
Discriminative Models Can Still Outperform Generative Models in Aspect
Based Sentiment Analysis

Anonymous ACL submission

Abstract

Aspect-based Sentiment Analysis (ABSA)001
helps to explain customers’ opinions towards002
products and services. In the past, ABSA mod-003
els were discriminative, but more recently gen-004
erative models have been used to generate as-005
pects and polarities directly from text. In con-006
trast, discriminative models commonly first se-007
lect aspects from the text, and then classify008
the aspect’s polarity. Previous results showed009
that generative models outperform discrimina-010
tive models on several English ABSA datasets.011
Here, we evaluate and contrast two state-of-the-012
art discriminative and generative models in sev-013
eral settings: cross-lingual, cross-domain, and014
cross-lingual and domain, to understand gener-015
alizability in settings other than English mono-016
lingual in-domain. Our more thorough evalu-017
ation shows that, contrary to previous studies,018
discriminative models can still outperform gen-019
erative models in almost all settings.020

1 Introduction021

Online reviews make it easy for customers to share022

their feelings about products and services in a quick023

and efficient way. But for business owners, this can024

mean a deluge of comments with a variety of con-025

cerns. Companies with millions of customers re-026

ceive massive amounts of online reviews that can’t027

be analyzed manually, thus needing automation.028

Some natural languages receive more research029

effort compared to other languages (e.g. English vs.030

Swahili). Although the community has remarkably031

accelerated the improvement of English NLP tech-032

niques, techniques for other languages lag behind.033

Working on a lower resource language is a challeng-034

ing task, where few datasets, lexicons, and models035

exist. Thus, utilizing cross-lingual approaches is036

important to migrate knowledge across languages.037

In low resource settings, it can be difficult to use038

techniques like ABSA to analyze reviews. ABSA039

involves predicting aspect terms and their associ-040

ated sentiment polarities (Liu, 2012), which re-041

quires a fair amount of training data. For example, 042

"Service was good at the restaurant, but food was 043

not" has two aspect terms ("service" and "food"), 044

associated with sentiments "positive" and "nega- 045

tive", respectively. In this work, we conduct a com- 046

parative study of two ABSA model types (discrim- 047

inative and generative). Discriminative models, 048

which use decision boundaries to make predictions, 049

commonly use sequence labeling techniques to de- 050

tect aspects in a given review (extraction) and then 051

use another step to classify those aspects (classifi- 052

cation). On the other hand, generative models use 053

encoder-decoder language models to learn proba- 054

bility distributions, and generate aspects and senti- 055

ment polarities together without separate extraction 056

and classification steps. Notably, a few discrimina- 057

tive models do extraction and classification at once 058

(Li et al., 2020, 2019a; Hu et al., 2019). However, 059

results showed that training both tasks together 060

does not always improve performance. 061

Previous work has shown that generative mod- 062

els achieve better performance than discriminative 063

models when trained and evaluated on the English 064

in-domain setting (Zhang et al., 2021; Yan et al., 065

2021). While recent studies compared generative to 066

discriminative models in English in-domain setting, 067

none have explored performance in cross-lingual or 068

cross-domain settings. Here, we evaluate the per- 069

formance of the two model types in cross-lingual 070

and cross-domain settings by comparing the state- 071

of-the-art representatives. Additionally, we pro- 072

pose a more challenging setting: both cross-lingual 073

and cross-domain. Our results demonstrate that 074

discriminative models can still perform better than 075

generative models in almost all proposed scenarios. 076

2 Methodology and Experimental Setup 077

2.1 Datasets 078

In our experiments, we consider several languages 079

and domains for a more valid evaluation. For 080
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Datasets Data Split #Pos #Neg #Neu

Rest16en

Train 864 313 47
Val 130 32 6
Test 427 119 28

Rest16es

Train 972 338 72
Val 101 46 5
Test 420 142 29

Rest16ru

Train 1068 216 99
Val 223 56 23
Test 608 193 85

Lap14
Train 591 515 268
Val 99 71 50
Test 341 128 169

MAMSEn

Train 636 552 982
Val 403 325 605
Test 400 330 607

Table 1: Datasets’ statistics - Count of aspects with sen-
timent polarities for the sampled and cleaned datasets.
Multiple aspects can exist in single record

