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Abstract

Differentially Private Stochastic Gradient Descent (DP-SGD) is a key method for applying
privacy in the training of deep learning models. This applies isotropic Gaussian noise to
gradients during training, which can perturb these gradients in any direction, damaging
utility. Metric DP, however, can provide alternative mechanisms based on arbitrary metrics
that might be more suitable for preserving utility. In this paper, we apply directional privacy,
via a mechanism based on the von Mises-Fisher (VMF) distribution, to perturb gradients in
terms of angular distance so that gradient direction is broadly preserved. We show that this
provides both ε-DP and εd-privacy for deep learning training, rather than the (ε, δ)-privacy
of the Gaussian mechanism; we observe that the εd-privacy guarantee does not require a
δ > 0 term but degrades smoothly according to the dissimilarity of the input gradients.

As εs between these different frameworks cannot be directly compared, we examine empirical
privacy calibration mechanisms that go beyond previous work on empirically calibrating
privacy within standard DP frameworks using membership inference attacks (MIA); we
show that a combination of enhanced MIA and reconstruction attacks provides a suitable
method for privacy calibration. Experiments on key datasets then indicate that the VMF
mechanism can outperform the Gaussian in the utility-privacy trade-off. In particular, our
experiments provide a direct comparison of privacy between the two approaches in terms of
their ability to defend against reconstruction and membership inference.

1 Introduction
A well-known problem with machine learners is that they leak information about items used in the training
set, making them vulnerable to a variety of attacks. For example, Fredrikson et al. (2015) used information
about prediction confidence from machine learning APIs to show that a model inversion attack could accu-
rately reconstruct images from a facial recognition training set; Zhu et al. (2019) showed that the same was
possible using information only from gradients in the training process, for various well-known computer vision
datasets; and Shokri et al. (2016) studied how training samples can be identified based on the probability
scores returned in classification tasks.

One popular method for protecting against attacks is to use Differential Privacy (DP) (Dwork & Roth,
2014) in the training phase of deep neural networks, for example, applied to Stochastic Gradient Descent
(SGD) in the form of DP-SGD Song et al. (2013). DP-SGD in its original form applies ε-DP noise to the
gradient vectors within each batch, thereby providing an ε guarantee over training datasets. Song et al.
(2013) noted that the noise introduced by a DP mechanism impacted SGD performance significantly, but
later developments have improved its performance: for example, Abadi et al. (2016) proposed a Gaussian-
based mechanism with a moments accounting method for tighter bounds on the privacy budget; in the
space of language models, McMahan et al. (2018) showed how to use DP for user-level privacy at the cost
of increased computation rather than decreased utility; also in that space, Li et al. (2022a) showed that
very different regions of the hyperparameter space relative to non-private models, and a new ‘ghost clipping’
technique on gradients, could lead to strong performance of large language models under DP-Adam, an
extension of DP-SGD. Nevertheless, there is still generally a gap in performance between non-private and
private models.

Arguably the most popular noise-adding mechanism used in DP-SGD is the Gaussian mechanism, introduced
by Abadi et al. (2016) which applies Gaussian noise to gradients of deep learning models during training.
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This type of noise is isotropic: that is, the generated noise vector is equally likely to point in any direction
in the high-dimensional space of the deep learning model gradients. In contrast, we might expect that
the utility of the model (as measured by the gradients it outputs) would be better served by a mechanism
which is designed to preserve the direction of the gradients. Intuitively, the more the gradient directions
are preserved, the better is the gradient descent algorithm going to follow the correct trajectory so as to
minimise the loss function.

The idea of tuning the shape of the noise arises in the context of metric differential privacy or d-
privacy (Chatzikokolakis et al., 2013), a generalisation of differential privacy in which the notion of adjacency
is generalised to a distinguishability metric d. Metric differential privacy is a unifying definition which sub-
sumes both central and local differential privacy, the former recoverable by choosing d to be the Hamming
metric on databases, and the latter by choosing d to be the Discrete metric on individual data points. Impor-
tantly, by careful choice of the metric d, d-privacy mechanisms can provide a better privacy-utility trade-off
than with standard differential privacy.1

Guided by metric DP, a natural alternative mechanism to apply to gradients is one which preserves angular
distance, and hence their direction. Recently, one such directional privacy mechanism has been developed
by Weggenmann & Kerschbaum (2021), who applied the idea to recurrent temporal data in the context
of a dataset of sleep recordings. The authors provide two novel d-privacy mechanisms for their directional
privacy, based on the von Mises-Fisher and Purkayastha distributions. The key idea in the present paper is
to implement DP-SGD using directional noise applied to gradients, so that with high likelihood a reported
gradient is close in direction to the original gradient and further away (in direction) with diminishing like-
lihood. The aim of the present paper is to show that these kinds of directional privacy mechanisms applied
to deep learning training can have less impact on model performance because the application of noise can
be more targeted while providing ε-privacy guarantees via metric DP.

We evaluate DP-SGD under two different regimes: the Gaussian-noise mechanism of Abadi et al. (2016),
and the (directional privacy) von Mises-Fisher mechanism of Weggenmann & Kerschbaum (2021). A key
question which arises when using different types of differential privacy mechanisms is how to compare the
epsilons? since their guarantees are often not comparable, as noted in, for example, Jayaraman & Evans
(2019) and Bernau et al. (2021). Motivated by the example of these other works, we analyse the suitability
of two membership inference attacks (MIAs) as well as two gradient-based reconstruction attacks. Based
on this analysis, we propose to compare the Gaussian and von Mises-Fisher privacy mechanisms wrt their
efficacy at preventing both MIAs and reconstruction attacks while achieving some level of utility.

In summary, we define a model DirDP-SGD and the corresponding privacy mechanism for applying direc-
tional privacy to gradients in deep learning training (§3). This mechanism comes with a metric DP guarantee,
and we show that it also provides standard ε-DP. However, since it is not straightforward to compare ε-DP
with the (ε, δ) guarantees of the Gaussian mechanism, we provide experimental comparisons of both privacy
and utility of DirDP-SGD and the Gaussian DP-SGD (§4), where the experimental evaluation of privacy
is based on both an enhanced MIA of Hu et al. (2022) and a method that permits the reconstruction of
training set data based on gradients during training (Geiping et al., 2020). In doing this we also shed light
on using either kind of method alone (MIA, reconstruction) to measure privacy. We then show (§6) that
DirDP-SGD performs notably better on some major datasets for comparable levels of defence against the
aforementioned attacks.

In this paper, our contributions are as follows:

• We apply for the first time a metric DP mechanism based on angular distance — via the von Mises-Fisher
distribution — to use as an alternative to Gaussian noise in training via Stochastic Gradient Descent in
deep learning;

• We demonstrate that this provides εdθ-privacy (for angular distance dθ) as well as ε-DP for the training
as a whole;

1See Chatzikokolakis et al. (2013) for an example on statistical datasets.
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• We analyse both MIAs and gradient-based reconstruction attacks as candidates for empirically comparing
privacy, and show why using both together is appropriate in this context.

• Given this, we show that overall on major datasets, our VMF mechanism outperforms Gaussian noise
when defending against attacks.

2 Related Work
In this section, we review relevant work on the use of DP in deep learning (§2.1), and on metric DP, including
its own intersections with deep learning (§2.2). As it is not possible to analytically compare the privacy
provided by each framework, as is usually done within standard DP just by comparing values of ε and δ, we
discuss options for an empirical evaluation of privacy. We first review membership inference attacks (§2.3),
which have been used for empirical privacy comparisons within standard DP frameworks; and then, because
of various issues that we identify, we also review gradient-based reconstruction attacks (§2.4).

2.1 Differential Privacy in Deep Learning
Neural networks can be victims of several types of attacks, like membership inference (Shokri et al., 2016;
Irolla & Châtel, 2019), model stealing (Yu et al., 2020) and data reconstruction (Zhu et al., 2019; Zhao et al.,
2020; Geiping et al., 2020; Wei et al., 2020). This motivates the need for privacy guarantees to protect neural
networks while keeping their utility for the task they are trained to deal with.

Song et al. (2013) proposed Differentially Private Stochastic Gradient Descent (DP-SGD), which first brought
DP to the training of gradient-descent models. DP-SGD adds calibrated noise in the gradients during
training, before updating the parameters. This was followed by works that looked at providing efficient
algorithms and tightening error bounds (Bassily et al., 2014, for example) so that the addition of noise
would not degrade utility to impractical levels. A key work in this direction was made by Abadi et al.
(2016), who introduced a technique to keep track of the privacy budget, called the Moments Accountant,
specifically for the Gaussian mechanism.

Afterwards, several papers studied the effect of DP in deep learning in other domains, such as NLP (McMahan
et al., 2018), and in applications like Generative Adversarial Networks (Xu et al., 2019; Torkzadehmahani
et al., 2019). Recent work has also returned to the possibility of feasibly applying DP through output
perturbations (Lu et al., 2022). The many ways in which DP has been applied in deep learning, in general,
are beyond the scope of the present work, and we refer the reader to surveys such as Gong et al. (2020);
below we focus only on DP-SGD and related methods.

In this context, the additional privacy comes with a cost, in that the noisy gradients may affect the utility
of the model. Therefore, either better features may be collected or handcrafted, or even more data may
be needed (Tramer & Boneh, 2021). Li et al. (2022a) (in NLP) and De et al. (2022) (in computer vision)
also found that DP-SGD can perform well in very different regions of the hyperparameter space relative
to non-private models. The architecture of the model may also play a role in the utility, with larger and
pretrained models being more efficiently fine-tuned, especially with larger batch sizes (Li et al., 2022a; Anil
et al., 2021), which can be computationally demanding; Li et al. (2022a) also showed how to reduce the
high memory consumption for training via ‘ghost clipping’. Changes to other aspects of models can also
improve privacy-utility trade-offs in the use of Gaussian noise, such as using bounded activation functions
like tempered sigmoids Papernot et al. (2021).

