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ABSTRACT

We design a new family of hybrid CNN-ViT neural networks, named FasterViT,
with a focus on high image throughput for computer vision (CV) applications.
FasterViT combines the benefits of fast local representation learning in CNNs and
global modeling properties in ViT. Our newly introduced Hierarchical Attention
(HAT) approach decomposes global self-attention with quadratic complexity into a
multi-level attention with reduced computational costs. We benefit from efficient
window-based self-attention. Each window has access to dedicated carrier tokens
that participate in local and global representation learning. At a high level, global
self-attentions enable the efficient cross-window communication at lower costs.
FasterViT achieves a SOTA Pareto-front in terms of accuracy and image throughput.
We have extensively validated its effectiveness on various CV tasks including
classification, object detection and segmentation. We also show that HAT can be
used as a plug-and-play module for existing networks and enhance them. We further
demonstrate significantly faster and more accurate performance than competitive
counterparts for images with high resolution.
Code is available at https://github.com/NVlabs/FasterViT.

1 INTRODUCTION

Vision Transformers (ViTs) (Dosovitskiy et al., 2020) have recently become popular in
computer vision and achieved superior performance in various applications such as image
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Figure 1: Comparison of image throughput and
ImageNet-1K Top-1 accuracy. Throughput is mea-
sured on A100 GPU with batch size of 128.

classification (Liu et al., 2021; Dong et al.,
2022; Lin et al., 2017), object detection (Zhang
et al., 2021b; Fang et al., 2021) and semantic
segmentation (Xie et al., 2021; Cheng et al.,
2021). In addition to learning more uniform lo-
cal and global representations across their archi-
tecture when compared to Convolutional Neu-
ral Networks (CNNs), ViTs scale properly to
large-scale data and model sizes (Raghu et al.,
2021; Paul & Chen, 2022). Recently, several
efforts (He et al., 2022; Xie et al., 2022) have
also shown the exceptional capability of ViTs in
self-supervised learning of surrogate tasks such
as masked image modeling which may signifi-
cantly enhance the performance of downstream
applications. Despite these advantages, lack of
inductive bias in pure ViT models may require
more training data and impede performance (Xu
et al., 2021b). Hybrid architectures, which con-
sist of both CNN and ViT-based components,
could address this problem and achieve compet-
itive performance without needing large-scale
training datasets (Dosovitskiy et al., 2020) or other techniques such as knowledge distillation (Touvron
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et al., 2021a). An integral component of ViTs is the self-attention mechanism (Vaswani et al., 2017;
Dosovitskiy et al., 2020) which enables modeling of both short and long-range spatial dependencies.
However, the quadratic computational complexity of self-attention significantly impacts the efficiency
and hinders its use for applications with high-resolution images. In addition, contrary to the isotropic
architecture (i.e., same feature resolution with no downsampling) of the original ViT model, learning
feature representations in a multi-scale manner typically yields better performance (Fan et al., 2021;
Wang et al., 2022), specifically for downstream applications (e.g., detection, segmentation).

To address these issues, Swin Transformer (Liu et al., 2021) proposed a multi-scale
architecture in which self-attention is computed in local windows, and window-
shifting allows for interaction of different regions. However, due to the lim-
ited receptive field of these local regions and small area of coverage in window

Figure 2: Visualization of the proposed Hierarchical
Attention in the feature space. By performing local win-
dow attention and hierarchical attention we can achieve
global information propagation at reduced costs.
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shifting (Liu et al., 2021; Lin et al., 2017), cap-
turing cross-window interactions and model-
ing the long-range spatial dependencies become
challenging for large-resolution input features.
Furthermore, using self-attention blocks in early
stages with larger resolution may impact the im-
age throughput due to the increased number of
local windows. Recently, the Swin Transformer
V2 model (Liu et al., 2022a) was proposed to
address training instabilities on high-resolution
images by improving the self-attention mecha-
nism. However, in addition to having a lower
image throughput compared to the Swin Transformer (Liu et al., 2021), Swin Transformer V2 still
relies on the original window-shifting mechanism for cross-interaction of different windows, which
becomes less effective with large image sizes.

