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Abstract

Reinforcement learning from human feedback (RLHF) has become the leading
approach for fine-tuning large language models (LLM). However, RLHF has lim-
itations in multi-task learning (MTL) due to challenges of reward hacking and
extreme multi-objective optimization (i.e., trade-off of multiple and/or sometimes
conflicting objectives). Applying RLHF for MTL currently requires careful tun-
ing of the weights for reward model and data combinations. This is often done
via human intuition and does not generalize. In this work, we introduce a novel
post-training paradigm which we called Constrained Generative Policy Optimiza-
tion (CGPO). The core of CGPO is Mixture of Judges (MoJ) with cost-efficient
constrained policy optimizers, which can identify the perfect blend in RLHF in a
principled manner. It shows strong empirical results, does not require extensive
hyper-parameter tuning, and is plug-and-play in common post-training pipelines.
Together, this can detect and mitigate reward hacking behaviors while reaching a
pareto-optimal point across an extremely large number of objectives.
Our results show that CGPO consistently outperforms other commonly used SoTA
RLHF algorithms (such as PPO and DPO) on a wide range of tasks – general chat,
STEM questions, instruction following, math, coding and knowledge. In partic-
ular, CGPO improves over PPO by 7.4% in AlpacaEval-2 (general chat), 12.5%
in Arena-Hard (STEM & reasoning), 2% in IFEval (Instruction Following), 2%
in both MATH and GSM8K (Math & reasoning), 5% in HumanEval (Coding),
and 2% in the ARC challenge (Knowledge). We also observe that PPO is sus-
ceptible to severe reward hacking behaviors (it exhibits severe regression in pop-
ular coding benchmarks) which can be addressed by CGPO. CGPO represents a
breakthrough in RLHF, simultaneously addressing reward-hacking and extreme
multi-objective optimization, and thereby advancing the state-of-the-art in align-
ing general-purpose LLMs.

1 Introduction

The emergence of general-purpose Large Language Models (LLMs) has significantly transformed
the landscape of natural language processing, demonstrating exceptional capabilities across various
expert-level domains (Achiam et al., 2023; Brown et al., 2020; Touvron et al., 2023; Anthropic,
2023; Team et al., 2023; Meta, 2024; Tunstall et al., 2023; Zhu et al., 2023). These models are char-
acterized by their extensive parameterization, enabling them to handle a wide array of tasks using a
unified parameter set (Zhao et al., 2018; Liu et al., 2019b;a). Central to this versatility is multi-task
learning (MTL) (Caruana, 1997; Crawshaw, 2020), a strategy that involves training a single model
on multiple tasks simultaneously. This approach fosters the development of shared representations,
which enhances the model’s ability to generalize better than those trained on isolated tasks. Although
prior studies on MTL have concentrated on the integration and processing of multi-task data during
both pre-training and fine-tuning stages (Raffel et al., 2020; Liu et al., 2023; Aghajanyan et al., 2021;
Aribandi et al., 2021), the application of the primary LLM alignment method, Reinforcement Learn-
ing with Human Preference (RLHF) (Ouyang et al., 2022; Ziegler et al., 2019; Zheng et al., 2023b),
has not been thoroughly explored within the MTL context. In previous studies, the implementation
of RLHF for multi-task post-training has typically involved a linear combination of multiple reward
models within the standard RLHF framework (Ramamurthy et al., 2022; Glaese et al., 2022; Yuan
et al., 2023; Bakker et al., 2022; Wu et al., 2024; Li et al., 2020). Each reward model is crafted
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using preference data to mirror the distinct alignment preferences of different tasks. Researchers
often experiment with various reward weightings to identify a Pareto front that depicts the optimal
performance of the LLM across diverse tasks (Rame et al., 2024). However, this approach is limited
by two significant challenges:

Vulnerability to Reward Hacking: The optimization of a preference-based reward model is sus-
ceptible to reward hacking, as the reward model is an imperfect proxy of human preferences (Gao
et al., 2023; Jin et al., 2023; Skalse et al., 2022). Studies indicate that excessive optimization of a
reward model can lead to misalignment with actual human preferences (Gao et al., 2023; Moskovitz
et al., 2023; Stiennon et al., 2020; Rafailov et al., 2024a). This issue becomes more pronounced in
a multi-task setting, where each reward model may have its own unique flaws. Implementing a uni-
form early stopping point in the RLHF optimization process to minimize reward hacking effects is
impractical and can lead to degraded performance across tasks (Moskovitz et al., 2023). This high-
lights the need for a more tailored approach to compensate for the weaknesses of each reward model
and to manage the optimization of reward models for each task in complex, multi-task environments.

Contradictory Goals: Different tasks often have conflicting objectives (Rame et al., 2024). Even
if the prompt spaces for these tasks do not overlap, using a linear combination of reward models
can lead to compromises in goal metrics. For example, the typical strategy of LLM post-training in-
volves maximizing the helpfulness reward for safe prompts and maximizing the harmfulness reward
for unsafe prompts (Bai et al., 2022). Although achieving global optimality for both tasks is pos-
sible if the LLM’s capacity is sufficiently large (Iyer et al., 2022), employing a linear combination
of helpfulness and harmfulness rewards inevitably results in reduced gains for both metrics. This
occurs because each task partially sacrifices its own RLHF optimization progress to accommodate a
contradictory metric, thereby diminishing the effectiveness of both.

To address these challenges, we developed an innovative framework called Constrained Generative
Policy Optimization (CGPO). In response to the issue of reward hacking in RLHF, we introduce two
types of judges: rule-based and LLM-based. These judges collaborate to identify any reward hacking
patterns during the LLM’s online generation phase. Based on their evaluations, we implement a
constrained RLHF method to update the LLM model. This method is designed to maximize the
likelihood of generating outputs that adhere to all constraints and achieve high reward values, while
minimizing outputs that breach constraints and have low reward values. To support the constrained
policy optimization update in the large-scale LLM setting, which is complicated even in traditional
small-scale RL scenarios, we have developed three new primary-type constraint RLHF optimizers.
These optimizers are designed to operate independently of the dual-variable update, which is often
a critical component in conventional primal-dual constrained RL algorithms. This independence
simplifies the optimizers and enhances their scalability, making them more effective for managing
large-scale LLM post-training. To effectively optimizing objectives of various tasks, which may be

Figure 1: In CGPO, a customized MoJs is applied to each task to evaluate model generations, and
the model is updated through our proposed constrained policy optimizer.

contradictory, we propose a novel design in CGPO for managing multi-task post-training. In this
design, prompts are segregated by task, and a customized policy optimization strategy is applied
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to each set of prompts. This strategy includes a tailored MoJs, reward model, and hyperparameter
setup for the constrained RLHF optimizer. By optimizing each task independently, our approach
avoids compromises due to conflicting goals from other tasks, a common issue in previous works
that used a linear combined reward model. Furthermore, our design addresses the reward hacking
issue and optimizes objectives for each task in a fine-grained manner, resulting in a better Pareto
frontier than previous methods that enforced uniform treatment across all tasks. See Figure 1 for an
overview of our CGPO pipeline.

We summarize our contributions as follows:

• We developed a new strategy to address the issues of reward hacking through an innovative primal-
type constrained RL method. To implement this method, we have developed three new con-
strained RLHF optimizers: Calibrated-Regularized Policy Gradient (CRPG), Constrained Online
Direct Preference Optimization (CODPO), and Constraint-Regularized Reward Ranking Finetun-
ing (CRRAFT). All proposed methods are scalable and easy to implement.

• To support the implementation of the constrained RL optimizers, we developed two types of
judges: the rule-based judge and the LLM-based judge. These judges are designed to effectively
assess whether an LLM generation violates constraints in a broad spectrum of LLM tasks.