languages we use SemEval datasets - Restaurant081

(Rest16) (Pontiki et al., 2016) in English, Spanish082

and Russian. For domains we use Rest16 and Lap-083

top (Lap14) from SemEval (Pontiki et al., 2014)084

which are widely used in the literature (Li et al.,085

2019b; Tian et al., 2021; Liang et al., 2021). As086

an additional domain, we use MAMS dataset for087

ABSA (Jiang et al., 2019). MAMS (Jiang et al.,088

2019) is a recently developed challenge dataset in089

which each sentence contains at least two aspects090

with different polarities, making the dataset more091

challenging than the SemEval datasets.092

For SemEval datasets, since the validation sets093

are not given, we sample 10% of the training094

dataset to use for validation. The datasets we con-095

sidered vary in terms of the type of content and096

the training set size. Thus, for a fair comparison,097

we reduce the larger training datasets to have an098

equal number of records. For this purpose, we099

sample without replacement 857 records from each100

training dataset, which is the minimum number of101

training instances across datasets (cleaned Rest16es102

training dataset has 857 records). Table 1 presents103

the datasets’ statistics after cleaning and sampling.104

A larger dataset could improve model performance,105

but we must control for dataset size to ensure fair106

comparisons across datasets. For example, training107

on a larger datasets like MAMS may give better per-108

formance when testing across domain on Rest16en109

than if we had trained and tested in domain with110

Rest16en. In that case, we would not be able to111

determine if the effect was due to dataset size, or112

some inter-domain interaction.113

2.2 Models and Baselines 114

For contrasting generative and discriminative 115

model types, we consider a representative model 116

for each, which shows state of the art performance 117

in the ABSA task. For the generative model, we 118

use the approach proposed in (Zhang et al., 2021), 119

which is an encoder-decoder T5-based model. This 120

model takes a review as input and generates the 121

aspects with their polarities. The aspect-polarity 122

terms have the following format: "service positive 123

<sep> food negative", indicating the presence of 124

two aspect terms ("service" and "food"), with the 125

associated polarities ("positive" and "negative"). 126

Since there can be multiple aspect-polarity pairs in 127

a single review, we add a separator token "<sep>" 128

to demarcate a separation between multiple aspect- 129

polarity pairs. In the mono-lingual setting, the 130

model is trained on English and generates English 131

aspect-polarity pairs. When we move to the cross- 132

lingual setting, we ask a multilingual model to gen- 133

erate aspect-polarity pairs for a language that was 134

not used in the training process. Thus, we use an 135

approach that augments the training data with a 136

version of itself translated automatically to the test 137

language (Riabi et al., 2021). This does not require 138

additional annotated data to solve the issue. In Ap- 139

pendix A.2, we give more details regarding this 140

approach. 141

For the discriminative model, we consider the 142

SPAN-BERT model (Hu et al., 2019) which is 143

a state-of-the-art model that uses a BERT trans- 144

former. It has a good performance in mono-lingual 145

in-domain datasets, and has been used as a base- 146

line for the generative model released by Zhang 147

et al. (2021). The model extracts spans (continuous 148

spans of text) for multiple target aspect terms using 149

a decoder heuristic and then classifies their polari- 150

ties using contextualised span representations. The 151

discriminative and generative models referenced 152

above use transformers trained solely on English, 153

so we need to modify them before training on other 154

languages. To make our experiments consistent, we 155

use multilingual versions of the base transformers. 156

For the generative model, we use the multilingual 157

T5 (mT5-base) model (huggingface implementa- 158

tion1). For the SPAN-BERT model, we use the 159

multilingual BERT model from Google2. 160

1https://huggingface.co/transformers/
model_doc/mt5.html

2https://github.com/google-research/
bert/blob/master/multilingual.md
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DomainLang Discriminative Generative
Rest16En 0.56 0.58
Rest16Es 0.63 0.58
Rest16Ru 0.47 0.42
Lap14En 0.50 0.36
MAMSEn 0.54 0.44

Table 2: Mono-lingual and in-domain F1 scores. Bolded
results are the best among models.