In this work, we attempt to address these issues and propose a novel hybrid architecture, denoted
as FasterViT, which is tailored for high-resolution input images, while maintaining a fast image
throughput. FasterViT consists of four different stages in which the input image resolution is reduced
by using a strided convolutional layer, while doubling the number of feature maps. We propose to
leverage residual convolutional blocks in the high-resolution stages of the architecture (i.e., stage
1, 2), while employing transformer-blocks in later stages (i.e., stage 3, 4). This strategy allows for fast
generation of high-level tokens which can be further processed with the transformer-based blocks.
For each transformer block, we use an interleaved pattern of local and, newly proposed, Hierarchical
Attention blocks to capture both short and long-range spatial dependencies and efficiently model
the cross-window interactions. Specifically, our proposed Hierarchical Attention (see Fig. 2) learns
carrier tokens as a summary of each local window and efficiently models the cross-interaction between
these regions. The computational complexity of the Hierarchical Attention grows almost linearly
with input image resolution, as the number of regions increases, due to the local windowed attention
being the compute bottleneck. Hence, it is an efficient, yet effective way of capturing long-range
information with large input features.

We have extensively validated the effectiveness of the proposed FasterViT model on various image
tasks and datasets such as ImageNet-1k for image classification, MS COCO for object detection
and instance segmentation and ADE20K dataset for semantic segmentation. FasterViT achieves
state-of-the-art performance considering the trade-off between performance (e.g., ImageNet-1K top-1
accuracy) and image throughput (see Fig. 1). To demonstrate the scalability of FasterViT for larger
datasets, we have also pre-trained FasterViT on ImageNet-21K dataset and achieved state-of-the-art
performance when fine-tuning and evaluating on larger-scale resolutions.

The summary of our contributions is as follows:

• We introduce FasterViT, which is a novel hybrid vision transformer architecture designed
for an optimal trade-off between performance and image throughput. FasterViT scales
effectively to higher resolution input images for different dataset and model sizes.

• We propose the Hierarchical Attention module which efficiently captures the cross-window
interactions of local regions and models the long-range spatial dependencies.

• FasterViT achieves a new SOTA Pareto front in terms of image throughput and accuracy
trade-off and is significantly faster than comparable ViT-based architectures yielding signifi-
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cant speed-up compared to recent SOTA models. It also achieves competitive performance
on downstream tasks of detection and instance segmentation on MS COCO dataset and
semantic segmentation on ADE20K dataset.

2 RELATED WORK

Vision Transformers. Oriented from the language processing domain, the first application of
transformer architecture to vision task immediately offers an inspiring demonstration of the high
efficacy of attention across image patches across varying scenarios (Dosovitskiy et al., 2020). The
appealing strength of vision transformer and its architecture and logic simplicity has therefore
triggered a quickly evolving literature in the past two years, where ViT performance is quickly
boosted by an erupting new set of innovations: network-wise leveraging knowledge distillation for
data-efficient training as in DeiT (Touvron et al., 2021a), hybriding convolution and self-attention for
enhanced inductive biases as in LeViT (Graham et al., 2021), imposing CNN-inspired pyramid rules
on ViTs (Wang et al., 2021; 2022), along with component-wise improvements such as improved token
utilization as in T2T-ViT (Yuan et al., 2021), enhanced positional embedding (Chu et al., 2021b),
local window attention as shown in the inspiring work of the Swin family (Liu et al., 2021; 2022a)
and CSwin (Dong et al., 2022), global attention in GCViT (Hatamizadeh et al., 2023), among many
other architectural insights (Chu et al., 2021a; Zhang et al., 2021a; Yuan et al., 2022). Along with
the increasing capacity comes the increasing computation burden. As similarly facing challenges
in scaling up the models in language tasks (e.g., from BERT-Large 0.3B (Devlin et al., 2019), to
Megatron-LM 8.3B (Shoeybi et al., 2019), and Switch-Transformer1.6T (Fedus et al., 2021)), scaling
up vision transformers is also a highly challenging but highly important task (Dai et al., 2021; Liu
et al., 2022a) due to the attention-extensive nature of transformers, urging efficiency for pervasive
usage.

