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ABSTRACT

Implicit neural representations (INRs) have arisen as useful methods for repre-
senting signals on Euclidean domains. By parameterizing an image as a multi-
layer perceptron (MLP) on Euclidean space, INRs effectively couple spatial and
spectral features of the represented signal in a way that is not obvious in the usual
discrete representation. Although INRs using sinusoidal activation functions have
been studied in terms of Fourier theory, recent works have shown the advantage
of using wavelets instead of sinusoids as activation functions, due to their ability
to simultaneously localize in both frequency and space. In this work, we approach
such INRs and demonstrate how they resolve high-frequency features of signals
from coarse approximations performed in the first layer of the MLP. This leads
to multiple prescriptions for the design of INR architectures, including the use of
progressive wavelets, decoupling of low and high-pass approximations, and ini-
tialization schemes based on the singularities of the target signal.

1 INTRODUCTION

Implicit neural representations (INRs) are a powerful set of neural architectures for representing
and processing signals on low-dimensional spaces. By learning a continuous interpolant of a set of
sampled points, INRs have enabled and advanced state-of-the-art methods in signal processing (Xu
et al., 2022) and computer vision (Mildenhall et al., 2020).

Typical INRs are specially designed multilayer perceptrons (MLPs), where the activation functions
are chosen in such a way to yield a desirable signal representation. Although INRs often can be
easily understood at the first layer due to the simplicity of plotting the function associated to each
neuron based on its weights and biases, the behavior of the network in the second layer and beyond
is more opaque, apart from some theoretical developments in the particular case of a sinusoidal first
layer (Yüce et al., 2022).

This work develops a broader theoretical understanding of INR architectures with a wider class
of activation functions, followed by practical prescriptions rooted in time-frequency analysis. In
particular, we

1. Characterize the function class of INRs in terms of Fourier convolutions of the neurons in
the first layer (Lemma 1)

2. Demonstrate how INRs that use complex wavelet functions preserve useful properties of
the wavelet, even after the application of the nonlinearities (Corollary 4)

3. Suggest a split architecture for approximating signals that decouples the smooth and nons-
mooth parts into linear and nonlinear INRs, respectively (Section 4.3)

4. Leverage connections with wavelet theory to propose efficient initialization schemes for
wavelet INRs based on the wavelet modulus maxima for capturing singularities in the target
function (Section 5).

∗Now affiliated with UC Riverside.
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Following a brief survey of INR methods, the class of architectures we study is defined in Section 2.
The main result bounding the function class represented by these architectures is stated in Section 3,
which is then related to the algebra of complex wavelets in Section 4. The use of the wavelet
modulus maxima for initialization of wavelet INRs is described and demonstrated in Section 5,
before concluding in Section 6.

2 IMPLICIT NEURAL REPRESENTATIONS

Wavelets as activation functions in MLPs have been shown to yield good function approxima-
tors (Zhang & Benveniste, 1992; Marar et al., 1996). These works have leveraged the sparse repre-
sentation of functions by wavelet dictionaries in order to construct simple neural architectures and
training algorithms for effective signal representation. Indeed, an approximation of a signal by a
finite linear combination of ridgelets (Candès, 1998) can be viewed as one such MLP using wavelet
activation functions. Additionally, wavelets have been used to study the expressivity of deep neural
networks and their approximation capacity for functions on manifolds (Shaham et al., 2018), for
instance.

Recently, sinusoidal activation functions in the first layer (Tancik et al., 2020) and beyond (Sitzmann
et al., 2020; Fathony et al., 2020) have been shown to yield good function approximators, coupled
with a harmonic analysis-type bound on the function class represented by these networks (Yüce
et al., 2022). Similar to the Fourier embedding of the coordinate space that is done by methods such
as SIREN (Sitzmann et al., 2020), eigenvectors of graph operators have been used to define INRs
for signals on more general spaces (Grattarola & Vandergheynst, 2022). Other methods have used
activation functions that, unlike sinusoids, are localized in space, such as gaussians (Ramasinghe &
Lucey, 2021) or Gabor wavelets (Saragadam et al., 2023).

Following the formulation of (Yüce et al., 2022), we define an INR to be a map fθ : Rd → C
defined in terms of a function ψ : Rd → C, followed by an MLP with analytic1 activation functions
ρ(ℓ) : C → C for layers ℓ = 1, . . . , L:

z(0)(r) = ψ(W(0)r+ b(0))

z(ℓ)(r) = ρ(ℓ)(W(ℓ)z(ℓ−1)(r) + b(ℓ))

fθ(r) = W(L)z(L−1)(r) + b(L),

(1)

where θ denotes the set of parameters dictating the tensor W(0) ∈ RF1×d×d, matrices W(ℓ) ∈
CFℓ+1×Fℓ and b(0) ∈ RF1×d, and vectors b(ℓ) ∈ CFℓ+1 for ℓ = 1, . . . , L, with fixed integers Fℓ

satisfying FL+1 = 1. The function ψ : Rd → C is understood to act on W(0)r + b(0) row-wise,
i.e., as a map ψ : RF1×d → CF1 . We will henceforth refer to ψ as the template function of the INR.
Owing to the use of Gabor wavelets by Saragadam et al. (2023), we will refer to functions of the
form (1) as WIRE INRs, although (1) also captures architectures that do not use wavelets, such as
SIREN (Sitzmann et al., 2020).

