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Abstract

Continuous-time event sequences play a vital role in real-world domains such1

as healthcare, finance, online shopping, social networks, and so on. To model2

such data, temporal point processes (TPPs) have emerged as the most natural and3

competitive models, making a significant impact in both academic and application4

communities. Despite the emergence of many powerful models in recent years,5

there hasn’t been a central benchmark for these models and future research en-6

deavors. This lack of standardization impedes researchers and practitioners from7

comparing methods and reproducing results, potentially slowing down progress in8

this field. In this paper, we present EasyTPP, the first central repository of research9

assets (e.g., data, models, evaluation programs, documentations) in the area of10

event sequence modeling. Our EasyTPP makes several unique contributions to this11

area: a unified interface of using existing datasets and adding new datasets; a wide12

range of evaluation programs that are easy to use and extend as well as facilitate13

reproducible research; implementations of popular neural TPPs, together with a14

rich library of modules by composing which one could quickly build complex15

models. Our benchmark is open-sourced: all the data and implementation can be16

found at this Github repository.1 We will actively maintain this benchmark and17

welcome contributions from other researchers and practitioners. Our benchmark18

will help promote reproducible research in this field, thus accelerating research19

progress as well as making more significant real-world impacts.20

1 Introduction21

Continuous-time event sequences are ubiquitous in various real-world domains, such as neural spike22

trains in neuroscience (Williams et al., 2020), orders in financial transactions (Jin et al., 2020), and23

user page viewing behavior in the e-commerce platform (Hernandez et al., 2017). To model these24

event sequences, temporal point processes (TPPs) are commonly used, which specify the probability25

of each event type’s instantaneous occurrence, also known as the intensity function, conditioned on26

the past event history. Classical TPPs, such as Poisson processes (Daley & Vere-Jones, 2007) and27

Hawkes processes (Hawkes, 1971), have a well-established mathematical foundation and have been28

widely used to model traffic (Cramér, 1969), finance (Hasbrouck, 1991) and seismology (Ogata,29

1988) for several decades. However, the strong parametric assumptions in these models constrain30

1https://github.com/ant-research/EasyTemporalPointProcess.
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their ability to capture the complexity of real-world phenomena. To overcome the limitations of31

classical TPPs, many researchers have been developing neural versions of TPPs, which leverage the32

expressiveness of neural networks to learn complex dependencies; see section 7 for a comprehensive33

discussion. Since then, numerous advancements have been made in this field, as evidenced by the34

rapidly growing literature on neural TPPs since 2016. Recent reviews have documented the extensive35

methodological developments in TPPs, which have expanded their applicability to various real-world36

scenarios. As shown in Figure 2 and Appendix F.1, the number of research papers on TPPs has been37

steadily increasing, indicating the growing interest and potential impact of this research area. These38

advancements have enabled more accurate and flexible modeling of event sequences in diverse fields.39

In this work, inspired by Hugging Face (Wolf et al., 2020) for computer vision and natural language40

processing, we take the initiative to build a central library, namely EasyTPP, of popular research41

assets (e.g., data, models, evaluation methods, documentations) with the following distinct merits:42

1. Standardization. We establish a standardized benchmark to enable transparent comparison of43

models. Our benchmark currently hosts 5 popularly-used real-world datasets that cover diverse real-44

world domains (e.g., commercial, social), and will include datasets in other domains (e.g., earthquake45

and volcano eruptions). One of our contributions is to develop a unified format for these datasets and46

provide sourcre code (with thorough documentation) for data processing. This effort will free future47

researchers from large amounts of data-processing work, and facilitate exploration in new research48

topics such as transfer learning and adaptation (see Section 6).49

2. Comprehensiveness. Our second contribution is to provide a wide range of easy-to-use evaluation50

programs, covering popular evaluation metrics (e.g., log-likelihood, kinds of next-event prediction51

accuracies and sequence similarities) and significance tests (e.g., permutation tests). By using this52

shared set of evaluation programs, researchers in this area will not only achieve a higher pace of53

development, but also ensure a better reproducibility of their results.54

3. Convenience. Another contribution of EasyTPP is a rich suite of modules (functions and classes)55

which will significantly facilitate future method development. We reproduced previous (eight most-56

cited and competitive) models by composing these modules like building LEGOs; other researchers57

can reuse the modules to build their new models, significantly accelerating their implementation and58

improving their development experience. Examples of modules are presented in section 3.59