Towards Enhanced Efficiency. Boosting up ViT efficiency has therefore been a very vibrant area.
One stream of approach roots in the efficient deep learning literature that cuts down on network
complexity leveraging popular methods such as efficient attention (Bolya et al., 2022; Lu et al.,
2021; Cai et al., 2022), network compression (Chen et al., 2021b;c; Liang et al., 2022; Yang et al.,
2021a), dynamic inference (Yin et al., 2022; Rao et al., 2021), operator adaptation (Molchanov
et al., 2022), token merging and manipulations (Marin et al., 2021; Xu et al., 2022), etc. These
methods can yield off-the-shelf speedups on target ViT backbones, but are also limited to the original
backbone’s accuracy and capacity. Another stream of work, on the other hand, focuses on designing
new ViT architectures with enhanced efficiency as an original design objective. For example,
EfficientFormer (Li et al., 2022) entails mobile applications through dimension-consistent re-design
of transformer block and removing redundant architectural components. VisFormer (Chen et al.,
2021d) transits computation extensive transformer to a convolutional counterpart for enhanced vision
efficiency. CrossViT (Chen et al., 2021a) learns multi-scale features and utilizes small/large-patch
backed tokens that are channeled by efficient attention, offering linear time and memory complexity.
Even with such a rapid progress in literature, enabling efficient ViTs remains a significant challenge,
where we next further push the Pareto front of faster ViT on top of prior art by a large margin. Note
that we focus on the second stream of architectural redesign for efficiency boost, and consider a joint
exploration with the first acceleration stream of method like compression as orthogonal and fruitful
future work.

Global Self-Attention. A number of efforts have introduced global self-attention to capture more
contextual information. In NLP (i.e., 1D), BigBird (Zaheer et al., 2020) and LongFormer (Beltagy
et al., 2020) proposed to select special tokens (i.e. non-learnable) as global tokens to attend to other
tokens via a sliding-window dense self-attention. In computer vision, EdgeViT (Pan et al., 2022),
Twins (Chu et al., 2021a) and Focal Transformer (Yang et al., 2021b) proposed hierarchical-like
attention mechanisms which rely on heuristic token aggregation in the forms of pooling (Yang et al.,
2021b) or linear projection (Pan et al., 2022; Chu et al., 2021a). There are three key differences
between these efforts and our proposed hierarchical attention: (1) as opposed to using a pre-defined
mechanism to select the global tokens (e.g., random), we propose to learn these tokens (i.e., carrier
token) via summarizing the role of each region in the input feature space (2) we propose learnable
token aggregation and propagation mechanisms by computing self-attention among carrier tokens
(3) as opposed to using dense/dilated self-attention, our proposed HAT uses local window-based
self-attention and has a smaller computational complexity.
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Figure 3: Overview of the FasterViT architecture. We use a multi-scale architecture with CNN and
transformer-based blocks in stages 1, 2 and 3, 4, respectively. Best viewed in color.

3 FASTERVIT

3.1 DESIGN PRINCIPALS

We next detail our FasterViT architecture, offering Pareto accuracy-latency trade-off. We focus on
highest throughput for computer vision tasks on mainstream off-the-shelf hardware such as GPUs
that excel in parallel computing. Computation in this case involves a set of streaming multiprocessors
(SMs) with CUDA and Tensor cores as computation units. It requires frequent data transfer for
calculation and can be impacted by data movement bandwidth. As such, operations bounded by
computation are math-limited, while those bounded by memory transfer are memory-limited. It
requires a careful balance between the two to maximize throughput.

In hierarchical vision models, spatial dimension of intermediate representation shrinks as inference
proceeds. Initial network layers mostly have larger spatial dimensions and fewer channel (e.g.,
112ˆ112ˆ64), making them memory-bound. This makes a better fit for compute-intensive operations,
such as dense convolution instead of depth-wise/sparse counterparts that impose extra transfer cost.
Also operations not representable in matrix manipulation forms, e.g., non-linearity, pooling, batch
normalization, are also memory-bound and shall be minimized for usage. On the contrary, later
layers tend to be math-limited with computationally expensive operations. For example, hierarchical
CNNs have feature maps of size 14ˆ14 with high dimensional kernels. This leaves room for more
expressive operations such as Layer Normalization, squeeze-and-excitation, or attention, with fairly
small effect on throughput. Guided by these insights we design a novel architecture that will benefit
all stages from accelerated computing hardware.

