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ABSTRACT

Federated Learning (FL) enables privacy-preserving collaborative model training,
but its effectiveness is often limited by client data heterogeneity. We introduce a
client-selection algorithm that (i) dynamically forms non-overlapping coalitions
of clients based on asymptotic agreement and (ii) selects one representative from
each coalition to minimize the variance of model updates. Our approach is inspired
by social-network modeling, leveraging homophily-based proximity matrices for
spectral clustering and techniques for identifying the most the most informative
individuals to estimate a group’s aggregate opinion. We provide theoretical conver-
gence guarantees for the algorithm under mild, standard FL assumptions. Finally,
we validate our approach by benchmarking it against three strong heterogeneity-
aware baselines; the results show higher accuracy and faster convergence, indicating
that the framework is both theoretically grounded and effective in practice.

1 INTRODUCTION

Federated Learning (FL) enables collaborative model training across multiple clients without sharing
raw, potentially sensitive data (McMahan et al., 2017). While FL reduces the need to centralize data
and can improve privacy and regulatory compliance, its effectiveness is often limited by statistical
heterogeneity. In practice, client data is typically non-IID, with each local dataset following a distinct
distribution (Zhao et al., 2018; Li et al., 2020). This distribution shift leads to inconsistent local
updates, slower convergence, and reduced generalization, undermining the benefits of collaboration.
To address statistical heterogeneity, several approaches have been proposed. Regularization methods
constrain local updates to remain close to the global model (Li et al., 2020; Li & Wang, 2019;
Karimireddy et al., 2020b;a), while personalization techniques adapt models to individual clients
or client groups (Smith et al., 2017; Finn et al., 2017). Clustering-based methods further mitigate
heterogeneity by grouping clients with similar data distributions, enabling the training of specialized
models or more informed aggregation (Ghosh et al., 2020; Sattler et al., 2020).

Concurrently, client-sampling strategies have gained prominence. In practical deployments, factors
such as intermittent client availability, energy constraints, and limited bandwidth necessitate selecting
only a subset of clients in each round (Bonawitz et al., 2019). While uniform random sampling is
a common baseline, growing evidence suggests that non-uniform (biased) selection can accelerate
convergence and improve model quality, especially under heterogeneity (Cho et al., 2022; Wang et al.,
2020b; Goetz et al., 2019). Complementing these empirical advances, theoretical works have framed
FL as a model-sharing game (Donahue & Kleinberg, 2021a;b), analyzing incentive compatibility and
the Price of Anarchy under various client behaviors and aggregation strategies.

In this work, we introduce FedCVR-Bolt (Federated Coalition Variance Reduction with Boltz-
mann exploration), a client sampling algorithm that mitigates heterogeneity via two stages: (1) an
adaptive coalition detection phase that dynamically groups clients with similar model states and (2) a
within-coalition selection step using a biased Boltzmann-like probability measure to maximize the
expected intra-coalition variance reduction (Gallavotti, 2013). Our primary focus is conceptual and
methodological: we draw an analogy between client selection in FL and homophily-based social
selection mechanisms Mäs et al. (2010), and we leverage results form estimation theory (Kay, 1993)
to ground the variance–reduction principle at the core of FedCVR-Bolt .
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Paper structure After a brief overview of related work, Section 2 introduces the FL framework and
problem setup, drawing parallels with social and sensor networks that inspire our approach. A detailed
presentation of the FedCVR-Bolt is given in Section 3, including a step-by-step description and the
corresponding pseudocode. The core theoretical results that support the methodology are presented
in Section 3.1, while proofs and additional theoretical considerations are deferred to the Appendix.
In Section 5, we validate FedCVR-Bolt across a range of heterogeneous settings and common
benchmarks in FL (Caldas et al., 2018), showing its capability to outperform existing baselines.

Contribution Our contributions are as follows: i) We propose FedCVR-Bolt , a client sampling
algorithm, which improves performance in heterogeneous FL settings compared to existing sampling
strategies. We draw on social-interaction models to introduce homophily-based proximity matrices
for spectral clustering and to adapt most-informative-node selection for client choice. ii) We provide
theoretical guarantees on the convergence of the FedCVR-Bolt algorithm under mild assumptions.
iii) We introduce a synthetic dataset for benchmarking federated regression under controlled hetero-
geneity. iv) We empirically validate our approach on synthetic and real-world data, demonstrating
strong performance under Non-IID conditions.

RELATED WORK

Federated Learning Statistical heterogeneity across client data distributions can significantly
impede the performance and convergence of the global model. Regularization methods, such as
FedProx (Li et al., 2020), FedMD (Li & Wang, 2019), Scaffold (Karimireddy et al., 2020b), and
Mime (Karimireddy et al., 2020a), constrain local client updates or modify the global aggregation
process to improve robustness and convergence in heterogeneous settings. Personalization techniques
adapt the global model or learn client-specific models tailored to individual data distributions,
with notable examples including Per-FedAvg (Fallah et al., 2020) and pFedMe (T Dinh et al.,
2020). Collaboration and clustering strategies identify and leverage similarities among clients by
grouping them, enabling more effective federated training within these identified clusters; prominent
approaches in this domain include IFCA (Ghosh et al., 2020), CFL (Sattler et al., 2020), FeSEM
(Long et al., 2023). More recent studies on clustered FL show the possibility of forming groups
via consensus-based optimization (Carrillo et al., 2024) or by training a pairwise discriminator to
estimate similarities (Bao et al., 2023).

Client selection strategies prove to be an effective approach in FL for handling client heterogeneity.
Various methods address data heterogeneity by prioritizing clients exhibiting higher local loss on
the current global model estimate (Cho et al., 2022) or by aiming for diverse client participation
(Balakrishnan et al., 2022). Other approaches focus on variability in clients in training processes
(Diao et al., 2020), data and/or update quality (Liao et al., 2024), or energy efficiency (Li et al.,
2019). Methods such as FedCBS (Zhang et al., 2023) prioritize clients to reduce sampled class
imbalance. More advanced policies, such as Oort (Lai et al., 2021) and Harmony (Tian et al.,
2022), employ analytical rules address the device-selection heterogeneity. A distinct research thread
develops selection policies with reinforcement learning, typically framing client selection as a Markov
decision process (Powell, 2021). Notable examples include FedRank (Tian et al., 2024), AutoFL
(Kim & Wu, 2021), Favor (Wang et al., 2020a), and FedMarl (Zhang et al., 2022b).

FL and Game Theory Game theory provides a rigorous framework for modeling incentives and
collaboration in FL. Early work in Guazzone et al. (2013) applied coalition formation games to energy-
aware resource management in distributed systems, laying the groundwork for strategic collaboration,
though not addressing FL’s statistical challenges. In FL settings, Donahue & Kleinberg (2021a) used
hedonic games to analyze coalition stability in federated linear regression, deriving MSE-optimal
aggregation schemes, but limited their analysis to linear models. This was extended in Donahue &
Kleinberg (2021b), which framed FedAvg as a coalition game, introducing the Price of Anarchy
to quantify inefficiencies in naive collaboration. They proposed an optimal coalition formation
algorithm of limited scalability, although submodularity of the cost function suggests potential for
efficient approximations. Blum et al. (2021) studied equilibria in different FL collaboration structures
(one-for-one vs. all-for-all), characterizing when each is optimal (under stylized utility models).
To address dynamic interactions, Ota et al. (2022) proposed graphical coalitional games, forming
coalitions via synergy measures such as cosine similarity or Improvement Classification Accuracy and
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analyzing robustness under adversarial settings. For incentive-aligned client selection, Nagalapatti &
Narayanam (2021) proposed S-FedAvg, using Shapley values to quantify client utility and exclude
unhelpful participants, though computational cost limits scalability. Recently, Zhang et al. (2022a)
introduced a framework to incentivize high-quality data contributions, directly tackling input-data
integrity, but faced challenges in distributed quality assessment and efficiency.

