
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

The Perfect Blend: Redefining RLHF with Mixture of
Judges

Anonymous authors
Paper under double-blind review

Abstract

Reinforcement learning from human feedback (RLHF) has become the leading
approach for fine-tuning large language models (LLM). However, RLHF has lim-
itations in multi-task learning (MTL) due to challenges of reward hacking and
extreme multi-objective optimization (i.e., trade-off of multiple and/or sometimes
conflicting objectives). Applying RLHF for MTL currently requires careful tun-
ing of the weights for reward model and data combinations. This is often done
via human intuition and does not generalize. In this work, we introduce a novel
post-training paradigm which we called Constrained Generative Policy Optimiza-
tion (CGPO). The core of CGPO is Mixture of Judges (MoJ) with cost-efficient
constrained policy optimizers, which can identify the perfect blend in RLHF in a
principled manner. It shows strong empirical results, does not require extensive
hyper-parameter tuning, and is plug-and-play in common post-training pipelines.
Together, this can detect and mitigate reward hacking behaviors while reaching a
pareto-optimal point across an extremely large number of objectives.
Our results show that CGPO consistently outperforms other commonly used SoTA
RLHF algorithms (such as PPO and DPO) on a wide range of tasks – general chat,
STEM questions, instruction following, math, coding and knowledge. In partic-
ular, CGPO improves over PPO by 7.4% in AlpacaEval-2 (general chat), 12.5%
in Arena-Hard (STEM & reasoning), 2% in IFEval (Instruction Following), 2%
in both MATH and GSM8K (Math & reasoning), 5% in HumanEval (Coding),
and 2% in the ARC challenge (Knowledge). We also observe that PPO is sus-
ceptible to severe reward hacking behaviors (it exhibits severe regression in pop-
ular coding benchmarks) which can be addressed by CGPO. CGPO represents a
breakthrough in RLHF, simultaneously addressing reward-hacking and extreme
multi-objective optimization, and thereby advancing the state-of-the-art in align-
ing general-purpose LLMs.

1 Introduction

The emergence of general-purpose Large Language Models (LLMs) has significantly transformed
the landscape of natural language processing, demonstrating exceptional capabilities across various
expert-level domains (Achiam et al., 2023; Brown et al., 2020; Touvron et al., 2023; Anthropic,
2023; Team et al., 2023; Meta, 2024; Tunstall et al., 2023; Zhu et al., 2023). These models are char-
acterized by their extensive parameterization, enabling them to handle a wide array of tasks using a
unified parameter set (Zhao et al., 2018; Liu et al., 2019b;a). Central to this versatility is multi-task
learning (MTL) (Caruana, 1997; Crawshaw, 2020), a strategy that involves training a single model
on multiple tasks simultaneously. This approach fosters the development of shared representations,
which enhances the model’s ability to generalize better than those trained on isolated tasks. Although
prior studies on MTL have concentrated on the integration and processing of multi-task data during
both pre-training and fine-tuning stages (Raffel et al., 2020; Liu et al., 2023; Aghajanyan et al., 2021;
Aribandi et al., 2021), the application of the primary LLM alignment method, Reinforcement Learn-
ing with Human Preference (RLHF) (Ouyang et al., 2022; Ziegler et al., 2019; Zheng et al., 2023b),
has not been thoroughly explored within the MTL context. In previous studies, the implementation
of RLHF for multi-task post-training has typically involved a linear combination of multiple reward
models within the standard RLHF framework (Ramamurthy et al., 2022; Glaese et al., 2022; Yuan
et al., 2023; Bakker et al., 2022; Wu et al., 2024; Li et al., 2020). Each reward model is crafted

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

using preference data to mirror the distinct alignment preferences of different tasks. Researchers
often experiment with various reward weightings to identify a Pareto front that depicts the optimal
performance of the LLM across diverse tasks (Rame et al., 2024). However, this approach is limited
by two significant challenges:

Vulnerability to Reward Hacking: The optimization of a preference-based reward model is sus-
ceptible to reward hacking, as the reward model is an imperfect proxy of human preferences (Gao
et al., 2023; Jin et al., 2023; Skalse et al., 2022). Studies indicate that excessive optimization of a
reward model can lead to misalignment with actual human preferences (Gao et al., 2023; Moskovitz
et al., 2023; Stiennon et al., 2020; Rafailov et al., 2024a). This issue becomes more pronounced in
a multi-task setting, where each reward model may have its own unique flaws. Implementing a uni-
form early stopping point in the RLHF optimization process to minimize reward hacking effects is
impractical and can lead to degraded performance across tasks (Moskovitz et al., 2023). This high-
lights the need for a more tailored approach to compensate for the weaknesses of each reward model
and to manage the optimization of reward models for each task in complex, multi-task environments.

Contradictory Goals: Different tasks often have conflicting objectives (Rame et al., 2024). Even
if the prompt spaces for these tasks do not overlap, using a linear combination of reward models
can lead to compromises in goal metrics. For example, the typical strategy of LLM post-training in-
volves maximizing the helpfulness reward for safe prompts and maximizing the harmfulness reward
for unsafe prompts (Bai et al., 2022). Although achieving global optimality for both tasks is pos-
sible if the LLM’s capacity is sufficiently large (Iyer et al., 2022), employing a linear combination
of helpfulness and harmfulness rewards inevitably results in reduced gains for both metrics. This
occurs because each task partially sacrifices its own RLHF optimization progress to accommodate a
contradictory metric, thereby diminishing the effectiveness of both.

