, the importance weighted autoencoder
(IWAE) (Burda et al., 2016) instead uses the multi-sample lower bound

LK(y;θ,ϕ) = Eqϕ(z1|y)···qϕ(zK |y) log

(
1

K

K∑
i=1

pθ(y, z
i)

qϕ(zi|y)

)
≤ log pθ(y). (2)

The equalities in equation (1) and (2) hold if and only if qϕ(z|y) = pθ(z|y). While VAEs have been
effectively used in graph representation learning (Kipf & Welling, 2016; Simonovsky & Komodakis,
2018; Winter et al., 2021; Zahirnia et al., 2022), they typically require transforming graphs into
numerical encodings, such as adjacency matrices, and then working in the encoding space. However,
the specific bifurcating structure of phylogenetic tree topologies imposes unique constraints on these
adjacency matrices, posing challenges for applying these methods directly.

3 PROPOSED METHOD

In this section, we introduce phylogenetic variational autoencoders (PhyloVAEs), an unsupervised
learning framework designed specifically for phylogenetic tree topologies. We begin with a concise
overview of the problem setting and the fundamental components of PhyloVAE in Section 3.1. We
then develop an encoding mechanism that bijectively maps tree topologies to encoding vectors in
Section 3.2. Finally, Section 3.3 elucidates how to utilize this encoding mechanism and learnable
topological features to establish the generative and inference models within the PhyloVAE framework.
We emphasize that the input to our algorithms is a collection of phylogenetic tree topologies 2.
Our goal is to build a probabilistic model and to learn useful representations of this collection, not to
infer those trees directly from sequence data, which is a separate and intensively studied problem.

3.1 PHYLOVAE: AN OVERVIEW

Let T = {(τ i, wi)}Mi=1 be a collection of tree topologies3, where wi is the weight for the tree topology
τ i and

∑M
i=1 w

i = 1. All tree topologies in T have the same leaf nodes X = {x1, x2, . . . , xN}
with a pre-selected order. For example, T can be a sample of tree topologies produced by some
phylogenetic inference software, such as from a posterior sample (Ronquist et al., 2012; Suchard
et al., 2018) or the bootstrap (Felsenstein, 1985; Minh et al., 2013), where the weight can equal
to the frequency of a tree topology among these samples. Given the observed data set T , the data

2These collections often come from phylogenetic analysis softwares such as MrBayes (Ronquist et al., 2012)
and BEAST (Drummond & Rambaut, 2007), but they can also come from observations, open-source data sets,
and other biological softwares, as long as they are of scientific interest.

3The weights are formed by merging replicate tree topologies in the data set for a compact form of T .
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Figure 2: The decomposition loop and reconstruction loop for encoding the tree topology with leaf
nodes X = {A,B,C,D,E,F} in Figure 1. Starting from the tree topology in the upper left, we remove
the pendant edges f6, f5, f4 (associated with the leaf nodes F, E, and D) sequentially, and record edge
decision e5, e4, e3. Then starting from the three-leaf tree topology in the lower right, we add back
f4, f5, f6 and index these nodes (except for the root) sequentially. The resulting encoding vector is
(3, 7, 5), which are the indexes associated with e3, e4, e5.

distribution is defined as pdata(τ) =
∑M

i=1 w
iδτ i(τ) where δ is a Kronecker delta function that

satisfies δτ i(τ) = 1 if τ = τ i and δτ i(τ) = 0 elsewhere.

Similar to standard VAEs, PhyloVAE consists of a generative model and an inference model. Let
z ∈ Rd be a latent variable with a prior distribution p(z) and pθ(τ |z) be a probabilistic model that
defines the probability of generating τ conditioned on the latent variable z. The marginal probability
of τ is given by pθ(τ) =

∫
Rd pθ(τ |z)p(z)dz. The prior distribution p(z) is required to be analytic

and easy to sample from. In this paper, we will use a standard Gaussian prior distribution, i.e.,
p(z) = N (z;0d, Id). With an inference model qϕ(z|τ) that approximates the posterior pθ(z|τ), the
multi-sample lower bound on τ takes the form

LK(τ ;θ,ϕ) = Eqϕ(z1|τ)···qϕ(zK |τ) log

(
1

K

K∑
i=1

pθ(τ,z
i)

qϕ(zi|τ)

)
≤ log pθ(τ), (3)

which reduces to the standard ELBO for log pθ(τ) when K = 1. The overall multi-sample lower
bound on T is defined as LK(T ;θ,ϕ) = Epdata(τ)LK(τ ;θ,ϕ), which serves as the objective function
for training PhyloVAE. Unlike standard VAEs, the discrete nature of τ makes it challenging to
construct the generative model and inference model. In what follows, we describe how this is done
using an encoding mechanism and learnable topological features respectively.

3.2 AN ENCODING MECHANISM FOR TREE TOPOLOGIES

Recall that in the generating process of ARTree, there exists a map between a tree topology τ and the
edge decision sequence D = (e3, . . . , en−1) (see Section 2 and Appendix B for more details). We
can further encode this sequence into an integer-valued vector via the following procedure.

Decomposition loop In this loop, we repetitively remove the leaf nodes from τN = τ , an ordinal
tree topology of rank N , starting from the last added node xN to the first added node x4. Suppose
now we have τn = (Vn, En) in hand, a pendant edge fn = (tn, xn) is firstly removed, where tn is
the internal node connected to xn, resulting in an ordinal tree topology of rank n− 1, τn−1. Let the
two neighbors of tn in τn be un−1 and vn−1 (in addition to xn). The edge en−1 = (un−1, vn−1),
therefore, is the corresponding edge decision for xn on τn−1 which we save for the reconstruction
loop. This procedure continues until a tree topology τ3 with the first three leaf nodes is reached. See
the top row in Figure 2 for an illustration.