Proposals to change the DP-SGD algorithm itself have also been made, many of them relating to clipping
strategies. Xu et al. (2021) observed that clipping and noise addition affect underrepresented classes, making
the accuracy of the model for them even lower. Thus they proposed to control the contribution of samples in a
group according to the group clipping bias. Liu et al. (2021) proposed to divide gradients fromm samples into
k groups. Before noise is added, the gradients in each group are clipped with a different bound, as opposed
to a global bound from DP-SGD. They argue that a clipping could distort gradient information.

However, all these works in DP and deep learning have adopted isotropic noise, often from the Gaussian
distribution. Clipping the gradients derived from these noises limits their length, but does not alter their
direction. There is a lack of studies comparing how different noise distributions affect the privacy/utility
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trade-off and how noise distributions other than isotropic ones can be used during the training of neural
networks.

2.2 Metric Differential Privacy
There have been many variants of DP proposed in the literature (Pejó & Desfontaines, 2022). In this
work, we adopt a relaxation of DP called metric differential privacy (hereafter metric DP), introduced by
Chatzikokolakis et al. (2013) and also known as generalised DP, d-privacy, and dX -privacy.

Metric DP was first applied to the problem of geo-location privacy (Andrés et al., 2013) in which the user’s
goal is to conceal their exact location while revealing an approximate location to receive a location-based
service. Many later applications of metric DP have been in this kind of geo-location context, for example,
mobility tracing (Chatzikokolakis et al., 2014), location data with temporal correlations (Xiao & Xiong, 2015),
mobile crowdsensing (Wang et al., 2018), and location data with non-circular distributional characteristics
(Zhao et al., 2022).

In the area of deep learning in NLP, Fernandes et al. (2019) proposed a metric DP mechanism for authorship
privacy using the Earth Mover’s distance as the metric. Work following on from that used hyperbolic
rather than Euclidean spaces for hierarchical representations (Feyisetan et al., 2019), calibrated multivariate
perturbations (Feyisetan et al., 2020), representations for contextual rather than static language models
(Qu et al., 2021), and a variational autoencoder to perturb overall latent vectors rather than individual
words (Weggenmann et al., 2022). A related application that takes a similar spatial perspective has been to
k-means clustering (Yang et al., 2022). None of these is concerned with differentially private training of a
deep learner in the manner of DP-SGD.

The application of metric DP that we draw on is not related to the existing uses in deep learning just
described. In the context of providing privacy guarantees to sleep study data, Weggenmann & Kerschbaum
(2021) applied metric DP to periodic data noting that periodicity can be represented as a direction on a
circle, and ‘directional noise’ perturbs this direction while preserving utility. They proposed a variety of
privacy mechanisms, including variants of Laplace, plus the novel Purkayastha and von Mises-Fisher (VMF)
mechanisms. Weggenmann & Kerschbaum (2021) also provided e.g. sampling methods for VMF that reduce
from a multivariate sampling problem to a univariate one in order to avoid the curse of dimensionality. In
the present work, we adopt the VMF mechanism to apply directional noise to gradients instead of (isotropic)
Gaussian noise more typically used in DP-SGD that perturbs the gradient in any direction, drawing on a
similar intuition that preserving the gradient directions should provide better utility.

2.3 Membership Inference Attacks
One widely discussed privacy concern in deploying deep learning models is to ensure that no training data can
be recovered by a malicious user. However, Shokri et al. (2016) showed that, under certain assumptions, it is
possible to infer whether a sample was used to train a model by analysing the class probabilities it outputs
during inference. The attack was baptised as a membership inference attack (MIA). There is extensive
literature on MIA that is beyond the scope of this paper; see for example the survey of Hu et al. (2022).
Here we focus on giving a brief overview, discussing the application to calibrate levels of privacy within the
standard DP framework, and noting issues that have been raised.

Overview Following the framework of Shokri et al. (2016), MIA works in two steps. In the first step,
shadow models are trained with the aim of mimicking the target model to be attacked. In the second step,
for each class, separate (binary) attack models are trained on the shadow models’ prediction vectors to
predict whether a sample was used to train the target or not(in/out).

The underlying intuition is that the distributions between in samples and out samples are different enough
for the binary classifiers to identify whether the test samples belong to the target model training set. More
specifically, the target model should be more confident when classifying samples it has already seen.

A number of later works extended this attack. For instance, Yeom et al. (2018) proposed an inference method
that uses average training loss in its attack and requires only one query to the model target, in contrast to
the large number of shadow models under the Shokri et al. (2016) approach. Salem et al. (2019) relaxed
some of the assumptions of Shokri et al. (2016), such as knowledge of the target model architecture, or the
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training data for target and shadow models coming from the same distribution, even though the samples
are disjoint. They also reduced the number of shadow models and proposed a method that finds a threshold
based on the highest posterior returned from the target’s predictions with little difference in the performance
of the attack. Later, Choquette-Choo et al. (2021) relaxed the constraint of having access to the prediction
confidences and used only hard labels, at the expense of querying the target model several times. Recently,
Ye et al. (2022) presented an enhanced MIA that they characterise as ‘population-based’, using reference
models to achieve a significantly higher power (true positive rate) for any (false positive rate) error, at a
lower computation cost. They also define an indistinguishability metric that is a function of attack AUC to
more precisely characterise privacy leakage for their purpose of comparing MIAs.

Defences against MIA work in different ways. Differential privacy was mentioned by Shokri et al. (2016) as
a possible defence strategy. It has been successfully adopted (Bernau et al., 2021; Choquette-Choo et al.,
2021) using the Gaussian mechanism.

Use in Calibrating ε in DP MIA has been proposed as an empirical method of privacy assessment to
help in comparing privacy budgets across DP variants.

Yeom et al. (2018) first drew out the connection between privacy risk and overfitting using MIA and attribute
inference, under both their own and the original Shokri et al. (2016) approaches.

Then, Jayaraman & Evans (2019) used MIA to compare εs under the original version of DP (Dwork & Roth,
2014) with those under three commonly used ‘relaxed’ variants — Concentrated DP (Dwork & Rothblum,
2016), Zero Concentrated DP (Bun & Steinke, 2016) and Rényi DP (Mironov, 2017). Experimentally, they
used as attack frameworks both the MIA of Shokri et al. (2016) and the MIA and attribute inference of Yeom
et al. (2018); CIFAR-100 (images) and Purchase-100 (customer purchase records) as datasets; and logistic
regression and a two-layer Multi-Layer Perceptron (MLP) as learners. Characterising privacy leakage as the
attack advantage under an MIA as per Yeom et al. (2018), where attack advantage is defined in terms of
the success of an MIA, they found that for a given nominal privacy budget ε, privacy leakage was quite
different across the various types of DP. The ‘relaxed’ ones experience more privacy leakage as measured by
the attacks: that is, εs do not have the same meaning, even across standard DP frameworks.

Bernau et al. (2021) similarly took an empirical approach to compare local and central DP, using average
precision over MIAs. Across three datasets (Purchase and Texas datasets (although sampled differently
from earlier work), and the Labelled Faces in the Wild (LFW) dataset representing images) and MLPs
and CNNs models as appropriate, they conclude that “while the theoretic upper bound on inference risk
reflected by ε in LDP is higher by a factor of hundreds or even thousands in comparison to CDP, the practical
protection against a white-box MI attack is actually not considerably weaker at similar model accuracy”:
as for Jayaraman & Evans (2019), the ε values are not comparable. MIA has further been proposed for
a broader assessment of privacy leakage through the ML Privacy Meter tool (Nasr et al., 2018; Kumar &
Shokri, 2020; Ye et al., 2022).

One other recent approach is that of Jagielski et al. (2020), who used a novel poisoning attack, in order to
audit specific levels of privacy within a DP framework.

Issues Irolla & Châtel (2019) point out that MIA explores overfitting, and the larger the gap between
training and evaluation accuracies, the more likely an attack would succeed. Hence, dropout, model stacking
(Salem et al., 2019), as well as l2 regularisation (Choquette-Choo et al., 2021) have prevented the attack
by simply reducing overfitting. Moreover, Rezaei & Liu (2021) also state that results in the literature
often reported only metrics (e.g. accuracy or precision) for the positive class (member class), which may
be misleading because the attacks can show high false positive rates. This is problematic because in real
life most samples do not belong to the member class, and thus a high positive rate would yield a very
low precision in practice. The authors conclude that the high false positive rates (found even in extremely
overfitted models) turn MIA impractical. They also couldn’t find a good attack with both high accuracy
and a low false positive rate.

Watson et al. (2022) also states that existing works present high false positive rates. Moreover, attackers
may predict non-member samples incorrectly, but with high confidence, something that would be expected
for member samples only. They propose enhancements to improve the attack by calibrating the membership
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score to the difficulty of correctly classifying the sample, but it requires white-box access to the target model,
defeating the initial concept of MIA as a black-box attack.

Given these issues, we assess the suitability of MIA for comparing privacy frameworks in our context later
in this paper (§5).

2.4 Gradient-based Reconstruction Attacks
In light of the issues faced by MIA, we consider another attack to evaluate privacy. Reconstructions via
model inversion attacks have already been demonstrated to lead to potentially serious privacy leakages in
the areas of pharmacology (Fredrikson et al., 2014) and computer vision (Fredrikson et al., 2015); Fredrikson
et al. (2014) already began exploring relationships with DP.