2 PROBLEM FRAMEWORK

2.1 FEDERATED LEARNING PROBLEM

The standard FL (McMahan et al., 2017) involves K clients (agents), each holding its own training
data. Over T communication rounds, the clients jointly estimate a global vector of D parameters
θgl ∈ RD, often called the global model. Ideally, the estimate to be found minimizes the global loss:

θgl ∈ argminθ∈RD L(θ), (1)

where L(θ) :=
∑K

k=1 αk Lk(θ) with Lk(θ) denotes the client-level loss computed on client k’s local
dataset. The weights αk are chosen in a way that

∑K
k=1 αk = 1 with αk ≥ 0, reflecting the relative

importance of each client; they are often set proportional to the size of the client’s local dataset, i.e.,
αk = nk/

∑K
k=1 nk where nk stands for the number of training samples of the k-th client.

Weighted-average global model. We henceforth focus on the simplified canonical setting in which
the global model is just a weighted average of the client-side parameter vectors (local models).
Starting from a random initialization of the global model, at each round t ∈ [T ], the server sends to
the clients the current global model θgl(t). Each client then performs S ∈ N local training iterations
of a stochastic optimizer (e.g., Stochastic Gradient Descent) to minimize their local loss Lk, thus
resulting in a locally updated model θk(t+ 1). Each client communicates the updated model back to
the server, who aggregates the updates as a weighted average, namely

θgl(t+ 1) =
∑K

k=1
αkθk(t+ 1) . (2)

This setting is natural when all clients aim to estimate the same D-dimensional parameter vector
using only their local datasets, under the assumption that all clients share the same model architecture.

Two-stage updates. The global model is updated once per communication round. With a slight
abuse of notation, we denote by θgl(t) the global estimate produced at the end of round t. Because
clients neither share raw data nor communicate directly with one another, the update from θgl(t) to
θgl(t+ 1) follows a two-stage procedure: (i) the clients refine their local estimates θk(t) by training
on their private data, initializing from the global parameters θgl(t) broadcast by the server; (ii) the
central server then aggregates these client updates to obtain the next global model estimate θgl(t+1).

Partial participation. Since the number of clients K can be very large, the server typically interacts
with only a fraction of them in each round. This partial-participation strategy keeps the throughput
and energy consumption manageable, mitigates stragglers, and thereby shortens each communication
round without compromising convergence (McMahan et al., 2017; Luo et al., 2024). Namely, the
global model is communicated to the randomly selected subset of clients Pt ⊆ {1, . . . ,K} whose
size P = |Pt| is kept constant across rounds. Only these selected clients compute their local updates
θk(t + 1) and upload them to the server for aggregation. The server updates the global model by
aggregating the received estimates:

θgl(t+ 1) =
∑

k∈Pt

α̃k(t) θk(t+ 1). (3)

where the weights α̃k satisfy α̃k(t) ≥ 0 and
∑

k∈Pt
α̃k(t) = 1. These weights differ from the

original αk as they are re-normalized to the active subset Pt.

Statistical learning setup. We now assume that each client’s training set is a sample drawn from an
underlying data-generating distribution. The parameter vector θk ∈ RD learned by client k (usually,
obtained by minimizing its local empirical risk) thus becomes a random variable. Consequently,
the vector θk(t) produced by client k in communication round t is a realization of that random
variable, which the server then incorporates into the global aggregation. We define the random
vector θd = (θd1 , . . . , θ

d
K)⊤ ∈ RK whose entries are the d-th components of the clients’ parameter

3
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vectors, denoting its mean by θ̄d = E
(
θd
)

and its covariance matrix by Cd = Cov
(
θd
)
∈ RK×K .

Entries of Cd quantify client heterogeneity for the d-th model parameter: its diagonal elements
capture the variance across clients, and the off-diagonal entries measure pairwise similarity between
clients’ values. Without loss of generality, we will assume that Cd is an invertible matrix. By
Equation equation 2, the components of the global model are scalar random variables θdgl = α⊤θd.

2.2 PROBLEM SETUP AND SOCIAL DYNAMICS ANALOGY

Recent studies show that, under data heterogeneity, the choice of the participating-client set Pt

is critical for convergence as biased sampling policies can significantly accelerate and stabilize
training (Ghosh et al., 2020; Cho et al., 2022). Building on this, we introduce a FL algorithm inspired
by social-dynamics models that sample clients via a two-step procedure. First, we form coalitions
whose covariance mirrors client relationships, explicitly encouraging high intra-cluster and low
inter-cluster covariance, so that each cluster captures a distinct sub-distribution. Second, within each
cluster, we sample clients to train the global model on representatives that best preserve this structure,
thereby directly mitigating the effect of heterogeneity. This address two key challenges: i) how to
partition the client data distributions; ii) how to select the clients to sample within each cluster.

Specifically, as explained in Appendix B, in our study we consider each client as a node (or agent) in a
time-varying network. The set of agents K = {1, . . . ,K} refers to the set of clients of the federations
and their “opinion” corresponds to the individual client model θk. The influence matrix W (t) encodes
the pairwise influence between clients at time t, capturing phenomena such as homophily (Mäs et al.,
2010), i.e., agents are mainly influenced by individuals who hold similar opinions. This modeling
framework is fundamental to identify coalitions across the network, a key challenge studied both in
Clustered FL (Sattler et al., 2020) and in social community detection (Mark, 2003; Mäs et al., 2010).
In practical scenarios, it is common to find groups of clients with similar data distributions and,
consequently, similar local models. Such clients are naturally inclined to collaborate, so identifying
coalitions is central to effective FL design, aligned with well established methods like Clustered FL
(Sattler et al., 2020), IFCA (Ghosh et al., 2020) and FeSEM (Long et al., 2023). Accordingly, we
partition the federation into P groups of cooperating clients whose data are drawn from the same (or
closely related) distribution, and then, at each round, select the best representative from each group
using the strategy detailed below.

A common challenge, originally arising in the context of sensor placement problems (Das & Kempe,
2008; 2018) and later extended to social networks (Raineri et al., 2025; 2023) is the estimation of
the overall network opinion when only a subset can be observed. Analogously, here, our goal is to
select the optimal subset of clients to sample to best approximate the global model θgl. Based on the
cited literature approach and building on the statistical learning setup previously introduce, we will
introduce a novel sampling strategy based on variance reduction techniques.

3 FEDCVR-BOLT ALGORITHM DESIGN

Analogy with Opinion Dynamics First, let us formalize the underlying network structure aimed to
study. Let θ(t) indicate the vector of current models at round t, such that θk(t) is the model associated
to client k at communication round t. As introduced in (Mäs et al., 2010) a natural way to implement
homophily it to define social influence of agent j on agent k as

Wkj(t) =
e−γ∥θk(t)−θj(t)∥2

2∑
j∈K e−γ∥θk(t)−θj(t)∥2

2

(4)

where γ > 0 is a parameter which amplifies the role of models similarities, i.e., the larger γ,
the more pronounced is the homophily effect. The resulting matrix admits a clear social-systems
interpretation: agents (clients) with similar “opinions” (model parameters) exert stronger mutual
influence and naturally form clusters. Importantly, computing this matrix, which is standard practice
in clustered and personalized FL (Sattler et al., 2020; Bao et al., 2023), here reduces to evaluating
L2 distances between server-available parameter vectors. To further validate our approach, we
additionally implemented our algorithm with other similarity functions used in coalition formation
(Scholkopf & Smola, 2001); see Appendix B.1.
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Coalition Formation Move now the focus on the coalitions formed which may vary with respect
to the previous round. Formally, the goal of this step is to identify the P coalitions formed at round t
that will be indicated by C1, . . . , CP ⊂ Π(K), where Π(K) denotes the set of all possible partitions
of [K]. Notice that the number of communities P neither is assumed to be the true number of clusters
in the data, nor is an output of the clustering step, but it is fixed a priori and it coincides with the
model participation rate. This assumption is not restrictive since it is a common practice in clustered
framework (e.g., refer to IFCA (Ghosh et al., 2020) and FeSEM (Long et al., 2023)).