3 EXPRESSIVITY OF INRS

For the application of INRs to practical problems, it is important to understand the function class
that an INR architecture can represent. We will demonstrate how the function parameterized by an
INR can be understood via time-frequency analysis, ultimately motivating the use of wavelets as
template functions.

Noting that polynomials of sinusoids generate linear combinations of integer harmonics of said sinu-
soids, Yüce et al. (2022) bounded the expressivity of SIREN (Sitzmann et al., 2020) and related ar-
chitectures (Fathony et al., 2020). These results essentially followed from identities relating products
of trigonometric functions. For template functions that are not sinusoids, such as wavelets (Sara-
gadam et al., 2023), these identities do not hold. The following result offers a bound on the class of
functions represented by an INR.

1That is, entire on C.
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Figure 1: Fourier transforms of template functions ψ and their powers ψn.

Lemma 1. Let fθ : Rd → C be a WIRE INR. Assume that each of the activation functions ρ(ℓ) is a
polynomial of degree at most K, and that the Fourier transform of the template function ψ exists.2
Let W(0)r = [W1r, . . . ,WF1

r]⊤ for W1, . . . ,WF1
∈ Rd×d each having full rank, and also let

b(0) = [b1, . . . ,bF1 ]
⊤ for b1, . . . ,bF1 ∈ Rd. For k ≥ 0, denote by ∆(F1, k) the set of ordered

F1-tuples of nonnegative integers m = [m1, . . . ,mF1
] such that

∑F1

t=1mt = k.

Let a point r0 ∈ Rd be given. Then, there exists an open neighborhood U ∋ r0 such that for all
ϕ ∈ C∞

0 (U)

ϕ̂ · fθ(ξ) =

ϕ̂ ∗
KL−1∑
k=0

∑
m∈∆(F1,k)

β̂m

F1∗
t=1

(
ei2π⟨W

−⊤
t ξ,bt⟩ψ̂(W−⊤

t ξ)
)∗mt,ξ

 (ξ), (2)

for coefficients β̂m ∈ C independent of the choice of r0 ∈ U , where (·)∗m,ξ denotes m-fold con-
volution3 of the argument with itself with respect to ξ, and C∞

0 (U) denotes the set of all infinitely
differentiable functions with compact support contained in U . Furthermore, the coefficients β̂m are
only nonzero when each t ∈ [1, . . . , F1] such that mt ̸= 0 also satisfies Wtr0 + bt ∈ supp(ψ).

The proof, a simple application of the convolution theorem, is left to Appendix A. Lemma 1 illus-
trates two things. First, the output of an INR has a Fourier transform determined by convolutions of
the Fourier transforms of the atoms in the first layer with themselves, serving to generate “integer
harmonics” of the initial atoms determined by scaled, shifted copies of the template function ψ. No-
tably, this recovers (Yüce et al., 2022, Theorem 1). Second, the support of these scaled and shifted
atoms is preserved, so that the output at a given coordinate r is dependent only upon the atoms in
the first layer whose support contains r.
Remark 2. The assumptions behind Lemma 1 can be relaxed to capture a broader class of architec-
tures. By imposing continuity conditions on the template function ψ, the activation functions can be
reasonably extended to analytic functions. These extensions are discussed in Appendix B.

4 THE ALGEBRA OF COMPLEX WAVELETS

Of the INR architectures surveyed in Section 2, the only one to use a complex wavelet template
function is WIRE (Saragadam et al., 2023), where a Gabor wavelet is used. Gabor wavelets are
essentially band-pass filters and are necessarily complex-valued due to their lack of conjugate sym-
metry in the Fourier domain. We now consider the advantages of using complex wavelets, or more
precisely progressive wavelets, as template functions for INRs by examining their structure as an
algebra of functions.

2Even if only in the sense of tempered distributions.
30-fold convolution is defined by convention to yield the Dirac delta. We also use the symbol∗ to denote

the convolution of several functions, in this case indexed by t = 1, . . . , F1.
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4.1 PROGRESSIVE TEMPLATE FUNCTIONS

For the sake of discussion, suppose that d = 1, so that the INR represents a 1D function. The
template function ψ : R → C is said to be progressive4 if it has no negative frequency components,
i.e., for ξ < 0, we have ψ̂(ξ) = 0 (Mallat, 1999). No nonzero real-valued function is progressive.
It is obvious that progressive functions remain progressive under scalar multiplication, shifts, and
positive scaling. That is, for arbitrary s > 0, u ∈ R, z ∈ C, if ψ(x) is progressive, then the
function z ·DsTuψ(x) := z ·ψ((x−u)/s) is also progressive. Moreover, progressive functions are
closed under multiplication, so that if ψ1 and ψ2 are progressive, then ψ3(x) := ψ1(x)ψ2(x) is also
progressive,5 i.e., progressive functions constitute an algebra over C.
Example 1 (Complex Sinusoid). For any ω > 0, the complex sinusoid ψ(x;ω) = exp(−i2πωx)
is a progressive function, as its Fourier transform is a Dirac delta centered at ω. As pictured in
Fig. 1 (a), the exponents ψn(·;ω) are themselves complex sinusoids, where ψn(x;ω) = ψ(x;nω).
Example 2 (Gaussian). The gaussian function, defined for some σ > 0 as ψ(x;σ) =
exp(−x2/(2σ2)), is not a progressive function, as its Fourier transform is symmetric and cen-
tered about zero. Moreover, as pictured in Fig. 1 (b), the exponents are also gaussian functions
ψn(x;σ) = ψ(x;σ/