In this section, we focus on gradient-based reconstruction, as particularly relevant to DP-SGD and our
variant as adding noise to gradients during training. The attack scenario is situated within a distributed
learning framework. Distributed training aims to train a neural network without centralising data. It has
the benefit of not having to hold private data in a single place. It consists of multiple clients, and each
one holds its own private training set. Instead of sharing the data, the clients train their neural network
and exchange the gradients. However, it is still possible to reconstruct the private training data from the
gradients received.

The seminal study of Zhu et al. (2019) discovered that with few iterations it is possible to recover the private
data in attacking neural network architectures which are twice differentiable; their attack has subsequently
been referred to as the Deep Leakage from Gradients (DLG) attack. The attacker creates dummy inputs and
labels, but instead of optimising the model weights, it optimises the dummy input and labels to minimise
the Euclidean distance between their gradients and the gradients received from another client. Matching the
gradients transforms the fake input to be similar to the real one.

This attack was refined in further works. Zhao et al. (2020) proposed iDLG (i stands for improved), which
works against any differentiable network trained with cross-entropy loss over one-hot labels. The Inverting
Gradients method (IGA), from Geiping et al. (2020), maximises the cosine similarity between gradients.
Thus it relies on an angle-based cost function, which should be more robust than a magnitude-based one
against a trained neural network (which produces gradients with smaller magnitudes). Wei et al. (2020)
(baptised Client Privacy Leakage — CPL) studied how different configurations impact the effectiveness of
the attack, such as different ways of initialising the dummy data.

There have been further proposed methods, such as that of Yin et al. (2021), and evaluations of multiple
methods, such as that of Huang et al. (2021). In this paper, however, we focus on the earlier established
methods, as we are not interested in necessarily the best performing reconstruction, but rather a method
that can be used reliably in our empirical privacy calibration.

Zhu et al. (2019), in proposing DLG, also proposed some suggestions for possible defences. In addition to
measures like gradient quantization and compression/sparsification, it also included the addition of Gaussian
noise to gradients, although not within a DP context. Recently, Scheliga et al. (2022) proposed a variational
bottleneck-based preprocessing module that aims to disguise the original latent feature space that is vulner-
able to gradient-based reconstruction attacks, by learning a joint distribution between input data and latent
representation. Like Zhu et al. (2019), this also does not come with differentially private guarantees.

3 The Privacy Model
A differential privacy mechanism can be described formally as a function that takes as input an element
(drawn from a domain X ) and produces a randomised value drawn from some distribution over outputs Y,
satisfying the characteristic DP in the equation:

Pr(M(x))[Y ] ≤ eε × Pr(M(x′))[Y ] + δ , (1)

for all x ∼ x′ ∈ X and Y ⊆ Y and where ε > 0 and 0≤δ<1. When δ = 0 then Eqn (1) is called pure ε-DP;
otherwise it is called approximate-DP or simply (ε, δ)-DP.
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Popular methods of randomisation include the Gaussian, the Laplace (when the outputs are continuous) or
the Geometric (when the outputs are discrete), all of which involve the addition of noise to the input x ∈ X
to produce the noisy output y ∈ Y.

Metric DP is a generalisation of pure ε-DP in which the adjacency relation ∼ is replaced with a distinguisha-
bility metric d.

Definition 1 (Metric differential privacy) (Chatzikokolakis et al., 2013) Let ε>0. A mechanism M on an
(input) metric space (S, d), where S is a set and d is a metric, and producing outputs over Z, satisfies
εd-privacy, if for all s, s′ ∈ S and Z ⊆ Z,

Pr(M(s))[Z] ≤ eεd(s,s′) × Pr(M(s′))[Z] ,

where Pr(M(s))[Z] means the probability that the output of applying mechanismM to s lies in Z.

Def 1 says that when two inputs s, s′ differ by the amount d(s, s′), the mechanism can make them indistin-
guishable up to a ratio proportional to eεd(s,s′). This means that when points are farther apart they become
easier to distinguish.

Metric DP, like pure ε-DP, has straightforward composition properties, 2 and satisfies the data processing
inequality (Chatzikokolakis et al., 2013). Approximate-DP, however, requires approximate methods for
computing tight bounds on (ε, δ) under composition.

Our application to deep learning uses a metric based on angular distance of vectors, which we describe in
the next sections.

3.1 Standard DP-SGD
The standard DP-SGD from Abadi et al. (2016) is shown in Algorithm 1. It differs from the original
stochastic gradient descent (i.e. without perturbation) only at lines 10 and 13, where the gradients gt(xi) are
first clipped and then perturbed using the Gaussian distribution. This is implemented essentially by adding
a random perturbation to each of the components of the gradient when represented as a point in RK .

Algorithm 1 DP-SGD with Gaussian noise
1: Input: Examples {x1, . . . , xN}, loss function L(θ) = 1

N

∑
i L(θ, xi). Parameters: learning rate ηt, noise

scale σ, group size L, gradient norm bound C.
2: Initialise θ0 randomly
3: for t ∈ T do
4: Take a random batch
5: Lt ← random sample of L indices from 1. . .N
6: for i ∈ Lt do
7: Compute gradient vector
8: gt(xi)← ∇θtL(θt, xi)
9: Clip gradient vector
10: gt(xi)← gt(xi)/max(1, ‖gt(xi)‖2

C )
11: end for
12: Add noise
13: g̃t ← 1

L

∑
i(gt(xi) +N (0, C2σ2))

14: Descent
15: θt+1 ← θt − ηtg̃t
16: end for
17: Output θT

The Gaussian mechanism satisfies approximate-DP, and therefore Abadi et al. developed the moments
accounting method for improved composition bounds. We adopt this method for evaluating (ε, δ) in our
experiments using the Gaussian in DP-SGD.

2That is, the epsilons "add up" under sequential composition, and for the same metric, and privacy does not diminish under
parallel composition.
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3.2 Directional Privacy and DirDP-SGD

How the gradients are perturbed during the DP-SGD. The red line is the unperturbed gradient, and the
dotted blue lines are perturbations of angular distance A.

Figure 1: Perturbed gradients

Gradient descent optimises the search for parameter selection that minimises the loss. Thus an alternative
method of perturbing the gradients is to use randomisation that is based on perturbing the angle of deviation
from the original gradient. To give some intuition, Figure 1 illustrates how a gradient of a convex curve can
be perturbed, leading to a perturbation of the descents.

Given two vectors v, v′ in RK , we define the angular distance between them as dθ(v, v′) = arccos vT v′
‖v‖‖v′‖ . When

v, v′ are, for example, vectors on the unit K-dimensional sphere, then dθ becomes a metric. Following
Weggenmann & Kerschbaum (2021), we can use this to define directional privacy.

Definition 2 (Directional Privacy) (Weggenmann & Kerschbaum, 2021) Let ε>0. A mechanismM on RK
satisfies εdθ-privacy, if for all v, v′ and Z ⊆ suppM,

Pr(M(v))[Z] ≤ eεdθ(v,v′) × Pr(M(v′))[Z] .

Definition 2 says that when the mechanismM perturbs the vectors v, v′, the probabilities that the perturbed
vectors lie within a (measurable) set Z differ by a factor of eεdθ(v,v′). This means that the smaller the angular
distance between the vectors v, v′ the more indistinguishable they will be.

Weggenmann & Kerschbaum (2021) introduced the von Mises-Fisher (VMF) mechanism derived from the
VMF distribution that perturbs an input vector x on the K-dimensional unit sphere.

Definition 3 The VMF mechanism on the K-dimensional unit sphere is given by the density function:

V(ε, x)(y) = CK(ε)eεx
T y ,

where ε > 0 and CK(ε) is the normalisation factor.

The authors proved that the VMF mechanism satisfies εdθ-privacy.

They also provide an analysis of the expected error of the VMF3 as well as sampling methods which we use
later in our experiments.

Importantly, the following also holds.

Theorem 1 (Weggenmann & Kerschbaum (2021)) Let ε > 0 and denote by SK−1 the unit sphere in
K dimensions. Then the VMF mechanism on SK−1 satisfies εd2-privacy where d2 is the Euclidean metric.
That is,

V(ε, x)(Y ) ≤ eεd2(x,x′)V(ε, x′)(Y ) ,
for all x, x′ ∈ SK−1 and all (measurable) Y ⊆ SK−1.

3See Weggenmann & Kerschbaum (2021) for full details.
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In our application, we will need to apply the basic mechanism V to more complex data representations, namely
where a point is a represented as convex sum of m orthogonal vectors in n-dimensions. The standard method
for doing this is to apply m-independent applications of the mechanism (in this case V); the differential
privacy guarantee is then parametrised by m as follows.

Corollary 1 (Dwork & Roth (2014)) Let V be the mechanism defined in Definition 3. Let v, v′ be two
vectors on the unit sphere, where v = λ1u1 + . . . λkum and v′ = λ′1u

′
1 + . . . λ′ku

′
m, where ui, u′i for 1 ≤ i ≤ m

are vectors on the unit sphere, and |λi|, |λ′i| ≤ 1. Define V∗ to be the mechanism that applies V independently
to each of the ui/u′i to produce random vectors distributed respectively as: V∗(ε, v),V∗(ε, v′). Then

V∗(ε, v)(Y ) ≤ e2ε
√
mV(ε, v′)(Y ) .

Proof: The standard properties of differential privacy (Dwork & Roth, 2014) result in the following rela-
tionship:

V∗(ε, v)(Y ) ≤ eε
∑

1≤i≤i′
d2(λui,λ′u′i)V(ε, v′)(Y ) .