As proposed in Narantsatsralt & Kang (2017), a natural way to detect communities in social networks
is spectral clustering. The idea is now to project the data, collected in matrix W , in the corresponding
eigenvector space and then to properly apply a k-means on this space. The projection on eigenvectors
space is crucial since it allows to significantly distinguish the similar nodes into more distanced
positions in feature space, assigning similar values to members of the same community and capturing
also soft boundaries between communities, both convex and non-convex.

Sampling Strategy Once the P coalitions of clients have been identified, for each coalition our
goal is now to identify the optimal client to sample at round t. Let us introduce the value vectors
vd ∈ RK for the d-th model component, where each entry is defined as

vdk =
(Cdα)2k
Cd

kk

for all k ∈ K . (5)

As it will be explained in Section 3.1, vdk refers to the variance reduction for the d-th component of
global model θdgl estimation subjected to θdk sampling (Raineri et al., 2025).

Once computed the vector vd for any d = 1, . . . , D, let us now introduce the vector v ∈ RD, s.t. vk
is a global measure related to variance reduction on model θgl subjected to sample θk. Precisely, we
choose as a collective measure the total variance reduction defined as

vk :=
∑D

d=1
vdk, (6)

which is a natural choice (Johnson & Wichern, 2002) for the overall residual variance for the global
model θgl, see Section 3.1 for theoretical details.

Within the defined setting, we select for each coalition the client maximizing vector v, i.e., for each
coalition p = 1, . . . , P we select the client jp such that

jp ∈ argmaxk∈Cp(t) vk . (7)

Selecting one representative per cluster mitigates overfitting to any single sub-distribution while
preserving global diversity. Optimizing for variance reduction captures cross-client coupling, yielding
more stable updates.

In real case scenario, the optimization in equation 7 becomes overly restrictive due to the unavailability
of the true data distribution, which introduces an inherent estimation error in the covariance matrix. To
mitigate the impact of this uncertainty while still exploiting the informative content of the estimated
variance, we incorporate an additional exploration term into the objective.

Boltzmann Exploration Instead of a greedy, deterministic selection based on the estimated
variance, we employ a Boltzmann exploration policy (Gallavotti, 2013). This introduces a controlled
stochasticity that helps mitigate the risk of becoming trapped by early biased or noisy estimates of
the covariance matrix (Powell, 2022). Drawing an analogy with statistical mechanics (Gallavotti,
2013), where the probability of a system occupying a specific energy state is proportional to the
exponential function of the negative energy divided by temperature, we let the probability of selecting
a client k within coalition Cp(t) during round t based on its associated value vk be an indicator of the
desirability of sampling client k. Higher values indicate greater potential to reduce the variance of
the global model estimate. This Boltzmann-like probability measure is formally defined as:

πp(k; t) =
eβvk∑

j∈Cp(t)
eβvj

(8)

where πp(k; t) is the probability that client k in coalition Cp(t) is selected at round t. The parameter
β, analogous to the inverse temperature in statistical mechanics, controls the level of exploration. In

5
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Algorithm 1 FedCVR-Bolt Algorithm
1: Inputs: K, D, T , {θk(1)}Kk=1 ⊂ RD, {Cd(1)}Dd=1 ⊂ RD×D, θgl(1), γt, P
2: for t = 1, . . . , T − 1 do
3: Normalize: θ̃k(t) = θk(t)/∥θk(t)∥
4: Compute similarities: ρkj = ⟨θ̃k(t), θ̃j(t)⟩
5: Cluster clients: C1(t), . . . , CP (t)← SpectralClustering(θ̃1(t), . . . , θ̃K(t))

6: Compute variances vdk with Cd(t); set vk =
∑D

d=1 v
d
k

7: Compute Boltzmann probabilities: πp(k, t) = evk/
∑

j∈Cp(t)
evj

8: Sample jp ∼ πp(·, t) in each cluster Cp(t); set Pt = {j1, . . . , jP }
9: for all jp ∈ Pt do

10: Receive θgl(t), perform local update→ θjp(t+ 1)
11: end for
12: for all p = 1, . . . , P and k ∈ Cp(t) do
13: θ̄k(t+ 1) = ρkjpθjp(t+ 1)
14: end for
15: for d = 1, . . . , D do
16: Cd(t+ 1) = (1− γt)C

d(t) + γt
(
θd(t+ 1)− θ̄d(t+ 1)

) (
θd(t+ 1)− θ̄d(t+ 1)

)⊤
17: end for
18: θgl(t+ 1) =

∑P
p=1 α̃jpθjp(t+ 1) with α̃jp = njp/

∑P
p=1 njp

19: end for

our experiments, we set β = 1. This design assigns clients with larger estimated variance-reduction
vk proportionally higher selection probabilities, aligning sampling with their expected contribution
within each coalition. Moreover, this framework keeps nonzero probability for lower-scoring clients,
preventing myopic exploitation and enabling gains under uncertainty.

Update Policy Once the participating clients Pt = {j1, . . . , jP } have been selected, the server
sends them the current model. Then, they locally updates the central model according to their local
dataset, obtaining the individual update θjp(t+ 1) which is sent to the server. Finally, it coherently
updates the global model as θgl(t+ 1) =

∑P
p=1 α̃jpθjp(t+ 1) .

Let us specify that for all the unobserved clients k ∈ [K]\Cp(t) the value at round t+1 is considered
equal to the previous one at round t. Formally, θk(t+1) = θjp(t+1) if k = jp, and θk(t+1) = θk(t)

if k ̸= jp. The expected value θ̄k(t+ 1) of the unobserved clients k ∈ [K]\Cp(t) is updated based
on the observation of the sampled client jp i.e.,

θ̄k(t+ 1) = ρkjpθjp(t+ 1), (9)

with ρkjp the Pearson correlation coefficient between models of client k and jp. As explained in
Section 3.1, this is a natural choice as it coincides with taking the expected value of θk conditioned to
observation θjp , i.e., E[θk|θjp(t+ 1)]. Precisely, the rescaling parameter coincides with the optimal
regression coefficient of θk given θjp(t+ 1) under the assumption of normalized models.

Online estimation of covariance A central core of our method is to estimate the covariance
matrices Cd of the individual model’s components. Let us denote by Cd(t) the current estimate at
round t. Then, the following formulation holds

Cd
kj = Cov(θdk, θdj ) = E[(θdk − θ̄dk)(θ

d
j − θ̄dj )] . (10)

Using the k, j-th entry of the covariance matrix in equation 10, it is possible to obtain an online
estimate of the covariance matrix, using the Robbins-Monro estimation (Robbins & Monro, 1951), as

Cd(t+ 1) = (1− γt)C
d(t) + γt[θ

d(t+ 1)− θ̄d(t+ 1)][θd(t+ 1)− θ̄d(t+ 1)]⊤ (11)

with θ̄d(t+ 1) the mean vector updated according to equation 9.
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3.1 THEORETICAL DERIVATION OF FEDCVR-BOLT

This section presents the core theoretical results that underpin and justify each step of the proposed
algorithm, providing the formal grounding for our methodology. For complete proofs and additional
theoretical insights, we refer the reader to Appendix B. Let us introduce the following notation, which
will be utilized subsequently. Given a matrix X ∈ RK×K , and given A,B ⊆ [K], we indicate with
XAB the submatrix of X having rows in A and columns in B.