3.2 ARCHITECTURE

Our overall design is shown in Fig. 3. It exploits convolutional layers in the earlier stages that operate
on higher resolution. The second half of the model relies on novel hierarchical attention layers
to reason spatially across the entire feature maps. In this design, we optimize the architecture for
compute and throughput. As a result, the first half of the network and downsampling blocks make
use of dense convolutional kernels. We also avoid squeeze-and-excitation operators and minimize
Layer Normalization for higher resolution stages (i.e., 1, 2), as these layers tend to be math-limited.
Later stages (i.e., 3, 4) in the architecture tend to be math-limited as GPU hardware spends more time
on compute compared to the memory transfer cost. As a result, applying multi-head attention will
not be a bottleneck.

3.3 FASTERVIT COMPONENTS

Stem An input image x P RHˆWˆ3 is converted into overlapping patches by two consecutive 3ˆ3
convolutional layers, each with a stride of 2, which project them into a D-dimensional embedding.
The embedded tokens are further batch-normalized (Ioffe & Szegedy, 2015) and use the ReLU
activation function after each convolution.

Downsampler Blocks FasterViT follows the hierarchical structure: the spatial resolution is reduced
by 2 between stages by a downsampling block. We apply 2D layer normalization on spatial features,
followed by a convolutional layer with a kernel of 3 ˆ 3 and a stride of two.
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Figure 4: Proposed Hierarchical Attention block. Carrier tokens (CT) learn a summary of each local
window and facilitate global information exchange between local windows. Local window tokens
only have access to a dedicated subset of CT for efficient attention. CT undergo full self-attention
to enable cross-window attention. “Attention” stands for MHSA (Vaswani et al., 2017), MLP for
multi-layer perceptron. Best viewed in color.

Conv Blocks Stage 1 and 2 consist of residual convolutional blocks, which are defined as

x̂ “ GELUpBNpConv3ˆ3pxqqq,

x “ BNpConv3ˆ3px̂qq ` x,
(1)

where BN denotes batch normalization (Ioffe & Szegedy, 2015). Following the design principles,
these convolutions are dense.

Hierarchical Attention In this work, we propose a novel formulation of windowed attention,
summarized in Fig 2 and detailed presentation in Fig 4. We start with local windows introduced in
Swin Transformer (Liu et al., 2021). Then, we introduce a notion of carrier tokens (CTs) that play the
summarizing role of the entire local window. The first attention block is applied on CTs to summarize
and pass global information. Then, local window tokens and CTs are concatenated, such that every
local window has access only to its own set of CTs. By performing self attention on concatenated
tokens we facilitate local and global information exchange at reduced cost. By alternating sub-
global (CTs) and local (windowed) self-attention we formulate a concept of hierarchical attention.
Conceptually, CTs can be further grouped into windows and have a higher order of carrier tokens.

Assume we are given an input feature map x P RHˆWˆd in which H , W and d denote the height,
width and number of feature maps, let us set H “ W for simplicity. We first partition the input
feature map into n ˆ n local windows with n “ H2

k2 , where k is the window size, as:

x̂l “ Splitkˆkpxq. (2)

The key idea of our approach is the formulation of carrier tokens (CTs) that help to have an attention
footprint much larger than a local window at low cost. At first, we initialize CTs by pooling to L “ 2c

tokens per window:

x̂c “ Conv3ˆ3pxq,

x̂ct “ AvgPoolH2Ñn2Lpx̂cq,
(3)

where Conv3ˆ3 represents efficient positional encoding inspired by (Chu et al., 2021c) and used
in Twins (Chu et al., 2021a). x̂ct and AvgPool denote the carrier tokens and feature pooling
operation, respectively; c is set to 1, but can be changed to control latency. The current approach with
conv+pooling gives flexibility with the image size. These pooled tokens represent a summary of their
respective local windows, we set L ăă k. The procedure of CT initialization is performed only once
for every resolution stage. Note that every local window x̂l has unique set of carrier tokens, x̂ct,l,
such that x̂ct “ tx̂ct,lu

n
l“0.