In order to understand the performance of both161

models, we set two baselines: mono-lingual in-162

domain, and a random selection baseline. In the163

mono-lingual in-domain, we train each model on164

each dataset to define the theoretical performance165

ceiling. The random baseline will allow us to see if166

our cross-lingual or domain results are better than167

chance. In the random baseline, we have the model168

pick aspect words from the text (excluding stop169

words), and their polarities at random. For further170

details refer to Appendix A.5. For consistency of171

results, we apply the same data normalization steps172

for both models. Appendix A.3 gives details of the173

normalization and matching process.174

3 Results and Discussion175

3.1 Monolingual and In-Domain176

First, we evaluate models with the train and test177

data of the same dataset type and language, and178

we get the results of the random selection baseline.179

Table 2 presents the results. For detailed results180

refer to Appendix A.6. From a mono-lingual per-181

spective, we can see that the discriminative model182

performs better than the generative model for all183

datasets except Rest16en. During our experiments,184

we also evaluated models using the mono-lingual185

version of the transformers models, and we had186

noticed a similar scenario; the generative approach187

performed better than the discriminative one in only188

Rest16en and Lap14en datasets. Thus, it seems that189

the generative approach can only perform better on190

English datasets. The random baseline results in all191

the datasets are around 4% F1 (individual results192

can be seen in 6)193

3.2 Cross-Lingual194

Table 3 presents the cross-lingual results. For de-195

tailed results refer to Appendix A.6. From a cross-196

lingual perspective, we can clearly see that all mod-197

els, perform above random guess which is nearly198

4% F1 (Table 6). Regarding the discriminative199

model with the Spanish and Russian test sets, we200

notice that we obtain the highest results when we201

Train → Test Discriminative Generative
Es→ En 0.51 (-6%) 0.34 (-24%)
Ru → En 0.53 (-3%) 0.45 (-13%)
En→ Ru 0.44 (-3%) 0.27 (-15%)
Es→ Ru 0.42 (-5%) 0.29 (-13%)
En→ Es 0.54 (-9%) 0.39 (-19%)
Ru → Es 0.52 (-11%) 0.45 (-13%)

Table 3: Cross-lingual F1 scores using Rest16 in several
languages. Bolded results are best per model and test
language. Bracketed %s show performance decrease
compared to the mono-lingual, in-domain result 2.

Train → Test Discriminative Generative
Rest16En → Lap14En 0.29 (-21%) 0.21 (-15%)
MAMSEn → Lap14En 0.31 (-19%) 0.19 (-17%)
Lap14En → Rest16En 0.44 (-12%) 0.21 (-37%)
MAMSEn → Rest16En 0.47 (-9%) 0.38 (-20%)
Rest16En → MAMSEn 0.32 (-22%) 0.3 (-14%)
Lap14En → MAMSEn 0.29 (-25%) 0.12 (-32%)

Table 4: Cross-domain F1 scores. Bolded results are
the best per model and test language. Bracketed % val-
ues show performance decrease compared to the mono-
lingual, in-domain result 2.

train on English. And the largest decrease in per- 202

formance is when we train on Russian and test on 203

Spanish. Interestingly, when we train on Russian 204

and test on the other languages, we obtain the high- 205

est results for the generative model. Overall, the 206

performance drop of the generative cross-lingual 207

results compared to the monolingual ones is high, 208

considering the discriminative model’s results. We 209

can conclude that the discriminative model gener- 210

alizes better than the generative one in the cross- 211

lingual setting. 212

3.3 Cross-Domain 213

Table 4 presents the cross-domain results. More de- 214

tails can be found in Appendix A.6. Generally, con- 215

sidering both models’ results, training on Rest16En 216

and MAMSEn datasets produced the highest re- 217

sults. Like the Rest16 dataset, MAMS contains 218

reviews related to restaurants. Thus it is not sur- 219

prising that training on one of these two datasets 220

and testing on the other gives higher results com- 221

pared to training on Lap14. However, we can see 222

that this gap is larger when we experiment with the 223

generative model. This observation demonstrates 224

that the generative model is more domain sensitive. 225

3.4 Cross-Lingual and Cross-Domain 226

In this experiment, we evaluate both models in 227

an extreme setting, which combines the previous 228

cross-lingual and cross-domain. Table 5 shows the 229
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Train → Test Discriminative Generative
Rest16Es → Lap14En 0.3 (-20%) 0.17 (-19%)
Rest16Ru → Lap14En 0.28 (-22%) 0.16 (-20%)
Lap14En → Rest16Es 0.54 (-9%) 0.33 (-25%)
Lap14En → Rest16Ru 0.34 (-13%) 0.27 (-15%)

Table 5: Cross-domain and cross-lingual F1 scores.
Bolded results are the best per model and test language,
when more than 1 train language to compare. Bracketed
% values show performance decrease compared to the
mono-lingual, in-domain result 2.