Observe that for any orthonormal set of vectors ui on the unit sphere, we have that
∑

0≤i≤m d2(0, λiui) ≤∑
0≤i≤m |λi|

√
m. The result now follows using the triangle inequality of d2, and that d2(λiui, λ′iu′i) ≤ 2. �

There are a number of interesting scenarios based on Corollary 1 which we will explore in our adaptation
of DP-SGD below. The first is that V is applied (once) to an n-dimensional vector to produce a random
n-dimensional vector. For us, in Corollary 1 we would use m = 1 to obtain an overall 2ε for our privacy
parameter. An alternative extreme is to apply noise independently to each of the components (in the way that
the original DP-SGD does); Corollary 1 then gives a ε

√
n privacy budget. An interesting hybrid scenario, not

available for the Gaussian distribution but available for the V mechanism, is to partition the n-dimensional
components intom-orthogonal components and to apply V independently to each of those components; in this
case, we obtain the ε

√
m privacy budget as in Corollary 1. As explained in our experimental sections below,

we found that for some of the datasets, this was a useful generalisation for the purposes of efficiency.

Using Def 3 we can now design a new DP-SGD algorithm using the VMF mechanism which perturbs the
directions of the gradients computed in SGD. This algorithm, which we call DirDP-SGD, is depicted in
Algorithm 2.

Algorithm 2 DirDP-SGD with von Mises-Fisher noise
1: Input: Examples {x1, . . . , xN}, loss function L(θ) = 1

N

∑
i L(θ, xi). Parameters: learning rate ηt, noise

scale σ, group size L, gradient norm bound C = 1.
2: Initialise θ0 randomly
3: for t ∈ T do
4: Take a random batch
5: Lt ← random sample of L indices from 1. . .N
6: for i ∈ Lt do
7: Compute gradient vector
8: gt(xi)← ∇θtL(θt, xi)
9: Scale gradient vector
10: gt(xi)← gt(xi)/‖gt(xi)‖2

C

11: end for
12: Add noise
13: g̃t ← 1

L

∑
i V(σ,gt(xi))

14: Descent
15: θt+1 ← θt − ηtg̃t
16: end for
17: Output θT

In order to prove a DP guarantee, Algorithm 2 is modified from the original DP-SGD in three ways. First,
we fix C to 1. Then, in line 10, instead of clipping the gradients, we scale the gradients to the clip length

9
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(ie. 1). Finally, in line 13, instead of adding a noisy vector to the gradient, we generate a noisy gradient
directly using the VMF mechanism.4

We now show Algorithm 2 satisfies both ε-DP and εdθ-privacy in terms of indistinguishability of batches
used in the learning, viz that if two batches (composed of data points xi) differ in only one point, then they
are probabilistically indistinguishable.

Theorem 2 Denote by B = [v1, . . . vn] , and B′ = [v′1, . . . v′n] two batches of vectors (gradients). If batch B′
differs from B in at most one component vector, then Algorithm 2 satisfies σd2-privacy wrt. batches, namely
that:

Pr(VM(B) ∈ Z) ≤ Pr(VM(B′) ∈ Z)× eσd2(B,B′) , (2)

where Z is a (measurable) set of vectors, Pr(VM(B) ∈ Z) is the probability that the output vector lies in Z
and (abusing notation) d2(B,B′) = maxB∼B′ d2(v, v′) is the maximum Euclidean distance between all pairs
v ∈ B, v′ ∈ B′.

Proof: Line 10 of Algorithm 2 ensures each vector in B,B′ lies on the unit sphere (since C = 1) and
line 13 applies VMF parametrised by σ. Applying Thm 1 to every vector in B,B′ yields Eqn (2) since the
(parallel) composition of d2-privacy mechanisms gives a guarantee with Pr(VM(B) ∈ Z) ≤ Pr(VM(B′) ∈
Z)×eσ

∑
1≤i≤n

d2(vi,v′i); this reduces to Eqn (2) since all but one of the distances d2(vi, v′i) = 0, by assumption.
The averaging in line 13 is an example of a post-processing step which, by the data processing inequality
property of d-privacy does not decrease the privacy guarantee (Fernandes et al., 2022).

�

Observe that Algorithm 2 assumes we apply the V mechanism to the whole gradient; as mentioned above,
in our experiments we sometimes partition the n-dimensional space. We proceed though to prove a privacy
guarantee assuming Algorithm 2 applies V without partitioning.

Corollary 2 Algorithm 2 satisfies ε-DP wrt adjacent training sets D,D′.

Proof: Observe that maxB∼B′ d2(v, v′) = 2 since v, v′ lie on the unit sphere. ε-DP on batches follows from
choosing σ = ε

2 which is the standard DP-SGD tuning from Song et al. (2013). Since batches are disjoint,
the result follows by parallel composition for adjacent training sets D,D′. �

Corollary 3 Algorithm 2 satisfies εdθ-privacy.

Proof: Follows from the fact that d2-privacy implies dθ-privacy (since d2 ≤ dθ pointwise on the unit
sphere), using dθ reasoning in Thm 2 and using the same σ tuning as per Cor 2. �

Note that the epsilons in Cor 2 and Cor 3 are not comparable as they represent different notions of pri-
vacy.

We remark that by scaling rather than clipping the gradients, we also protect against privacy leaks caused
when the gradient length is less than C. (Information may or may not be leaked by knowing the length of
the gradient, but by scaling rather than clipping the gradient, we remove this possibility.)

3.3 Notion of Theoretical Guarantees and Comparison in Practice
At this point, it is not clear how directly we can compare the two privacy guarantees for Algorithm 1 and
Algorithm 2. As mentioned above the guarantee for Algorithm 1 includes a δ > 0 parameter — this means
that there is a risk that the perturbation will leak more than for an ε-private mechanism, and therefore may
provide reduced protection against a threat of membership inference or reconstruction. Moreover, previous
work (Chatzikokolakis et al., 2019) has shown that comparing epsilons between different privacy definitions
can be problematic, and not informative. To avoid confusion we use εG for the privacy parameter used for
Algorithm 1 and εV for Algorithm 2.

4This is because the VMF mechanism generates a new noisy vector based on its input.

10
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We, therefore, consider empirical privacy comparisons: Membership Inference Attacks (§2.3) and gradient-
based reconstruction attacks (§2.4). The former has been used in comparisons of εs within standard DP;
the latter is a privacy vulnerability directly linked to the key use of gradients in our deep learning training.
We consider these in our particular context in §5. We simultaneously empirically compare each mechanism’s
utility on a classification task. Although Algorithm 1 has been widely used, Algorithm 2 is a novel application
of the VMF mechanism, and one of our tasks (detailed below) is to determine ranges of the parameter εV
that provide a good trade-off between defending against the threat of privacy leakage versus allowing a set
of parameters to be determined that provides an acceptable level of utility.

3.4 Implementing Directional Privacy
We use Opacus,5 introduced by Yousefpour et al. (2021), as a starting point for the experiments. The library,
based on PyTorch (Paszke et al., 2019), implements DP-SGD.

From an implementation view, there are three main components: (i) the minibatches are built by using
Poisson sampling: each sample from the training dataset is chosen with a certain probability p, which means
that a sample may appear in zero, or more than one times in an epoch; (ii) the sample gradients are capped
to avoid a very large individual contribution from one sample; (iii) noise is added to the gradients. Only
Gaussian noise is supported.

We extend Opacus to work with the VMF distribution. Component (i) is left unchanged. For component
(ii), we cap gradients, bounding them by C = 1, to ensure ε-DP of Algorithm 2 (see Thm 2); for a fair
comparison, we do the same for the Gaussian mechanism. For component (iii), we switch the Gaussian noise
for the Von Mises-Fisher one. To sample from the VMF distribution we follow the method from Ulrich (1984)
and Wood (1994).6. More specifically, the gradients are clipped per layer by Opacus, by flattening the its
rows into a single vector. Then, for each layer, we add VMF noise per row. For our empirical evaluation, we
add noise to the budget of εV in each update.

4 Overall Experimental Setup
Most works evaluating DP in deep learning report performance on some task (typically, classification accu-
racy) for utility, but for the level of privacy, they report only on the value of ε (and δ if relevant). As we
note in §3.3, it is not meaningful to compare epsilons across pure-DP and approximate-DP. We, therefore,
take an empirical approach to calibrating the respective epsilons, εG and εV : we measure how DirDP-SGD
performs to prevent membership inference attacks (MIA) and compare its success against gradient-based
reconstruction attacks. We empirically investigate and justify our choices in §5.

For utility, as is typically done, we compare the accuracy of different neural networks in the task of classifi-
cation when they are trained with DP guarantees against the baseline without privacy guarantees.

4.1 DirDP-SGD: εV
Unlike Gaussian noise (§4.3), there is no prior work with VMF to use as a guide for selecting an appropriate
εV . Based on preliminary experiments, we found a range of changes to utility in εV ∈ {1, 5, 10, 50, 500}; we
also included εV = 300, 000, which hardly shifts gradients, to investigate the effects of negligible noise.

4.2 Datasets
We use classification tasks from the image processing domain, as in many works, and specifically datasets
used in other privacy work.7

• Fashion-MNIST8 (Xiao et al., 2017), inspired by the MNIST dataset (Deng, 2012), contains 70,000
images of fashion products from 10 classes. The images are 28×28 pixels in greyscale. The training set
contains 60,000 instances and the test set has 10,000 instances.
5https://opacus.ai
6https://github.com/dlwhittenbury/von-Mises-Sampling
7For example, Abadi et al. (2016) use two datasets, MNIST and CIFAR-10, in proposing the moments accountant for DP-

SGD; Zhu et al. (2019) use MNIST, CIFAR-100, SVHN and LFW in evaluating their DLG reconstruction attack; Papernot
et al. (2021) use MNIST, Fashion-MNIST and CIFAR-10 in exploring tempered sigmoid activations for deep learning with DP.