In every HAT block, CTs undergo the attention procedure:

x̂ct “ x̂ct ` γ1 ¨ MHSApLNpx̂ctqq,

x̂ct “ x̂ct ` γ2 ¨ MLPdÑ4dÑdpLNpx̂ctqq,
(4)

where LN represents layer normalization (Ba et al., 2016), MHSA represents multi-head self atten-
tion (Vaswani et al., 2017), γ is a learnable per-channel scale multiplier (Touvron et al., 2021b),
MLPdÑ4dÑd is a 2-layer MLP with GeLU (Hendrycks & Gimpel, 2016) activation function.
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Figure 5: Attention map comparison for a feature map of size H ˆ H ˆ d. - no attention, -
normal token attention, - carrier token attention, - random token attention. Full attention (a) has
complexity of OpH4dq, windowed attention significantly reduces it to Opk2H2dq but lacks global
context.

Next, in order to model short-long-range spatial information, we compute the interaction between the
local and carrier tokens, x̂l and x̂ct,l, respectively. At first, local features and CTs are concatenated.
Each local window only has access to its corresponding CTs:

x̂w “ Concatpx̂l, x̂ct,lq. (5)

These tokens undergo another set of attention procedure:

x̂w “ x̂w ` γ1 ¨ MHSApLNpx̂wqq,

x̂w “ x̂w ` γ2 ¨ MLPdÑ4dÑdpLNpx̂wqq.
(6)

Finally, tokens are further split back and used in the subsequent hierarchical attention layers:

x̂l, x̂ct,l “ Splitpx̂wq, (7)

Procedures described in Equations 4-7 are iteratively applied for a number of layers in the stage. To
further facilitate long-shot-range interaction, we perform global information propagation, similar to
the one in (Pan et al., 2022) in the end of the stage. Finally, the output of the stage is computed as:

x “ Upsamplen2LÑH2px̂ct,lq ` Mergen2k2ÑH2px̂lq (8)

MHSAs performed in Eq. 4 and 6 are token position invariant, however, the location of features
in the spatial dimension are clearly informative. To address this, we first add absolute positional
bias directly to CTs and local window tokens. We are inspired by SwinV2 (Liu et al., 2022a) and
employ a 2-layer MLP to embed absolute 2D token location into feature dimension. Then, to facilitate
image-like locality inductive bias we enhance the attention with log space relative positional bias from
SwinV2 (Liu et al., 2022a) (2-layer MLP). It ensures that the relative position of tokens contribute
to shared attention patterns. This approach yields flexibility regarding image size, as the positional
encoding is interpolated by the MLP, and hence a trained model can be applied to any input resolution.

An attention map comparison between efficient global-local self attention is shown in Fig. 5. The
proposed hierarchical attention splits full attention into local and sub-global, both compressible to 2
dense attentions. Carrier tokens participate in both attentions and facilitate information exchange.

Complexity Analysis of HAT The key features of the efficiency of our approach are (i) separation
of attentions and (ii) local windows only have access to their CTs. The complexity of the most
conventional and popular full attention is OpH4dq. Partitioning the feature size into windows of size
k, and running the attention, simplifies the attention to Opk2H2dq as proposed in (Liu et al., 2021). It
is well known that such windowed attention is more efficient but lacks global feature interaction. Our
approach takes this one step further and is based on carrier tokens that summarize and interact over
the entire feature map, to remedy for missing global communication. Given L total carrier tokens
per window, local window complexity is Oppk2 ` LqH2dq. Local (windowed) attention is followed
by attention on carrier tokens with complexity OppH2

k2 Lq2dq. The total cost of both attentions is
Opk2H2d ` LH2d ` H4

k4 L
2dq.

An orthogonal approach for multilevel attention is to provide access to subsampled global information
inside local attention. For example, Twins (Chu et al., 2021a) subsamples global feature map and
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Table 1: Comparison of classification benchmarks on ImageNet-1K dataset (Deng et al., 2009).
Image throughput is measured on A100 GPUs with batch size of 128.