4. Flexibility. Our library is compatible with both PyTorch (Paszke et al., 2019) and Tensor-60

Flow (Abadi et al., 2016), the top-2 popular deep learning frameworks, and thus offers a great61

flexibility for future research in method development.62

5. Extensibility. Following our documentation and protocols, one could easily extend the EasyTPP63

library by adding new datasets, new modules, new models, and new evaluation programs. This high64

extensibility will contribute to building a healthy open-source community, eventually benefiting the65

research area of event sequence modeling.66

2 Background67
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Figure 2: ArXiv submissions over time on TPPs

Definition. Suppose we are given a fixed68

time interval [0, T ] over which an event se-69

quence is observed. Suppose there are I70

events in the sequence at times 0 < t1 <71

. . . < tI ≤ T . We denote the sequence72

as x[0,T ] = (t1, k1), . . . , (tI , kI) where each73

ki ∈ {1, . . . ,K} is a discrete event type. Note74

that representations in terms of time ti and the75

corresponding inter-event time τi = ti − ti−176

are isomorphic, we use them interchangeably.77

TPPs are probabilistic models for such event78

sequences. If we use pk(t | x[0,t)) to denote the probability that an event of type k occurs over the in-79
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Figure 1: Drawing an event stream from a neural TPP. The model reads the sequence of past events (polygons)
to arrive at a hidden state (blue). That state determines the future "intensities" of the two types of events–that is,
their time-varying instantaneous probabilities. The intensity functions are continuous parametric curves (solid
lines) determined by the most recent RNN state. In this example, events of type 1 excite type 1 but inhibit type 2.
Type 2 excites itself and type 1. Those are immediate effects, shown by the sudden jumps in intensity.
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Figure 3: An open benchmarking pipeline using EasyTPP.

finitesimal interval [t, t+dt), then the probability that nothing occurs will be 1−
∑K

k=1 pk(t | x[0,t)).80

Formally, the distribution of a TPP can be characterized by the intensity λk(t | x[0,t)) ≥ 0 for each81

event type k at each time t > 0 such that pk(t | x[0,t)) = λk(t | x[0,t))dt.82

Neural TPPs. A neural TPP model autoregressively generates events one after another via neural83

networks. A schematic example is shown in Figure 1 and a detailed description on data samples can84

be found at our online documentation. For the i-th event (ti, ki), it computes the embedding of the85

event ei ∈ RD via an embedding layer and the hidden state hi gets updated conditioned on ei and86

the previous state hi−1. Then one can draw the next event conditioned on the hidden state hi:87

ti+1, ki+1 ∼ Pθ(ti+1, ki+1|hi), hi = fupdate(hi−1, ei), (1)
where fupdate denotes a recurrent encoder, which could be either RNN (Du et al., 2016; Mei & Eisner,88

2017) or more expressive attention-based recursion layer (Zhang et al., 2020; Zuo et al., 2020; Yang89

et al., 2022). A new line of research models the evolution of the states completely in continuous time:90

hi− = fevo(hi−1, ti−1, ti) between event times (2)
hi = fupdate(hi−, ei) at event time ti (3)

The state evolution in Equation (2) is generally governed by an ordinary differential equation (ODE)91

(Rubanova et al., 2019). For a broad and fair comparison, in EasyTPP, we implement not only92

recurrent TPPs but also an ODE-based continuous-time state model.93

Learning TPPs. Negative log-likelihood (NLL) is the default training objective for both classical94

and neural TPPs. The NLL of a TPP given the entire event sequence x[0,T ] is95

I∑
i=1

log λki
(ti | x[0,ti))−

∫ T

t=0

K∑
k=1

λk(t | x[0,t))dt (4)

Derivations of this formula can be found in previous work Hawkes (1971); Mei & Eisner (2017).96

3 Benchmarking Process97

Figure 3 presents the open benchmarking pipeline for neural TPPs, which is implemented in EasyTPP.98