√
n), which also have Fourier transform centered at zero. Unlike the complex

sinusoid, the powers of the gaussian are all low-pass, but with increasingly wide passband.
Example 3 (Gabor Wavelet). For any ω, σ > 0, the Gabor wavelet defined as ψ(x;ω, σ) =
exp(−x2/(2σ2) − i2πωx) is not a progressive function, as its Fourier transform is a gaussian cen-
tered at ω with standard deviation 1/σ. However, the Fourier transform of the exponents ψn for
integers n > 0 are gaussians centered at nω with standard deviation

√
n/σ, as pictured in Fig. 1 (c).

So, as n grows sufficiently large, the effective support of ψ̂n will be contained in the positive reals,
so that the Gabor wavelet can be considered as a progressive function for the purposes of studying
INRs.

A progressive function on R has Fourier support contained in the nonnegative real numbers. Of
course, there is not an obvious notion of nonnegativity that generalizes to Rd for d > 1. Noting
that the nonnegative reals form a convex conic subset of R, we define the notion of a progressive
function with respect to some conic subset of Rd:

Definition 3. Let Γ ⊆ R̂d be a convex conic set, i.e., for all γ1, γ2 ∈ Γ and a1, a2 ≥ 0, we have
that a1γ1 + a2γ2 ∈ Γ.6 A function ψ : Rd → C is said to be Γ-progressive if supp(ψ̂) ⊆ Γ. The
function ψ is said to be locally Γ-progressive at r0 ∈ Rd if there exists some Γ-progressive function
ψr0 : Rd → C so that for all smooth functions ϕ ∈ C∞

0 (Rd) with support in a sufficiently small
neighborhood of r, we have

ϕ̂ · ψ = ϕ̂ ∗ ψ̂r0 . (3)

Curvelets (Candès & Donoho, 2004), for instance, are typically defined in a way to make them Γ-
progressive for some conic set Γ that indicates the oscillatory direction of a curvelet atom. Observe
that if Γ is a conic set, then for any matrix W, the set W⊤Γ is also conic. Thus, for a function ψ
that is Γ-progressive, the function ψ(Wx) is W⊤Γ-progressive.

Observe further that for two Γ-progressive functions ψ1, ψ2, their product is also Γ-progressive. The
closure of progressive functions under multiplication implies that an analytic function applied point-
wise to a progressive function is progressive. For INRs as defined in (1), this yields the following
corollary to Lemma 1.

Corollary 4. Let Γ ⊆ R̂d be conic, and let ψ : Rd → C be given, with Fourier support denoted
Γ0 := supp (ψ̂). Let W(0)r = [W1r, . . . ,WF1r]

⊤ for W1, . . . ,WF1 ∈ Rd×d each having full
rank. Assume that for each t = 1, . . . , F1, we have W⊤

t Γ0 ⊆ Γ. Then, the WIRE INR fθ : Rd → C
defined by (1) is a Γ-progressive function.

Moreover, if we fix some r0 ∈ Rd, and if the assumption W⊤
t Γ0 ⊆ Γ holds for the indices t such

that Wtr+ bt ∈ supp(ψ), then fθ is locally Γ-progressive at r0.

4More commonly known as an analytic signal, we use this terminology (following Grossmann et al. (1990))
to avoid confusion with the analytic activation functions used in the INR.

5This is a simple consequence of the convolution theorem.
6We henceforth refer to such sets as simply “conic.”
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Figure 2: (a) A conic set Γ1 ⊂ R2, and a weakly conic set Γ2 ⊂ R2 (both truncated for illustration
purposes). (b) Modulus of a function g given by the sum of four template atoms. (c) Fourier
transform of fθ(r) = ρ(g(r)), where ρ(z) = −z + z2 − z3. The blue and orange cones correspond
to the respectively highlighted parts of the function g. Effective Fourier supports of the template
atoms constituting g are enclosed by rectangles, and approximate centers of Frequency support for
each atom and product of atoms are marked by colored circles.

The proof is left to Appendix C; essentially, the property of Γ-progressive functions constitut-
ing an algebra over C combined with the polynomial structure of the INR is shown to preserve
the Γ-progressive property. Thus, any advantages/limitations of approximating functions using Γ-
progressive template functions are maintained.
Remark 5. One may notice that a Γ-progressive function will always incur a large error when ap-
proximating a real-valued function, as real-valued functions have conjugate symmetric Fourier trans-
forms (apart from the case Γ = R̂d). For fitting real-valued functions, it is effective to simply fit the
real part of the INR output to the function, as taking the real part of a function symmetrizes it in
the Fourier domain. In the particular case of d = 1, fitting the real part of a progressive INR to a
function is equivalent to fitting the INR to that function’s Hilbert transform.