• We introduced a new multi-objective RLHF treatment strategy within CGPO, where each task is
managed individually with a customized optimization setting, including reward models, mixture
of judges, and optimizer hyperparameters. This pioneering design, the first in the multi-task
RLHF field, significantly enhances the Pareto frontier across multiple metrics.

• We demonstrate the effectiveness of CGPO in a challenging multi-task post-training environ-
ment with five tasks: general chat, instruction following, math and coding reasoning, engagement
intent, and safety, despite potentially contradictory goals across tasks. Notably, by primarily uti-
lizing open-source data and the Llama3.0 70b pre-trained model, our research demonstrates that,
in comparison to the baseline RLHF methods such as PPO Schulman et al. (2017) and DPO
Rafailov et al. (2024b), our approach—when combined with the CRPG and CRRAFT optimiz-
ers—consistently outperforms these baselines across all benchmarks and tasks. Specifically

1. CRPG optimizers achieve the highest performance in terms of MATH, GSM8K, HumanEval,
MBPP, ARC Challenge, and false refusal ratio. CRRAFT optimizer achieves the highest
performance in AlpacaEval-2, Arena-Hard, and TruthfulQA.

2. PPO experiences a significant drop in the 0-shot coding benchmarks (HumanEval and
MBPP) after exceeding certain training steps, indicating the occurrence of severe reward
hacking issues. In contrast, CGPO not only avoids such regression but also consistently
improves those benchmarks during training, demonstrating the extraordinary capability of
MoJs in preventing reward hacking issues.

2 Preliminaries

In the RLHF finetuning phase, we typically formulate a Markov Decision Process (MDP) as follows:
each prompt is considered as the state s, and the entire response is the action a = [a0, a1, · · · , aT−1],
where ai ∈ A represents the token at position i and A is the vocabulary set. An LLM policy is defined
as π(at |at−1, at−2, · · · , a0, s), which represents a distribution over A at time step t, conditioned on all
previous response history before t and prompt: {at−1, at−2, · · · , a0, s}.

2.1 RewardModel Training

RLHF starts by finetuing a pre-trained LLM using supervised learning on high-quality dataset rel-
evant to the downstream target task(s) to obtain πSFT. After the supervised fine-tuning (SFT) stage,
we need to develop a reward model (RM) to assess the quality of an LLM’s output. This will enable
us to utilize exploration-based online RL alignment method. We typically use the pairwise prefer-
ence reward model (Stiennon et al., 2020) with Bradley-Terry (BT) formulation (Bradley & Terry,
1952). To learn a parameterized reward model rϕ(s, a), given a pre-collected preference-pair dataset
D = {si, aw,i, al,i}

N
i=1, where aw,i and al,i denote the preferred and less preferred generations respec-

tively, we can learn rϕ by framing the problem as a binary classification and solving the subsequent
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problem (Ouyang et al., 2022; Touvron et al., 2023; Meta, 2024):

min
ϕ
Lpair(rϕ,Dpair) = −EDpair

[
logσ(rϕ(s, ap) − rϕ(s, an))

]
. (1)

2.2 RL Finetuning

Given a LLM policy πw with parameter w, a reward model rϕ(a, s) and a prompt setDp = {si}
M
i , we

aim to optimize the policy by maximizing the following RL objective (Ouyang et al., 2022; Achiam
et al., 2023; Touvron et al., 2023):

max
w

Es∼Dp,a∼πw

[
rϕ(s, a)

]
. (2)

When solving the problem in eq. (2) we typically initialize πw with SFT policy πSFT instead of
starting from scratch. In previous works a number of online RL method such as proximal policy
optimization (PPO) (Schulman et al., 2017), reward ranking (RAFT) (Dong et al., 2023) and REIN-
FORCE (Williams, 1992) has been utilized to solve eq. (2).