In summary, the pipeline consists of the following key components.99
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Data Preprocess. Following common practices, we split the set of sequences into the train, validation,100

and test set with a fixed ratio. To feed the sequences of varying lengths into the model, in EasyTPP,101

we pad all sequences to the same length, then use the "sequence_mask" tensor to identify which event102

tokens are padding. As we implemented several variants of attention-based TPPs, we also generated103

the "attention_mask" to mask all the future positions at each event to avoid “peeking into the future”.104

Model Implementation. Our EasyTPP library provides a suite of modules, and one could easily105

build complex models by composing these modules. Specifically, we implemented the models (see106

section 5.1) evaluated in this paper with our suite of modules (e.g., continuous-time LSTM, continu-107

ous-time attention). Moreover, some modules are model-agnostic methods for training and inference,108

which will further speed up the development speed of future methodology research. Below are two109

signature examples:110

• compute_loglikelihood (function), which calculates log-likelihood of a model given data. It is111

non-trivial to correctly implement it due to the integral term of log-likelihood in Equation (4), and112

we have found errors in popular implementations.113

• EventSampler (class), which draws events from a given point process via the thinning algorithm.114

The thinning algorithm is commonly used in inference but it is non-trivial to implement (and rare115

to see) an efficient and batched version. Our efficient and batched version (which we took great116

efforts to implement) will be useful for nearly all intensity-based event sequence models.117

Training. We can estimate the model parameters by locally maximizing the NLL in Equation (4)118

with any stochastic gradient method. Note that computing the NLL can be challenging due to the119

presence of the integral in the second term in Equation (4). In EasyTPP, by default, we approximate120

the integral by Monte-Carlo estimation to compute the overall NLL (see Appendix C.1). Nonetheless,121

EasyTPP also incorporates some neural TPPs (e.g., the intensity-free model (Shchur et al., 2020)),122

which allow us to compute the NLL analytically, which is more computationally efficient.123

Sampling. Given the learned parameters, we apply the minimum Bayes risk (MBR) principle to124

predict the time and type with the lowest expected loss. A recipe can be found in Appendix C.2.125

Note that other methods exist for predicting a TPP, such as adding an MLP layer to directly output126

the time and type prediction (Zuo et al., 2020; Zhang et al., 2020). However, as we aim to build a127

generative model of event sequences, we believe the principal way to make predictions based on128

continuous-time generative model is thinning algorithm (Ogata, 1988). In EasyTPP, a batch-wise129

thinning algorithm is consistently used when evaluating the predictive performance of TPPs.130

Hyperparameter Tuning. Most studies specified the detailed hyper-parameters of their models in131

the papers. However, with the modified code fitted in the EasyTPP framework or the new splits of132

datasets, it may be inappropriate to use the same hyper-parameters. Besides the classical grid search133

method, we also integrate Optuna (Akiba et al., 2019) in our framework to automatically search134

optimal hyperparameters and prune unpromising trials for faster results.135

We hope that the definition of our open benchmarking pipeline could provide guidance for fair136

comparisons and reproducible works in TPPs.137

4 EasyTPP’s Software Interface138

High Level Software Architecture. The purpose of building EasyTPP is to provide a simple and139

standardized framework to allow users to apply different state-of-the-art (SOTA) TPPs to arbitrary140

data sets. For researchers, EasyTPP provides an implementation interface to integrate new recourse141

methods in an easy-to-use way, which allows them to compare their method to already existing142

methods. For industrial practitioners, the availability of benchmarking code helps them easily assess143

the applicability of TPP models for their own problems.144

High-level visualization of the EasyTPP’s software architecture is depicted in Figure 9. Data Prepro-145

cess component provides a common way to access the event data across the software and maintains146

information about the features. For the Model component, the library provides the possibility to use147

4



HighLevel Config

Model Trainer Thinning
Sampler

Data Preprocess
Prepare the data, such as 

padding and masking

Evaluation
Measure the performance 

of the trained model

Open 
Datasets

RunnerConfig

Pipeline Runner

HPOConfig

Runner HPORunner

Custom
Implementation 

8 SOTA 
TPPs

Hyper Tuning
Search the parameter 

space

DataLoader MetricsModule

Config DataConfig

Models

Wrapper TensorflowWrapper PyTorchWrapper

ModelConfig EvalConfig HPOConfig

HPO

Figure 4: Architecture of the EasyTPP library. The dashed arrows show the different implementation possibilities,
either to use pre-defined SOTA TPP models or provide a custom implementation. All dependencies between the
configurations and modules are visualized by solid arrows with additional descriptions. Overall, the running of
the pipeline is parameterized by the configuration classes - RunnerConfig (w/o hyper tuning) and HPOConfig
(with hyper tuning).