Model Image Size #Param FLOPs Throughput Top-1
(Px) (M) (G) (Img/Sec) (%)

Conv-Based

ConvNeXt-T Liu et al. (2022b) 224 28.6 4.5 3196 82.0
ConvNeXt-S Liu et al. (2022b) 224 50.2 8.7 2008 83.1
ConvNeXt-B Liu et al. (2022b) 224 88.6 15.4 1485 83.8
RegNetY-040 Radosavovic et al. (2020) 288 20.6 6.6 3227 83.0
ResNetV2-101 Wightman et al. (2021) 224 44.5 7.8 4019 82.0
EfficientNetV2-S Tan & Le (2021) 384 21.5 8.0 1735 83.9

Transformer-Based

Swin-T Liu et al. (2021) 224 28.3 4.4 2758 81.3
Swin-S Liu et al. (2021) 224 49.6 8.5 1720 83.2
SwinV2-T Liu et al. (2022a) 256 28.3 4.4 1674 81.8
SwinV2-S Liu et al. (2022a) 256 49.7 8.5 1043 83.8
SwinV2-B Liu et al. (2022a) 256 87.9 15.1 535 84.6
Twins-B Chu et al. (2021a) 224 56.1 8.3 1926 83.1
DeiT3-L 224 304.4 59.7 535 84.8
PoolFormer-M58 Yu et al. (2022) 224 73.5 11.6 884 82.4

Hybrid

CoaT-Lite-S Xu et al. (2021a) 224 19.8 4.1 2269 82.3
CrossViT-B Chen et al. (2021a) 240 105.0 20.1 1321 82.2
Visformer-S Chen et al. (2021d) 224 40.2 4.8 3676 82.1
EdgeViT-S Pan et al. (2022) 224 13.1 1.9 4254 81.0
EfficientFormer-L7 Li et al. (2022) 224 82.2 10.2 1359 83.4
MaxViT-B Tu et al. (2022) 224 120.0 23.4 507 84.9
MaxViT-L Tu et al. (2022) 224 212.0 43.9 376 85.1

FasterViT

FasterViT-0 224 31.4 3.3 5802 82.1
FasterViT-1 224 53.4 5.3 4188 83.2
FasterViT-2 224 75.9 8.7 3161 84.2
FasterViT-3 224 159.5 18.2 1780 84.9
FasterViT-4 224 424.6 36.6 849 85.4
FasterViT-5 224 957.5 113.0 449 85.6
FasterViT-6 224 1360.0 142.0 352 85.8

uses it as key and value for local window attention. It has a complexity of Opk2H2d ` H4

k2 dq (from
the paper). Under the same size of the local window (k), and H , we can get the difference of
OpL ` H2L2

k4 q for HAT and OpH2

k2 q for Twins. HAT gets more efficient with higher resolution, for
example, for H “ 32, k “ 8, with L “ 4 we get Op8q for HAT, whereas Op16q for Twins.

4 RESULTS

4.1 IMAGE CLASSIFICATION

In Table 1, we demonstrate a quantitative comparison between the performance of FasterViT models
and a variety of different hybrid, conv and Transformer-based networks on ImageNet-1K dataset.
Comparing to Conv-based architectures, we achieve higher accuracy under the same throughput, for
example, we outperform ConvNeXt-T by 2.2%. Considering the accuracy and throughput trade-off,
FasterViT models are significantly faster than Transformer-based models such as the family of Swin
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Table 2: Object detection and instance segmentation benchmarks using Cascade Mask R-CNN (He
et al., 2017) on MS COCO dataset (Lin et al., 2014). All models employ 3ˆ schedule. All model
statistics are reported using a input test resolution of 1280 ˆ 800.

Backbone Throu. APbox APmask

im/sec Box 50 75 Mask 50 75

Swin-T Liu et al. (2021) 161 50.4 69.2 54.7 43.7 66.6 47.3
ConvNeXt-T Liu et al. (2022b) 166 50.4 69.1 54.8 43.7 66.5 47.3
DeiT-Small/16 Touvron et al. (2021a) 269 48.0 67.2 51.7 41.4 64.2 44.3
FasterViT-2 287 52.1 71.0 56.6 45.2 68.4 49.0
Swin-S Liu et al. (2021) 119 51.9 70.7 56.3 45.0 68.2 48.8
X101-32 Xie et al. (2017) 124 48.1 66.5 52.4 41.6 63.9 45.2
ConvNeXt-S Liu et al. (2022b) 128 51.9 70.8 56.5 45.0 68.4 49.1
FasterViT-3 159 52.4 71.1 56.7 45.4 68.7 49.3
X101-64 Xie et al. (2017) 86 48.3 66.4 52.3 41.7 64.0 45.1
Swin-B Liu et al. (2021) 90 51.9 70.5 56.4 45.0 68.1 48.9
ConvNeXt-B Liu et al. (2022b) 101 52.7 71.3 57.2 45.6 68.9 49.5
FasterViT-4 117 52.9 71.6 57.7 45.8 69.1 49.8