To address these challenges, we developed an innovative framework called Constrained Generative
Policy Optimization (CGPO). In response to the issue of reward hacking in RLHF, we introduce two
types of judges: rule-based and LLM-based. These judges collaborate to identify any reward hacking
patterns during the LLM’s online generation phase. Based on their evaluations, we implement a
constrained RLHF method to update the LLM model. This method is designed to maximize the
likelihood of generating outputs that adhere to all constraints and achieve high reward values, while
minimizing outputs that breach constraints and have low reward values. To support the constrained
policy optimization update in the large-scale LLM setting, which is complicated even in traditional
small-scale RL scenarios, we have developed three new primary-type constraint RLHF optimizers.
These optimizers are designed to operate independently of the dual-variable update, which is often
a critical component in conventional primal-dual constrained RL algorithms. This independence
simplifies the optimizers and enhances their scalability, making them more effective for managing
large-scale LLM post-training. To effectively optimizing objectives of various tasks, which may be

Figure 1: In CGPO, a customized MoJs is applied to each task to evaluate model generations, and
the model is updated through our proposed constrained policy optimizer.

contradictory, we propose a novel design in CGPO for managing multi-task post-training. In this
design, prompts are segregated by task, and a customized policy optimization strategy is applied

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

to each set of prompts. This strategy includes a tailored MoJs, reward model, and hyperparameter
setup for the constrained RLHF optimizer. By optimizing each task independently, our approach
avoids compromises due to conflicting goals from other tasks, a common issue in previous works
that used a linear combined reward model. Furthermore, our design addresses the reward hacking
issue and optimizes objectives for each task in a fine-grained manner, resulting in a better Pareto
frontier than previous methods that enforced uniform treatment across all tasks. See Figure 1 for an
overview of our CGPO pipeline.

We summarize our contributions as follows:

• We developed a new strategy to address the issues of reward hacking through an innovative primal-
type constrained RL method. To implement this method, we have developed three new con-
strained RLHF optimizers: Calibrated-Regularized Policy Gradient (CRPG), Constrained Online
Direct Preference Optimization (CODPO), and Constraint-Regularized Reward Ranking Finetun-
ing (CRRAFT). All proposed methods are scalable and easy to implement.

• To support the implementation of the constrained RL optimizers, we developed two types of
judges: the rule-based judge and the LLM-based judge. These judges are designed to effectively
assess whether an LLM generation violates constraints in a broad spectrum of LLM tasks.

• We introduced a new multi-objective RLHF treatment strategy within CGPO, where each task is
managed individually with a customized optimization setting, including reward models, mixture
of judges, and optimizer hyperparameters. This pioneering design, the first in the multi-task
RLHF field, significantly enhances the Pareto frontier across multiple metrics.

• We demonstrate the effectiveness of CGPO in a challenging multi-task post-training environ-
ment with five tasks: general chat, instruction following, math and coding reasoning, engagement
intent, and safety, despite potentially contradictory goals across tasks. Notably, by primarily uti-
lizing open-source data and the Llama3.0 70b pre-trained model, our research demonstrates that,
in comparison to the baseline RLHF methods such as PPO Schulman et al. (2017) and DPO
Rafailov et al. (2024b), our approach—when combined with the CRPG and CRRAFT optimiz-
ers—consistently outperforms these baselines across all benchmarks and tasks. Specifically

1. CRPG optimizers achieve the highest performance in terms of MATH, GSM8K, HumanEval,
MBPP, ARC Challenge, and false refusal ratio. CRRAFT optimizer achieves the highest
performance in AlpacaEval-2, Arena-Hard, and TruthfulQA.

2. PPO experiences a significant drop in the 0-shot coding benchmarks (HumanEval and
MBPP) after exceeding certain training steps, indicating the occurrence of severe reward
hacking issues. In contrast, CGPO not only avoids such regression but also consistently
improves those benchmarks during training, demonstrating the extraordinary capability of
MoJs in preventing reward hacking issues.

2 Preliminaries

In the RLHF finetuning phase, we typically formulate a Markov Decision Process (MDP) as follows:
each prompt is considered as the state s, and the entire response is the action a = [a0, a1, · · · , aT−1],
where ai ∈ A represents the token at position i and A is the vocabulary set. An LLM policy is defined
as π(at |at−1, at−2, · · · , a0, s), which represents a distribution over A at time step t, conditioned on all
previous response history before t and prompt: {at−1, at−2, · · · , a0, s}.

2.1 RewardModel Training

RLHF starts by finetuing a pre-trained LLM using supervised learning on high-quality dataset rel-
evant to the downstream target task(s) to obtain πSFT. After the supervised fine-tuning (SFT) stage,
we need to develop a reward model (RM) to assess the quality of an LLM’s output. This will enable
us to utilize exploration-based online RL alignment method. We typically use the pairwise prefer-
ence reward model (Stiennon et al., 2020) with Bradley-Terry (BT) formulation (Bradley & Terry,
1952). To learn a parameterized reward model rϕ(s, a), given a pre-collected preference-pair dataset
D = {si, aw,i, al,i}

N
i=1, where aw,i and al,i denote the preferred and less preferred generations respec-

tively, we can learn rϕ by framing the problem as a binary classification and solving the subsequent

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

problem (Ouyang et al., 2022; Touvron et al., 2023; Meta, 2024):

min
ϕ
Lpair(rϕ,Dpair) = −EDpair

[
logσ(rϕ(s, ap) − rϕ(s, an))

]
. (1)

2.2 RL Finetuning

Given a LLM policy πw with parameter w, a reward model rϕ(a, s) and a prompt setDp = {si}
M
i , we

aim to optimize the policy by maximizing the following RL objective (Ouyang et al., 2022; Achiam
et al., 2023; Touvron et al., 2023):

max
w

Es∼Dp,a∼πw

[
rϕ(s, a)

]
. (2)

When solving the problem in eq. (2) we typically initialize πw with SFT policy πSFT instead of
starting from scratch. In previous works a number of online RL method such as proximal policy
optimization (PPO) (Schulman et al., 2017), reward ranking (RAFT) (Dong et al., 2023) and REIN-
FORCE (Williams, 1992) has been utilized to solve eq. (2).