existing methods or extend the users’ custom methods and implementations. A wrapper encapsulates148

the black-box models along with the trainer and sampler. The primary purpose of the wrapper is149

to provide a common interface to easily fit in the training and evaluation pipeline, independently150

of their framework (e.g., PyTorch, TensorFlow). The running of the pipeline is parameterized by151

the configuration class - RunnerConfig (without hyper-parameter tuning) and HPOConfig (with152

hyper-parameter tuning).153

Why and How Does EasyTPP Support Both PyTorch and TensorFlow? PyTorch and TensorFlow154

are the two most popular Deep Learning (DL) frameworks today. PyTorch has a reputation for being155

a research-focused framework, and indeed, most of the authors have implemented TPPs in PyTorch,156

which are used as references by EasyTPP. On the other hand, TensorFlow has been widely used in real157

world applications. For example, Microsoft recommender ,2 NVIDIA Merlin 3 and Alibaba EasyRec158
4 are well-known industrial user modeling systems with TensorFlow as the backend. In recent works,159

TPPs have been introduced to better capture the evolution of the user preference in continuous-time160

(Bao & Zhang, 2021; Fan et al., 2021; Bai et al., 2019). To support the use of TPPs by industrial161

practitioners, we implement an equivalent set of TPPs in TensorFlow. As a result, EasyTPP not only162

helps researchers analyze the strengths and bottlenecks of existing models, but also facilitates the163

deployment of TPPs in industrial applications.164

See Appendix B for more details on the interface and examples of difference user cases.165

5 Experimental Evaluation166

5.1 Experimental Setup167

We comprehensively evaluate 9 models in our benchmark, which include the classical Multivariate168

HakwesProcess(MHP) and 8 widely-cited state-of-the-art neural models:169

• Two RNN-based models: Recurrent marked temporal point process (RMTPP) (Du et al., 2016)170

and neural Hawkes Process (NHP) (Mei & Eisner, 2017).171

2https://github.com/microsoft/recommenders.
3https://developer.nvidia.com/nvidia-merlin.
4https://github.com/alibaba/EasyRec.
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• Three attention-based models: self-attentive Hawkes pocess (SAHP) (Zhang et al., 2020), trans-172

former Hawkes process (THP) (Zuo et al., 2020), attentive neural Hawkes process (AttNHP)173

(Yang et al., 2022).174

• One TPP with the fully neural network based intensity: FullyNN (Omi et al., 2019).175

• One intensity-free model IFTPP (Shchur et al., 2020).176

• One TPP with the hidden state evolution governed by a neural ODE: ODETPP. It is a simplified177

version of the TPP proposed by Chen et al. (2021) by removing the spatial component. .178

We conduct experiments on 1 synthetic and 5 real-world datasets from popular works that contain179

diverse characteristics in terms of their application domains and temporal statistics (see Table 2):180

• Synthetic. This dataset contains synthetic event sequences from a univariate Hawkes process181

sampled using Tick (Bacry et al., 2017) whose conditional intensity function is defined by182

λ(t) = µ+
∑

ti<t αβ · exp (−β(t− ti)) with µ = 0.2, α = 0.8, β = 1.0. We randomly sampled183

disjoint train, dev, and test sets with 1200, 200 and 400 sequences.184

• Amazon(Ni, 2018). This dataset includes time-stamped user product reviews behavior from185

January, 2008 to October, 2018. Each user has a sequence of produce review events with each event186

containing the timestamp and category of the reviewed product, with each category corresponding187

to an event type. We work on a subset of 5200 most active users with an average sequence length188

of 70 and then end up with K = 16 event types.189

• Retweet (Ke Zhou & Song., 2013). This dataset contains time-stamped user retweet event se-190

quences. The events are categorized into K = 3 types: retweets by “small,” “medium” and “large”191

users. Small users have fewer than 120 followers, medium users have fewer than 1363, and the rest192

are large users. We work on a subset of 5200 active users with an average sequence length of 70.193