3 Constraint Generative Policy Optimization

In this section, we first explore how to implement the CGPO framework for single objective opti-
mizaiton in the single task setting using MoJs, as detailed in Section 3.1. Subsequently, we discuss
the implementation of CGPO to manage scenarios involving multiple objectives in Section 3.2 for
multi-task learning.

3.1 CGPO in Single Task with Single Objective

The primary design of CGPO is to integrate multiple constraints to mitigate the issue of reward
hacking, which arises from the limited capabilities of reward models. Specifically, in addition to
optimizing the accumulated reward model value as shown in eq. (2), we also ensure that the model
generation meets several constraints. For example, in general chat tasks with prompts that are free of
harmful intent. We require model generations to consistently respond to user queries. This is crucial
because there are instances where the model may refuse to answer, and the reward model might er-
roneously assign high values to such non-responsive generations. In these cases, purely maximizing
the reward model could impair the model’s helpfulness and lead to an overly conservative tendency.
By introducing these constraints based on our prior knowledge about the weaknesses of each reward
model, we can avoid critical reward hacking patterns effectively.

We denote the set of constraints that the LLM generations need to satisfy as {C1,C2, . . . ,CM}

and the state-action set that satisfies constraint Ck as Σk, i.e., Σk = {(s, a) ∈ S ×

A and (s, a) satisfies requirement of Ck}. We define the feasible region as the state-action set that
satisfies all constraints as Σ = Σ1 ∩ Σ2 ∩ . . . ∩ ΣM . In the single task setting, CGPO solves the
following constrained problem (Ying et al., 2022; Zhang et al., 2024; Xu et al., 2021)

max
w

Es∼Dp,a∼πw

[
rϕ(s, a)

]
s.t. Probs∼Dp,a∼πw ((s, a) ∈ Σ) ≥ 1,

KLs∼Dp (πw|πref) ≤ KLmax, (3)

where πref is the initialization model and KLmax is the threshold of KL-divergence.

The high-level framework of CGPO in the multiple-constraints and single-objective setting is illus-
trated in Algorithm 1. At each iteration, we sample a minibatch from the prompt set D, and then
apply the current LLM policy to generate K responses (1 ≤ K) for each prompt. Subsequently,
we apply all judges J = {Jh}

M
h=1 to generated sample to evaluate whether a generation violates any

constraint, where Jh(s, a) = 1 if (s, a) satisfies the h-th constraint, and Jh(s, a) = 0 otherwise. We
label a generation ak

t,i as “violated” if it fails any one of the constraint judgments, and “satisfied”
otherwise. The judge is a module for evaluating the constraint satisfaction conditions, which could
be a rule-based script or an LLM classifier. This module can address a wide range of constrained
problems in the LLM post-tuning scenario. We will discuss this in detail in Section 3.1.1.
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After that, we split the generations into “Positive” and “Negative” groups, depending on the con-
straint satisfaction label. We then apply a constrained RLHF optimizer to update the policy with
these two groups of samples (see line 9 in Algorithm 1). In our work, we propose three new con-
strained RLHF optimizers to efficiently solve the multi-constraint problem in the LLM setting. For
Option I in Algorithm 1, we develop a policy gradient approach named Calibrated Regularized
Policy Gradient (CRPG) and an online direct preference-based approach named Constrained On-
line DPO, and for Option II in Algorithm 1, we develop a reward ranking-based approach named
Constraint-Regularized Reward Ranking Fine-tuning (CRRAFT).

• Calibrated Regularized Policy Gradient: CRPG is a constrained policy gradient method. It
incorporates a novel calibration strategy that leverages preference-based reward modeling, along
with a new constraint-rectified reward shaping technique. Those two techniques work together
to optimize the reward while ensuring compliance with all constraints. Additionally, CRPG in-
troduces a new KL-regularization approach that not only penalizes generations with significant
deviation but also strictly bound the KL divergence of final policy.