3 Constraint Generative Policy Optimization

In this section, we first explore how to implement the CGPO framework for single objective opti-
mizaiton in the single task setting using MoJs, as detailed in Section 3.1. Subsequently, we discuss
the implementation of CGPO to manage scenarios involving multiple objectives in Section 3.2 for
multi-task learning.

3.1 CGPO in Single Task with Single Objective

The primary design of CGPO is to integrate multiple constraints to mitigate the issue of reward
hacking, which arises from the limited capabilities of reward models. Specifically, in addition to
optimizing the accumulated reward model value as shown in eq. (2), we also ensure that the model
generation meets several constraints. For example, in general chat tasks with prompts that are free of
harmful intent. We require model generations to consistently respond to user queries. This is crucial
because there are instances where the model may refuse to answer, and the reward model might er-
roneously assign high values to such non-responsive generations. In these cases, purely maximizing
the reward model could impair the model’s helpfulness and lead to an overly conservative tendency.
By introducing these constraints based on our prior knowledge about the weaknesses of each reward
model, we can avoid critical reward hacking patterns effectively.

We denote the set of constraints that the LLM generations need to satisfy as {C1,C2, . . . ,CM}

and the state-action set that satisfies constraint Ck as Σk, i.e., Σk = {(s, a) ∈ S ×

A and (s, a) satisfies requirement of Ck}. We define the feasible region as the state-action set that
satisfies all constraints as Σ = Σ1 ∩ Σ2 ∩ . . . ∩ ΣM . In the single task setting, CGPO solves the
following constrained problem (Ying et al., 2022; Zhang et al., 2024; Xu et al., 2021)

max
w

Es∼Dp,a∼πw

[
rϕ(s, a)

]
s.t. Probs∼Dp,a∼πw ((s, a) ∈ Σ) ≥ 1,

KLs∼Dp (πw|πref) ≤ KLmax, (3)

where πref is the initialization model and KLmax is the threshold of KL-divergence.

The high-level framework of CGPO in the multiple-constraints and single-objective setting is illus-
trated in Algorithm 1. At each iteration, we sample a minibatch from the prompt set D, and then
apply the current LLM policy to generate K responses (1 ≤ K) for each prompt. Subsequently,
we apply all judges J = {Jh}

M
h=1 to generated sample to evaluate whether a generation violates any

constraint, where Jh(s, a) = 1 if (s, a) satisfies the h-th constraint, and Jh(s, a) = 0 otherwise. We
label a generation ak

t,i as “violated” if it fails any one of the constraint judgments, and “satisfied”
otherwise. The judge is a module for evaluating the constraint satisfaction conditions, which could
be a rule-based script or an LLM classifier. This module can address a wide range of constrained
problems in the LLM post-tuning scenario. We will discuss this in detail in Section 3.1.1.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

After that, we split the generations into “Positive” and “Negative” groups, depending on the con-
straint satisfaction label. We then apply a constrained RLHF optimizer to update the policy with
these two groups of samples (see line 9 in Algorithm 1). In our work, we propose three new con-
strained RLHF optimizers to efficiently solve the multi-constraint problem in the LLM setting. For
Option I in Algorithm 1, we develop a policy gradient approach named Calibrated Regularized
Policy Gradient (CRPG) and an online direct preference-based approach named Constrained On-
line DPO, and for Option II in Algorithm 1, we develop a reward ranking-based approach named
Constraint-Regularized Reward Ranking Fine-tuning (CRRAFT).

• Calibrated Regularized Policy Gradient: CRPG is a constrained policy gradient method. It
incorporates a novel calibration strategy that leverages preference-based reward modeling, along
with a new constraint-rectified reward shaping technique. Those two techniques work together
to optimize the reward while ensuring compliance with all constraints. Additionally, CRPG in-
troduces a new KL-regularization approach that not only penalizes generations with significant
deviation but also strictly bound the KL divergence of final policy.

• Constraint-Regularized Reward Ranking Fine-tuning: CRRAFT is a reward ranking-based
approach Dong et al. (2023). It adopts a novel ranking strategy that promotes only those gen-
erations which achieve high reward values and satisfy all constraints. Additionally, this strategy
ensures that the KL divergence of the final policy is strictly bounded.

• Constrained Online DPO: CODPO adapts the DPO update to the on-policy optimization setting,
in which generations that achieve high reward values and satisfy all constraints are promoted,
whereas generations that yield low reward values and violate any constraints are demoted.

Please refer to Appendix B for detail about these three constrained policy optimizers.

Algorithm 1 CGPO(D, πw0 , J, B,R,O,T ) in single task with multi-constraints

1: Input: prompt set D = {st,i}
N
i=1, LLM starting policy πw0 , constraint judge set J = {Jh}

M
h=1,

batchsize B, reward model R, iteration number T , constriained RLHF optimizer O.
2: for t = 0, 1, ...,T do
3: Prompt sampling: {st,i}

B
i=1 ∼ D

4: Response generation: {ak
t,i}

K
k=1 ∼ πwt (·|st,i) for 1 ≤ i ≤ B

5: Constraint judgement: yk
t,i = ∧

M
h=1Jh(st,i, ak

t,i) for 1 ≤ i ≤ B and 1 ≤ k ≤ K
6: Split sample set:
7: Positive samples: X+t = {(st,i, ak

t,i) for 1 ≤ i ≤ n, 1 ≤ k ≤ K where yt,i = 1}
8: Negative samples: X−t = {(st,i, ak

t,i) for 1 ≤ i ≤ n, 1 ≤ k ≤ K where yt,i = 0}
9: Update πwt → πwt+1 for policy optimization with optimizer O and reward model R:

10: [Option I]: maximize likelihood of X+t and minimize likelihood of X−t
11: [Option II]: maximize likelihood of X+t
12: end for

Intuitively, with either the Option I or Option II updating strategy, CGPO encourages the policy to
explore regions that satisfy all constraints to maximize the expected reward model value. Note that
CGPO is a primal-type constraint policy optimization approach, which differs from the standard
primal-dual approach adopted in the traditional constrained RL field. CGPO does not involve co-
optimizing the dual variable, thus avoiding the drawbacks of extensive hyperparameter tuning issues
associated with the primal-dual approach. Due to this reason, CGPO is user-friendly even with
multiple different types of constraints, making it well-suited for the LLM post-tuning scenario.