• Taxi (Whong, 2014). This dataset tracks the time-stamped taxi pick-up and drop-off events across194

the five boroughs of the New York City; each (borough, pick-up or drop-off) combination defines195

an event type, so there are K = 10 event types in total. We work on a randomly sampled subset of196

2000 drivers with an average sequence length of 39.197

• Taobao (Xue et al., 2022). This dataset contains time-stamped user click behaviors on Taobao198

shopping pages from November 25 to December 03, 2017. Each user has a sequence of item click199

events with each event containing the timestamp and the category of the item. The categories of200

all items are first ranked by frequencies and the top 19 are kept while the rest are merged into one201

category, with each category corresponding to an event type. We work on a subset of 4800 most202

active users with an average sequence length of 150 and then end up with K = 20 event types.203

• StackOverflow (Leskovec & Krevl, 2014). This dataset has two years of user awards on a question-204

answering website: each user received a sequence of badges and there are K = 22 different kinds205

of badges in total. We work on a subset of 2200 active users with an average sequence length of 65.206

All preprocessed datasets are available at Google Drive.207

Evaluation Protocol. We keep the model architectures as the original implementations in their208

papers. For a fair comparison, we use the same training procedure for all the models: we used the209

same optimizer (Adam (Kingma & Ba, 2015) with default parameters), biases initialized with zeros,210

no learning rate decay, the same maximum number of training epochs, and early stopping criterion211

(based on log-likelihood on the held-out dev set) for all models.212

We mainly examine the models in two standard scenarios.213

• Goodness-of-fit: we fit the models on the train set and measure the log-probability they assign to214

the held-out data.215

• Next-event prediction: we use the minimum Bayes risk (MBR) principle to predict the next event216

time given only the preceding events, as well as its type given both its true time and the preceding217

events. We evaluate the time and type prediction by RMSE and error rate, respectively.218
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Figure 5: Performance of all the methods on the goodness-of-fit task on synthetic Hawkes, Retweet, and Taxi
data. A higher score is better. All methods are implemented in PyTorch.

In addition, we propose a new evaluation task: the long-horizon prediction. Given the prefix of each219

held-out sequence x[0,T ], we autoregressively predict the next events in a future horizon x̂(T,T ′ ]. It220

is evaluated by measuring the optimal transport distance (OTD), a type of edit distance for event221

sequences (Mei et al., 2019), between the prediction x̂(T,T ′ ] and ground truth x(T,T ′ ]. As pointed out222

by Xue et al. (2022), long-horizon prediction of event sequences is essential in various real-world223

domains, and this task provides new insight into the predictive performance of the models.224

It is worth noting that FullyNN, faithfully implemented based on the author’s version, does not225

support multi-type event sequences. Therefore it is excluded from the type prediction task.226

5.2 Results and Analysis227

Main Results on Goodness-of-Fit and Next-Event Prediction.228

• Figure 5 reports the log-likelihood on three held-out datasets for all the methods. We find IFTPP229

outperforms all the competitors because it evaluates the log-likelihood in a close form while230

the others (RMTPP, NHP, THP, AttNHP, ODETPP) compute the intensity function via Monte231

Carlo integration, causing numerical approximation errors. FullyNN method, which also exactly232

computes the log-likelihood, has worse fitness than other neural competitors. As Shchur et al.233

(2020) points out, the PDF of FullyNN does not integrate to 1 due to a suboptimal choice of the234

network architecture, therefore causing a negative impact on the performance.235

• Figure 6 reports the time and type prediction results on three real datasets. We find there is no236

single winner against all the other methods. Attention-based methods (SAHP, THP, AttNHP)237

generally perform better than or close to non-attention methods (RMTPP, NHP, ODETPP,FullyNN238

and IFTPP) on Amazon, Taobao, and Stackoverflow, while NHP is the winner on both Retweet and239

Taxi. We see that NHP is a comparably strong baseline with attention-based TPPs. This is not too240

surprising because similar results have been reported in previous studies (Yang et al., 2022).241

• Not surprisingly, the performance of the classical model MHP is worse than the neural models242

across most of the evaluation tasks, consistent with the previous findings that neural TPPs have243

demonstrated to be more effective than classical counterparts at fitting data and making predictions.244