8https://github.com/zalandoresearch/fashion-mnist
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• CIFAR9 dataset (Krizhevsky, 2009) contains 60,000 coloured images of 32x32 pixels for each one of the
3 channels. It has two versions: CIFAR10, in which each image belongs to one out of 10 classes, and
CIFAR100, which contains 100 classes. The training set contains 50,000 instances and the test set has
10,000 instances.

• LFW10, or Labeled Faces in the Wild dataset (Huang et al., 2007), has 13,233 images of 5,749 people
collected from the internet. It is a particularly interesting dataset because it is composed of people’s
faces, which is something that one may wish to hide to preserve their identity, and consequently has
been the focus of previous high-profile work on privacy leakage (Fredrikson et al., 2015, for example).
The images have 250x250 pixels, some in greyscale but most are coloured. The standard task, which we
also adopt, is identity recognition; the standard training and test sets for this contain 9,525 and 3,708
instances respectively. Given its large number of classes, many with few instances, we follow Wei et al.
(2020) to downsize the dataset.

In doing this, we kept only the classes that contain at least 14 objects. This reduced the number of classes
to 106 and the number of samples to 3,737 (Wei et al., 2020). Even after this, there is a strong imbalance
amongst the classes, with some having dozens of members but others having hundreds. Therefore we
under-sampled the majority classes by randomly picking objects so that all classes end up with 14 samples.
This reduced the dataset even further, to 14*106 = 1,484 instances. Finally, we split the resulting dataset
into training (80%, or 1,113 samples) and test (20%, or 371 samples) sets.

Commenting on their use of Fashion-MNIST and CIFAR-10 in a similar context to ours in terms of exploring
DP, Papernot et al. (2021) note that, although these datasets are considered largely ‘solved’ in the computer
vision community, “achieving high utility with strong privacy guarantees remains difficult”, and so are
suitable for comparing variants of DP, as they also do.

4.3 Primary Baselines
In terms of deep learning architectures to investigate, we broadly follow the setup of Scheliga et al. (2022).
The architectures of neural networks we use are LeNet, the original convolutional neural network (CNN)
proposed by Lecun (1989), and a simple Multilayer Perceptron (MLP) with 2 layers, which are feedforward
neural networks (Goodfellow et al., 2016), in line with other work defining new approaches to privacy.11

Scheliga et al. (2022) include MLPs as they note that Geiping et al. (2020) provide a theoretical proof that
in fully connected networks, their IGA attack can uniquely reconstruct the input to the network from the
network’s gradients. LeNet is a prototypical architecture for CNNs.

The two baselines in terms of privacy protection for these architectures are (i) the state-of-the-art DP-
SGD using Gaussian noise and (ii) the neural networks without any DP guarantees. We compare their
performance in terms of accuracy and susceptibility to attacks against our DirDP-SGD.

For the Gaussian noise, there are no standard guidelines on the range to test, as ε does not have an easily
interpretable meaning, with no universally agreed-upon point for what counts as ‘too large’; Dwork et al.
(2019) note that “while all small ε are alike, each large ε is large after its own fashion, making it difficult to
reason about them.” As a common range for all of our baseline/dataset combinations, we consequently select
values going from ‘small’ (εG ≤ 1) to the common largest value of 8 that a number of works (Abadi et al.,
2016; De et al., 2022, for example) have selected over the years. We also added larger εG = 50 as a relatively
small amount of noise, although this is larger than in many other works, for calibration purposes.

4.4 Evaluation Measures
We evaluate DirDP-SGD in terms of utility and privacy. For utility, we measure the impact that different
DP strategies have on the accuracy of different neural network architectures on classification tasks over
different datasets. We evaluate the impact of the privacy mechanism on model performance according to

9https://www.cs.toronto.edu/~kriz/cifar.html
10http://vis-www.cs.umass.edu/lfw/
11For example, Abadi et al. (2016) use an MLP in proposing the moments accountant for DP-SGD; Zhu et al. (2019) similarly

use an MLP in calibrating ε across standard DP frameworks; Papernot et al. (2021) use a LeNet-style architecture in exploring
tempered sigmoid activations for deep learning with DP.
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different values of ε and the absence of privacy guarantees. This is in line with previous works (Abadi et al.,
2016; Li et al., 2022a).

As we observe earlier, the LFW dataset and associated tasks are particularly challenging relative to the other
two, due to the higher number of classes and a smaller number of instances. Therefore, we might expect
low accuracies, which the added noise might reduce to near-zero levels, obscuring differences among different
types and levels of noise. For this dataset, then, in addition to standard accuracy, we report the Top-10
accuracy rates, where a prediction is correct if the true label is amongst any of the model’s top 10 classes
with the highest confidence rate (so standard accuracy is the same as Top-1 accuracy).

For the level of privacy achieved, in §5 we evaluate membership inference and reconstruction attacks as
mechanisms for empirical privacy comparison and then used the selected alternative to assess how DirDP-
SGD performs compared to baselines.

5 Empirical Privacy Evaluation
In this section, we consider both MIA and gradient reconstruction attacks (2) for calibration of ε values in
our context of comparing standard and metric DP. We assess them on standard DP with Gaussian noise
within our experimental setup (4).

It is well known that defining an operational interpretation of ε is a challenge, with the meaning of ε being
contextually dependent (Lee & Clifton, 2011; Dwork et al., 2019). In line with other work proposing empirical
comparisons of privacy Jayaraman & Evans (2019), we, therefore, choose an approach that directly relates to
the one taken by DP-SGD and our DirDP-SGD, which obfuscates gradients: (i) we measure how DirDP-
SGD performs to prevent membership inference attacks (MIA). We follow the framework from Shokri et al.
(2016), where the goal is to identify if a sample was used to train a target model (§5.1); we also look at the
more recent enhanced MIA of Ye et al. (2022) (§5.2). Then, we (ii) compare their success against gradient-
based reconstruction attacks (Zhu et al., 2019; Geiping et al., 2020) (§5.3). In these attacks, the goal is
to reconstruct images solely from their gradients. Obfuscating gradients successfully should to some extent
then prevent this reconstruction. (Zhu et al. (2019) do this in proposing several non-DP defences against
their own attack.)

At the end of the section, we draw a conclusion about which to use for our principal results (§6) comparing
standard and metric DP.

5.1 Membership Inference Attack
MIA has become a standard benchmark for evaluating privacy. We explore first the framework proposed by
Shokri et al. (2016). We analyse how a range of ε affects the performance of the attack, which will serve as
starting point for calibrating the privacy-utility trade-off.

5.1.1 Experimental Setup
Here we expand on the high-level view of §2.3 to give some more technical detail and notation on membership
inference attacks. Then, we bring our results.

Technical Detail on MIA Following the notation from Shokri et al. (2016), the first step of the two-step
process trains several shadow models f ishadow() whose job is to mimic the target model ftarget() to be attacked.
The shadow models should be trained similarly to the target (i.e. same or close architecture, hyperparameters
and task). Thus, they receive samples and outputs probabilities to which class each sample belongs. However,
it is assumed that the training sets of f ishadow() and ftarget() are disjoint, i.e., Dtrain

shadow ∩Dtrain
target = ∅. The

second step is to train attack models whose job is to predict whether a sample was used to train the target or
not. One attack model f jattack() is trained per class. The attackers can be any binary classifier. The outputs
of f ishadow() (and ftarget()) are probability vectors y of size c, being c the number of possible classes. Thus,
Dtrain
attack is a collection of samples ((y, y),m), where y are the outputs of the shadow models for samples

xshadow, y is the true class of xshadow, and m indicates whether xshadow was a member in Dtrain
shadow or not.

Finally, at inference time, a prediction vector y = ftarget(x) is passed through the corresponding f jattack()
to asses whether x ∈ Dtrain

target.
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Table 1: Accuracy under different DP settings for the Membership Inference Attacks using Kulynych &
Yaghini (2018). We also inform the gap between train and evaluation accuracy. A negative value means that
the training accuracy was smaller than the evaluation accuracy.

F-MNIST CIFAR10
Model Mechanism εG Attack acc. Train gap Attack acc. Train gap
LeNet – – 50.1 -1.1 49.8 8.9
MLP – – 49.8 4.2 53.5 34.1

LeNet Gauss
0.8 50.3 -1.3 49.8 -0.5
8.0 50.2 -0.2 49.7 -0.5
50.0 50.2 -1.3 50.3 2.0

MLP Gauss
0.8 50.3 -1.1 50.1 1.0
8.0 50.7 -1.2 50.4 2.9
50.0 50.8 -1.4 50.4 4.2

Our Setup We design the MIA according to the procedure explained above. Both f ishadow() and ftarget()
have the same architecture: LeNet and MLP. We train 10 shadow models, and we use the Gradient Boosting
Decision Tree (LightGBM) (Ke et al., 2017) as fattack().

Because of the LFW dataset’s small size and consequent infeasibility of training multiple shadow models, we
do not use it for MIA; we only apply this to the other two datasets.

For each dataset, D, the test set Dtest is kept intact, and we split the training set Dtrain in half, one for
Dshadow and another for Dtarget. Both datasets are in turn split in half into training and evaluation set each,
into Dtrain

shadow, Dtrain
target, Deval

shadow and Deval
target. Thus, we ensure that the data are disjoint but come from the

same distribution. Each f ishadow() is trained with 70% of Dtrain
shadow and Deval

shadow, sampled randomly. The in-
samples and out-samples used to train f jattack() come from Dtrain

shadow and Deval
shadow respectively. Even though

not explicitly mentioned by Shokri et al. (2016), but following Irolla & Châtel (2019), we train f jattack() only
with samples correctly classified by f ishadow().