3.1.1 Judges in CGPO

The key step in implementing multi-constraint CGPO optimizers is to determine whether a genera-
tion (s, a) satisfies a constraint or not. This determination allows us to split generated samples into
positive (X+t ) and negative (X−t ) groups given the label y predicted by each constraint judge Jh, i.e.,

Jh(s, a) = y ∈ {0, 1}, where 1 ≤ h ≤ M,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

and then apply our customized constraint RLHF optimizers based on that classification. In CGPO,
we have developed and integrated the following two types of constraint judge modules to assess
whether a generation satisfies a constraint:

• Rule-based constraint judge module: This module employs a rule-based approach (such as
string-matching and code execution) to ascertain whether the generation strictly adheres to pre-
defined regulations (Li et al., 2024a). It is particularly effective for constraints related to precise
instruction following, where the generation must meet exact requirements such as length, number
of paragraphs, and keyword inclusion (Zhou et al., 2023; Hendrycks et al., 2021b; Cobbe et al.,
2021). It can also handle reasoning tasks, such as math problems and code generation.

• LLM-based constraint judge module. This module functions as an LLM generator. In most
cases, the generation is formatted according to a template before being sent to the judge mod-
ule. These modules not only provide access to the constraint satisfaction condition but also offer
reasoning behind the judgement construction. Due to this property, they are typically capable of
handling more challenging constraint evaluation tasks such as safety violation, reference-based
factuality verification, and false refusal patterns. The model could either be a compact LLM fine-
tuned with domain-specific data (Inan et al., 2023; Bai et al., 2022) or a powerful, large LLM
without task-specific fine-tuning (Yuan et al., 2024b; Zheng et al., 2024).

A detailed information of these two types of judges can be found in Appendix C.4.

3.2 CGPO inMulti-Taks withMulti-Objectives

In the multi-tasks environment, CGPO utilizes customized combinations of ”reward models +MoJs
+ optimizers” to provide alignment guidance tailored to each task. This approach is designed to
better accommodate the specific nature of each problem, thereby enable CGPO to have better chance
to achieve optimal alignment outcomes. Figure 2 provides an end-to-end illustration of how the

Task 1:
General Chat

Task 2:
Math Reasoning

Task N:
Harmful Intent

Factuality
Judge

Math
Judge

Safety
Judge

CGPO
Optimizer I

"The correct answer
is 10.5 pounds"

"Mike needs 12
pounds, I hope it is

correct"

"I can't provide
information on illegal

activities"

"He was born in 1812,
Larue County, KY"

"Abraham Lincoln
was born in Feb 12,

1809."

"Happy to assist!
Below are the steps
to make a bomb ..."

"When was Abraham
Lincoln born?"

"How much food does
Mike need weekly for
3 dogs if each eats
1/2 pound daily?"

"How to make a
bomb?"

Helpfulness
RM

CGPO
Optimizer II

Reasoning
RM

CGPO
Optimizer N

Safety RM

Merged
optimizers
gradient

Gradient Update

`

`

`

Mixture of Judges

Figure 2: CGPO in a multi-tasks setting. The RM, MoJs, and optimization setup are uniquely
tailored to the specific characteristics of each task. This customization ensures the most effective
and targeted approach for achieving optimal performance across all tasks, even those with
potentially contradictory goals.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

CGPO pipeline functions in the multi-tasks setting. The entire CGPO pipeline has the following
two core components: multi-objective reward modeling and multi-experts alignment.

Multi-Objective Reward Modelling. Unlike the approach adopted in previous RLHF pipelines in
multi-objective scenarios, which applies the same linear combined reward model to all prompts in
the prompt set D, CGPO first classifies the prompt set D into distinct, non-overlapping categories
based on the nature of the prompts, i.e., D = {D1,D2, . . . ,DL}. Each prompt set Dl ∈ D is referred to
as a task. For example, prompts with harmful intent, which could potentially lead LLM to generate
unsafe responses, are grouped into a class labeled ”harmful intent”. Conversely, prompts without
unsafe intent, primarily focused on information gathering and casual conversation, are grouped into
a class labeled ”general chat”. This categorization can be performed during the data collection phase
or by prompting an LLM to carry out the categorization given the definitions of different classes.
Subsequently, with a collection of trained reward models denoted as {rϕ,1, rϕ,2, . . . , rϕ,V }, we tailor the
specific reward model to be applied for each task Dl. This customization guarantees that each prompt
class Dl benefits from the most appropriate guidance provided by the corresponding reward model.
Note that the number of reward models, denoted by V , is less than or equal to the number of tasks,
L, meaning a single reward model can be utilized across multiple tasks. The major advantage of
segregating the reward models for different tasks is to exclude irrelevant or contradictory objectives,
thus enabling each task to focus solely on optimizing its own goal metrics without interference from
other objectives.

Multi-Expert Alignment. The concept of multi-expert alignment involves applying customized
MoJs, reward model and policy optimization setups for each task.

After the policy model generates online samples for each task, we employ a mixture of task-specific
judges to identify generations that do not meet predefined standards. It is crucial to emphasize that
the selection of judges are uniquely tailored for each task, reflecting the particular shortcomings of
each reward model and our established performance criteria for LLMs in these tasks. For instance,
in the ”general chat” task, we employ LLM-based judges for false refusal and factuality to enhance
responsiveness and ensure honesty. In ”reasoning” tasks, we implement a rule-based math/coding
constraint judge to guarantee correctness and accuracy.