Reconstruction loop In this loop, we start from τ3 and reconstruct τN by adding back the leaf
nodes from x4 to xN . At the beginning, we index the leaf nodes on τ3 by setting Index(x1) =
1, Index(x2) = 2, Index(x3) = 3, and denote the unique internal node in τ3 as r. Suppose now
we have an ordinal tree topology τn = (Vn, En) of rank n. We first locate the edge decision

4
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Algorithm 1: A linear-time algorithm for tree topology encoding
Input: A tree topology τ with N leaf nodes.
Output: An encoding vector s(τ) = (s3, . . . , sN−1) ∈ NN−3 corresponding to τ .
τN ← τ ;
for n = N, . . . , 4 do

Remove the pendant edge fn = (tn, xn) from τn and obtain τn−1;
Record the edge decision en−1 = (un−1, vn−1) on τn−1;

end
Index(x1)← 1; Index(x2)← 2; Index(x3)← 3; r ← the unique internal node of τ3;
for n = 3, . . . , N − 1 do

Attach the pendant edge fn+1 to en (assume en = (un, vn) is directed away from r) and
obtain τn+1;
Index(tn+1)← N + n− 2; Index(xn+1)← n+ 1;
sn ← Index(vn);

end

en = (un, vn) on τn (without loss of generality, en is assumed to be directed away from r so that it
can be identified via vn on τn) and then attach the pendant edge fn+1 = (tn+1, xn+1) to en. Finally,
we set Index(tn+1) = N + n − 2 and Index(xn+1) = n + 1. In this way, the next tree topology
τn+1 = (Vn+1, En+1) is constructed and all the nodes except r in Vn+1 are indexed. This process
ends upon the full reconstruction of τN . See the bottom row in Figure 2 for an illustration.

After the above two loops, the encoding vector s(τ) for a tree topology τ takes the form

s(τ) = [s3, s4, · · · , sn−1]
′
= [Index(v3), Index(v4), · · · , Index(vn−1)]

′ ∈ Nn−3. (4)

This encoding mechanism is summarized in Algorithm 1. Theorem 1 (proof in Appendix C.1) shows
that this mechanism has linear time complexity, which is crucial to the efficient training of PhyloVAE.
Theorem 1. Given a tree topology τ with N leaf nodes, the time complexity of computing its encoding
vector s(τ) is O(N).

Conversely, when given an encoding vector s, one can simply follow the reconstruction loop to obtain
the corresponding tree topology τ in linear time (deduced from Theorem 1). This enables the fast
generation of samples from PhyloVAE (details are deferred to Appendix C.2). We note that a similar
encoding strategy has been proposed in Phylo2Vec (Penn et al., 2023). However, their approach has
quadratic time complexity for vector encoding of tree topologies with unlabelled internal nodes. Our
method achieves faster processing by employing a smart indexing strategy, eliminating the need for
repetitive relabelling of edges during the reconstruction loop.

3.3 GENERATIVE MODEL AND INFERENCE MODEL IN PHYLOVAE

Generative model The encoding mechanism in Section 3.2 allows us to define pθ(τ |z) through
pθ(s(τ)|z), where s(τ) = (s3, . . . , sN−1) is the encoding vector for τ . Similar to the diagonal
Gaussian distribution used in standard VAEs, we assume the elements in s(τ) are conditionally
independent given z, i.e.,

pθ(τ |z) = pθ(s(τ)|z) =
N−1∏
n=3

pθ(sn|z). (5)

The factorized form of equation (5) enables parallel computation of the probabilities pθ(sn|z). Our
experiments show that this non-autoregressive structure substantially reduces the computational cost
compared to autoregressive models such as ARTree.

Let Sn := {i ∈ N : 1 ≤ i ≤ n or N + 1 ≤ i ≤ N + n− 3} be the set of allowable indices for the
edges {Index(vn) : en = (un, vn) ∈ En}. For all 3 ≤ n < N , pθ(sn|z) takes the form

pθ(sn|z) = Discrete [softmax(mn ⊙ ϕn(z))] , (6a)

Φ(z) = [ϕ3(z), . . . ,ϕN−1(z)]
′ = MLPenc(z) ∈ R(N−3)×(2N−3), (6b)

5
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where MLPenc is a multi-layer perceptron, ⊙ is elementwise multiplication, and mn is defined as

(mn ⊙α)i =

{
αi, i ∈ Sn,
−∞, elsewhere. (7)

This mask vector is introduced to ensure that the generated encoding vector s is always valid for
representing a tree topology.

Inference model The inference model qϕ(z|τ) is built on top of learnable topological features
as follows. Firstly, we compute the topological node embeddings {f0

u : u ∈ V } for τ = (V,E)
by minimizing the following Dirichlet energy E(τ) =

∑
(u,v)∈E ∥f0

u − f0
v ∥2 using the efficient

two-pass algorithm described in Zhang (2023). These topological node embeddings are then fed into
a gated message-passing block (Li et al., 2015) implemented as

f l+1
u = GRU

f l
u,

∑
v∈N (u)

W l
msgf

l
v

 , u ∈ V, (8)

where N (u) is the neighborhood of u, W l
msg is a learnable message matrix that aggregate the

information from N(u), and GRU is a gated recurrent unit (Cho et al., 2014). After L rounds
of message passing, the graph embedding vector fτ is computed by a sum-pooling layer, i.e.,
fτ =

∑
u∈V fL

u . Finally, we use a diagonal normal distribution for the conditional distribution of
the latent variable z whose mean and standard deviation are defined based on fτ as follows

qϕ(z|τ) = N
(
z;µτ ,diag(σ

2
τ )
)
, µτ = MLPµ(fτ ), logστ = MLPσ(fτ ), (9)

where MLPµ and MLPσ are two multi-layer perceptrons, and ϕ are the learnable parameters. The
mean of the inference model, µτ ∈ Rd, is a deterministic low-dimensional representation of τ , and
we will show its representation power in our experiments. This representation also induces a pairwise
distance between tree topologies. For two tree topologies τ1, τ2, we define the Lp distance between
them as DLp(τ1, τ2) = ∥µτ1 − µτ2∥p, where ∥ · ∥p is the p-norm in the Euclidean space. Note that
the generative model also allows us to map an arbitrary point in the latent space to a tree topology,
which is impossible for previous representation methods.