4.2 BAND-PASS PROGRESSIVE WAVELETS

Corollary 4 holds for conic sets Γ, but is also true for a larger class of sets. If some set Γ ⊆ Rd is
conic, it is by definition closed under all sums with nonnegative coefficients. Alternatively, consider
the following weaker property:

Definition 6. Let Γ ⊆ R̂d. Γ is said to be weakly conic if for all γ1, γ2 ∈ Γ and a1, a2 ≥ 1, we
have that a1γ1 + a2γ2 ∈ Γ, and that 0 ∈ Γ. A function ψ : Rd → C is said to be Γ-progressive if
supp(ψ̂) ⊆ Γ. The function ψ is said to be locally Γ-progressive at r0 ∈ Rd if there exists some
Γ-progressive function ψr0 : Rd → C so that for all smooth functions ϕ ∈ C∞(Rd) with support in
a sufficiently small7 neighborhood of r, we have

ϕ̂ · ψ = ϕ̂ ∗ ψ̂r0 . (4)

The notion of a weakly conic set is illustrated in Fig. 2 (a). Just as in the case of progressive functions
for a conic set, the set of Γ-progressive functions for a weakly conic set Γ ⊆ R̂d constitutes an
algebra over C. One can check, then, that Corollary 4 holds for weakly conic sets as well. Putting
this into context, consider a template function ψ such that ψ̂ vanishes in some neighborhood of the
origin. Assume furthermore that supp(ψ̂) is contained in some weakly conic set Γ.

Example 4 (Complex Meyer Wavelet). The complex Meyer wavelet is most easily defined in terms
of its Fourier transform. Define

ψ̂(ξ) :=


sin( 3ξ4 − π/2) ξ ∈ [2π/3, 4π/3]

cos( 3ξ8 − π/2) ξ ∈ [4π/3, 8π/3]

0 otherwise.

7Again, not necessarily compact.
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Figure 3: (a) Target signal, sampled at n = 512 uniformly spaced points in the interval [−2, 2].
Wavelet modulus maxima are marked in red. (b) Split complex wavelet INR with no hidden layers
(MSE = 0.0016). (c) “Real” wavelet INR with no scaling network (MSE = 0.0096). (d) Complex
wavelet INR with no scaling network (MSE = 0.0606). (e) Split “real” wavelet INR (MSE =
0.0061). (f) Split complex wavelet INR (MSE = 0.0011).

The complex Meyer wavelet and its exponents are pictured in Fig. 1 (d). Observe that these functions
are not only progressive, but are also Γ-progressive for the weakly conic set Γ = [2π/3,∞). The
Meyer scaling function, pictured by the dashed line in Fig. 1 (d), has Fourier support that only
overlaps that of the complex Meyer wavelet, but none of its powers.

Applying this extension of Corollary 4, we see that if the atoms in the first layer of an INR using
such a function ψ have vanishing Fourier transform in some neighborhood of the origin, then the
output of the INR has Fourier support that also vanishes in that neighborhood. We illustrate this
in R2 using a template function ψ : R2 → C where ψ is the tensor product of a gaussian and a
complex Meyer wavelet. Using this template function, we construct an INR with F1 = 4 in the
first layer, and a single polynomial activation function. The modulus of the sum of the template
functions before applying the activation function is shown in Fig. 2 (b). We then plot the modulus
of the Fourier transform of fθ in Fig. 2 (c). First, observe that since the effective supports of the
transformed template functions are supported by two disjoint sets, the Fourier transform of fθ can
be separated into two cones, each corresponding to a region in R2. Second, since the complex Meyer
wavelet vanishes in a neighborhood of the origin, these cones are weakly conic, so that the Fourier
transform of fθ vanishes in a neighborhood of the origin as well, by Corollary 4 applied to weakly
conic sets.
Remark 7. The weakly conic sets pictured in Fig. 2 (c) are only approximation bounds of the true
Fourier support of the constituent atoms. We see that Corollary 4 still holds in an approximate sense,
as the bulk of the Fourier support of the atoms is contained in each of the pictured cones.

4.3 A SPLIT ARCHITECTURE FOR INRS

Based on this property of INRs preserving the band-pass properties of progressive template func-
tions, it is well-motivated to approximate functions using a sum of two INRs: one to handle the
low-pass components using a scaling function, and the other to handle the high-pass components
using a wavelet. We illustrate this in Fig. 3, where we fit to a classic test signal on R (Donoho &
Johnstone, 1994), pictured in Fig. 3 (a).

The first INR uses a gaussian template function ψ(x) = exp(−(πx)2/6) with L = 1, and the
constraint that the weights W(0) are all equal to one, i.e., the template atoms only vary in their
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abscissa. Such a network is essentially a single-layer perceptron (Zhang & Benveniste, 1992) for
representing smooth signals. We refer to this network as the “scaling network.”

The second INR uses a Gabor template function ψ(x) = exp(−(πx)2/6) exp(−i2πx) with L = 3,
where we initialize the weights in the first layer to be positive, thus satisfying the condition of
W⊤

t Γ ⊆ Γ in Corollary 4 for Γ = R+. Although ψ is not progressive, its Fourier transform has
fast decay, so we consider it to be essentially progressive, and thus approximately fulfilling the
conditions of Corollary 4. We refer to this network as the “wavelet network,” as it is the WIRE
architecture (Saragadam et al., 2023) for signals on R.