Model Image Size #Param FLOPs Throughput Top-1
(Px) (M) (G) (Img/Sec) (%)

ViT-L/16; Liu et al. (2021) 384 307.0 190.7 149 85.2
Swin-L; Liu et al. (2021) 224 197.0 34.5 787 86.3
Swin-L; Liu et al. (2021) 384 197.0 103.9 206 87.3
ConvNeXt-L; Liu et al. (2022b) 224 198.0 34.4 508 86.6
ConvNeXt-L; Liu et al. (2022b) 384 198.0 101.0 172 87.5
FasterViT-4; 224 424.6 36.6 849 86.6
FasterViT-4; 384 424.6 119.2 281 87.5

Table 3: ImageNet-21K pretrained classification benchmarks on
ImageNet-1K dataset (Deng et al., 2009). Image throughput is mea-
sured on A100 GPUs with batch size of 128. ; denotes models that
are pre-trained on ImageNet-21K dataset.

Transformers (Liu et al.,
2021; 2022a). Furthermore,
compared to hybrid models,
such as the recent Efficient-
Former (Li et al., 2022) and
MaxViT (Tu et al., 2022)
models, FasterViT on aver-
age has a higher through-
put while achieving a better
ImageNet top-1 performance.
To validate the scalability
of the proposed model, we
pre-trained FasterViT-4 on
ImageNet-21K dataset and
fine-tuned it on various im-
age resolutions on ImageNet-1K dataset. As shown in Table 3, FasterViT-4 has a better accuracy-
throughput trade-off compared to other counterparts.

4.2 DENSE PREDICTION TASKS

Model Throughput FLOPs (G) IoU(ss/ms)

Swin-T Liu et al. (2021) 350 945 44.5/45.8
ConvNeXt-T Liu et al. (2022b) 363 939 - /46.7
FasterViT-2 377 974 47.2/48.4

Twins-SVT-B Chu et al. (2021a) 204 - 47.7/48.9
Swin-S Liu et al. (2021) 219 1038 47.6/49.5
ConvNeXt-S Liu et al. (2022b) 234 1027 - /49.6
FasterViT-3 254 1076 48.7/49.7

Twins-SVT-L Chu et al. (2021a) 164 - 48.8/50.2
Swin-B Liu et al. (2021) 172 1188 48.1/49.7
ConvNeXt-B Liu et al. (2022b) 189 1170 - /49.9
FasterViT-4 202 1290 49.1/50.3

Table 4: Semantic segmentation on ADE20K (Zhou
et al., 2017) with UPerNet (Xiao et al., 2018).

In Table 2, we present object detection
and instance segmentation benchmarks on
MS COCO dataset (Lin et al., 2014) with
Cascade Mask R-CNN (He et al., 2017)
network. We observe that FasterViT
models have better accuracy-throughput
trade-off when compared to other coun-
terparts. Specifically, FasterViT-4 outper-
forms ConvNeXt-B and Swin-B by +0.2
and +1.0 in terms of box AP and +0.3 and
+1.0 in terms of mask AP, while being 15%
and 30% faster in terms of throughput, re-
spectively. We also conduct additional ob-
ject detection experiments with FasterViT-4
ImageNet-21K pre-trained backbone and the state-of-the-art DINO (Zhang et al., 2022) model
and achieve a high detection accuracy of 58.7 box AP. In Table 4, we present the semantic seg-
mentation benchmarks with UPerNet (Xiao et al., 2018) network for experiments conducted on
ADE20K dataset (Zhou et al., 2017). Similar to previous tasks, FasterViT models benefit from a
better performance-throughput trade-off.
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5 ABLATION

Model Attention FLOPs (G) Thr(Img/Sec) Top-1 (%)

FasterViT-0 Twins (Chu et al., 2021a) 3.0 6896 80.8
FasterViT-0 EdgeViT (Pan et al., 2022) 3.2 5928 81.0
FasterViT-0 HAT 3.3 5802 82.1