Sampling Strategy Finding the optimal subset of clients to sample in order to obtain the best
estimate of the global model is an instance of the more general and widely studied subset selection
problem which is known to be NP-complete (Das & Kempe, 2008). Generalizing Raineri et al. (2025),
let us here reformulate the main results on the specific context of interest. The first step consists in
defining the proper evaluation metric. Specifically, we focus on Variance Reduction which measures
the reduction in uncertainty on the variable to estimate, i.e., θgl, conditioned to the observation done.
Formally, given an arbitrary subset of clients A ⊆ K, for each model component d, we denote the
variance reduction on θdgl conditioned to the observations θdA as

vdA := Var(θdgl)− E[Var(θdgl|θdA)] . (12)

First, let us introduce a preliminary Lemma, which comes from Lemma 2 in Raineri et al. (2025),
which finds an explicit formulation for the global model expectation conditioned to samples A ⊆ K.
Lemma 1. Consider θd ∈ RK the vector containing all the d-th model components of the fed-
eration and θdgl = α⊤θd the global model to estimate. Given A ⊆ K, it holds1 E[θdgl|θdA] =

(Cd
AA)

−1(Cdα)Aθ
d
A , where Cd

AA is the invertible covariance matrix of θdA.

This lemma is crucial, as shown in Appendix B, provide an explicit formulation for variance reduction
function in equation 12, properly generalizing Proposition 2 in Raineri et al. (2025).
Proposition 1. Consider θd ∈ RK the vector containing all the d-th model components of the
federation and θdgl = α⊤θd the global model to estimate. Then, the variance reduction, subjected to
sampling the subset A of possible clients, is computed as vdA = (Cdα)⊤A(C

d
AA)

−1(Cdα)A, where
Cd is the covariance matrix which captured the correlations among the clients.

Let us notice that if we consider a sample made of just one client, i.e., A = {k}, the previous results
take a simpler and less computational expensive formula. This will be a core element in our sampling
strategy since it will be used to evaluate the target function of interest.
Corollary 1. Consider θd ∈ RK the vector containing all the d-th model components of the federation
and θdgl = α⊤θd the global model to estimate. Let θdk be the sampled model at round t. Then, the

variance reduction for the global model θdgl given sample θdk is vdk = (Cdα)2

Cd
kk

.

So far, we succeed in finding an explicit formulation for the variance reduction function of the global
model θdgl for each d-th component. Let us now define a collective measure of the overall variance
reduction of θgl. Based on Johnson & Wichern (2002), we define the total variance reduction as the
sum of variance reductions associated to the different model components, i.e., vk =

∑D
d=1 v

d
k , which

is the trace of Var(E(θgl|θk)), coinciding with the sum of the D squared deviation vectors.

Update Policy Once the optimal model to sample is selected through the sampling strategy, we use
this additional information to update all the other models distribution. Preliminary, let us recall the
definition of the Pearson Correlation Coefficient, i.e., given two random variables Xi and Xj out
of a random vector X with covariance matrix C, it holds ρjk =

Ckj√
Ckk

√
Cjj

. We can now define the

update policy for the j-th model given the latest k-th sample. For more details see Appendix B.
Proposition 2. Let θd ∈ RK be the vector containing all the d-th model components of the federation
and θdgl = α⊤θd the global model to estimate. Let θdk be the sampled model at round t. Then, the

optimal estimator of an arbitrary model d-th component θdj with j ̸= k is E[θdj |θdk] = ρkj
√
vj√
vk
θdk.

1Here, with some abuse of notation, E[θdgl|θdA] denotes the projection of θdgl onto the space of all linear
combinations of the components of θdA with constant coefficients, found via linear regression. Under standard
assumption of normal distribution it would coincide with the true conditional expectation (Hastie et al., 2009).
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Corollary 2. Consider θ̃d ∈ RK the normalized vector containing all the d-th model components of
the federation, such that Var(θ̃d) = 1. Let θ̃dk be the sampled model at round t. Then, the optimal
estimator of an arbitrary model d-th component θ̃dj with j ̸= k is E[θ̃dj |θ̃dk] = ρkj θ̃

d
k.

4 ALGORITHM PERFORMANCE ANALYSIS

Algorithm Convergence Analysis At each step every selected client k performs local training
iterations of a stochastic optimizer (e.g., Stochastic Gradient Descent) which ensures non-increasing
local loss Lk. Then, since the global loss is a linear combination of the local ones, i.e., L(θ) :=∑K

k=1 αk Lk(θ), it is non-increasing. Our method can be seen as an instance of partial sampling
strategy which is known to preserve the optimality guarantees. Details are provided in Appendix B.4

Computational Cost Computation The main overhead lies in performing spectral clustering on
the server at each communication round. The computational cost at each round can be broken down
as follows (von Luxburg, 2007). First, for the similarity matrix construction, pairwise similarities
between the K clients are computed using a RBF kernel. This requires evaluating squared Euclidean
distances between K vectors in RD, resulting in a complexity of O(K2D). Second, constructing the
normalized Laplacian from the similarity matrix incurs a cost of O(K2). Third, extracting the top
P eigenvectors of the K ×K Laplacian requires O(K2P ) operations in standard implementations.
Fourth, the final step clusters the K clients in the P -dimensional eigenspace, with cost O(KPI),
where I is the number of K-means iterations (in our setting constant set to 300). Overall, the dominant
cost is O(K2D + K2P ). In practice, since P ≪ D (e.g., P = 10, D = 300), the complexity is
effectively driven by the similarity matrix computation, yielding a leading cost ofO(K2D) per round.
This overhead is modest and entirely server-side, since server resources are not a bottleneck.

5 EXPERIMENTS: FEDCVR-BOLT IN HETEROGENEOUS SCENARIOS

We present experimental results evaluating FedCVR-Bolt in heterogeneous FL scenarios. We
employ established FL benchmark datasets (Caldas et al., 2018; Li et al., 2020), together with a
synthetic dataset specifically designed for a controlled federated linear regression analysis. A detailed
description of dataset settings and model architectures is provided in Appendix C.

In our analysis, we compare FedCVR-Bolt against a diverse set of FL baselines. From client
selection methods, we include the uniform random policy of FedAvg (McMahan et al., 2017),
the exploitative Power-of-Choice strategy (Cho et al., 2022) that favors clients with higher
local losses, and ActiveFL (Goetz et al., 2019), which balances exploration and exploitation
through probabilistic selection. From the broader FL literature, we also consider FedProx (Li et al.,
2020), a regularization-based approach designed for heterogeneous settings, and two clustering-based
personalized methods, IFCA (Ghosh et al., 2020) and FeSEM (Long et al., 2023). Section 5.1
reports regression results, highlighting the behavior of selection policies in controlled heterogeneous
environments. Section 5.2 then turns to classification tasks on real-world datasets.

5.1 FEDERATED LINEAR REGRESSION

We simulate heterogeneity using J ∈ {1, 2} clusters across K = 100 clients. Each client k belongs to
a cluster jk, and their local inputs xi

k ∈ RD are sampled as xi
k ∼ D(θx,jk , σ2

x,jk
ID). For each sample,

a latent parameter θik ∼ D(θ̄jk , σ2
θ,jk

ID) is drawn, and the label is computed as yik = (θik)
⊤xi

k.