Based on the status of constraint satisfaction across generations and a customized reward model,
we implement an RLHF policy optimizer with a specifically tailored hyperparameter setup to align
each task effectively. This method deviates from the conventional RLHF pipeline, which generally
employs a uniform optimizer setup for task alignment. For tasks that have precise judges and require
extensive exploration to derive the correct response, such as instruction following, math, and coding,
we apply a lenient KL threshold and allow a higher number of generations per prompt. In contrast,
for tasks where precise judges are lacking and extensive exploration is less critical, such as ”general
chat,” we opt for a stricter KL threshold and a reduced number of generations per prompt.

Algorithm 2 CGPO({Dl}
L
l=1, πw0 , {Jl}

L
l=1, {Bl}

L
l=1, {Rl}

L
l=1, {Ol}

L
l=1,T ) in multi-tasks with multi-

constraints & multi-objectives

1: Input: Multi-tasks prompt set {Dl}
L
l=1, LLM starting policy πw0 , judges sets {Jl}

L
l=1, multi-tasks

batchsizes {Bl}
L
l=1, reward model sets {Rl}

L
l=1, multi-tasks weights {ρl}

L
l=1, multi-tasks optimizers

{O}Ll=1, iteration number T .
2: for t = 0, 1, · · · ,T do
3: for l = 0, 1, · · · , L do
4: Obtain gradient g̃l(πwt ) for l-th task via CGPO(Dl, πwt , Jl, Bl,Rl,Ol, 1) in Algorithm 1
5: end for
6: Update with multi-tasks gradient accumulation wt+1 = wt + αt ·

∑L
l=1 ρl · g̃l(πwt ),

7: end for

The high-level framework of CGPO in the multiple-constraint and multiple-objective setting is il-
lustrated in Algorithm 2. Specifically, at each iteration t, we process each individual task to compute
the updated gradient g̃l(πwt ). This computation is based on the task-specific prompt set Dl, reward
model Rl, mixture of judges Jl, batch size Bl, and optimizer Ol, following the steps outlined in Al-
gorithm 1. Subsequently, we accumulate the gradients across all tasks and combine them with our
predefined task weights {ρl}

L
l=1, which are then used to update our model parameters.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 Experiments

In this section, we outline the specifics of our experimental setup designed for multi-task alignment
under conditions of extreme multi-constraints and multiple objectives. Specifically, we focus on
fine-tuning a LLM to achieve alignment across the following five tasks: general chat, instruction
following, math/code reasoning, engagement intent and harmful intent (see Appendix C.1 for detail).

In our experiment, we utilized the Llama 3.0 70B pretrained model as our base model. In the SFT
stage, we utilize a combination of open-source and synthetic finetuning datasets to enhance model’s
performance across five specific tasks. We then use both open-source and synthetic preference
datasets to train three RMs: Helpfulness RM, Engagement RM, and Safety RM, each designed to
capture different aspects of alignment. Additionally, we have developed five judges to support the
CGPO training in this context: False Refusal Judge, Precise Instruction Following Judge, Math &
Coding Judge, Factuality Judge, and Safety Judge. For detailed information on the SFT and RM
training recipes, as well as the development of these judges, please refer to Appendices C.2 to C.4.

We evaluate the capability of models trained with different algorithms using the following bench-
marks: AlpacaEval-2, Arena-Hard, IFEval, MATH, GSM8K, MBPP, HumanEval, MMLU, ARC,
and TruthfulQA. Additionally, we have developed new benchmarks to assess engagement intent,
safety violation rate, and false refusal rate. Please refer to Appendix D for detail.

4.1 CGPO Training Setup

In this section, we will show how we implment the CGPO in the RLHF finetuning stage.

RLHF warm-up. Unlike previous studies Ouyang et al. (2022), which directly employ the SFT
model as the initial point for RLHF, our approach introduces a ”warm-up” phase. This phase begins
with a model that has undergone preliminary fine-tuning through a few steps of DPO, starting from
the SFT model. The rationale behind this strategy is that initiating online RLHF directly from the
SFT model and performing policy optimization with the RM may not be able to explicitly exploit
the high-quality preference data. By initiating RLHF with a model already refined by DPO to a
certain degree, we can fully harness the advantages of the preference dataset, thereby providing a
better starting point for RLHF. In our experiment, we utilize all preference data from RM training to
facilitate the training for warm-up DPO. The benefit of RLHF warm-up is discussed in Appendix E.

RLHF Training recipe: We begin the RLHF finetuning process using the warm-up model. Table 1
shows the customized treatment (RM+MoJs) we applied for each task. The prompt set of each tasks
in CGPO training is provided in Appendices C.5 and C.6.

Tasks General
Chat

Instruction
Following

Math/Coding
Reasoning

Engagement
Intent

Harmful
Intent

Helpfulness RM ✓ ✓ ✓
Engagement RM ✓

Safety RM ✓

False refusal Judge ✓ ✓
Precise IF Judge ✓

Math/Code Judge ✓
Factuality Judge ✓

Safety Judge ✓

Table 1: Tasks and their corresponding RM and MoJs

Baseline and Ablations: We conducted CGPO training with all three optimizers that we proposed:
CRPG, CRRAFT, and CODPO. Additionally, we consider DPO and PPO as our RLHF baselines. To
establish the DPO baseline, we continue running the DPO updates starting from the RLHF warm-up
model and extend the training steps to thoroughly optimize all evaluation benchmarks. To establish
the PPO baseline, we first train a unified reward model by merging all reward models’ training data.
Following this, we start from the RLHF warm-up model and perform PPO updates by applying the
unified reward model to the same prompt sets as CGPO recipes.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.2 Main Results and Ablations