FasterViT-1 Twins (Chu et al., 2021a) 4.7 4949 82.1
FasterViT-1 EdgeViT (Pan et al., 2022) 4.8 4188 82.5
FasterViT-1 HAT 5.3 4344 83.2

FasterViT-2 Twins (Chu et al., 2021a) 8.0 3668 82.9
FasterViT-2 EdgeViT (Pan et al., 2022) 8.5 3127 83.4
FasterViT-2 HAT 8.7 3161 84.2

Table 5: Ablation study on the effectiveness of HAT
compared to EdgeViT (Pan et al., 2022) and Twins (Chu
et al., 2021a) self-attention mechanisms. All attention
blocks are replaced with the indicated attention type.

EdgeViT and Twins As shown
in Table 5, we performed a
comprehensive ablation study to validate
the effectiveness of HAT by replacing
all attention layers with attention mech-
anisms in EdgeViT (Pan et al., 2022) and
Twins (Chu et al., 2021a) in the 3rd and
4th stages. For all model variants, Faster-
ViT models with HAT achieve a better ac-
curacy, sometimes by a significant margin.
Twins achieves a higher throughput due to
its small kernel size (i.e. k “ 2), however,
this significantly limits its accuracy. The
better performance of HAT is attributed to
its learnable information aggregation/propagation via CTs, and direct access to dedicated CTs in
windowed attention.

Pretrain Finetune
W8, I256 W12, I384 W16, I512 W24, I768

Model acc im/s acc im/s acc im/s acc im/s

SwinV2-T Liu et al. (2022a) 81.8 1674 83.2 573 83.8 168 84.2 72
SwinV2-S Liu et al. (2022a) 83.7 633 84.8 338 85.4 153 - -
FasterViT-2 84.3 2500 85.3 984 85.5 489 85.6 155

SwinV2-B Liu et al. (2022a) 84.2 499 85.1 251 85.6 115 - -
FasterViT-4 256 85.3 653 86.0 254 86.1 133 86.0 44

Table 6: Quantitative comparison between higher resolution
fine-tuning of FasterViT and SwinV2. FasterViT is more
accurate on average by 0.9%, and faster by 2x.

Carrier Token Size We investi-
gated the effect of carrier token size
and window size on the accuracy
and image throughput of the model.
We observed that increasing the car-
rier token size can improve the perfor-
mance at the cost of decreased through-
put, sometimes by a significant margin.
In addition, increasing the window size
slightly improves the Top-1 accuracy
while also decreasing the throughput.
In fact, increasing the window size does
not scale properly to higher resolution
images due to its significant impact on efficiency. As a result, HAT is a more effective and efficient
mechanism that can be employed to model long-range spatial dependencies without sacrificing the
throughput. Please refer to supplementary materials for more details.

ImageNet COCO ADE20k
top-1 Thr APbox APmask Thr mIoU Thr

Swin-T 81.3 2758 50.4 43.7 161 44.5 350
Swin-T + HAT 81.7 2721 50.9 44.3 150 45.4 338

Table 7: Ablation study on the effectiveness of HAT as
a plug-and-play module with Swin-T model for various
CV tasks.Thr stands for throughput and is measure in
image/sec.

Plug-and-Play HAT We employed HAT
as a plug-and-play module with Swin-T
model Table 7. This change results in +0.9
and +0.4% improvement in terms of mIoU
and Top-1 accuracy on ImageNet classifica-
tion and ADE20K segmentation tasks. In
addition, improvements on MS COCO by
+0.5 box AP and +0.6 mask AP on object
detection and instance segmentation tasks,
respectively. In addition, we also provide
throughput comparisons and show that HAT can be efficiently used with existing architectures with
minimal overhead. Hence, it validates the effectiveness of HAT as a standalone self-attention.

6 CONCLUSION

In this work, we have presented a novel hybrid model, denoted as FasterViT, which achieves SOTA
Pareto-front in terms of ImageNet Top-1 accuracy and throughput. We have extensively validated the
effectiveness of FasterViT in downstream dense prediction tasks such as object detection, instance
segmentation and semantic segmentation. Our benchmarks demonstrate better accuracy-throughput
trade-off in comparison to counterpart models such as ConvNeXt and Swin Transformer.
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