Denoting the scaling and wavelet networks by fθ,s, fθ,w : R → C, respectively, we consider their
sum fθ = fθ,s + fθ,w as a model, and approximate the target signal by taking Re{fθ} : R → R.

The reason for modeling a signal as the sum of a linear scaling INR and a nonlinear INR with a
progressive wavelet is apparent in Fig. 1 (d), where the scaling function and powers of a complex
Meyer wavelet are pictured. Observe that the portions of the Fourier spectrum covered by the gaus-
sian scaling function and the high powers of the Gabor wavelet (as in an INR, by Lemma 1) are
essentially disjoint. To approximate the low-frequency components of a signal using an INR with
a progressive wavelet would require large dilations of the atoms in the first layer, in order to force
the center frequency of the wavelet towards zero. Moreover, if the progressive wavelet has a Fourier
transform that vanishes in a neighborhood of the origin, such dilations will never properly cover a
small neighborhood of the origin. This does not arise when using real-valued template functions, as
powers of such functions generate low-frequency components. However, this phenomena is not al-
ways desirable, as the low-frequency and high-frequency parts of a signal become highly correlated
in this regime, a property that is not necessarily true for natural signals.

The idea behind the “split” architecture, then, is to use a simple network to approximate the smooth
parts of the target signal, and then a more complicated nonlinear network to approximate the nons-
mooth parts of the signal.

We fit an array of INR architectures to the target signal: a split INR architecture with complex
Gabor wavelets but no hidden layers (L = 1) in the MLP, one with no scaling network and real
wavelets, one with no scaling network and complex wavelets, one with a scaling network and real
wavelets, and finally our proposed split architecture with complex Gabor wavelets and hidden layers
in the MLP. All wavelet networks apart from the first one have two hidden layers (L = 3). In
the architectures that use real wavelets, we use a gaussian multiplied by a sinusoid, rather than a
complex exponential as in the complex Gabor wavelet.

The results of training these architectures are respectively shown in Fig. 3 (b-f). Hyperparameters for
each architecture are described in Appendix E.1. We observe slightly better performance, measured
in mean squared error (MSE), from the proposed architecture than the split network with no hidden
layers, which in turn outperforms the split architecture using real wavelets. This illustrates both the
advantages of using complex wavelets over real wavelets, due to their ability to decouple low and
high-frequency parts of a signal, as well as the advantage of the hidden layers that couple wavelet
coefficients across scales, as stated by Lemma 1. Indeed, the nonlinear activation functions generate
“wavelets” from the template function atoms, rather than needing to form a long list of wavelet
atoms and their abscissa in a way that does not capture how wavelet coefficients near singularities
are correlated across scales.

The two INR architectures without scaling networks fared the worst in this experiment; however, we
note that the INR using real wavelets outperformed the one using complex wavelets. This is because
powers of real-valued wavelets can generate low-frequency signal content.

To see the role of the nonlinearities in the wavelet INR, we freeze the weights and biases in the
first layer of the split complex wavelet INR, and take an optimal linear combination of the resulting
template atoms to fit the signal, thus yielding an INR with no hidden layers (Zhang & Benveniste,
1992). We compare the Fourier transforms of the original wavelet network to this “linearized” one
in Fig. 4 (b-c), where we see that the nonlinear wavelet network is able to resolve much more high-
frequency signal content than the linear one. This reflects how the activation functions resolve high-
frequency features from low-frequency approximations, as illustrated initially in Fig. 2. Moreover,
the fact that both wavelet networks have the bulk of their Fourier support only on positive frequencies
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Figure 4: (a) Split complex wavelet INR, separated into scaling and wavelet networks. (b) Fourier
transform of scaling and wavelet networks. (c) Linearized complex wavelet INR. (d) Fourier trans-
form of linearized wavelet network.

illustrates the how the algebraic closure of progressive wavelets under multiplication applies to INR
architectures, as in Corollary 4.

5 RESOLUTION OF SINGULARITIES

A useful model for studying sparse representations of images is the cartoon-like image, which is
a smooth function on R2 apart from singularities along a twice-differentiable curve (Candès &
Donoho, 2004; Wakin et al., 2006).

The smooth part of an image can be handled by the scaling function associated to a wavelet trans-
form, while the singular parts are best captured by the wavelet function. In the context of the
proposed split INR architecture, the scaling INR yields a smooth approximation to the signal, and
the wavelet INR resolves the remaining singularities. Inspired by this, we now consider how the
wavelet INR can be initialized with the resolution of isolated singularities in mind.

5.1 INITIALIZATION WITH THE WAVELET MODULUS MAXIMA

As demonstrated by Lemma 1, the function ψ in the first layer of an INR determines the expres-
sivity of the network. Many such networks satisfy a universal approximation property (Zhang &
Benveniste, 1992), but their value in practice comes from their implicit bias (Yüce et al., 2022;
Saragadam et al., 2023) in representing a particular class of functions. For instance, using a wavelet
in the first layer results in sharp resolution of edges with spatially compact error (Saragadam et al.,
2023). In the remainder of this section, we demonstrate how an understanding of singular points in
terms of the wavelet transform can be used to bolster INR architectures and initialization schemes.