• Constraint-Regularized Reward Ranking Fine-tuning: CRRAFT is a reward ranking-based
approach Dong et al. (2023). It adopts a novel ranking strategy that promotes only those gen-
erations which achieve high reward values and satisfy all constraints. Additionally, this strategy
ensures that the KL divergence of the final policy is strictly bounded.

• Constrained Online DPO: CODPO adapts the DPO update to the on-policy optimization setting,
in which generations that achieve high reward values and satisfy all constraints are promoted,
whereas generations that yield low reward values and violate any constraints are demoted.

Please refer to Appendix B for detail about these three constrained policy optimizers.

Algorithm 1 CGPO(D, πw0 , J, B,R,O,T ) in single task with multi-constraints

1: Input: prompt set D = {st,i}
N
i=1, LLM starting policy πw0 , constraint judge set J = {Jh}

M
h=1,

batchsize B, reward model R, iteration number T , constriained RLHF optimizer O.
2: for t = 0, 1, ...,T do
3: Prompt sampling: {st,i}

B
i=1 ∼ D

4: Response generation: {ak
t,i}

K
k=1 ∼ πwt (·|st,i) for 1 ≤ i ≤ B

5: Constraint judgement: yk
t,i = ∧

M
h=1Jh(st,i, ak

t,i) for 1 ≤ i ≤ B and 1 ≤ k ≤ K
6: Split sample set:
7: Positive samples: X+t = {(st,i, ak

t,i) for 1 ≤ i ≤ n, 1 ≤ k ≤ K where yt,i = 1}
8: Negative samples: X−t = {(st,i, ak

t,i) for 1 ≤ i ≤ n, 1 ≤ k ≤ K where yt,i = 0}
9: Update πwt → πwt+1 for policy optimization with optimizer O and reward model R:

10: [Option I]: maximize likelihood of X+t and minimize likelihood of X−t
11: [Option II]: maximize likelihood of X+t
12: end for

Intuitively, with either the Option I or Option II updating strategy, CGPO encourages the policy to
explore regions that satisfy all constraints to maximize the expected reward model value. Note that
CGPO is a primal-type constraint policy optimization approach, which differs from the standard
primal-dual approach adopted in the traditional constrained RL field. CGPO does not involve co-
optimizing the dual variable, thus avoiding the drawbacks of extensive hyperparameter tuning issues
associated with the primal-dual approach. Due to this reason, CGPO is user-friendly even with
multiple different types of constraints, making it well-suited for the LLM post-tuning scenario.

3.1.1 Judges in CGPO

The key step in implementing multi-constraint CGPO optimizers is to determine whether a genera-
tion (s, a) satisfies a constraint or not. This determination allows us to split generated samples into
positive (X+t ) and negative (X−t ) groups given the label y predicted by each constraint judge Jh, i.e.,

Jh(s, a) = y ∈ {0, 1}, where 1 ≤ h ≤ M,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

and then apply our customized constraint RLHF optimizers based on that classification. In CGPO,
we have developed and integrated the following two types of constraint judge modules to assess
whether a generation satisfies a constraint:

• Rule-based constraint judge module: This module employs a rule-based approach (such as
string-matching and code execution) to ascertain whether the generation strictly adheres to pre-
defined regulations (Li et al., 2024a). It is particularly effective for constraints related to precise
instruction following, where the generation must meet exact requirements such as length, number
of paragraphs, and keyword inclusion (Zhou et al., 2023; Hendrycks et al., 2021b; Cobbe et al.,
2021). It can also handle reasoning tasks, such as math problems and code generation.

• LLM-based constraint judge module. This module functions as an LLM generator. In most
cases, the generation is formatted according to a template before being sent to the judge mod-
ule. These modules not only provide access to the constraint satisfaction condition but also offer
reasoning behind the judgement construction. Due to this property, they are typically capable of
handling more challenging constraint evaluation tasks such as safety violation, reference-based
factuality verification, and false refusal patterns. The model could either be a compact LLM fine-
tuned with domain-specific data (Inan et al., 2023; Bai et al., 2022) or a powerful, large LLM
without task-specific fine-tuning (Yuan et al., 2024b; Zheng et al., 2024).