For inference, we take the held-out Dtest as our out-samples set and randomly sample the same amount
of records from Dtrain

target to build our in-samples set Din_samples. Our final test set is their concatenation
D′test = Dtest

⋃
Din_samples. We use the implementation provided by Kulynych & Yaghini (2018), a library

published with the goal of enabling the running of MIAs against machine learning models.

5.1.2 Results and Discussion
Table 1 shows the accuracy of the attacks as well as the gap between training and evaluation for both private
and non-private targets. The gap refers to the accuracy of the classification task, not the attack. A negative
value in the gap column means that the training accuracy was smaller than the evaluation accuracy. Note
that the gap refers to the accuracy of the classification task, not the attack.

Focusing first on the attacks against non-private models, it can be seen that the attacks are largely un-
successful. The most successful is against the non-private MLP, which is only at 53%. The attack is at a
random chance for non-private LeNet and all of the models with noise.

We observe the MIA marginally succeeds only when the target model is heavily overfitted and thus reports
a big gap between its training and evaluation accuracies. This is consistent with several other studies in
the literature, which tackle MIA with regularisation techniques (Shokri et al., 2016; Salem et al., 2019;
Choquette-Choo et al., 2021). Irolla & Châtel (2019), for instance, report an attack accuracy for CIFAR10
of 56.54% when their model shows a train-test gap of 32%. For Fashion-MNIST, when the gap is 11%, their
attack achieves an accuracy of only 50.92%.

Given that attacks on non-private models are unsuccessful, we would not expect attack success rates against
models with protective noise added to be successful either, and consequently not useful for distinguishing
among εs. In Table 1 we give a small, medium and large εG to show that this is the case.
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Table 2: AUC attack scores under different DP settings for the Enhanced Membership Inference Attack using
the ML Privacy Tool with reference models (MIA-R). We also inform the gap between train and evaluation
accuracy. Negative values mean that the training accuracy was smaller than the evaluation accuracy.

F-MNIST CIFAR10
Model Mechanism εG Attack AUC Train gap Attack AUC Train gap
LeNet – – 54.8 4.1 78.5 49.2
MLP – – 61.1 13.0 82.0 35.1

LeNet Gauss
1.0 49.3 0.0 51.1 3.3
8.0 50.5 0.7 51.6 1.5
50.0 50.4 1.2 51.7 3.0

200.00 50.5 0.9 52.2 2.0
300k 51.6 0.6 58.0 8.6

MLP Gauss
1.0 49.9 3.5 50.5 -0.4
8.0 51.8 3.2 52.0 2.2
50.0 52.6 3.5 53.9 4.6
200.0 53.4 3.7 56.3 4.8
300k 56.1 5.2 70.9 22.4

5.2 Enhanced Membership Inference Attack
The Enhanced Membership Inference Attack Ye et al. (2022) has not yet been used for the same kinds of
calibration of ε as the older MIA above. In this section, we explore it in the same manner as in §5.1.

5.2.1 Experimental Setup
Technical Detail on Enhanced MIA via Reference Models (MIA-R) Ye et al. (2022) propose
enhancements for MIA to achieve a higher true positive rate for any false positive rate. In the MIA via
Reference models attack (called Attack R in their paper; from now on we will refer to it as MIA-R) trains
several reference models (akin to shadow models) with Dtrain

refs . Later, the attack must find whether (xz,yz)
belongs to Dtrain

target or Dtest
target. It does so by comparing the loss of the target model against a threshold

function that depends on the target data feature and label:

`(θ,xz,yz) ≤ cα(xz,yz)

where cα(.) is the threshold function satisfying an arbitrary confidence 0 ≤ α ≤ 1 and θ is the target model
parameters.

Our Setup We use the ML Privacy Meter12 (Shokri et al., 2016; Nasr et al., 2018; Kumar & Shokri, 2020;
Ye et al., 2022) for the implementation, which is designed to enable a consistent framework for evaluating
leakage from MIAs. We train 10 reference models, which follow the same architecture and hyperparameters
as the target models, except that the reference models are never trained with DP.

We let Dtrain
target and each one of the ten splits of Dtrain

refs to have 4,500 images for CIFAR10 and 5,000 images
for Fashion-MNIST. For both datasets, Dtest

target has 900 images. To evaluate the attack, our Din = Dtrain
target

and Dout = Dtest
target, and thus the final test set is Dtest = Din

⋃
Dout.

The success of the attack is quantified by a ROC curve, which translates to a trade-off between False Positive
Rate (FPR, or classifying unseen samples as training samples) and True Positive Rate (TPR, or correctly
identifying training samples). The curve is summarised by a single number, its Area Under the Curve (AUC),
and can be seen as the aggregate privacy risk to the data leaked by the model under attack (Kumar & Shokri,
2020). The more successful the attack is, the bigger the TPR will be at a small FPR leading to a bigger
AUC. We use this AUC analogously to the way previous work used attack success in calibrating ε.

12https://github.com/privacytrustlab/ml_privacy_meter
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5.2.2 Results and Discussion
Table 2 presents results for the original chosen set of values of εG from §4, plus two very large values
(εG ∈ {200, 300k}) to help in understanding and calibrating the behaviour of MIA-R in our context. The
table shows that MIA-R is much more successful than the older MIA on our datasets and architectures. For
non-private LeNet on CIFAR, the attack AUC is 78.5, and for non-private MLP, it is 82. Success on Fashion
MNIST, however, is lower, and close to the chance for LeNet. For the most part, the attacks are sufficiently
successful that there is space for calibration of ε.

Looking at the addition of Gaussian noise, we see that the pattern is as we would expect: smaller ε (larger
noise) brings attack success down closer to random chance. In Table 2 we add a couple of larger ε values
beyond those of interest to us for our later comparison of Gaussian and VMF noise, to verify that the pattern
continues. For the very tiny Gaussian noise of εG = 300k, the AUCs are noticeably larger than for smaller
εG but are still well below the non-private attacks for LeNet on CIFAR and MLP on Fashion MNIST.

We also report the train-evaluation gap in Table 2. From it, we observe that the attack success correlates
well with overfitting: a large gap means the model achieves a much higher training accuracy compared to
unseen samples, which is a characteristic that MIA exploits.

We notice that attacks are more challenging for Fashion-MNIST, and the gaps are usually low. For CIFAR10,
gaps below 4% correspond to attacks close to random chance. One needs a gap above 5% to achieve an AUC
higher than 55% in both datasets.

AUC under MIA-R thus looks broadly like a good calibration tool for our purposes, although for Fashion
MNIST the lower attack success might make calibration more challenging. In addition, the attacks being
much less successful for very tiny Gaussian noise than for non-private models (up to 20 percentage points for
LeNet on CIFAR10, 58.0 vs 78.5) could be interpreted as suggesting that there is a non-negligible level of
protection granted by this noise. We therefore, in §5.3 where we examine data reconstruction as a possible
supplementary mechanism for empirical privacy calibration, look particularly at the upper end of the ε
scale.

5.3 Data Reconstruction Attacks
We investigate how the noise distributions can defend against attacks during distributed learning, as ex-
plained in §2.4. Analogously to MIA, we analyse the impact of a range of ε on image reconstruction for
calibration purposes.

5.3.1 Experimental Setup
We consider the DLG attack from Zhu et al. (2019) and the Inverting Gradients method from Geiping
et al. (2020). The reasons behind these choices are that (i) DLG is the first reconstruction attack based on
gradient sharing, and is well-established as a baseline, and (ii) Inverting Gradients is based on an angular
cost function, so we assess whether an angular-based noise like our DirDP-SGD can defend against it. Next,
we explain in more detail each one of these attacks. We set each attack to reconstruct 100 images.

DLG An attacker receives the gradients from another participant. Instead of honestly training its neural
network, the attacker maliciously uses the gradients to recover the private data that was used to generate
them.

Following the notation from Zhu et al. (2019), let ∇W be the gradients received, F be a twice differentiable
neural network,W be its parameters and (x, y) be the (private) training data and the corresponding (private)
labels. The attacker creates dummy x’, y’ (e.g. by sampling from a Gaussian distribution). The dummy
data goes through F and after performing backpropagation taking the derivatives w.r.t W , the dummy
gradients ∇W ′ are created:

∇W ′ = ∂`(F (x′,W ),y′)
∂W

(3)

The private training data can be recovered by optimising
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x′∗,y′∗ = arg min
x′,y′

‖W ′ −W‖2 (4)

More specifically, the attacker takes the difference ‖W ′−W‖2, which is differentiable w.r.t (x’, y’). Therefore,
x’, y’ are optimised by

x′,y′ = x′ − η∇x′‖W ′ −W‖2,y′ − η∇y′‖W ′ −W‖2 (5)

where η is the learning rate (usually a value in the range (0, 1]).

Inverting gradients (IGA) In this attack, Geiping et al. (2020) note that the cost function in Equation 4
optimises a Euclidean matching term, and that the magnitude of a gradient holds information regarding the
stage of the training (the gradients tend to be smaller for trained networks). The direction of the gradients
can also capture important information, and therefore the authors change Equation 4 to a function based
on angles by adopting the cosine distance:

x′∗,y′∗ = arg min
x∈[0,1]n

1− 〈W ′,W 〉
‖W ′‖‖W‖

+ αTV (x) (6)

with the additional constraint that the values in the input data must be normalised to fit the space of
[0, 1].

Metrics We consider two metrics that measure how different the reconstructed image is from the original.
We attack 100 images.

• Structural similarity index measure (SSIM) (Wang et al., 2004) compares any two signals and
returns a value between [−1, 1]. It compares pixel intensities that have been normalised for luminance
and contrast; the work that proposed it demonstrated that it correlates well with human judgements of
reconstruction quality. We use it to measure how close the reconstructed images are to the originals; it has
previously been used in this way for the specific quantitative evaluation of gradient-based reconstructions
(Wei et al., 2020) and (so far non-DP) defences against them (Scheliga et al., 2022), in addition to its
longstanding use more generally in image quality assessment (Gu et al., 2020). While there are some
complexities in interpreting SSIM scores (Nilsson & Akenine-Möller, 2020), identical images score 1,
completely dissimilar images score 0, and negative scores occur rarely and only in unusual contexts.