Roughly speaking, isolated singularities in a signal are points where the signal is nonsmooth, but
is smooth in a punctured neighborhood around that point. Such singularities generate “wavelet
modulus maxima” (WMM) curves in the continuous wavelet transform (Mallat, 1999), which have
slow decay in the Fourier domain. With Lemma 1 in mind, we see that INRs can use a collection
of low-frequency template atoms and generate a collection of coupled high-frequency atoms, while
also preserving the spatial locality of the template atoms.

The combination of these insights suggests a method for the initialization of INRs. In particular,
for a given number of template atoms F1 in an INR, the network weights W(0) and abscissa b(0)

should be initialized in a way that facilitates effective training of the INR via optimization methods.
We empirically demonstrate the difference in performance for INRs initialized at random and INRs
initialized in accordance with the singularities in the target signal. Once again, we fit the sum of
a scaling network and a wavelet network to the target signal in Fig. 3. In Fig. 5 (a), we plot the
mean squared error (MSE) for this setting after 1000 training steps for both randomly initialized
and strategically initialized INRs, for F1 = Km, where K ∈ {1, 3, 5, 7} and m is the number of
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1 3 5 7

10−4

10−3

10−2

K

M
S
E

Random
WMM

(a)

(b)

Setting PSNR (dB)

Gabor, Random Init. (fit) 30.081
Gabor, WMM Init. (fit) 30.835
Gaussian (fit) 26.950
Real Gabor (fit) 30.826
Sine (fit) 18.001

Gabor, Random Init. (denoise) 29.236
Gabor, WMM Init. (denoise) 29.385

Figure 5: (a) Mean and standard deviation of the MSE over 10 trials on the 1D test signal. (b) PSNR
of different architectures and initialization schemes on the Kodak dataset (kod, 1999), for image
fitting and denoising tasks. In denoising task, noisy images had average PSNR of 17.35 dB.

WMM points as determined by an estimate of the continuous wavelet transform of the target signal.
The randomly initialized INRs have abscissa distributed uniformly at random over the domain of
the signal. The strategically initialized INRs place K template atoms at each WMM point (so,
a deterministic set of abscissa points). Both initialization schemes randomly distribute the scale
weights uniformly in the interval [1,K]. We observe that for all K, the MSE of the strategically
initialized INR is approximately an order of magnitude less than that of the randomly initialized
INR.

When d = 2, e.g., images, the WMM can be approximated by the gradients of the target signal
to obtain an initial set of weights and biases for the wavelet INR. We evaluate this empirically on
the Kodak Lossless True Color Image Suite (kod, 1999). We approximate the target images using
the proposed split INR architecture. For the WMM-based initialization, we apply a Canny edge
detector (Canny, 1986) to encode the positions and directions of the edges. Further details can be
found in Appendix D. The architectures used are described in Appendix E.2.

We record the results of this experiment for a variety of template functions and initialization schemes
in Fig. 5 (b). Experiments are done for two tasks: image representation, where the network is fit to
the ground truth image, and denoising, where the network is fit to a noisy image and the error relative
to the ground truth is measured. The latter experiment demonstrates how the implicit bias of INRs
is such that they fit natural images better than they fit noise. We observe that over the whole dataset,
initializing the network using the WMM yields a higher PSNR for both tasks, demonstrating the
utility of smart initialization of INRs. Results are aggregated over the whole dataset; see Appendix F
for results on the individual images.

6 CONCLUSIONS

We have offered a time-frequency analysis of INRs that leverages polynomial approximations of
the nonlinear behavior of MLPs beyond the first layer. By noting that progressive functions form
an algebra over the complex numbers, we demonstrated that this analysis yields insights into the
behavior of INRs using complex wavelets, such as WIRE (Saragadam et al., 2023). This leads to
a split architecture for approximating signals, which decouples the low-pass and high-pass parts of
a signal using two INRs, roughly corresponding to the scaling and wavelet functions of a wavelet
transform. Furthermore, the connection with the theory of wavelets yields a natural initialization
scheme for the weights of an INR based on the singularities of a signal.

INR architectures built using wavelet activation functions offer useful advantages for function ap-
proximation that balance locality in space and frequency. The structure of complex wavelets as an
algebra of functions with conic Fourier support, combined with the application of INRs for interpo-
lating sampled functions, suggests a connection with microlocal and semiclassical analysis (Monard
& Stefanov, 2023). This could potentially be understood and improved by incorporating ideas from
shearlet and curvelet systems (Labate et al., 2005; Candès & Donoho, 2004). We also foresee the
decoupling of the smooth and singular parts of a signal by the split INR architecture having useful
properties for solving inverse problems.
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A PROOF OF LEMMA 1

Let r0 be given, and let I ⊆ {1, . . . , F1} be the set of indices such that Wtr0 + bt ∈ supp(ψ).
Then, there exists an open neighborhood U ∋ r0 such that for all r ∈ U , ψ(Wtr + bt) = 0 for
any t /∈ I . Thus, for any r ∈ U , the assumptions on the activation functions imply that fθ(r) is
expressible as a complex multivariate polynomial of {ψ(Wir+bt)}i∈I with degree at most KL−1,
i.e.,

fθ(r) =

KL−1∑
k=0

∑
ℓ∈∆(|I|,k)

β̂ℓ
∏
i∈I

ψℓi(Wir+ bi).

for some set of complex coefficients β̂ℓ. The desired result follows immediately from the convolu-
tion theorem.