Optimization Thanks to the Gaussian inference model, the gradient ∇θ,ϕLK(τ ;θ,ϕ) can be
derived using the reparameterization trick (Kingma & Welling, 2014) as follows

∇θ,ϕLK(τ ;θ,ϕ) = Eε1,...,εK∼N (·;0,I)∇θ,ϕ log

(
1

K

K∑
i=1

pθ(τ,µτ + στ ⊙ εi)

qϕ(µτ + στ ⊙ εi|τ)

)
. (10)

During training, parameters of the generative model and inference model are updated along the gradi-
ent direction∇θ,ϕLK(T ;θ,ϕ) = Epdata(τ)∇θ,ϕLK(τ ;θ,ϕ), using Monte Carlo gradient estimators.

4 RELATED WORKS

For harnessing the latent-variable structure to accelerate autoregressive models, Gu et al. (2018)
proposed non-autoregressive machine translation by defining a factorizable distribution for the output
sequence conditioned on the input sequence and latent fertility variable. Kaiser et al. (2018) extended
this to discrete latent variables that summarize the input information. This approach was also
integrated with normalizing flows by Ma et al. (2019).

Previous VAE frameworks for graph representation learning often encode a graph to its adjacency
matrix and then define the generative models for matrices (Kipf & Welling, 2016; Simonovsky &
Komodakis, 2018; Winter et al., 2021; Zahirnia et al., 2022). However, the bifurcating structure and
the unlabelled internal nodes of tree topologies put special constraints on adjacency matrices, which
may hinder the application of previous works to representation learning of phylogenetic trees.

The most popular means of learning an embedding of a collection of phylogenetic trees is to calculate
pairwise distances in some way and project to a Euclidean space using multidimensional scaling
(Amenta & Klingner, 2002; Hillis et al., 2005; Jombart et al., 2017). More recently, Penn et al. (2023)

6
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Figure 3: Performance of PhyloVAE for structural representation on simulated data sets. Left: A
visualization of the 2D latent manifold for the data set of five-leaf tree topologies. Φ(·) refers to the
cumulative density function of the one-dimensional standard Gaussian distribution. Different colors
represent the first edge decision and different transparencies of each color represent the second edge
decision. Middle: Representation vectors of all the eight-leaf tree topologies. The scatter size is
proportional to the probability of the corresponding tree topology. Right: Pairwise scatter plot, linear
regression, and Pearson correlation coefficients between different distance metrics of tree topologies.
L2 = Euclidean distance in PhyloVAE latent space, RF = Robinson-Foulds, PD = Path difference.

proposed an encoding strategy that relies on tree topology branching patterns, with representation
dimensions scaling according to tree size.

Some previous works integrated trees with VAEs (Shin et al., 2017; Vikram et al., 2018; Manduchi
et al., 2023). However, they all consider a tree-shaped prior distribution or hierarchical latent variable
structure for enhanced interpretability and generative quality. These papers do not consider modeling
any graph or tree objects and thus are clearly distinct from our PhyloVAE.

5 EXPERIMENTS

In this section, we evaluate the performance of PhyloVAE for structural representation on simulated
data sets (Section 5.1) and real phylogenies (Section 5.2), and generative modeling on benchmark
data sets (Section 5.3). We set the latent dimension d = 2 for better visualization of the latent
representations in Section 5.1 and 5.2. For all experiments, the number of particles is set to K = 32
and the inference model employs L = 2 rounds of message passing. Leaf nodes are ordered
lexicographically based on the corresponding species names. We designed our experiments with the
goals of (i) verifying the effectiveness of PhyloVAE for representation learning of tree topologies
and (ii) examining the generative modeling performance of PhyloVAE, with an emphasis on the
generation speed. Results are gathered after 200,000 iterations with a batch size of 10. Further details
can be found in Appendix D.

5.1 REPRESENTATION LEARNING ON SIMULATED DATA SETS

Five-leaf tree topologies In this experiment, the training set consists of all the 15 tree topologies
with five leaves and a randomly generated weight vector w ∼ Dirichlet(β1) ∈ R15 for these tree
topologies with β = 0.75. Figure 3 (left) depicts the tree topologies as partition representation (see
Figure 7 in Appendix D.1 for an illustration), generated by a trained PhyloVAE conditioned on the
Gaussian quantiles. To ease presentation, we choose the argmax index of the multinomial probability
in equation (6a) instead of randomly sampling. We see that the generated tree topology exhibits nice
continuity as the latent variable varies.

Eight-leaf tree topologies We begin by constructing the training set, which consists of a mixture
of three peaked distributions comprising all 10,395 tree topologies with eight leaves. Each peaked
distribution is derived as follows: we select a ground truth tree topology and simulate DNA sequences
of length 500 for the eight leaf nodes using the Jukes-Cantor (JC) substitution model (Jukes et al.,
1969) with the edge lengths fixed at 1. We then compute the posterior distribution of tree topologies
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Figure 4: Performances of PhyloVAE and MDS plot for representing real phylogenies. Left/Middle:
Latent representations of the posterior mammal gene trees for five genes with different lengths. The
scatter size is proportional to the probability of the tree topology. Right: Latent representations of
samples of tree topologies from five independent BEAST runs on the rabies data set.

given the simulated DNA sequences with a uniform prior over tree topologies and the edge lengths
fixed at 1. This posterior distribution is used as the peaked distribution as it concentrates around the
selected ground truth tree topology. The same procedure is repeated three times (see Figure 8(a), 8(b)
and 8(c) for the selected ground truth tree topologies), leading to three peaked distributions which are
then evenly mixed to form the training data set.