245

Please see Appendix E.3 for the complete results (in numbers) on all the datasets. With a growing246

number of TPP methods proposed, we will continuously expand the catalog of models and datasets247

and actively update the benchmark in our Github repository.248

Analysis-I: Long Horizon Prediction. We evaluate the long horizon prediction task on Retweet249

and Taxi datasets. On both datasets, we set the prediction horizon to be the one that approximately250

has 5 and 10 events, respectively. Shown in Figure 7 and Figure 8, we find that AttNHP and THP251

are two co-winners on Retweet and THP is a single winner on Taxi. Nonetheless, the margin of the252

winner over the competitors is small. The exact numbers shown in these two figures could be found in253

Table 5 in Appendix E.3. Due to the fact that these models are autoregressive and locally normalized,254
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Figure 6: Performance of all the methods on next-event’s time prediction (first row) and next-event’s type
prediction (second row) on five real datasets. Lower score is better. All methods are implemented in PyTorch.
As clarified, FullyNN is not applicable for the type prediction tasks.

they are all exposed to cascading errors. To fix this issue, one could resort to globally normalized255

models (Xue et al., 2022), which is out of the scope of the paper.256

Analysis-II: Models with Different Frameworks: PyTorch vs. TensorFlow. Researchers normally257

implement their experiments and models for specific ML frameworks. For example, recently proposed258

methods are mostly restricted to PyTorch and are not applicable to TensorFlow models. As explained259

in Section 4, to facilitate the use of TPPs, we implement two equivalent sets of methods in PyTorch260

and TensorFlow. Table 1 shows the relative difference between the results of Torch and TensorFlow261

implementations are all within [−1.5%, 1.5%]. To conclude, although the code could not be exactly262

the same, the two sets of models produce similar performance in terms of predictive ability.263
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Figure 7: Long horizon prediction on Retweet data:
left (avg prediction horizon 5 events) vs. right (avg
prediction horizon 10 events).
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Figure 8: Long horizon prediction on Taxi data: left
(avg prediction horizon 5 events) vs. right (avg predic-
tion horizon 10 events).

MODEL REL DIFF ON TIME RMSE (1ST ROW) ANDTYPE ERROR RATE (2ND ROW)

AMAZON RETWEET TAXI TAOBAO STACKOVERFLOW

RMTPP −0.2% +1.0% +0.1% +0.1% +0.4%
+0.5% +1.3% +0.6% +0.2% −0.7%

NHP +0.7% +0.5% −0.2% +0.1% −0.1%
+0.6% +1.4% +0.4% −0.3% −0.1%

SAHP −0.8% +0.7% −0.8% +0.4% 0.3%
+0.6% +0.6% −0.6% +0.4% 0.3%

THP +0.6% +0.6% −0.2% −0.5% 0.6%
+1.2% +0.9% −0.6% +0.7% 0.4%

ATTNHP +0.4% +0.4% +0.3% −0.1% −0.2%
+0.2% −0.7% −0.6% +0.4% +0.2%

ODETPP −0.5% +1.1% +0.9% +0.6% 0.4%
+0.8% +1.3% +1.1% −0.5% −0.5%

FULLYNN +0.5% −0.7% −0.3% −0.3% +0.2%
NA NA NA NA NA

IFTPP −0.9% +1.0% +0.4% +0.6% +0.3%
+0.4% −0.7% −0.3% +0.2% +0.2%

Table 1: Relative difference between Torch and TensorFlow implementations of methods in Figure 6.

6 Future Research Opportunities264

We summarize our thoughts on future research opportunities inspired by our benchmarking results.265

Most importantly, the results seem to be signaling that we should think beyond architectural design.266

For the past decade, this area has been focusing on developing new architectures, but the performance267

of new models on the standard datasets seem to be saturating. Notably, all the best to-date models268

make poor predictions on time of future events. Moreover, on type prediction, attention-based models269