B RELAXED CONDITIONS ON THE INR ARCHITECTURE

Lemma 1 assumes that the template function ψ : Rd → C has a Fourier transform that exists
in the sense of tempered distributions, and that the activation functions are polynomials, which is a
stronger condition than merely assuming they are complex analytic. Here, we discuss ways in which
this can be relaxed to include more general activation functions, as well as how template functions
on Euclidean spaces other than Rd can be used.

B.1 RELAXING THE CLASS OF ACTIVATION FUNCTIONS

In Lemma 1, two assumptions are made. The first is that the template function has a Fourier trans-
form that exists, possibly in the sense of tempered distributions. The second is that the activation
functions are polynomials of finite degree. However, given that Lemma 1 is a local result, mild as-
sumptions on the template function allow for reasonable extension of this result to analytic activation
functions.

Indeed, if ψ is assumed to be continuous, then one can take V ⊂ U to be a compact subset of the
neighborhood guaranteed by Lemma 1. It follows, then, that the functions {ψ(Wtr + bt)}F1

t=1 are
bounded over V . Then, if the activation functions are merely assumed to be analytic, then the INR
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can be approximated uniformly well over V by finite polynomials. Without repeating the details of
the proof, this yields an “infinite-degree” version of Lemma 1, where for any ϕ ∈ C∞

0 (V ), we have

ϕ̂ · fθ(ξ) =

 ∞∑
k=0

∑
ℓ∈∆(F1,k)

β̂ℓ

ϕ̂ ∗
F1∗
t=1

(
ei2π⟨W

−⊤
t ξ,bt⟩ψ̂(W−⊤

t ξ)
)∗ℓt,ξ

 (ξ).

This condition is not strong enough to handle general continuous activation functions on C, since the
Stone-Weierstrass theorem for approximating complex continuous functions requires polynomials
terms to include conjugates of the arguments. One could conceivably extend Lemma 1 in this way by
including conjugation, but this would not be compatible with the algebra of Γ-progressive functions,
since Γ-progressive functions are not generally closed under complex conjugation. Under these
conditions, then, Corollary 4 does not hold for general continuous activation functions.

If the preservation of conic support via the wavelets being Γ-progressive is not an issue, we can note
further that when real-valued wavelets are being used, the Stone-Weierstrass theorem offers a way
to understand uniform approximations of an INR architecture with continuous activation functions
by INRs that satisfy the conditions of Lemma 1. For instance, ReLU activation functions are not
polynomials, nor are they analytic, but uniform approximations by polynomials do exist over finite
domains.

B.2 TEMPLATE FUNCTIONS FROM ANOTHER DIMENSION

It is possible to consider cases where ψ is defined as a map from a space of different dimension, say
ψ : Rq → C. If q < d, then one can construct a map ψ̃ : Rd → C so that ψ̃(x1, . . . , xq, xq+1, xd) =
ψ(x1, . . . , xq). This, for instance, is the case with SIREN (Sitzmann et al., 2020) and the 1D variant
of WIRE (Saragadam et al., 2023), where ψ : R → R is used for functions on higher-dimensional
spaces. In this case, the Fourier transform of ψ̃ only exists in the sense of distributions. If q > d,
then one can apply the results in this paper by treating the INR as a map from Rq → C followed by
a restriction that “zeroes out” the excess coordinates by restricting the domain of fθ to the subspace
of points x such that x = (x1, . . . , xd, 0, . . . , 0).

C PROOF OF COROLLARY 4

We will show that the property of fθ being locally Γ-progressive at a point holds, as the result for
being “globally” Γ-progressive follows.

Let r0 be given, and let I ⊆ {1, . . . , F1} be the set of indices such that Wtr0 + bt ∈ supp(ψ). By
Lemma 1, there exists an open neighborhood U ∋ r0 such that for all r ∈ U , fθ(r) takes the form of
a complex multivariate polynomial of {ψ(Wir + bt)}i∈I . Denoting this polynomial by P(r), we
have that for any ϕ ∈ C∞(U),

ϕ · P = ϕ · fθ.

Under the given assumptions, each of the terms {ψ(Wir + bt)}i∈I is a Γ-progressive function.
Since Γ-progressive functions constitute an algebra over C, any polynomial of them will yield a
Γ-progressive function. Letting U be the “sufficiently small neighborhood of r0,” this implies that
fθ is locally Γ-progressive at r0, as desired.

Noting that Γ-progressive functions also constitute an algebra over C when Γ is weakly conic, this
result also applies in that case.

D WAVELET MODULUS MAXIMA INITIALIZATION IN TWO DIMENSIONS

For 2D images, we approximate WMM location as edges of the image. Fig. 6 shows the flowchart
for WMM-type initialization. We first start with the image to be represented and perform Canny
edge detection on it. We then use the binary edge map as a proxy for WMM locations. We then
use the edge locations as bias values for each neuron in the Gabor INR. The weights are initialized
so that each neuron generates a radially symmetric complex Gabor wavelet, oriented such that the
oscillatory direction is perpendicular to the detected edges.
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(a) Image to be represented (b) Canny edge detection (c) WMM-type bias initialization 

shown as red dots

Figure 6: WMM initialization in two dimensions. (a) shows an image to be represented, while (b)
shows the output of a Canny edge detector. (c) shows WMM-type bias initialization with the red
dots showing some of locations used as bias values.