The latent representations of eight-leaf tree topologies are visualized in Figure 3 (middle), where tree
topologies on different peaks are clearly separated, demonstrating the effectiveness of PhyloVAE for
representation learning. Following Kendall & Colijn (2016), we compare L2 distance to Robinson-
Foulds (RF) distance (Robinson & Foulds, 1981) and path difference (PD) distance (Steel & Penny,
1993) in Figure 3 (right), where L2 distance shows a positive correlation with RF/PD distance.

5.2 REPRESENTATION LEARNING ON REAL PHYLOGENIES

Gene trees and sequence lengths In this experiment, PhyloVAE is employed to analyze phy-
logenetic inference results obtained with different genes (different genes evolve under different
evolutionary models) and sequence lengths. Following Hillis et al. (2005), we select five genes and
the ground truth phylogenetic tree (Figure 9; 44 leaves) from the early placental mammal evolution
analysis in Murphy et al. (2001). For each gene, we simulate the DNA sequences with a fixed
length along the ground truth tree using the corresponding evolutionary model, run a MrBayes chain
(Ronquist et al., 2012) for one million iterations, and sample per 100 iterations in the last 100,000
iterations, to gather the posterior samples, as done in Hillis et al. (2005). These one million iterations
are enough for the MrBayes run to converge. These 5,000 tree topologies with uniform weights
constitute the training set of PhyloVAE.

The upper left and upper middle plots of Figure 4 depict the learned latent representations of the
posterior tree topologies for different genes obtained by PhyloVAE. We see that different groups are
clearly separated. With a sequence length of 1000, the inferred posteriors from ADORA3 and APP
are close to the ground truth tree topology, while those from IRBP, mtRNA, and ZFX show deviations.
When the sequence length is increased to 2000, the inferred posterior from ADORA3 becomes more
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concentrated around the ground truth tree topology, while the inferred posteriors from the other genes
remain diffuse. Figure 10 in Appendix E.1 shows that all five genes discover the ground truth tree
topology with a sequence length of 5000. For baseline visualization methods, the lower left and lower
middle plots of Figure 4 show the multidimensional scaling (MDS) plots (Hamer & Young, 2013) of
mammal gene trees, where we find that different groups tend to concentrate towards the origins and
overlap with each other, while our PhyloVAE provides more clear representations of different groups.

Multiple phylogenetic analyses comparison In this experiment, we use PhyloVAE to compare
multiple phylogenetic analyses and assess convergence. The sequence alignment under consideration
comprises 290 rabies genomes (Viana et al., 2023). We conduct 5 independent BEAST (Suchard
et al., 2018) analyses for 400 million iterations, and sample every 100,000 iterations in the last 200
million iterations. Afterward, the rooted posterior tree topologies sampled by BEAST are unrooted.
The resulting 10,000 tree topologies with uniform weights form the training set of PhyloVAE.

In Figure 4 (right), tree topologies from five independent BEAST runs form five non-overlapping
groups, with 2-3 sub-groups within each group, indicating the divergence of these BEAST runs. No-
tably, the maximum clade credibility (MCC) tree from each run resides within the correct high-density
region in the latent space. An example showcasing the convergence of independent phylogenetic
analyses is provided in Appendix E.2.

5.3 GENERATIVE MODELING ON BENCHMARK DATA SETS

Finally, we assess the generative modeling performance of PhyloVAE on eight benchmark sequence
sets, DS1-8, which contain biological sequences from 27 to 64 eukaryote species and are commonly
considered for benchmarking tree topology density estimation and Bayesian phylogenetic inference
tasks in previous works (Zhang & Matsen IV, 2018; 2019; 2024; Koptagel et al., 2022; Mimori
& Hamada, 2023; Zhou et al., 2023; Xie & Zhang, 2023; Molén et al., 2024; Hotti et al., 2024).
These eight data sets cover comprehensive posterior patterns (Whidden & Matsen IV, 2015) and
are considered good representative cases. The training sets and ground truths for PhyloVAE are
obtained the same way as in Zhang & Matsen IV (2018) (see more details in Appendix D.5). We
consider SBN-EM, SBN-EM-α, and ARTree as baselines, and use the same experimental settings in
the original papers (Zhang & Matsen IV, 2018; Xie & Zhang, 2023). For a fair comparison, we uses
the same batch size and number of iterations for PhyloVAE as in ARTree.

DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8
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Figure 5: Runtime comparison be-
tween ARTree and PhyloVAE (d =
10) with K = 32 particles. Training
means 10 training iterations. Genera-
tion means generating 100 tree topolo-
gies.

Table 1 reports the approximation accuracies measured by
KL divergence obtained by different methods. We see that
PhyloVAE with a latent dimension of 10 achieves compa-
rable (if not better) results to ARTree. Although PhyloVAE
with a latent dimension of 2 may have reduced capacity, we
find it works fairly well in DS1-8, validating the reliability of
the two-dimensional representations in Sections 5.1 and 5.2.
Figure 5 shows the runtime comparison between ARTree
and PhyloVAE (d = 10) with K = 32 particles. We see that
both the training time and generation time of PhyloVAE are
significantly reduced compared to ARTree, even though mul-
tiple particles are used in the multi-sample lower bound (3).
This is due to the non-autoregressive nature of PhyloVAEs,
as inherited from VAEs. Note that PhyloVAE achieves these
while providing useful high-resolution representations of
phylogenetic tree topologies (see Figure 14 in Appendix
E.3), which is impossible for the other baseline methods that
are merely designed for tree density estimation.