evaluation results. More details can be found in Ap-230

pendix A.6. We can see a larger drop compared to231

the results in the cross-lingual experiment (see 3),232

except when we test on Rest16es using the discrim-233

inative model; training on Rest16en or Lap14en234

gives the same F1 result. Similar to the previous235

results, the generative model achieves lower results236

compared to the discriminative one.237

4 Discussions and Conclusion238

In this work, we compared two types of ABSA239

models in terms of performance differences by con-240

sidering a state-of-the-art model for each type as a241

representative. We compared those models across242

languages and domains. Previous studies showed243

that generative models achieve higher results than244

the discriminative ones across almost all the avail-245

able English ABSA datasets. However, the results246

in our study demonstrated that generative models247

can perform worse than the discriminative ones in248

almost all of the proposed scenarios, namely, cross-249

lingual, cross-domain, and cross- lingual and do-250

main. We conduct an error analysis to understand251

the scenarios where the models fail in Appendix252

A.4.253

We experimented with datasets from three lan-254

guages, and from three different domains. Briefly,255

the results showed that generative models can be256

more language and domain sensitive. Generative257

models have a challenging task: they must learn a258

joint probability over all words. This is in contrast259

to discriminative models which need only learn a260

small set of decision boundaries. Generative mod-261

els sample words from the entire data distribution262

and might be more sensitive to the training data263

size compared to discriminative models which clas-264

sify only the words in the original sentence. This265

intuition is supported by existing literature (Ng and266

Jordan, 2002). Given that we have only 857 in-267

stances for training, the generative model did not268

generalize as good as the discriminative in the other269

domains or languages. Additionally, it is possible 270

that the evaluation process is very strict and hurts 271

the generative model (see Appendix A.3). 272

The generative model outperformed the discrim- 273

inative model in only one English mono-lingual 274

experiment, perhaps due to a favourable bias in the 275

mT5 model towards the English language. Re- 276

cent studies showed that Multilingual encoder- 277

decoder transformers do not perform well in lan- 278

guages other than English (Tang et al., 2020; Fan 279

et al., 2021). Notably, we see that the discrimi- 280

native model does better on English monolingual 281

in-domain cases of Lap14en (contrary to Zhang 282

et al. (2021)) and MAMSen. We attribute this ap- 283

parent contradiction for Lap14en to the different 284

evaluation technique and the multilingual encoder 285

variant. Moreover, in case of MAMSen, a small 286

sized training dataset could have had adverse ef- 287

fects since it is a challenging dataset. 288

Another reason for the variation in results 289

could be that each model uses a different encoder. 290

The discriminative model uses mBERT encoder 291

whereas the generative one uses an mT5 encoder. 292

We do not make the encoders consistent in the mod- 293

els to avoid making drastic changes to ABSA mod- 294

els with proven good performance in the literature. 295

Nevertheless, our results are a useful comparison 296

of generative and discriminative model types since 297

we compare their state-of-the-art representatives 298

to draw conclusions on why generative models are 299

not always preferable. 300

Considering the random selection baseline in our 301

experiments, we can conclude that generative mod- 302

els are capable of generating correct aspects and 303

polarities. The results showed that the generative 304

model, in the worst case (training on Lap14En and 305

testing on MAMSEn), performs better than the ran- 306

dom baseline by 8% F1. On the other hand, the 307

discriminative model in the worst case (training 308

on Rest16Ru and testing on Lap14En), performed 309

better than the random baseline by 25% F1. 310

These results argue against adopting generative 311

models as the defacto standard for all ABSA tasks 312

as discriminative models are more accurate in some 313

settings. For future work, we plan to study other 314

generative models in this task. We also plan to 315

study both types of models in other scenarios like 316

conflicting polarities (aspects with both positive 317

and negative polarities). 318
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A Appendix437