• Mean Squared Error (MSE) measures the distance between a reconstructed image and its original
counterpart by averaging the squares of the differences between the pixels of two images. We also use it to
measure how similar the reconstructed images are to the original ones. This has likewise been used along
with SSIM in the quantitative evaluation of gradient-based reconstruction attacks and their defences.

As MSE is unbounded, we report its median to avoid a few large MSE values from dominating the average.

We do not consider more recent metrics such as LPIPS (Zhang et al., 2018) that are derived from neural
networks and consequently linked to specific architectural choices, e.g. convolutional layers.

5.3.2 Results and Discussion
While the DLG attack can reconstruct against the LeNet, it is completely unable to work against the MLP.
We note that, although there is nothing in the method that is specific to the target’s architecture, Zhu et al.
(2019) did only use a CNN as the testbed for experimenting with their attack; perhaps the attack would
work against MLPs if modified 13. However, that is beyond the scope of the present paper. We do note
from examining some images (Figure 2) that there is, moreover, little visible distinction between ε = 1 and
ε = 50. Overall, this an unsuitable candidate for calibrating between εs.

13There’s been discussions about the efficacy of this attack when the network is modified, like changing activation functions
or even fully training it on some Github issues, see examples https://github.com/PatrickZH/Improved-Deep-Leakage-from-
Gradients/issues/2, https://github.com/PatrickZH/Improved-Deep-Leakage-from-Gradients/issues/5
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(a) Original
FMNIST

(b) Lenet, ε =
∞

(c) Gauss ε = 1 (d) Gauss σ =
50

(e) MLP, ε =
∞

(f) Gauss ε = 1 (g) Gauss σ =
50

(h) Original
Cifar

(i) Lenet, ε =
∞

(j) Gauss ε = 1 (k) Gauss σ =
50

(l) MLP, ε =
∞

(m) Gauss ε =
1

(n) Gauss σ =
50

(o) Original
LFW

(p) Lenet, ε =
∞

(q) Gauss ε =
1

(r) Gauss σ =
50

(s) MLP, ε =
∞

(t) Gauss ε = 1 (u) Gauss σ =
50

Figure 2: Reconstructed images by DLG against LeNet and MLP.

Table 3: IGA reconstruction attack metrics for LeNet and MLP: Gaussian noise.

SSIM MSE
Model Mechanism εG F-MNIST CIFAR LFW F-MNIST CIFAR LFW
LeNet – – 0.29 0.28 0.24 0.65 0.36 0.68
MLP – – 0.44 0.52 0.51 0.37 0.18 0.31

LeNet Gauss

0.8 0.00 0.00 0.00 1.60 1.30 1.51
1.0 0.00 0.00 0.00 1.61 1.28 1.51
2.0 0.00 0.00 0.00 1.60 1.25 0.49
3.0 0.00 0.00 0.00 1.62 1.24 1.51
8.0 0.01 0.00 0.00 1.58 1.24 1.39
50 0.07 0.04 0.02 1.17 0.79 1.09
200 0.23 0.14 0.05 0.71 0.48 0.96
300k 0.29 0.26 0.25 0.56 0.39 0.65

MLP Gauss

0.8 0.00 0.00 0.00 1.53 0.89 1.37
1.0 0.00 0.00 0.00 1.53 0.90 1.38
2.0 0.00 0.00 0.00 1.54 0.88 1.37
3.0 0.00 0.00 0.00 1.53 0.88 1.37
8.0 0.00 0.00 0.00 1.52 0.87 1.36
50 0.01 0.00 0.00 1.45 0.85 1.32
200 0.03 0.02 0.01 1.36 0.78 1.26
300k 0.23 0.27 0.23 0.79 0.40 0.69

Table 3 shows results for the IGA on the same set of values of εG as in §5.2, demonstrating that the attack
can succeed against both LeNet and MLP architectures. The values in the table are the average for SSIM
and the median for MSE. Higher SSIM values and lower MSE values indicate that the reconstructed image
is closer to the original.
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We observe that the SSIM scores are all at or close to zero for the originally chosen range of εG (εG ≤ 50).
While, as we have noted, this is a widely used metric for comparing original and distorted images, it is
perhaps less suitable here. The kinds of robustness testing this and other metrics undergo involve small
amounts of Gaussian and other noise, in addition to affine transformations, JPEG compression, and so on
(Gu et al., 2020; Ghildyal & Liu, 2023), but perhaps not in the range of interest in this paper.

The MSE scores, on the other hand, behave broadly as we might wish. As expected, the MSEs for all noisy
models are above the non-private ones. Within each architecture, we see the lowest amount of noise at the
largest ε. While not too many distinctions can be made among the smaller εs, it does potentially allow a
broad comparison with VMF noise.

We do note at the upper end for the very large εG values as we added in §5.2 to understand the behaviour of
MIA-R, that SSIM scores do become positive, and in fact are often greater than the non-private reconstruction
SSIM (in one of the six cases for εG = 200, and in four for εG = 300k). MSE scores start to drop noticeably
at εG = 50 and thus are somewhat more sensitive. Looking ahead to visualisations in §6 describing the
paper’s main results, we see that the IGA reconstruction for εG = 300k for our sample images from each of
the three datasets can be almost as good as against the non-private models, as indicated by the SSIM scores.
This indicates a real privacy leakage not captured by the MIA AUC gap in this kind of empirical privacy
calibration. We, therefore, use IGA reconstruction as our second empirical privacy calibration.

5.4 Summary
For our empirical privacy calibration, then, we use two tools:

1. the ML Privacy Meter and the success of its MIA-R attacks, as measured by AUC; and

2. the IGA reconstruction attack, focusing on MSE as the metric, as a supplement to the ML Privacy Meter.

6 Comparing Gaussian and VMF Mechanisms
In this section, we present results for utility and privacy experiments. More details about hyperparameters
and computing environments are described in the Appendix.

6.1 Utility experiments
We compare the models after they are trained with and without DP guarantees in classification tasks across
different datasets. Table 4 shows the accuracy for each setting for the test sets of Fashion-MNIST, LFW,
CIFAR10 and CIFAR100 datasets, after being trained on the respective full training sets.

The first two rows show the test set accuracy of baseline models without any DP mechanism. The remaining
rows bring results of the same models, but with different DP mechanisms (Gauss and VMF) and with
different values of their respective privacy parameters εG and εV .

In general, with few exceptions, adding noise reduces performance, and more noise corresponds to a greater
performance reduction: considering εG and εV as privacy budgets, the higher they are, the less privacy
should be retained, thus increasing the accuracy.

Overall, in terms of non-private models, relative performance on the datasets and tasks is as expected:
Fashion-MNIST is the easiest dataset. Even small values of ε, like εG = 0.8 don’t seem to drastically affect
the utility of the model compared to the non-private baselines. However, we observe other trends when
looking at the other datasets.

For the CIFAR dataset, VMF noise leads to much smaller reductions in utility for Lenet and MLP; even the
largest εG = 50 does not reach the accuracy of the smallest VMF-εV . For LFW, there is little difference
in performance across the models: the accuracy drop is sharper for Lenet, whereas the bigger ε approach
is closer to the original accuracy. Given its limited size and high number of classes, we report the top-10
accuracy for LFW.

We also observe some cases when the neural network is trained with DirDP-SGD, its accuracy is even
marginally higher than the baseline without any DP guarantees for a large or very large value of ε (e.g.
MLP on Fashion-MNIST, FLW and CIFAR100). We hypothesise that the noise also acts as a regularisation
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Table 4: Accuracy scores for classification tasks under different DP settings for the test sets.

F-MNIST CIFAR10 CIFAR100 LFW
Model Mechanism εG, εV Accuracy Top-10 Acc.
LeNet – – 87.7 52.2 24.4 32.0
MLP – – 84.7 45.8 16.5 15.6

LeNet Gauss

0.8 81.2 36.7 4.9 8.9
1.0 81.7 37.4 5.5 9.6
2.0 82.3 41.5 7.8 8.7
3.0 83.1 43.2 9.0 8.7
8.0 83.9 46.6 12.0 13.2
50.0 85.1 48.9 15.3 15.2

LeNet VMF

1 81.5 50.7 21.4 11.8
5 81.3 51.3 20.7 11.2
10 81.8 50.5 21.0 11.2
50 81.9 51.4 21.2 13.0
500 82.9 51.4 22.2 13.9
300k 83.9 51.6 25.8 14.3

MLP Gauss

0.8 79.6 32.0 5.6 10.5
1.0 79.8 32.7 5.9 10.5
2.0 81.2 34.6 7.0 10.3
3.0 81.7 35.3 7.7 9.4
8.0 82.9 36.9 8.9 9.6
50.0 84.1 39.1 10.6 10.7

MLP VMF

1 84.9 42.1 13.4 14.3
5 84.2 41.9 13.6 15.2
10 84.4 42.3 13.8 14.7
50 84.5 42.9 14.6 15.2
500 85.1 43.3 15.8 18.3
300k 85.3 44.8 17.0 27.1

factor that prevents overfitting, which can explain the modest performance gain on the test set. In fact,
the use of noise as a regularisation technique has been studied by Li & Liu (2020; 2022), but with Gaussian
noise.

6.2 Empirical Privacy Calibration

We now present the results of experiments comparing the Gaussian and VMF mechanisms regarding privacy.
First, we report the findings on the MIA-R attack, followed by the gradient leakage attack.