6 CONCLUSION

This paper proposes PhyloVAE, an unsupervised learning framework designed for representation
learning and generative modeling of phylogenetic tree topologies. By incorporating an efficient
encoding mechanism of tree topologies and leveraging a latent-variable architecture, PhyloVAE
facilitates fast training and generation using non-autoregressive generative models. The learned

9
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Table 1: KL divergences to the ground truth of different methods across eight benchmark data sets.
“PhyloVAE (d)” means PhyloVAE with latent dimension d. The “# Training set” and “# Ground truth”
columns show the number of unique tree topologies in the training sets and ground truth respectively.
The results are averaged over 10 replicate training sets. The tree topology probability of PhyloVAE is
estimated using importance sampling with 1000 particles. The results of SBN-EM, SBN-EM-α are
from Zhang & Matsen IV (2018), and the results of ARTree are from Xie & Zhang (2023). For each
data set, the best result is marked in black bold font and the second best result is marked in brown
bold font.

Sequence set # Leaves # Training set # Ground truth KL divergence to ground truth

SBN-EM SBN-EM-α ARTree PhyloVAE (2) PhyloVAE (10)

DS1 27 1228 2784 0.0136 0.0130 0.0045 0.0273 0.0189
DS2 29 7 42 0.0199 0.0128 0.0097 0.0100 0.0098
DS3 36 43 351 0.1243 0.0882 0.0548 0.0529 0.0477
DS4 41 828 11505 0.0763 0.0637 0.0299 0.0619 0.0469
DS5 50 33752 1516877 0.8599 0.8218 0.6266 0.7985 0.5744
DS6 50 35407 809765 0.3016 0.2786 0.2360 0.3241 0.2207
DS7 59 1125 11525 0.0483 0.0399 0.0191 0.0591 0.0370
DS8 64 3067 82162 0.1415 0.1236 0.0741 0.1372 0.1061

inference model also provides informative, high-resolution representations for tree topologies, as
demonstrated in our experiments. PhyloVAE thus offers a latent space representation that can be
easily visualized like the previous MDS method, while also functioning as a probabilistic model that
provides a high-resolution view of tree topology distributions. Further applications of PhyloVAE
to practical tasks in phylogenetics (e.g., phylogenetic placement, Bayesian phylogenetic inference,
etc.) and extending PhyloVAE for tree topologies with different leaves would be interesting future
directions.
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A PHYLOGENETIC TREES AND PHYLOGENETIC INFERENCE

The common structure for describing evolutionary history is a phylogenetic tree, which consists
of a bifurcating tree topology τ and the associated non-negative edge lengths q (see Figure 9 for a
real example). The tree topology τ is a bifurcating tree graph (V,E), where V and E are the set
of nodes and edges respectively. We will be consistent with the main text and use “tree topology”
for unrooted tree topology. For a tree topology τ , the edges in E are undirected and the nodes in V
can have either 3 degrees or 1 degree. Those with 3 degrees are called internal nodes, representing
unobserved ancestor species without labels, and those with 1 degree are called leaf nodes, representing
the observed existing species with labels corresponding to the species names. An edge is called a
pendant edge if it connects one leaf node to an internal node. For each edge e ∈ E, there exists a
corresponding non-negative edge length qe, which quantifies the evolutionary intensity between two
neighboring species. The set of edge lengths on τ is given by q = {qe : e ∈ E}.
Each leaf node in V corresponds to a species with an observed biological sequence (e.g., DNA,
RNA, protein). Let Y = {Y1, . . . , YM} ∈ ΩN×M denote the observed sequences (with characters
in Ω) of M sites across N species. The transition probabilities of the characters along the edges
of a phylogenetic tree are commonly modeled using a continuous-time Markov chain (Felsenstein,
2004). With the common assumption that different sites evolve independently and identically, given a
phylogenetic tree (τ, q), the likelihood of observing Y is

p(Y |τ, q) =
M∏
i=1

∑
ai

η(air)
∏

(u,v)∈E

Pai
ua

i
v
(quv), (11)

where ai ranges over all extensions of Yi to the internal nodes with aiu being the character assignment
of node u (r represents an arbitrary internal node as the virtual root node), E is the set of edges
of τ , quv is the branch length of the edge (u, v) ∈ E, Pjk(q) is the transition probability from
character j to k through an edge of length q, and η is the stationary distribution of the Markov chain.
Parameters in equation (11) are called an evolutionary model. Assuming a prior distribution p(τ, q)
on phylogenetic trees, Bayesian phylogenetic inference aims at properly estimating the posterior
distribution

p(τ, q|Y ) =
p(Y |τ, q)p(τ, q)

p(Y )
∝ p(Y |τ, q)p(τ, q). (12)

There are several common phylogenetic analysis software for Bayesian phylogenetic inference such
as MrBayes (Ronquist et al., 2012), BEAST (Drummond & Rambaut, 2007), etc., which implement
Markov chain Monte Carlo (MCMC) runs to samples from the phylogenetic posterior.
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Figure 6: An illustration of building tree topology autoregressive using ARTree. This figure is from
Xie & Zhang (2023).

B ARTREE

ARTree (Xie & Zhang, 2023) generates a tree topology in an autoregressive way. The sequential
generating process in ARTree facilitates a probabilistic model over tree topologies which archives
leading results in phylogenetic inference. We introduce the tree topology generating process of
ARTree as below and most of the statements are adapted from Xie & Zhang (2023).

Let τn = (Vn, En) be a tree topology with n leaf nodes, where Vn and En represent the sets of nodes
and edges, respectively. A predetermined order, also known as the taxa order, is assumed for the leaf
nodes X = {x1, . . . , xN}. We begin by providing the definition of ordinal tree topologies.
Definition 1 (Ordinal Tree Topology). Let X = {x1, . . . , xN} be a set of N(N ≥ 3) leaf nodes. Let
τn = (Vn, En) be a tree topology with n (n ≤ N) leaf nodes in X . We say τn is an ordinal tree
topology of rank n, if its leaf nodes are the first n elements of X , i.e., Vn ∩ X = {x1, . . . , xn}.