Cluster parameters, client assignments, and train/test splits follow uniform sampling routines, detailed
in Appendix C. Table 1 reports the average test MSE after T = 100 rounds, selecting P = 10 clients
per round with S = 10 local SGD steps. In IID settings (J = 1), all policies perform similarly, with
FedCVR-Bolt maintaining competitive results. In non-IID scenarios (J = 2), FedCVR-Bolt
consistently outperforms baselines. For instance, it reduces test MSE by up to 3.0% over uniform
sampling in the no-intercept, D = 1 case, and by 1.7% when an intercept is included.
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Table 1: Comparison between FedCVR-Bolt and FL selection baselines on a synthetic regression dataset. We
evaluate two cases: D = 1 (linear model without intercept) and D = 2 (linear model with intercept), under both
IID and non-IID settings. We report the Test MSE, averaged across clients (the lower the better). In the IID case,
all methods perform comparably. In the non-IID case, FedCVR-Bolt achieves the lowest MSE, improving
performance by approximately 3% for D = 1 and 1.7% for D = 2.

Regression Model Heterogeneity FedAvg Power-of-Choice AFL FedCVR-Bolt

y = θ1x
IID 6.0171 ± 2.4884 6.3587 ± 2.0280 6.1656 ± 2.5821 6.0136± 2.5170
Non-IID 57.1336 ± 24.1335 56.9701 ± 24.7835 56.8328 ± 25.7835 54.7102 ± 24.8973

y = θ0 + θ1x
IID 0.2142±0.3520 0.2143 ± 0.3533 0.2134 ± 0.3503 0.2085 ± 0.3386
Non-IID 1.5875 ± 0.7291 1.6742 ± 0.6820 1.7023 ± 0.7642 1.5127 ± 0.7336

Table 2: Comparison with FL baselines on heterogeneous classification benchmarks. We report the test
accuracy (Hossin & Sulaiman, 2015), averaged across clients (the larger the better). FedCVR-Bolt consistently
outperforms existing methods across MNIST, CIFAR-10, and CIFAR-100, all partitioned with Dirichlet α = 0.1.

Dataset FedAvg Power-of-Choice Active FL FedProx IFCA FeSEM FedCVR-Bolt

MNIST 86.30 ± 1.12 81.00 ± 2.10 88.89 ± 0.98 89.69 ± 0.91 89.46 ± 1.04 86.77 ± 1.85 90.23 ± 0.82
CIFAR-10 52.67 ± 1.25 49.85 ± 1.71 55.19 ± 1.34 46.44 ± 1.88 52.94 ± 1.09 44.66 ± 2.06 57.06 ± 0.77
CIFAR-100 22.92 ± 0.95 23.46 ± 1.05 23.35 ± 1.12 22.13 ± 1.34 22.55 ± 1.28 11.87 ± 0.77 24.82 ± 0.88

5.2 FL CLASSIFICATION BENCHMARKS

We next evaluate FedCVR-Bolt on standard FL classification benchmarks. We consider MNIST
(LeCun, 1998), CIFAR-10, and CIFAR-100 (Krizhevsky, 2009), each partitioned across clients
using a Dirichlet distribution with concentration parameter α = 0.1 (Caldas et al., 2018), which
introduces both label and quantity heterogeneity. Each dataset is trained for T = 100 communication
rounds with P = 10 clients sampled per round and S = 10 local epochs. Model architectures and
hyper-parameters are detailed in Appendix C.

Table 2 reports average test accuracy across clients. FedCVR-Bolt consistently achieves the
highest performance across all benchmarks. In particular, it delivers notable gains over random client
sampling (FedAvg) and over the loss-aware Power-of-Choice, which can fail to generalize
well in heterogeneous regimes. Regularization with FedProx and clustering-based methods such as
IFCA and FeSEM yield competitive results, but remain below FedCVR-Bolt . This confirms the
effectiveness of our selection strategy in both simple and highly heterogeneous datasets.

6 CONCLUSIONS
We introduce FedCVR-Bolt , a novel framework addressing heterogeneous FL by drawing founda-
tional insights from opinion dynamics models. The core of FedCVR-Bolt lies in a client selection
strategy that biases sampling towards clients whose local models contribute most significantly to
maximizing the variance reduction of the global model update. Distinct from conventional sampling
methods, FedCVR-Bolt exploits concepts from coalition formation within opinion dynamics to
identify clusters of clients exhibiting similar model characteristics, i.e., the "opinions". A representa-
tive client is then sampled from each identified cluster. This approach is supported by theoretical
results that provide a strong motivation and foundation for our algorithm. Empirical evaluations on
heterogeneous datasets, including a synthetic linear regression task specifically designed to high-
light heterogeneity challenges and more complex benchmarks, demonstrate that FedCVR-Bolt
consistently outperforms traditional FL client selection algorithms.
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7 REPRODUCIBILITY STATEMENT

The reproducibility of the results and the theoretical contributions of this work has been a paramount
concern throughout the entire development of this project and while drafting this manuscript. In this
section, we provide details and a concise guide to reproduce our results and verify our contributions.

• Code Availability: All the code used in our experiments has been included in the supple-
mentary material of the submission. Additionally, we will release online a well-documented
and structured final version of the code, to allow for easy reproduction of the experiments
detailed in the paper.

• Datasets and data splits: The datasets used in our experiments are publicly available
and can be downloaded online. Detailed instructions on how to access and preprocess
the datasets will be provided together with the final code release. The data splits can be
generated directly through our provided code. This ensures that others can replicate the
exact federated learning scenarios used in our work.

• Theoretical Results: We provide complete proofs for all theorems and propositions pre-
sented in the paper in Appendix B.

We are confident that with these resources, all experimental and theoretical results can be reproduced
by the community.
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Symbol Description
K number of clients
K set of clients
A ⊆ K subset of clients
W (t) influence matrix among clients at round t
T number of communication rounds
D number of model parameters
S number of training iterations
P number of participating clients
η learning rate
θgl ∈ RD global model
θgl(t) ∈ RD global model at round t

θk(t) ∈ RD local model of client k at round t

θ̃k(t) ∈ RD normalized local model of client k at round t
L(θ) global loss
Lk(θ) client loss
Pt subset of participating clients at round t

θdgl ∈ RK random vector of d-th components of the global model
θd ∈ RK random vector of d-th components of the model
θ̄d mean of random vector θd

θ̄k(t+ 1) mean of unobserved clients k ∈ [K]\Ci(t)

Cd covariance of random vector θd

ρjk Pearson correlation coefficient between random variables j and k

vd ∈ RK value vector for the d-th component; vdk is the variance reduction for
estimating θdgl when sampling θdk

vk total variance reduction associated with client k
Π(K) set of all partitions of [K]
Ci(t) ∈ Π(K) i-th coalition at round t
πp(k; t) Boltzmann-like probability that client k is selected in coalition Ci(t)
nk number of training samples of k-th client

Table 3: Paper notation summary.

A NOTATION

For readability, we summarize below the notation conventions adopted throughout the paper.

B THEORETICAL GUARANTEES: PROOFS AND DETAILS

This appendix provides a comprehensive overview of the theoretical framework behind
FedCVR-Bolt . In Section B.1 we introduce the analogy between social dynamics and FL, focusing
on the construction of the influence matrix W between clients’ models. In Section B.2, we detail the
theoretical foundation of our algorithm, providing formalism and rigor to our design choices. Finally,
in Section B.3 we motivate the update policy for each client’s mean given the sampled and observed
clients.