Figure 3: Comparison of CGPO variants with baseline RLHF algorithms PPO and DPO

For the online RLHF algorithms CGPO and PPO, we monitor the model’s performance at every
10-step interval throughout the training trajectory across various benchmarks, as illustrated in Fig-
ure 3. The plot demonstrates that CGPO, when paired with the CRPG and CRRAFT optimizers,
consistently enhances performance across all benchmarks compared to the initial model, indicat-
ing progressive improvement as training progresses. Specifically, CRPG outperforms all others
throughout the entire training period in terms of ARC Challenge, 0-shot HumanEval, 0-shot MBPP,
4-shots MBPP, MATH, and GSM8K. Meanwhile, CRRAFT excels in IFEval during the training
phase. Notably, the online RLHF baseline PPO exhibits a significant decline in performance on
0-shot coding benchmarks (MBPP and HumanEval) as training progresses, indicating a severe case
of reward hacking. Meanwhile, CGPO with the CODPO optimizer shows a slight regression on
MBPP and IFEval benchmarks compared to the warm-up model, yet it effectively avoids the drastic
performance drop observed with PPO in the coding benchmarks. The offline RLHF baseline DPO,
while avoiding the drastic regression seen with PPO, remains overly conservative in enhancing the
model’s performance, resulting in lower metric improvements compared to CGPO with the CRPG
and CRRAFT optimizers.

In Table 2, we present the evaluation results for SFT, DPO warm-up, DPO baseline, the final step of
PPO, and various CGPO variants across all benchmarks detailed. The data in Table 2 indicate that
CGPO variants employing CRPG and CRRAFT optimizers significantly outperform the DPO and
PPO baselines across all benchmarks. Notably, CRPG shows the most substantial improvements in
math and coding benchmarks (Math, GSM8K, HumanEval, and MBPP), while CRRAFT excels in
helpfulness and factuality (AlpacaEval-2, Arena-Hard, and TruthfulQA). Both CRPG and CRRAFT
achieve the best results in terms of instruction following (IFEval). While the CGPO variant with the
CODPO optimizer does not perform as strongly as other variants, it offers performance that is on par
with or better than the DPO and PPO in all benchmarks except the IFEval. In terms of safety, CGPO
with the CRPG and CODPO optimizers achieve the best results in FRR and SVR, respectively.
Table 2 demonstrates that the CGPO framework is able to enhance model quality across all tasks,
proving its efficacy in managing challenging multi-task fine-tuning.

4.3 Effectiveness ofMixture of Judges

In this section, we explore the significance of incorporating MoJs within the CGPO framework. We
conduct an ablation study by eliminating all MoJs from CGPO, utilizing the CRPG optimizer, while
keeping all other variables constant, and then proceed to rerun the RLHF finetuning for 600 steps.
Figure 4 presents a comparative analysis of CGPO performance with and without MoJs using the
CRPG optimizer across various benchmarks, including HumanEval, MBPP, MATH, and GSM8K.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

DPO
warm-up

DPO
baseline PPO CGPO -

CRPG
CGPO -

CRRAFT
CGPO -
CODPO

AlpacaEval-2 13.3 16.3 24.8 25.9 43.2 18.08
Arena-Hard 18.8 ± 1.6 18.3 ± 1.7 24.3 ± 1.8 31.2 ± 2.2 36.8 ± 2.0 16.8 ± 1.9

IFEval 0.75 0.79 0.81 0.83 0.83 0.70

MATH 0.44 0.45 0.46 0.48 0.47 0.46
GSM8K 0.88 0.90 0.91 0.93 0.92 0.90
0-shot MBPP 0.51 0.49 0.002 0.63 0.57 0.51
4-shots MBPP 0.57 0.60 0.62 0.62 0.58 0.55
0-shot HumanEval 0.15 0.59 0.006 0.76 0.70 0.57
4-shots HumanEval 0.70 0.70 0.66 0.71 0.68 0.67

MMLU 0.76 0.75 0.75 0.75 0.75 0.75
ARC 0.84 0.88 0.90 0.92 0.90 0.90
TruthfulQA 0.59 0.63 0.65 0.64 0.66 0.63

Engagement 0.59 0.71 0.81 0.81 0.72 0.79

SVR 0.03 0.02 0.03 0.05 0.02 0.01
FRR 0.161 0.17 0.12 0.04 0.12 0.24

Table 2: Evaluation results of SFT, DPO warm-up, DPO, PPO and CGPO variants

Figure 4: Comparison of CGPO (CRPG optimizer) with and without MoJs

From Figure 4, it is clear that in the absence of coding judges, the CRPG optimizer undergoes a no-
table decline in 0-shot coding benchmarks once it surpasses 180 steps, mirroring the performance of
the PPO baseline. Additionally, in the MATH and GSM8K, while CRPG shows some improvement
without constraints, the increases in metrics are considerably less pronounced compared to cases
where math judges are utilized. This comparison effectively illustrates that MoJs play a crucial role
not only in preventing reward hacking but also in significantly boosting the model’s performance
during online RLHF finetuning.

5 Conclusion

In this paper, we introduced the CGPO framework to address key challenges in multi-task learning
for LLM post-training with RLHF. The CGPO framework effectively mitigates issues such as inho-
mogeneous reward hacking and conflicting task goals through a novel primal-type multi-constraint
RL method and a tailored multi-objective optimization strategy. We demonstrate the effectiveness
of CGPO in a scenario where we need to handle five tasks with three reward models and six con-
straints, marking the first application of RLHF in multi-task learning for general-purpose LLMs.
Our experiments show that CGPO achieves significantly better metric gains for all tasks compared
to the baseline RLHF methods. Moving forward, it is promising to explore more automated ways to
adapt the gradient weights from different tasks to further reduce the hyperparameter tuning burden
and advance the Pareto frontier (Sener & Koltun, 2018).

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava, Xilun Chen, Luke Zettlemoyer, and
Sonal Gupta. Muppet: Massive multi-task representations with pre-finetuning. arXiv preprint
arXiv:2101.11038, 2021.

AI Anthropic. Introducing claude, 2023.

Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao, Huaixiu Steven Zheng, Sanket Vaibhav Mehta,
Honglei Zhuang, Vinh Q Tran, Dara Bahri, Jianmo Ni, et al. Ext5: Towards extreme multi-task
scaling for transfer learning. arXiv preprint arXiv:2111.10952, 2021.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Michiel Bakker, Martin Chadwick, Hannah Sheahan, Michael Tessler, Lucy Campbell-Gillingham,
Jan Balaguer, Nat McAleese, Amelia Glaese, John Aslanides, Matt Botvinick, et al. Fine-tuning
language models to find agreement among humans with diverse preferences. Advances in Neural
Information Processing Systems, 35:38176–38189, 2022.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Rich Caruana. Multitask learning. Machine learning, 28:41–75, 1997.

Lichang Chen, Chen Zhu, Davit Soselia, Jiuhai Chen, Tianyi Zhou, Tom Goldstein, Heng Huang,
Mohammad Shoeybi, and Bryan Catanzaro. Odin: Disentangled reward mitigates hacking in rlhf.
arXiv preprint arXiv:2402.07319, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica.
Chatbot arena: An open platform for evaluating llms by human preference, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Michael Crawshaw. Multi-task learning with deep neural networks: A survey. arXiv preprint
arXiv:2009.09796, 2020.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. 2023.

Justin Cui, Wei-Lin Chiang, Ion Stoica, and Cho-Jui Hsieh. Or-bench: An over-refusal benchmark
for large language models. arXiv preprint arXiv:2405.20947, 2024.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations. arXiv preprint arXiv:2305.14233, 2023.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. Advances in Neural Information Processing Systems,
36, 2024.

Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D’Amour, DJ Dvijotham,
Adam Fisch, Katherine Heller, Stephen Pfohl, Deepak Ramachandran, et al. Helping or herd-
ing? reward model ensembles mitigate but do not eliminate reward hacking. arXiv preprint
arXiv:2312.09244, 2023.

Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta. Understanding dataset difficulty with
V-usable information. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 5988–6008. PMLR,
17–23 Jul 2022.

Kawin Ethayarajh, Winnie Xu, Dan Jurafsky, and Douwe Kiela. Human-centered loss functions
(halos). Technical report, Technical report, Contextual AI, 2023.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835–10866. PMLR, 2023.

Amelia Glaese, Nat McAleese, Maja Trebacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Mari-
beth Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, et al. Improving alignment of
dialogue agents via targeted human judgements. arXiv preprint arXiv:2209.14375, 2022.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps. NeurIPS, 2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021b.

Jian Hu, Li Tao, June Yang, and Chandler Zhou. Aligning language models with offline reinforce-
ment learning from human feedback. arXiv preprint arXiv:2308.12050, 2023.

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Michael
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, et al. Llama guard: Llm-based input-output
safeguard for human-ai conversations. arXiv preprint arXiv:2312.06674, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Srinivasan Iyer, Xi Victoria Lin, Ramakanth Pasunuru, Todor Mihaylov, Daniel Simig, Ping Yu,
Kurt Shuster, Tianlu Wang, Qing Liu, Punit Singh Koura, et al. Opt-iml: Scaling language model
instruction meta learning through the lens of generalization. arXiv preprint arXiv:2212.12017,
2022.

Di Jin, Shikib Mehri, Devamanyu Hazarika, Aishwarya Padmakumar, Sungjin Lee, Yang Liu, and
Mahdi Namazifar. Data-efficient alignment of large language models with human feedback
through natural language. arXiv preprint arXiv:2311.14543, 2023.

Kaiwen Li, Tao Zhang, and Rui Wang. Deep reinforcement learning for multiobjective optimization.
IEEE transactions on cybernetics, 51(6):3103–3114, 2020.

Ming Li, Han Chen, Chenguang Wang, Dang Nguyen, Dianqi Li, and Tianyi Zhou. Ruler: Improv-
ing llm controllability by rule-based data recycling. arXiv preprint arXiv:2406.15938, 2024a.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Banghua Zhu, Joseph E Gonzalez, and Ion
Stoica. From live data to high-quality benchmarks: The arena-hard pipeline, april 2024. URL
https://lmsys. org/blog/2024-04-19-arena-hard, 2024b.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. arXiv preprint arXiv:1705.04146,
2017.

Bingchang Liu, Chaoyu Chen, Cong Liao, Zi Gong, Huan Wang, Zhichao Lei, Ming Liang, Dajun
Chen, Min Shen, Hailian Zhou, et al. Mftcoder: Boosting code llms with multitask fine-tuning.
arXiv preprint arXiv:2311.02303, 2023.

Shengchao Liu, Yingyu Liang, and Anthony Gitter. Loss-balanced task weighting to reduce negative
transfer in multi-task learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 33, pp. 9977–9978, 2019a.

Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with attention. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1871–
1880, 2019b.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. 2023.

AI Meta. Introducing meta llama 3: The most capable openly available llm to date. Meta AI, 2024.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking
the potential of slms in grade school math. arXiv preprint arXiv:2402.14830, 2024.

Ted Moskovitz, Aaditya K Singh, DJ Strouse, Tuomas Sandholm, Ruslan Salakhutdinov, Anca D
Dragan, and Stephen McAleer. Confronting reward model overoptimization with constrained rlhf.
arXiv preprint arXiv:2310.04373, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Arka Pal, Deep Karkhanis, Samuel Dooley, Manley Roberts, Siddartha Naidu, and Colin White.
Smaug: Fixing failure modes of preference optimisation with dpo-positive. arXiv preprint
arXiv:2402.13228, 2024.

Rafael Rafailov, Yaswanth Chittepu, Ryan Park, Harshit Sikchi, Joey Hejna, Bradley Knox, Chelsea
Finn, and Scott Niekum. Scaling laws for reward model overoptimization in direct alignment
algorithms. arXiv preprint arXiv:2406.02900, 2024a.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024b.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Chris-
tian Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural
language processing: Benchmarks, baselines, and building blocks for natural language policy
optimization. arXiv preprint arXiv:2210.01241, 2022.