The tree topology generation process begins with τ3 (the unique ordinal tree topology of rank 3).
At the n-th step, assume we have an ordinal tree topology τn = (Vn, En) of rank n. The following
steps are conducted to add the leaf node xn+1 into τn: i) Select an edge en = (u, v) ∈ En, which
is then removed from En. ii) Add a new node w and two additional edges, (u,w) and (w, v),
to the tree topology τn. iii)Insert the new leaf node xn+1 and add an additional edge (w, xn+1)
to the tree topology τn. Moreover, Xie & Zhang (2023) provides theoretical guarantees on the
bijectiveness between the tree topology and the decision sequence D = (e3, . . . , eN−1). Thanks
for this bijectiveness, the distribution Q(τ) over tree topologies is modelled by Q(D) over decision
sequences, i.e.

Q(τ) = Q(D) =

N−1∏
n=3

Q(en|e<n), (13)

where e<n = (e3, . . . , en−1) and e<3 = ∅. We provide the illustration and algorithm for the
generating process in Figure 6 and Algorithm 2.

C DETAILS OF THE ENCODING MECHANISM

C.1 PROOF OF THEOREM 1

Theorem 1. Given a tree topology τ with N leaf nodes, the time complexity of computing its encoding
vector s(τ) is O(N).

Proof of Theorem 1 Assume the tree topology τ = (V,E) is stored in the binary tree data structure,
where each node other than the root node also has a parent node pointer (the root node is arbitrarily
selected from the internal nodes for the storage aim). Before computing the encoding of τ , we
first perform a postorder traversal over τ and construct an index dictionary D of the mappings
{(n, xn)}Nn=1 ∪ {(k, v)}N<k<2N−1,v∈V \X , whose time complexity is O(N).

In the n-indexed step of the decomposition loop, we want to remove the leaf node xn, which can be
located by indexing the dictionary D in O(1) time. Following the xn’s parent node pointer, we reach
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Algorithm 2: ARTree for tree topology modeling (Xie & Zhang, 2023)
Input: A set X = {x1, . . . , xN} of leaf nodes.
Output: An ordinal tree topology τ of rank N ; the ARTree probability Q(τ) of τ .
τ3 = (V3, E3)← the unique ordinal tree topology of rank 3;
for n = 3, . . . , N − 1 do

Let fn(u) = cufn(πu) + du where πu is the parent of u;
Calculate the probability vector qn ∈ R|En| using the current GNN model;
Sample an edge decision en from Discrete (qn) and assume en = (u, v);
Create a new node w;
En+1 ← (En\{en}) ∪ {(u,w), (w, v), (w, xn+1)};
Vn+1 ← Vn ∪ {w, xn+1};
τn+1 ← (Vn+1, En+1);

end
τ ← τN ;
Q(τ)← q3(e3)q4(e4) · · · qN−1(eN−1).

Algorithm 3: Converting encoding vectors to tree topologies

Input: A sequence s = (s3, . . . , sN−1) ∈ NN−3.
Output: A tree topology τ with N leaf nodes.
τ3 ← the unique tree topology with the first three leaf nodes {x1, x2, x3};
Index(x1)← 1; Index(x2)← 2; Index(x3)← 3; r ← the unique internal node of τ3;
for n = 3, . . . , N − 1 do

vn ← the node in τn that satisfies Index(vn) = sn;
un ← the neighbor node of vn (towards the direction of r) in τn;
Create an node tn+1;
Attach the pendant edge (tn+1, xn+1) to (un, vn);
Index(tn+1)← N + n− 1; Index(xn+1)← n+ 1;

end

xn’s parent tn. We then detach xn, tn from the tree and connect tn’s remaining two neighbors un, vn
whose indexes are k1n, k

2
n. Since all these local modifications of tree topologies can be done in O(1)

time, the time complexity of the decomposition loop is O(N).

In the n-indexed step of the reconstruction loop, we have to locate the edge (un, vn) to add the node
xn. This can be done in O(1) time by indexing k1n, k

2
n in D. Afterwards, we de-connect un, vn

and add tn, xn to the graph. Since all these local modifications of tree topologies can be done in
O(1) time, the time complexity of the reconstruction loop is O(N). Please note that the indexes in
dictionary D are different from the Index(·) function.

Therefore, the time complexity of computing the encoding vector s(τ) is O(N).

C.2 FROM ENCODINGS TO TREE TOPOLOGIES

The encoding mechanism also provides a mapping from encodings to tree topologies, which is
summarized in Algorithm 3. Algorithm 3 is similar to the reconstruction loop in Algorithm 1, and
has time complexity O(N).

D EXPERIMENTAL DETAILS

For all experiments, PhyloVAE is implemented in PyTorch (Paszke et al., 2019). The optimizer is
Adam (Kingma & Ba, 2015) with parameters (β1, β2) = (0.9, 0.999) and weight_decay = 0.0.
The results are collected after 200000 iterations with batch size B = 10.

D.1 FIVE-LEAF TREE TOPOLOGIES
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Figure 8: Pre-selected tree topologies for constructing the three-peak distribution on the 10395 tree
topologies with 8 leave nodes.
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Figure 7: An illustration of the
partition presentation (left) of
a tree topology (right) contain-
ing five leaves {A,B,C,D,E}.

The dimension of the latent space is set to d = 2. The generative
model is a three-layer MLP with 512 hidden units and a ResNet
architecture. For the inference model, the number of message pass-
ing rounds is L = 2, and both MLPµ and MLPσ are composed of
a two-layer MLP with 100 hidden units. The number of particles
in the multi-sample lower bound (3) is K = 32. The learning rate
is set to 0.0003 at the beginning and anneals according to a cosine
schedule. The experiments are run on a single 2.4 GHz CPU.