(Zuo et al., 2020; Zhang et al., 2020; Yang et al., 2022) only outperform other architectures by a270

small margin. Looking into the future, we advocate for a few new research directions that may bring271

significant contributions to the field.272

The first is to build foundation models for event sequence modeling. The previous model-building273

work all learns data-specific weights, and does not test the transferring capabilities of the learned274

models. Inspired by the emergence of foundation models in other research areas, we think it will be275

beneficial to explore the possibility to build foundation models for event sequences. Conceptually,276

learning from a large corpus of diverse datasets—like how GPTs (Nakano et al., 2021) learn by277

reading open web text—has great potential to improve the model performance and generalization278

beyond what could be achieved in the current in-domain in-data learning paradigm. Our library can279

facilitate exploration in this direction since we unify the data formats and provide an easy-to-use280

interface that users can seamlessly plug and play any set of datasets. Challenges in this direction arise281

as different datasets tend to have disjoint sets of event types and different scales of time units.282
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The second is to go beyond event data itself and utilize external information sources to enhance283

event sequence modeling. Seeing the performance saturation of the models, we are inspired to think284

whether the performance has been bounded by the intrinsic signal-to-noise ratio of the event sequence285

data. Therefore, it seems natural and beneficial to explore the utilization of other information sources,286

which include but are not limited to: (i) sensor data such as satellite images and radiosondes signals;287

(ii) structured and unstructured knowledge bases (e.g., databases, Wikipedia, textbooks); (iii) large288

pretrained models such as ChatGPT (Brown et al., 2020) and GPT-4 (OpenAI, 2023), whose rich289

knowledge and strong reasoning capabilities may assist event sequence models in improving their290

prediction accuracies.291

The third is to go beyond observational data and embed event sequence models into real-world292

interventions (Qu et al., 2023). With interventional feedback from the real world, an event sequence293

model would have the potential to learn real causal dynamics of the world, which may significantly294

improve prediction accuracy.295

All the aforementioned directions open up research opportunities for technical innovations.296

7 Related work297

Temporal Point Processes. Over recent years, a large variety of TPP models have been proposed,298

many of which are built on recurrent neural networks (Du et al., 2016; Mei & Eisner, 2017; Xiao et al.,299

2017; Omi et al., 2019; Shchur et al., 2020; Mei et al., 2020; Boyd et al., 2020). Models of this kind300

enjoy continuous state spaces and flexible transition functions, thus achieving superior performance301

on many real-world datasets, compared to the classical Hawkes process (Hawkes, 1971). To properly302

capture the long-range dependency in the sequence, the attention and transformer techniques (Vaswani303

et al., 2017) have been adapted to TPPs (Zuo et al., 2020; Zhang et al., 2020; Yang et al., 2022;304

Wen et al., 2023) and makes further improvements on predictive performance. Despite significant305

progress made in academia, the existing studies usually perform model evaluations and comparisons306

in an ad-hoc manner, e.g., by using different experimental settings or different ML frameworks.307

Such conventions not only increase the difficulty in reproducing these methods but also may lead to308

inconsistent experimental results among them.309

Open Benchmarking on TPPs. The significant attention attracted by TPPs in recent years naturally310

leads to a high demand for an open benchmark to fairly compare against baseline models. While311

many efforts have been made in the domains of recommender systems (Zhu et al., 2021), computer312

vision (Deng et al., 2009), and natural language processing (Wang et al., 2019), benchmarking in313

the field of TPPs is an under-explored topic. Tick (Bacry et al., 2017) and pyhawkes 5 are two314

well-known libraries that focus on statistical learning for classical TPPs, which are not suitable for315

the state-of-the-art neural models. Poppy (Xu, 2018) is a PyTorch-based toolbox for neural TPPs,316

but it has not been actively maintained since three years ago and has not implemented any recent317

state-of-the-art methods. To the best of our knowledge, EasyTPP is the first package that provides318

open benchmarking for the popular neural TPPs.319

8 Conclusion320

In this work, we presented EasyTPP, a versatile benchmarking platform for the standardized and321

transparent comparison of TPP methods on different integrated data sets. With a growing open-source322

community, EasyTPP has the potential to become the main library for benchmarking TPPs. The323

community seems to really appreciate this initiative: without any advertising, our library has collected324

around 90 stars on Github and has been downloaded around 700 times from PyPi since it was released325

3 months ago. We hope that this work continuously contributes to further advances in the research.326

5https://github.com/slinderman/pyhawkes.
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