B.1 SOCIAL DYNAMICS SETTING

In the last decades, the analysis of Social Dynamics has gained significant attention in the scientific
community, providing tools to understand, predict, and influence the spread and dissemination
of information across a complex network as well as collective decision-making processes. The
application of Opinion Dynamics goes beyond this specific application spacing among marketing,
politics, decision-making strategies (Zha et al., 2021). In order to face classical challenges from
Federated Learning, we decide to interpret them through the lens of Social Dynamics. Such an
innovative angle allows us to establish new results and gain novel insights on the topic.
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For the sake of completeness, we briefly present the general framework of Opinion Dynamics on
networks. Consider a set of nodes V representing social individuals in a network. Each node k ∈ V
is associated with a dynamic state xk(t) ∈ R, representing its opinion on a given topic at time t. This
opinion evolves over time, capturing the opinion formation process. Specifically, at each time step
t, each agent updates its opinion based on a linear combination of its own opinion, the opinions of
others with whom k interacts, and possibly some external input.

Nodes interact on a network. A directed link from node j to node k, denoted as (k, j) indicates that
agent j influences agent k. The set of all directed links is denoted as E . The influence strength among
individuals is encoded in a weight matrix W , whereby the generic entry Wkj represents the influence
strength of agent j on agent k. Clearly, if (k, j) /∈ E , then necessarily Wkj = 0, since k is not
influenced by j. The matrix W can be either static or time-varying. In the latter case, the network is
commonly referred to as a temporal network. A classical example of time-varying influence matrix is
the one used in bounded-confidence models, whereby two agents interact if and only if the difference
of their opinions is lower than a given threshold. In wider terms this kind of models aims to capture
homophily tendency among agents, which is a peculiar characteristic of many social networks.

In the case of interest, we may interpret each client k as a network node while the node status
refers to the client local model θk(t) with t index of the communication round. To naturally model
the influence matrix W (t) while accounting for the homophily effect, we build upon the approach
introduced in Mäs et al. (2010). Specifically, we define the social influence of agent j on agent k as

Wkj(t) =
e−γ∥θk(t)−θj(t)∥2

2∑
m∈K e−γ∥θk(t)−θm(t)∥2

2

∀j, k ∈ K,

where γ > 0 is a parameter that amplifies the role of models similarities, i.e., the larger γ, the more
pronounced is the homophily effect.
Remark A1. It is worth noting that we expect clients belonging to the same cluster to converge
toward similar local models. Consequently, the influence matrix W will asymptotically exhibit a
block-like structure, with each block corresponding to a distinct cluster. This observation supports the
specific formulation of W , as it aligns with our objective of accurately identifying and distinguishing
clusters within the network.

To validate our choice for the proximity matrix, we conduct an ablation study to analyze our
framework’s robustness. We implement our algorithm with other similarity functions used in coalition
formation (Scholkopf & Smola, 2001):

• Cosine Similarity: Wkj =
⟨θk(t), θj(t)⟩

||θk(t)||2 · ||θj(t)||2
• Laplacian Kernel: Wkj = exp(−γ||θk(t)− θj(t)||1)
• Sigmoid Kernel: Wkj = tanh(γ⟨θk(t), θj(t)⟩+ c)

While our theoretically-motivated choice yields the best performance (90.23% on MNIST, 57.06%
on CIFAR-10), our framework continues to substantially outperform the baselines even with these
alternative similarity metrics.

Table 4: Test accuracy (%) across proxy metrics. Best per dataset in bold.
Proxy Metric RBF (ours) Cosine Similarity Laplacian Kernel Sigmoid Kernel
MNIST 90.23% 88.72% 88.28% 88.92%
CIFAR-10 57.06% 55.32% 49.85% 50.25%

B.2 SAMPLING STRATEGY

Once the clusters have been identified, our goal is to determine a representative set of clients to
sample, one for each cluster. The approach we adopt is a generalization of classical methods originally
developed for sensor placement (Das & Kempe, 2008), and later extended to the context of opinion
dynamics in Raineri et al. (2025).
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Assumption A1. Given the K random variables θk, we indicate with Cd, for each d-th model
component, the covariance matrix Cov(θd). We assume Cd to be invertible.
Remark A2. This assumption is not very restrictive, as a violation would imply that the matrix
Cd is not full rank—i.e., there exist two clients whose models are identical or linearly dependent.
Such cases may arise, for example, in sibling attacks, where one client replicates the data of another.
However, exact model equivalence would require not only identical data but also identical training
dynamics, including the same mini-batch sampling during stochastic gradient descent. This is highly
unlikely in practice.

Moreover, our focus is on heterogeneous federated learning under non-adversarial conditions;
handling Byzantine or malicious behaviors is beyond the scope of this work. Therefore, we make the
standard assumption that the probability of two clients producing exactly identical models is equal to
zero.

Given θgl the global model to estimate from a subset A ⊆ K of local model sampling, we choose as
metrics to quantify the quality of the estimate the Variance Reduction, which measures the reduction
in uncertainty about θgl conditioned to the selected subset A, i.e.,

vdA := Var(θdgl)− E[Var(θdgl|θdA)] .

For the sake of completeness, let us now provide the technical proofs of the main results presented in
Section 3.1 which leads to a proper mathematical formulation of the measure of interest.

For the sake of clarity in our exposition, we prove the statements under the assumption of a zero
mean distribution of θd. It should be noted that this assumption does not limit the generality of our
findings, given that the measure of interest vdA is translation invariant, as indicated in i.e.,

vdA = Var(θdgl)− E[Var(θdgl|θdA)] = Var(θdgl − θ̄dgl)− E[Var(θdgl − θ̄dgl|θdA − θ̄dA)] .

Lemma A1. Consider θd ∈ RK the zero mean vector containing all the d-th model components of
the federation and θdgl = α⊤θd the global model to estimate. Given A ⊆ K, it holds

E[θdgl|θdA] = (Cd
AA)

−1(Cdα)Aθ
d
A , (13)

where Cd
AA is the invertible covariance matrix of θdA.

Proof. Recalling federated averaging aggregation (McMahan et al., 2017), at each round the global
model is updated as a linear convex combination of local models (refer to Eq.equation 2). Furthermore,
from classical statistical literature (Section 2.3.1 in Hastie et al. (2009)) it is well known that the
linear least squares projection of the global model θdgl given the sampling θdA is computed as

E[θdgl|θdA] = α̂⊤θd,

with
α̂ = arg min

β:supp(β)⊆A
E[(θdgl − β⊤θd)2],

which is the best linear predictor (in the mean squared error sense) of θdgl using only the components
of θd belonging to A.

Using the fact that by definition in equation 2 it holds θdgl = α⊤θd, we now derive the following
series of equalities:

α̂ = argminβ:supp(β)⊆A E[(α⊤θd − β⊤θd)2]
= argminβ:supp(β)⊆A E[(α− β)⊤θd(θd)⊤(α− β)]
= argminβ:supp(β)⊆A(α− β)⊤Cd(α− β)
= argminβ:supp(β)⊆A−2β⊤Cdα+ β⊤Cdβ,

The third equality is derived in accordance with E[θd(θd)⊤] = Cd, given that θd is predicated on the
assumption of being zero mean.

In order to compute the minimum let us now impose that

∂(−2α̂⊤Cdα+ α̂⊤Cdα̂)

∂α̂k
= 0,
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for every k ∈ A, which coincides with

(Cdα)A − (Cdα̂)A = 0 .