A.1 Dataset Cleanup438

We follow existing work (Tian et al., 2021; Tang439

et al., 2016) in removing sentences with no opin-440

ions (not useful for the considered ABSA task), as441

well as sentences having aspect terms with a "con-442

flict" sentiment polarity, from the dataset. This is443

to prevent a class imbalance problem, as there are444

very few instances of "conflict", compared to other445

polarities.446

A.2 Generative models with Cross-lingual447

Setting448

In this section, we provide more details regarding449

the proposed approach in (Riabi et al., 2021) to450

solve the issue of controlling the generated lan-451

guage. The idea of the method is that, for instance,452

when we train on English and generate for Spanish,453

we translate the English training data to Spanish454

(using Google Translator) and we include it in the455

training part with the original English language.456

Additionally, to control the target language, we use457

a specific prompt (token) per language (<LANG>),458

which corresponds to the desired target language459

(e.g. Spanish : Spanish_review). When we trans-460

late a language into another, we discard instances461

that their translated aspect terms do not exist in462

the translated review. This is important for SPAN-463

BERT models as terms indices are needed. Also,464

we sample an equal number of translated training465

instances in all the languages (507 instances per466

language), as we prepared the monolingual training467

data. For consistency, we train SPAN-BERT model468

on the same data.469

A.3 Preprocessing for Evaluation470

We find that the generative model sometimes gen-471

erates a different variant of a term, e.g. plural or472

singular. Prior to evaluating the model outputs, we473

perform a normalisation process. For normalising,474

we remove punctuation marks such as ",", ".", "”"475

from the sentences, lower-case and lemmatise the476

words, and remove common stop words. This idea477

of normalising the generated output is similar to478

Zhang et al. (2021), where Levenshtein distance479

is used to align the generated aspect words with480

the closest words existing in the original sentence.481

Compared to this, our normalisation process fol- 482

lowed by an exact matching is stricter. Levenshtein 483

distance may align the model’s predictions with un- 484

related words in the original sentence. For example, 485

if a generated word - "salmon", has the least dis- 486

tance with the word "not" out of all the words in the 487

original sentence, then "salmon" can get aligned 488

to "not", as is mentioned by Zhang et al. (2021), 489

which is a loose matching. 490

After model outputs and gold data are nor- 491

malised, an exact match is made to compare the 492

predicted aspect polarity terms with corresponding 493

aspect polarity terms in the gold data. We consider 494

a hit only if both the aspect term and the polarity 495

term match. We use the standard evaluation met- 496

rics for calculating ABSA scores, which are Micro- 497

Precision, Recall and F1. We use the evaluation 498

code released by Li et al. (2019a)3. 499

A.4 Error Analysis 500

We conduct an error analysis on the outputs of the 501

models to better understand the cases where they 502

fail. 503

For the discriminative model, we found that in 504

a large number of the error cases (nearly 40% in 505

Resten monolingual in-domain case), the model 506

did not predict any aspect term at all. This means 507

that the SpanBert model was not able to confidently 508

identify any possible aspect term spans. E.g. for the 509

following sentence, the model fails to predict an as- 510

pect term: "Not the biggest portions but adequate." 511

Since SpanBert uses thresholds to compute scores 512

(representing confidence), it is possible that the 513

model was not sufficiently confident in its predic- 514

tions. we also found several cases where the model 515

gets the aspect term correct but the sentiment in- 516

correct, such as for the sentence "i am never disap- 517

pointed with there food."; it gives "food" a negative 518

sentiment instead of a positive. Here, it can be seen 519

that the underlying language model (BERT) did 520

not understand the word "never" in the sentence, 521

and instead understood the sentiment from "disap- 522

pointed" which has negative connotations. This can 523

be attributed to the fact that language models like 524

BERT misunderstand some negations (Kassner and 525

Schütze, 2020). Another common error is where 526

the predicted and gold spans have some overlap, but 527

are not an exact match. This can be seen in cases 528

such as "La atención del personal impecable." ( 529

"The attention of the impeccable staff.") where the 530

3http://github.com/lixin4ever/E2E-TBSA
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predicted aspect term is "personal" ("staff") instead531