D.2 EIGHT-LEAF TREE TOPOLOGIES

The dimension of the latent space is set to d = 2. The generative model is a three-layer MLP with
512 hidden units and a ResNet architecture. For the inference model, the number of message passing
rounds is L = 2, and both MLPµ and MLPσ are composed of a two-layer MLP with 100 hidden
units. The number of particles in the multi-sample lower bound (3) is K = 32. The learning rate is
set to 0.0003 at the beginning and anneals according to a cosine schedule. The experiments are run
on a single 2.4 GHz CPU.

The three pre-selected tree topologies for constructing the three peaked distributions are plotted in
Figure 8. Here are definitions of the Robinson-Foulds (RF) distance and the path difference (PD)
distance between two tree topologies (the edge lengths are not considered).
Definition 2 (Robinson-Foulds distance; Robinson & Foulds (1981)). For a tree topology τ = (V,E)
with leaf nodes X , an edge e ∈ E divides the leaf nodes into two parts (X1,X2), according to the
closeness between a leaf node and the right/left terminal node of e. We define the unordered partition
as Pe := (X1,X2) and all the partitions on τ as Pτ = {Pe : e ∈ E}. The the Robinson-Foulds
distance between two tree topologies τ1 and τ2 is defined as

DRobinson-Foulds(τ1, τ2) := |Pτ1∆Pτ2 | = |Pτ1\Pτ2 |+ |Pτ2\Pτ1 |.
Definition 3 (Path difference distance; Steel & Penny (1993)). Let τ be a tree topology with N leaf
nodes X . The path length lxi,xj

(τ) between two leaf nodes xi, xj is defined as the minimum number
of edges on τ for connecting xi and xj . The the path length difference distance between τ1 and τ2 is

Dpath-difference(τ1, τ2) :=
∑

1≤i<j≤N

|lxi,xj
(τ1)− lxi,xj

(τ2)|.

D.3 GENE TREES AND SEQUENCE LENGTHS

The dimension of the latent space is set to d = 2. The generative model is a three-layer MLP with
512 hidden units and a ResNet architecture. For the inference model, the number of message passing
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Figure 9: The ground truth phylogenetic tree for early mammal evolution (Murphy et al., 2001).

Table 2: The evolutionary model for each gene in the early mammal evolution analysis (Murphy
et al., 2001; Hillis et al., 2005).

Gene Preferred model Base frequencies Relative substitution rates Pinv Alpha
A C G T AC AG AT CG CT CG

ADORA3 K2P 0.25 0.25 0.25 0.25 1 3 1 1 3 1 0 -
APP GTR + I + Γ 0.25 0.24 0.18 0.33 1.6 3.66 0.47 0.72 2.65 1 0 0.78
ZFX HKY + I + Γ 0.35 0.23 0.18 0.23 1 7.94 1 1 7.94 1 0.49 1.24
IRBP GTR + I + Γ 0.21 0.3 0.3 0.18 1.5 4.91 1.34 0.83 5.8 1 0.18 1.04

mtRNA GTR + I + Γ 0.34 0.2 0.21 0.25 5.86 14 3.85 0.58 29.3 1 0.41 0.53

rounds is L = 2, and both MLPµ and MLPσ are composed of a two-layer MLP with 100 hidden
units. The number of particles in the multi-sample lower bound (3) is K = 32. The learning rate is
set to 0.0003 at the beginning and anneals according to a cosine schedule. The experiments are run
on a single 2.3 GHz CPU.

The evolutionary models of the five genes of the early mammal evolutionary analysis are in Table 2.
For each gene, we simulate the DNA sequences along the ground truth phylogenetic tree in Figure

17
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9. We also give the Newick representation of this ground truth tree (from Hillis et al. (2005)) for
reproducing the results:

((Opossum: 0.072454, Diprotodontian: 0.061694):0,
((((Sloth: 0.056950, Anteater: 0.061637):0.009169,
Armadillo: 0.056660):0.032179, ((((Hedgehog: 0.137379,
Shrew: 0.124147):0.011789, Mole: 0.086828): 0.011954,
(((Phyllostomid: 0.093178, Free tailed bat: 0.046665):0.011564,
(False vampire bat: 0.062583, (Flying Fox: 0.018553,
Rousette Fruitbat: 0.018931):0.036729):0.004788):0.016400,
((((((Whale: 0.013788, Dolphin: 0.021978):0.019568, Hippo:
0.039894):0.004885, Ruminant: 0.073210): 0.008450, Pig:
0.067448):0.005893, Llama: 0.061851):0.027757, ((Horse:
0.043682, (Rhino: 0.028867, Tapir: 0.028638):0.005116):0.020583,
((Cat: 0.046372, Caniform: 0.055840):0.023068, Pangolin:
0.075956):0.003871): 0.001685):0.001155):0.002432):0.011058,
(((Sciurid: 0.083962, ((Mouse: 0.042059, Rat:
0.045451):0.122018, (Hystricid: 0.074622, Caviomorph:
0.086677):0.062121):0.005432):0.011864, (Rabbit: 0.057873, Pika:
0.108683):0.043771):0.005743, ((Flying Lemur: 0.061380, Tree
Shrew: 0.101818):0.003958, (Strepsirrhine: 0.076186, Human:
0.065099): 0.009553):0.001707):0.007711):0.009175):0.005977,
((((Tenrecid: 0.142758, Golden Mole: 0.067180):0.009411, (Short
Eared Elephant Shrew: 0.039055, Long Eared Elephant Shrew:
0.036033):0.088816): 0.002240, Aardvark: 0.068518):0.003248,
((Sirenian: 0.038154, Hyrax: 0.089482):0.002916, Elephant:
0.050883):0.014801):0.025967):0.284326)

D.4 MULTIPLE PHYLOGENETIC ANALYSES COMPARISON

The dimension of the latent space is set to d = 2. The generative model is a five-layer MLP with
512 hidden units and a ResNet architecture. For the inference model, the number of message passing
rounds is L = 2, and both MLPµ and MLPσ are composed of a two-layer MLP with 512 hidden
units. The number of particles in the multi-sample lower bound (3) is K = 32. The learning rate is
set to 0.00001 at the beginning and anneals according to a cosine schedule. The experiments are run
on a single 2.3 GHz CPU.