6.2.1 Enhanced MIA
Table 5 gives the results for the enhanced MIA-R attack, for both Gaussian and VMF noise. We left the
LFW dataset out of this set of experiments due to its limited size to be split into several training partitions
for the reference models.

The calibration with respect to standard Gaussian noise of §5.2 showed that the attack was particularly
successful against CIFAR, with a large improvement over chance against the non-private models. Comparing
Gaussian against VMF on LeNet, we see that even the largest εV reduces the success of the attack to less
than the Gaussian ε = 1.0.

For Fashion-MNIST, the baseline models without any privacy guarantee leak less information than those
trained with CIFAR. Thus, unsurprisingly, most noise settings make the attacks similar to random chance,
except for some cases where ε is very large, particularly with MLP.
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Table 5: AUC attack scores under different DP settings for the Enhanced Membership Inference Attacks
using the ML Privacy Meter (MIA-R), comparing Gaussian and VMF noise.

F-MNIST CIFAR10
Model Mechanism εG, εV Attack AUC Attack AUC
LeNet – – 54.8 78.5
MLP – – 61.1 82.0

LeNet Gauss

0.8 49.2 50.9
1.0 49.3 51.1
2.0 50.1 51.3
3.0 49.9 51.2
8.0 50.5 51.6
50.0 50.4 51.7

LeNet VMF

1.0 49.5 50.8
5.0 48.9 50.5
10.0 49.3 50.4
50.0 49.8 50.8
500.0 50.4 57.1
300k 51.8 66.0

MLP Gauss

0.8 49.8 50.5
1.0 49.9 50.5
2.0 50.4 51.0
3.0 51.1 51.4
8.0 51.8 52.0
50.0 52.6 53.9

MLP VMF

1.0 49.2 50.3
5.0 48.7 50.2
10.0 49.2 50.6
50.0 49.7 51.9
500.0 52.3 58.9
300k 55.1 74.3

6.2.2 Defence against Gradient Leakage Attacks
As a supplement to the Enhanced MIA calibration, Table 6 shows the results of the IGA (Inversion Gradient
Attack) reconstruction attack against LeNet and MLP models, measuring the ability of an attacker to
reconstruct the input data from the model’s output probability distribution.

The MSE metric can be seen as the amount of noise that was kept in the resulting image after the attack was
completed. We observe that reconstruction against LeNet generally performs worse than the MLP model.
For instance, in terms of the SSIM metric, the LeNet model has a maximum score of 0.29, while the MLP
model has a maximum score of 0.52. Also, the LeNet model has a higher MSE score than the MLP model
for all datasets.

When we look at the performance of the models under attack, we can see that for the most part, the
reconstructions under Gaussian and VMF DP are noisier than the non-private reconstructions. The exception
is, as expected, the very large εV = 300k that we use for understanding the range of εV s, where the MSE
scores are similar to or only a little larger than for the non-private models. This is also reflected in the SSIM
scores, where with a VMF mechanism and an εV = 300k, the LeNet model has an SSIM score of 0.28 for
the F-MNIST dataset, and the MLP model has an SSIM score of 0.27 for the same attack configuration.
This indicates that both LeNet and MLP models can be vulnerable to the IGA attack if the noise is too
small.

We also see that when Lenet’s gradients receive Gaussian noise, the error drops sharply as ε increases,
mainly for Fashion-MNIST and CIFAR images. For the remaining experiments, the range of values is much
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Table 6: IGA reconstruction attack metrics for LeNet and MLP.

SSIM MSE
Model Mechanism εG/εV F-MNIST CIFAR LFW F-MNIST CIFAR LFW
LeNet – – 0.29 0.28 0.24 0.65 0.36 0.68
MLP – – 0.44 0.52 0.51 0.37 0.18 0.31

LeNet Gauss

0.8 0.00 0.00 0.00 1.60 1.30 1.51
1.0 0.00 0.00 0.00 1.61 1.28 1.51
2.0 0.00 0.00 0.00 1.60 1.25 0.49
3.0 0.00 0.00 0.00 1.62 1.24 1.51
8.0 0.01 0.00 0.00 1.58 1.24 1.39
50 0.07 0.04 0.02 1.17 0.79 1.09

LeNet VMF

1 0.00 0.00 0.00 1.80 1.46 1.51
5 0.00 0.00 0.00 1.79 1.48 1.56
10 0.01 0.00 0.00 1.67 1.45 1.53
50 0.01 0.00 0.01 1.66 1.39 1.29
500 0.10 0.06 0.02 1.05 0.77 1.07
300k 0.28 0.27 0.16 0.58 0.37 0.75

MLP Gauss

0.8 0.00 0.00 0.00 1.53 0.89 1.37
1.0 0.00 0.00 0.00 1.53 0.90 1.38
2.0 0.00 0.00 0.00 1.54 0.88 1.37
3.0 0.00 0.00 0.00 1.53 0.88 1.37
8.0 0.00 0.00 0.00 1.52 0.87 1.36
50 0.01 0.00 0.00 1.45 0.85 1.32

MLP VMF

1 0.00 0.00 0.00 1.54 0.91 1.38
5 0.00 0.00 0.00 1.55 0.91 1.39
10 0.00 0.00 0.00 1.52 0.90 1.36
50 0.00 0.00 0.00 1.52 0.89 1.38
500 0.00 0.00 0.00 1.47 0.86 1.33
300k 0.17 0.18 0.12 0.91 0.50 0.86

lower, even though the same trend can be observed in some cases, as in the MLP with Gaussian noise for
Fashion-MNIST.

Overall, though, the MSE values when comparing like setups for Gaussian and VMF are similar (e.g. for
CIFAR MLP, both are around 0.9 for their ranges, with the exception of εV = 300k as noted above). Where
this is not the case, it is broadly in favour of VMF: for example, for the smaller ε for LeNet on Fashion
MNIST and CIFAR, the noise added by VMF is greater than Gaussian. This then provides less fine-grained
calibration than the Enhanced MIA but does broadly support it, and provides an additional anchor point
for the empirical privacy calibration.

We give some examples of IGA reconstructions in Figure 3, for very small and very large ε. It can be seen
that only for the exceptional εV = 300k is any reconstruction really visible, supporting the interpretation of
the metrics.

6.2.3 Calibration Outcome
For each of the datasets, both methods of calibration indicate that the nominal values of εG and εV are
comparable for ranges 0.8 ≤ εG ≤ 50 and 1 ≤ εV ≤ 50, in those cases where VMF is not better. To facilitate
rapid comparison for those εs where the nominal values are the same (1, 50), in Table 7 we present the
differences between attack success rates under the MIA-R attack, and the MSE scores under the IGA attack.
In the former case, negative scores are better for VMF; in the latter, positive scores are better for VMF. It
is only for the LeNet on Fashion-MNIST for ε = 1 under MIA-R where Gaussian is better, and in this case,
the MIA is only at chance, so there is essentially no difference between the two.
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Table 7: Comparison of empirical privacy. ∆MIA-R indicates MIA-R attack success under Gaussian noise
minus attack success under VMF noise; negative is better for VMF. ∆IGA indicates IGA MSE under
Gaussian noise minus MSE under VMF noise; positive is better for VMF.

∆MIA-R(↓) ∆IGA(↑)
Model εG/εV F-MNIST CIFAR F-MNIST CIFAR LFW

LeNet 1 0.2 -0.3 0.19 0.18 0
50 -0.6 -0.9 0.49 0.6 0.2

MLP 1 -0.7 -0.2 0.01 0.01 0
50 -2.9 -2 0.07 0.04 0.06

Having established that the nominal ε values are broadly comparable, we can verify looking back at Table 4
that the VMF attack is almost always better for similar levels of Gaussian and VMF noise.

6.3 Note on Efficiency
Overall we found that VMF noise is able to protect against gradient-based reconstruction attacks and to offer
good levels of utility in image classification datasets over different datasets. This is particularly illustrated
in the LFW dataset, which is based on face images where one might wish to hide their identity.

However, VMF can be computationally expensive for gradients with high dimensionality, and future work
involves optimising it. This is in line with previous studies that enhanced vanilla approaches for DP in deep
learning, like backpropagation improvements such as ghost clipping from Li et al. (2022a), and the efficient
per-sample gradient computation from Yousefpour et al. (2021).

7 Conclusions
We defined DirDP-SGD for directional privacy in deep learning by adding noise to the gradients during
training. This problem is particularly relevant because several studies have shown that private training data
can be discovered under certain machine learning training settings, such as sharing gradients.

Our mechanism provides both εd-privacy and ε-DP guarantees rather then (ε, δ)-DP. Because the εs are
not analytically comparable across frameworks, we analyse both membership inference attacks (MIAs) and
gradient-based reconstruction attacks as possible methods for calibrating privacy leakage. We show that the
enhanced MIA of Ye et al. (2022) and the Inverted Gradient Attack of Geiping et al. (2020) are useful for
calibrating nominal values of ε across standard DP and metric DP frameworks. Given this empirical privacy
calibration framework, our experiments showed that DirDP-SGD can provide better utility than standard
DP for similar levels of privacy. Future work that extends beyond this initial mechanism proposal would look
at other kinds of empirical privacy audits, for example, the recently proposed generative gradient leakage of
Li et al. (2022b).

DirDP-SGD is based on the VMF distribution and can be computationally expensive for high-dimension
data. Future work here would include optimising the mechanism in the same way that DP-SGD has seen
much effort in improvements, such as in the efficient processing of gradients or choice of activation functions.
Moreover, experiments were restricted to image datasets. We plan to explore the feasibility of DirDP-SGD
for other domains, such as natural language processing.
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Figure 3: Reconstructed images by Inverting Gradients against LeNet and MLP.
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