Thus, it holds
Cd

AA(αA − α̂A) + CA−Aα−A = 0,

where Cd
A−A = {Cd

ij}i∈A,j /∈A and α−A = {αi}i/∈A.

Given now that Cd is positive definite since it is an invertible covariance matrix, then from Sylvester
Criterion also its submatrix Cd

AA is invertible and the thesis follows.

Building on this Lemma, we can now prove the main result used in the definition of the sampling
strategy of our algorithm. In other words, let us now prove the explicit formulation for the variance
reduction formula.

Proposition A1. Consider θd ∈ RK the zero mean vector containing all the d-th model components
of the federation and θdgl = α⊤θd the global model to estimate. Then, the variance reduction,
subjected to sampling the subset A of possible clients, is computed as

vdA = (Cdα)⊤A(C
d
AA)

−1(Cdα)A, (14)

where Cd is the covariance matrix which captured the correlations among the clients.

Proof. First, notice that from Law of Total Variances

Var(θdgl)− E[Var(θdgl|θdA)] = Var(E[θdgl|θdA]) .

Thus, based on vdA definition from equation 12, applying Lemma 1, defined α̂ such that

α̂A = (Cd
AA)

−1(Cdα)A , α̂−A = 0,

and known from the steps in the proof of previous Lemma

(Cdα)A = (Cdα̂)A,

then it holds true that

vdA = Var(E[θdgl|θdA]) = α̂′Cdα̂ = α̂′
A(C

dα̂)A = α̂′
A(C

dα)A = (Cdα)′A(C
d
AA)

−1(Cdα)A .

Despite this metrics allows us to find the best subset of models to sample in order to best predict
the global model θgl, from Raineri et al. (2025) it is known to be a combinatorial problem which
becomes unfeasible increasing the number of samples.

Let us observe that if only one observation is allowed then the variance reduction formula, as stated
in Corollary 1 in Section 3.1, given A = {k}, takes the following form for every k ∈ K:

vdk =
(Cdα)2k
Cd

kk

,

which requires O(K2) operations, significantly reducing the computational cost.

Finally, our heuristic is based on the observation that if the network consists of P connected compo-
nents, interpreted as coalitions formed through agents’ homophily-driven interactions, then a natural
sampling strategy is to select one representative client per coalition. This choice is motivated by the
goal of optimally reducing the overall variance when the sampling budget allows for P clients.

B.3 UPDATE POLICY

Once the clients have been selected and sampled, the average of the random variables associated to
the unobserved models are updated conditioned to the observations done. An explicit formulation of
the conditional expected value is computed in the following proposition.
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Proposition A2. Let θd ∈ RK be the vector containing all the d-th model components of the
federation and θdgl = α⊤θd the global model to estimate. Let θdk be the sampled model at round t.
Then, the optimal estimator of an arbitrary model d-th component θdj with j ̸= k is

E[θdj |θdk] = ρkj

√
vj√
vk

θdk, (15)

with ρkj Pearson Correlation Coefficient between variables k and j.

Proof. First, notice that, from Lemma 1, chosen α = δ(j) where δ
(j)
i =

{
1 i = j

0 i ̸= j
, it holds

E[θdj |θdk] =
Cd

kj

Cd
kk

θdk .

Recalling that by ρ definition it holds

ρjk =
Cd

kj√
Cd

kk

√
Cd

jj

,

the thesis follows.

B.4 CONVERGENCE ANALYSIS

In this appendix, we establish convergence guarantees for FedCVR-Bolt . Our analysis builds on
standard assumptions in FL – smoothness of the global loss and bounded variance of the stochastic
federated gradient – extended with a mild alignment condition on the client selection policy. The
latter ensures that, in expectation, the update direction preserves a positive correlation with the true
gradient, thereby maintaining descent. Under these assumptions, we show that the sequence of global
iterates produced by FedCVR-Bolt converges, in expectation, to a neighborhood of a stationary
point of the global loss. Here, convergence is meant in the stochastic optimization sense: once
averaged over both the randomness of client sampling and the evolution in time, the gradient norm
becomes small. This differs from the stronger notion of convergence of the iterates θgl themselves
to an exact stationary point, which is precluded by the intrinsic variance of stochastic updates but
replaced by concentration around regions of vanishing gradient.
Assumption A2. The global loss function L(θ) is L-smooth, i.e., it is differentiable with L-Lipschitz
gradient and its federated gradient g(t) :=

∑
k∈Pt

α̃k∇Lk(θgl(t)) has bounded variance, i.e.,
EPt∼π(t)[∥g(t)− E[g(t)]∥2] < σ2.

Assumption A3. Gradient Variance Alignment. Let G(θ) := EPt∼π(t)[g(t)]. Assume there exists a
constant c > 0 s.t. ⟨G(θ),∇L(θ)⟩ ≥ c∥∇L(θ)∥2, i.e., the bias of the policy is informed and points
in a descent direction (very weak, and can be verified by our experimental results).
Proposition A3. Let {θgl(t)}t the sequence of global model update produced by FedCVR-Bolt
algorithm, with known model covariance C. Under Assumptions 1 and 2, FedCVR-Bolt, for a small
learning rate η > 0, converges to a neighborhood of a stationary point, i.e.,

lim
T→∞

1

T

T−1∑
t=0

E[∥∇L(θgl)∥2] < ε .

Proof. We focus on a single SGD step, having θgl(t+1) = θgl(t)−ηg(t), where g(t) is the federated
gradient produced by FedCVR-Bolt. Due to Assumption 1, if the loss is L-smooth, we can apply the
Descent Lemma, from Chapter 2, Theorem 2.1.5 in Nesterov (2014). Thus, we bound as follows:

L(θgl(t+ 1)) ≤ L(θgl(t))− η⟨∇L(θgl(t)), g(t)⟩+
Lη2

2∥g(t)∥2
.

By taking the expectation up to the t-th round, denoted by Et, our bound becomes:

Et[L(θgl(t+ 1))] ≤ L(θgl(t))− η⟨∇L(θgl(t)),Et[g(t)]⟩+
Lη2

2Et[∥g(t)∥2]
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Without losing generality, we can assume that after T0 we are in a thermalized regime, where the
spectral clustering has converged, and the clusters are stationary, namely ∀t > T0, Cp(t) = C∗p , hence
also the Boltzmann measure π(t) is stationary. Let us recall that we defined Et[g(t)] = G(θgl(t)).
Applying Assumption 2, we establish the following bounds:

⟨∇L(θgl(t)),Et[g(t)]⟩ = ⟨∇L(θgl(t)), G(θgl(t))⟩ ≥ c∥∇L(θgl(t))∥2,

and

Et[∥g(t)∥2] ≤ ∥G(θgl(t))∥2 + Et[∥g(t)−G(θgl(t))∥2] ≤ ∥G(θgl(t))∥2 + σ2 =: M,

since the gradient updates have bounded variance.