Table 1: Architectural descriptions for wavelet networks in Section 4
Architecture ψ(x) F1 L F2, . . . , FL Parameters

(wavelet+scaling=total)

Split, Complex, L = 1 exp
(
−π2x2

6 + i2πx
)

2220 1 n/a 6661 + 257 = 6918

No scaling, Real exp
(
−π2x2

6

)
sin(2πx) 37 3 64 6731 + 0 = 6731

No scaling, Complex exp
(
−π2x2

6 + i2πx
)

37 3 64 6731 + 0 = 6731

Split, Real exp
(
−π2x2

6

)
sin(2πx) 37 3 64 6731 + 257 = 6988

Split, Complex exp
(
−π2x2

6 + i2πx
)

37 3 64 6731 + 257 = 6988

E EXPERIMENTAL CONDITIONS

E.1 ARCHITECTURAL DESCRIPTIONS FROM SECTION 4.3

We describe here both the architectures and training setups for the networks used in the experiments
in Section 4.3. All scaling networks use gaussian template functions and no hidden layers beyond
the one containing the template functions, i.e., for all scaling networks,

ψ(x) = exp

(
−π

2x2

6

)
L = 1

F1 = 128,

where the 128 template atoms are initialized to be uniformly spaced over the signal domain [−2, 2].

Apart from the scaling networks shared by three of the five architectures used in Section 4.3, the
wavelet networks considered have parameters listed in Table 1. All hidden layers use the activation
function ρ(z) = sin(z), for z ∈ C, where sin(z) is understood to be the analytic continuation of
the real-valued sine to the complex plane. They are initialized according to the wavelet modulus
maxima scheme described in Section 5.1, placing K atoms at each maxima point, where K = 1
is chosen for architectures with hidden layers, and chosen in the L = 1 case to achieve a similar
number of parameters to the other networks. The scales W(0) are initialized uniformly at random
in the interval [1,K], so that the network with L = 1 has many scales of wavelets to fit a wide range
of frequencies, while guaranteeing that the atoms are progressive at initialization.

All architectures are trained for a total of 4000 epochs using AMSgrad (Reddi et al., 2018) to min-
imize the mean-squared error between the real part of the INR and the target signal on n = 512
uniformly spaced points in the interval [−2, 2]. Split architectures are trained by first fitting the
scaling network to the target signal for 2000 epochs, then fitting the scaling and wavelet networks
simultaneously for 2000 additional epochs. Architectures that do not use a scaling network are
trained for 4000 epochs.
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E.2 ARCHITECTURAL DESCRIPTIONS FROM SECTION 5.1

We describe here both the architectures and training setups for the networks used in the experiments
in Section 5.1. For the examples fitting to the 1D test signal, the split complex Gabor architecture
from Section 4.3 was used, as described in Appendix E.1.

For the examples fitting to test images, we use a WIRE INR (Saragadam et al., 2023) with L = 3
hidden layers for the wavelet network, with each F1, F2, F3 = 128, and the same hidden nonlinear-
ities as described in (Saragadam et al., 2023). For the scaling network, we use an INR with L = 1
and F1 = 128, with a gaussian template function.

The network labeled “Gaussian” uses a 1D gaussian as a template function (see Appendix B.2), the
network labeled “Real Gabor” uses the imaginary part of a complex Gabor wavelet as a template
function, and the network labeled “Sine” uses a sinusoid as a template function (Sitzmann et al.,
2020).

F RESULTS ON KODAK IMAGE DATASET

To demonstrate some of the qualitative properties of INRs using complex template functions, we
show here the individual representations of a subset of the images from the image fitting experiments
in Section 5.1. Each image is pictured in Fig. 7 with its PSNR in dB relative to the ground truth. We
exclude the representations by the real-valued Gabor network, due to similar observed behavior to
the complex-valued version, as well as the representations using sinusoidal template functions, due
to poor overall performance.

We first notice that the gaussian template function is outperformed by the Gabor wavelet for all
pictured images, no matter what initialization scheme is used. The randomly initialized Gabor
wavelet network occasionally outperforms the one using the WMM scheme, but this is by no more
than 0.39dB for the pictured images. The network initialized using the WMM scheme, on the
other hand, has an advantage of up to 1.85dB over the random initialization, indicating the strong
advantage of using this scheme for images that are “cartoon-like,” in the sense that they are smooth
apart from isolated singularities such as edges.
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Ground Truth Gabor (Random)
27 .915

Gabor (WMM)
28.062

Gaussian
25.088

34.722 34 .558 29.992

35.753 35 .363 32.594

25 .127 26.776 22.817

29 .075 30.119 25.334

32 .192 32.693 27.552

26 .077 27.928 23.621

Figure 7: INRs fit to a subset of Kodak Lossless True Color Image Suite (kod, 1999). Images are
labeled with their PSNR in dB relative to ground truth image, with the highest PSNR for a given
image bolded and the second highest italicized.
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