of "atención del personal" ("attention of the staff").532

As in the discriminative model, in the genera-533

tive model we saw several cases where the pre-534

dicted phrase is incorrect, though it refers to the535

same entity conceptually. For instance, in the sen-536

tence "Great draft and bottle selection and the pizza537

rocks.", the predicted entities include "bottle selec-538

tion" instead of "draft and bottle selection". Such539

predictions would not have been considered errors540

if we had gone with a partial matching approach541

like Zhang et al. (2021). Other notable cases in-542

cluded those where a similar entity is predicted543

instead. For example, for the sentence - "The best544

calamari in Seattle!", the generative model gener-545

ated "salmon" as an aspect term instead of "cala-546

mari". This does show that the language model547

understood the similarity between calamari and548

salmon, however it did not understand that for the549

task it was supposed to predict a word from the550

input sentence itself, and not make such inferences.551

Similarly, for the sentence "Un sitio recomendable552

en pleno centro de barcelona" ("A recommended553

place in the heart of barcelona"), it generates "co-554

mida" ("meal") as an aspect term instead of "sitio"555

("site"). There is also an indication the model556

needs more data to understand adjectives. This557

can be seen from examples such as - for the sen-558

tence "Mediocre food", the model predicts "food"559

as positive instead of neutral as it is misinterprets560

"Mediocre".561

A.5 Random Baseline562

We consider a random model for evaluating the per-563

formance of the considered models. However, we564

do not simply randomly assign positive, negative,565

neutral or none labels to randomly selected words566

in a sentence. Instead, we produce predictions in567

a slightly less strict way. Firstly, we select aspect568

words from words in the sentences (disregarding569

stop words). Then, we consider the distribution570

of different polarities for the aspect terms in the571

gold predictions (this gives our random baseline a572

positively biased edge), and assign polarities to the573

aspect words in the training data based on those574

distributions.575

A.6 Detailed Results576

In this section we have the detailed results for the577

experiments we conducted. The precision, recall578

and F1 values can be found here.579

Table 6 gives the detailed results for the experi- 580

ments conducted for the mono-lingual in-domain 581

case, including the results for the random baseline. 582

This contains more details compared to Table 2. 583

Similarly, we have Tables 7, 8 and 9 which are 584

detailed versions of Tables 3, 4 and 5 respectively 585
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DomainLang
Discriminative Generative Random Selection

P R F1 P R F1 P R F1
Rest16En 0.67 0.48 0.56 0.64 0.52 0.58 0.07 0.04 0.05
Rest16Es 0.65 0.60 0.63 0.67 0.51 0.58 0.07 0.03 0.05
Rest16Ru 0.47 0.48 0.47 0.46 0.39 0.42 0.06 0.04 0.05
Lap14En 0.48 0.52 0.50 0.4 0.33 0.36 0.05 0.02 0.03
MAMSEn 0.53 0.55 0.54 0.48 0.4 0.44 0.06 0.03 0.04

Table 6: Mono-lingual and in-domain results. Bolded results are the best among models.

Train → Test Discriminative Generative
P R F1 P R F1

Rest16Es → Rest16En 0.58 0.45 0.51 (-6%) 0.48 0.26 0.34 (-24%)
Rest16Ru → Rest16En 0.55 0.51 0.53 (-3%) 0.6 0.36 0.45 (-13%)
Rest16En → Rest16Ru 0.53 0.37 0.44 (-3%) 0.43 0.20 0.27 (-15%)
Rest16Es → Rest16Ru 0.42 0.43 0.42 (-5%) 0.52 0.21 0.29 (-13%)
Rest16En → Rest16Es 0.75 0.42 0.54 (-9%) 0.55 0.3 0.39 (-19%)
Rest16Ru → Rest16Es 0.59 0.46 0.52 (-11%) 0.62 0.35 0.45 (-13%)

Table 7: Cross-lingual results. Bolded results are the best per model and test language. The percentage values
between brackets represent the amount of drop compared to the mono-lingual and in-domain result.

Train → Test Discriminative Generative
P R F1 P R F1

Rest16En → Lap14En 0.28 0.3 0.29 (-21%) 0.42 0.14 0.21 (-15%)
MAMSEn → Lap14En 0.41 0.25 0.31 (-19%) 0.23 0.16 0.19 (-17%)
Lap14En → Rest16En 0.46 0.43 0.44 (-12%) 0.34 0.15 0.21 (-37%)
MAMSEn → Rest16En 0.51 0.44 0.47 (-9%) 0.36 0.42 0.38 (-20%)
Rest16En → MAMSEn 0.38 0.27 0.32 (-22%) 0.39 0.24 0.3 (-14%)
Lap14En → MAMSEn 0.33 0.27 0.29 (-25%) 0.29 0.07 0.12 (-32%)

Table 8: Cross-domain results. Bolded results are the best per model and test language. The percentage values
between brackets represent the amount of drop compared to the mono-lingual and in-domain result.

Train → Test Discriminative Generative
P R F1 P R F1

Rest16Es → Lap14En 0.31 0.28 0.3 (-20%) 0.31 0.11 0.17 (-19%)
Rest16Ru → Lap14En 0.3 0.26 0.28 (-22%) 0.24 0.12 0.16 (-20%)
Lap14En → Rest16Es 0.53 0.56 0.54 (-9%) 0.48 0.25 0.33 (-25%)
Lap14En → Rest16Ru 0.53 0.25 0.34 (-13%) 0.47 0.18 0.27 (-15%)

Table 9: Cross-domain and cross-lingual results. Bolded results are the best per model and test language. The
percentage values between brackets represent the amount of drop compared to the mono-lingual and in-domain
result.
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