Therefore, we can re-write the bound obtained in the above as

Et[L(θgl(t+ 1))] ≤ L(θgl(t))− ηc∥∇L(θgl(t))∥2 + Lη2M/2

By taking the expectation over the whole iterations, denoted by E, we get

E[L(θgl(t+ 1))] ≤ E[L(θgl(t))]− ηcE[∥∇L(θgl(t))∥2] + Lη2M/2

If we sum over times, from the termalization time T0 to the final round T − 1, and we rearrange the
inequalities, we get

ηc

T−1∑
t=T0

E[∥∇L(θgl(t))∥2] ≤
T−1∑
t=T0

(E[L(θgl(t))]− E[L(θgl(t+ 1))]) + (T − T0)Lη
2M/2

Expanding the telescoping sum term on the right-hand-side, it reduces to E[L(θgl(T0))]−E[L(θgl(T )].
Let L∗ be the global optimum of the global loss, then [L(θgl(T )] ≥ L∗ and the expression above
becomes

ηc

T−1∑
t=T0

E[∥∇L(θgl(t))∥2] ≤ L(θgl(T0))− L∗ + (T − T0)Lη
2M/2

Dividing both terms by ηc(T − T0) the inequality becomes

1

T − T0

T−1∑
t=T0

E[∥∇L(θgl(t))∥2] ≤
L(θgl(T0))

ηc(T − T0)
− L∗

ηc(T − T0)
+

LηM

2c

For T →∞, T0 is negligible with respect to T . Hence, by finally adopting a change of variable and
taking the limit with respect to T , we obtain the claim as

lim
T→∞

1

T

T∑
t=0

E[∥∇L(θgl(t))∥2] ≤
LηM

2c
=: ε
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C IMPLEMENTATION DETAILS AND FURTHER EXPERIMENTS

In this appendix, we focus on the experimental setup, hyperparameters of FedCVR-Bolt , and base-
lines, including datasets and models. Moreover, Section C.2 addresses the practical implementation
of FedCVR-Bolt in the context of increasing model dimensions. Finally, Section C.3 provides
a detailed analysis of the synthetic dataset structure that simulates synthetic heterogeneous linear
regression for FL.

Code is available at https://anonymous.4open.science/r/fedcvr_bolt-26C8.

C.1 DATASETS AND IMPLEMENTATION DETAILS

We evaluate FedCVR-Bolt on various datasets. For a more straightforward scenario, we consider
a one-dimensional linear regression under both IID and non-IID distributions, with and without
intercept, i.e., D = 1 and D = 2 respectively. The dataset construction process is outlined in Section
C.3. Subsequently, we evaluate the performance of FedCVR-Bolt using several classification
benchmark datasets that are widely used in FL (Li et al., 2020; Caldas et al., 2018), particularly
utilizing the Synthetic dataset (Li et al., 2020; Cho et al., 2022), Federated MNIST (LeCun, 1998),
and CIFAR-10 (Krizhevsky, 2009). To simulate a heterogeneous environment, we employ the
Synthetic(1,1) setting, while the other datasets are partitioned using a Dirichlet distribution with
α = 0.1, by implementing a sampler according to Caldas et al. (2018). Regarding the MNIST
dataset, a multilayer perceptron was utilized, comprising two layers with 200 hidden neurons and
ReLU activations. In contrast, the CIFAR-10 and CIFAR-100 experiments involved a convolutional
neural network, which consisted of two convolutional and max-pooling layers, followed by two fully
connected layers, for generating class predictions.

In all experiments, the dataset is partitioned across K = 100 clients, followed by dividing the
datasets into training and testing sets to assess model performance. The models have been trained
with Stochastic Gradient Descent with S = 10 local epochs, a batch size of 100, and a learning
rate of η = 0.01. We set the number of communication rounds to T = 200 for the MNIST dataset
experiments and T = 100 for the other datasets. For each round, P = 10 clients are sampled to
participate in the training.

We employed γt = 1/t in the training of FedCVR-Bolt to ensure the convergence of Robbins-
Monro estimators applied to the covariance (Robbins & Monro, 1951), followed by the temperature
parameter β = 1. In the case of Power-of-choice (Cho et al., 2022), we obtained d = 2P
samples and subsequently selected the P that exhibited the highest test loss on the global model. For
Active FL (Goetz et al., 2019), we set α1 = 0.8 (which is equivalent to d = 2P ), and similarly
utilized the temperature parameter α2 = 1 as our temperature parameter β, α3 = 0 to achieve
comparability with Power-of-choice.

Synthetic experiments were executed locally on an Apple M1 processor, while MNIST and CIFAR
experiments utilized an RTX8000 NVIDIA GPUs.

C.2 PRACTICAL IMPLEMENTATION OF FEDCVR-BOLT

Practically, FedCVR-Bolt clusters client according to the observed model θk(t). To further stabilize
the initial estimation phase, we implement a uniformly random sampling strategy during the initial
30 rounds, enabling the observation of local adaptations of the global model across various sampled
clients. The selection of 30 rounds offers a balanced approach between exploring client heterogeneity
and subsequently leveraging the clustering structure. This initial phase is dedicated to observing a
diverse set of client behaviors, which allows the Robbins-Monro estimator to build a more reliable
and stable baseline covariance structure before our variance-reduction sampling policy becomes
active (Grimmett & Stirzaker, 2001).

Similar to numerous FL methods based on local updates — such as Ghosh et al. (2020) — executing
operations on the full model becomes increasingly burdensome as the model size increases. Fur-
thermore, from a statistical standpoint, the early feature extraction layers (such as convolutional or
embedding layers) frequently contribute less discriminative information for clustering and may intro-
duce superfluous noise along with computational overhead. Hence, when managing larger models, we
confine the covariance computation to the parameters of the final fully connected layer. If this layer
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remains excessively large, we further diminish dimensionality by randomly sampling a subset of its
weights. Specifically, for the MNIST dataset, we utilize the entire final layer; whereas for CIFAR-10,
where the final layer has higher dimensionality, we sample D = 300 weights. This approach achieves
an advantageous compromise between computational efficiency and representational adequacy.

C.3 SYNTHETIC LINEAR REGRESSION

To simulate client heterogeneity, we generate synthetic datasets across K = 100 clients, each
assigned to one of J latent clusters. The IID case is reproducible by setting J = 1. Each client k is
associated with a cluster index jk, sampled uniformly from 0, . . . , J − 1. Given jk, we generate local
input samples {xi

k}Ni=1 ⊂ RD from a Gaussian distribution D(θx,jk , σ2
x,jk

ID), where θx,jk is the
cluster-dependent mean, i.e., the mean of the input data distribution for cluster jk ∈ {0, . . . , J − 1},
and σx,jk is the corresponding standard deviation. For each input xi

k, a latent regression vector θik ∼
D(θ̄jk , σ2

θ,jk
ID) is independently sampled, and the target variable is computed as yik = (θik)

⊤xi
k. To

enable an intercept term, a bias component of 1 is concatenated to each xi
k. This process yields a

rich, continuous label space with both intra and inter cluster variability, reflecting both statistical
heterogeneity across clients and random variations within each local dataset.

D PRIVACY OF FEDCVR-BOLT

The privacy of client data in FedCVR-Bolt algorithm is preserved by adhering to the fundamental
principles of FL: raw data remains on client devices and is never transmitted to the server. Clients
selected from the set Pt perform local updates using the global model θgl(t) to produce their updated
local models θjp(t+ 1). Moreover, clients subsequently communicate to the server only these model
parameters, not the underlying private data. To further protect such parameters during aggregation
steps (e.g., for the computation of θgl(t+ 1)), it is possible to employ secure aggregation protocols
(Bonawitz et al., 2016). While the distinctive server-side operations of FedCVR-Bolt , such as
clustering based on individual models {θk(t)} and deriving θ̄k(t + 1) from specific client model
updates θjp(t+ 1), require the server to access these individual parameters for its core functionality,
this architectural choice is consistent with federated architectures where the central server orchestrates
the learning process using the model parameters received from the clients (Kairouz et al., 2021) for
advanced tasks like personalization or clustering (Smith et al., 2017). Thus, FedCVR-Bolt ensures
foundational data privacy by localizing data processing, and the principles of secure aggregation
offer a complementary mechanism for enhancing model confidentiality during aggregation where the
algorithm’s direct need for individual parameter access permits.
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