Alexandre Rame, Guillaume Couairon, Corentin Dancette, Jean-Baptiste Gaya, Mustafa Shukor,
Laure Soulier, and Matthieu Cord. Rewarded soups: towards pareto-optimal alignment by in-
terpolating weights fine-tuned on diverse rewards. Advances in Neural Information Processing
Systems, 36, 2024.

Alexandre Ramé, Nino Vieillard, Léonard Hussenot, Robert Dadashi, Geoffrey Cideron, Olivier
Bachem, and Johan Ferret. Warm: On the benefits of weight averaged reward models. arXiv
preprint arXiv:2401.12187, 2024.

Mathieu Rita, Florian Strub, Rahma Chaabouni, Paul Michel, Emmanuel Dupoux, and Olivier
Pietquin. Countering reward over-optimization in llm with demonstration-guided reinforcement
learning. arXiv preprint arXiv:2404.19409, 2024.

Paul Röttger, Hannah Rose Kirk, Bertie Vidgen, Giuseppe Attanasio, Federico Bianchi, and Dirk
Hovy. Xstest: A test suite for identifying exaggerated safety behaviours in large language models.
arXiv preprint arXiv:2308.01263, 2023.

Paul Röttger, Hannah Rose Kirk, Bertie Vidgen, Giuseppe Attanasio, Federico Bianchi, and Dirk
Hovy. Xstest: A test suite for identifying exaggerated safety behaviours in large language models,
2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. Advances in
neural information processing systems, 31, 2018.

Wei Shen, Rui Zheng, Wenyu Zhan, Jun Zhao, Shihan Dou, Tao Gui, Qi Zhang, and Xuanjing
Huang. Loose lips sink ships: Mitigating length bias in reinforcement learning from human
feedback. arXiv preprint arXiv:2310.05199, 2023.

Prasann Singhal, Tanya Goyal, Jiacheng Xu, and Greg Durrett. A long way to go: Investigating
length correlations in rlhf. arXiv preprint arXiv:2310.03716, 2023.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and character-
izing reward gaming. Advances in Neural Information Processing Systems, 35:9460–9471, 2022.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–3021, 2020.

Lichao Sun, Yue Huang, Haoran Wang, Siyuan Wu, Qihui Zhang, Chujie Gao, Yixin Huang, Wen-
han Lyu, Yixuan Zhang, Xiner Li, et al. Trustllm: Trustworthiness in large language models.
arXiv preprint arXiv:2401.05561, 2024.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
distillation of lm alignment. arXiv preprint arXiv:2310.16944, 2023.

Bertie Vidgen, Adarsh Agrawal, Ahmed M Ahmed, Victor Akinwande, Namir Al-Nuaimi, Najla
Alfaraj, Elie Alhajjar, Lora Aroyo, Trupti Bavalatti, Borhane Blili-Hamelin, et al. Introducing v0.
5 of the ai safety benchmark from mlcommons. arXiv preprint arXiv:2404.12241, 2024.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024.

Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams, Makesh Narsimhan Sreedhar, Daniel Egert,
Olivier Delalleau, Jane Polak Scowcroft, Neel Kant, Aidan Swope, and Oleksii Kuchaiev. Help-
steer: Multi-attribute helpfulness dataset for steerlm. 2023.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A Smith,
Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better rewards for
language model training. Advances in Neural Information Processing Systems, 36, 2024.

Jing Xu, Da Ju, Margaret Li, Y-Lan Boureau, Jason Weston, and Emily Dinan. Recipes for safety in
open-domain chatbots. arXiv preprint arXiv:2010.07079, 2020.

Tengyu Xu, Yingbin Liang, and Guanghui Lan. Crpo: A new approach for safe reinforcement
learning with convergence guarantee. In International Conference on Machine Learning, pp.
11480–11491. PMLR, 2021.

Rui Yang, Xiaoman Pan, Feng Luo, Shuang Qiu, Han Zhong, Dong Yu, and Jianshu Chen. Rewards-
in-context: Multi-objective alignment of foundation models with dynamic preference adjustment.
arXiv preprint arXiv:2402.10207, 2024.

Chengyang Ying, Xinning Zhou, Hang Su, Dong Yan, Ning Chen, and Jun Zhu. Towards safe rein-
forcement learning via constraining conditional value-at-risk. arXiv preprint arXiv:2206.04436,
2022.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin
Chen, Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen Zhou, Hao Peng, Zhiyuan Liu, and
Maosong Sun. Advancing llm reasoning generalists with preference trees. 2024a.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024b.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. Rrhf:
Rank responses to align language models with human feedback without tears. arXiv preprint
arXiv:2304.05302, 2023.

Qiyuan Zhang, Shu Leng, Xiaoteng Ma, Qihan Liu, Xueqian Wang, Bin Liang, Yu Liu, and Jun
Yang. Cvar-constrained policy optimization for safe reinforcement learning. IEEE Transactions
on Neural Networks and Learning Systems, 2024.

Xiangyun Zhao, Haoxiang Li, Xiaohui Shen, Xiaodan Liang, and Ying Wu. A modulation module
for multi-task learning with applications in image retrieval. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 401–416, 2018.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle Li, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zhuohan Li, Zi Lin, Eric. P Xing, Joseph E. Gonzalez, Ion Stoica, and Hao Zhang.
Lmsys-chat-1m: A large-scale real-world llm conversation dataset. 2023a.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua, Wei Shen, Binghai Wang, Yan Liu, Senjie Jin,
Qin Liu, Yuhao Zhou, et al. Secrets of rlhf in large language models part i: Ppo. arXiv preprint
arXiv:2307.04964, 2023b.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu, and Jiantao Jiao. Starling-7b: Improving llm
helpfulness & harmlessness with rlaif, 2023.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

Álvaro Bartolomé Del Canto, Gabriel Martı́n Blázquez, Agustı́n Piqueres Lajarı́n, and Daniel Vila
Suero. Distilabel: An ai feedback (aif) framework for building datasets with and for llms. GitHub
repository, 2024.

16