D.5 GENERATIVE MODELING CAPACITY ON BENCHMARK DATA SETS

Following Zhang & Matsen IV (2018); Xie & Zhang (2023), we construct the training data set and
the ground truth as follows: (i) for each sequence set, there are 10 replicate training sets of tree
topologies which are gathered from 10 independent MrBayes runs until the runs have ASDSF (the
standard convergence criteria used in MrBayes) less than 0.01 or a maximum of 100 million iterations
(tree topologies are sampled every 100 iterations with the first 25% iterations discarded); (ii) for
each sequence set, the ground truth of tree topologies is gathered from 10 single-chain MrBayes for
one billion iterations (tree topologies are sampled every 1000 iterations with the first 25% iterations
discarded). The numbers of unique tree topologies in the training set and the ground truth for each
sequence set are reported in Table 1.

We use the same model architecture and training strategy on all DS1-8. The generative model is a
five-layer MLP with 512 hidden units and a ResNet architecture. For the inference model, the number
of message passing rounds is L = 2, and both MLPµ and MLPσ are composed of a two-layer MLP
with 100 hidden units. The number of particles in the multi-sample lower bound (3) is K = 32 in
Table 1 and Figure 5. The learning rate is set to 0.0003 at the beginning and anneals according to a
cosine schedule. The experiments are run on a single NVIDIA RTX 2080Ti GPU.
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E ADDITIONAL EXPERIMENTAL RESULTS

E.1 GENE TREES AND SEQUENCE LENGTHS

Figure 10 depicts the latent representations of the mammal gene trees inferred from DNA sequences
with a length of 5000. We see that compared to shorter DNA sequences (Figure 4), phylogenetic
inference with longer DNA sequences better discovers the ground truth tree. Again, the ADORA3
gene performs best for phylogenetic discovery, as the gene trees collapse to the ground truth tree. The
MDS plots in the same setting are shown in Figure 11, where we see again that the tree topologies
within a group tend to collapse towards the origins and are not sufficiently distinguished.
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Figure 10: Latent representations obtained by PhyloVAE for the mammal gene trees inferred from
DNA sequences with a length of 5000.

E.2 MULTIPLE PHYLOGENETIC ANALYSES COMPARISON

The right plot of Figure 4 provides an example that multiple phylogenetic analyses do not converge.
Here we provide an example that multiple phylogenetic analyses quickly converge.

We consider the fossil data sets (Wright, 2017) which contain 42 sequences (i.e., 42 leaf nodes) with a
length of 87, which describes the biological characters of 42 types of Paleozoic crinoids. We assume
the JC evolutionary model, implement two independent MrBayes (Ronquist et al., 2012) runs for 10
million iterations, and gather the tree samples per 1000 iterations from the last 3 million iterations.
These 6000 tree topologies with uniform weights constitute the training set of PhyloVAE.

We find that 6000 tree topologies in the training set are distinct, which reflects the diffuse posterior of
fossil phylogenies. Despite this, the latent representations of tree topologies from the two independent
MrBayes runs seem to have the same distribution. This implies the underlying convergence of the
two MrBayes runs.

E.3 GENERATIVE MODELING ON BENCHMARK DATA SETS
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Figure 11: MDS plots for the mammal gene trees inferred from DNA sequences with a length of
5000.
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Figure 12: Latent representation of two groups of tree topologies gathered from independent MrBayes
runs on the fossil data sets.

Table 3 reports the KL divergence obtained by different choices of d and K on DS1-4. We see that
increasing K can generally improve the approximation accuracy, while sometimes a large d may
increase the training difficulty and lead to overfitting.

Figure 13 compares the probability estimates and the ground truth. We see that PhyloVAE provides
reliable probability estimation.

Figure 14 shows latent representations of the tree topologies in the training set (repository 1) of
DS1-8 produced by PhyloVAE.

To more comprehensively evaluate the efficiency of PhyloVAE, we report the memory usage of it and
the baseline method ARTree in Table 4.
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KL divergence K = 1 K = 16 K = 32 K = 64

d = 2 0.1275 0.0308 0.0273 0.0264
d = 5 0.0951 0.0182 0.0177 0.0166
d = 10 0.0997 0.0230 0.0189 0.0175

(a) DS1

KL divergence K = 1 K = 16 K = 32 K = 64

d = 2 0.0202 0.0097 0.0100 0.0097
d = 5 0.0202 0.0103 0.0099 0.0107
d = 10 0.0202 0.0107 0.0098 0.0103

(b) DS2

KL divergence K = 1 K = 16 K = 32 K = 64

d = 2 0.0674 0.0482 0.0529 0.0559
d = 5 0.1397 0.0461 0.0502 0.0532
d = 10 0.0980 0.0453 0.0477 0.0515

(c) DS3

KL divergence K = 1 K = 16 K = 32 K = 64

d = 2 0.1038 0.0646 0.0619 0.0607
d = 5 0.0995 0.0470 0.0467 0.0471
d = 10 0.1082 0.0470 0.0469 0.0460

(d) DS4

Table 3: KL divergence of PhyloVAE to the ground truth on DS1-4 with varing d and K.
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Figure 13: Tree probability estimates obtained by PhyloVAE v.s. ground truth on DS1.

Figure 14: Latent representation of the tree topologies in the training set (repository 1) of DS1-8. The
scatter size is proportional to the probability of the tree topology.

Table 4: Memory usage (MB) of running ARTree and PhyloVAE (d = 10,K = 32) on DS1-8.

Data set DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8

ARTree 400.37 428.79 518.84 600.50 784.32 778.05 932.56 1067.93
PhyloVAE (d = 10,K = 32) 635.67 637.72 655.69 785.75 689.15 701.30 784.41 818.72
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