A detailed information of these two types of judges can be found in Appendix C.4.

3.2 CGPO inMulti-Taks withMulti-Objectives

In the multi-tasks environment, CGPO utilizes customized combinations of ”reward models +MoJs
+ optimizers” to provide alignment guidance tailored to each task. This approach is designed to
better accommodate the specific nature of each problem, thereby enable CGPO to have better chance
to achieve optimal alignment outcomes. Figure 2 provides an end-to-end illustration of how the

Task 1:
General Chat

Task 2:
Math Reasoning

Task N:
Harmful Intent

Factuality
Judge

Math
Judge

Safety
Judge

CGPO
Optimizer I

"The correct answer
is 10.5 pounds"

"Mike needs 12
pounds, I hope it is

correct"

"I can't provide
information on illegal

activities"

"He was born in 1812,
Larue County, KY"

"Abraham Lincoln
was born in Feb 12,

1809."

"Happy to assist!
Below are the steps
to make a bomb ..."

"When was Abraham
Lincoln born?"

"How much food does
Mike need weekly for
3 dogs if each eats
1/2 pound daily?"

"How to make a
bomb?"

Helpfulness
RM

CGPO
Optimizer II

Reasoning
RM

CGPO
Optimizer N

Safety RM

Merged
optimizers
gradient

Gradient Update

`

`

`

Mixture of Judges

Figure 2: CGPO in a multi-tasks setting. The RM, MoJs, and optimization setup are uniquely
tailored to the specific characteristics of each task. This customization ensures the most effective
and targeted approach for achieving optimal performance across all tasks, even those with
potentially contradictory goals.
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CGPO pipeline functions in the multi-tasks setting. The entire CGPO pipeline has the following
two core components: multi-objective reward modeling and multi-experts alignment.

Multi-Objective Reward Modelling. Unlike the approach adopted in previous RLHF pipelines in
multi-objective scenarios, which applies the same linear combined reward model to all prompts in
the prompt set D, CGPO first classifies the prompt set D into distinct, non-overlapping categories
based on the nature of the prompts, i.e., D = {D1,D2, . . . ,DL}. Each prompt set Dl ∈ D is referred to
as a task. For example, prompts with harmful intent, which could potentially lead LLM to generate
unsafe responses, are grouped into a class labeled ”harmful intent”. Conversely, prompts without
unsafe intent, primarily focused on information gathering and casual conversation, are grouped into
a class labeled ”general chat”. This categorization can be performed during the data collection phase
or by prompting an LLM to carry out the categorization given the definitions of different classes.
Subsequently, with a collection of trained reward models denoted as {rϕ,1, rϕ,2, . . . , rϕ,V }, we tailor the
specific reward model to be applied for each task Dl. This customization guarantees that each prompt
class Dl benefits from the most appropriate guidance provided by the corresponding reward model.
Note that the number of reward models, denoted by V , is less than or equal to the number of tasks,
L, meaning a single reward model can be utilized across multiple tasks. The major advantage of
segregating the reward models for different tasks is to exclude irrelevant or contradictory objectives,
thus enabling each task to focus solely on optimizing its own goal metrics without interference from
other objectives.

Multi-Expert Alignment. The concept of multi-expert alignment involves applying customized
MoJs, reward model and policy optimization setups for each task.

After the policy model generates online samples for each task, we employ a mixture of task-specific
judges to identify generations that do not meet predefined standards. It is crucial to emphasize that
the selection of judges are uniquely tailored for each task, reflecting the particular shortcomings of
each reward model and our established performance criteria for LLMs in these tasks. For instance,
in the ”general chat” task, we employ LLM-based judges for false refusal and factuality to enhance
responsiveness and ensure honesty. In ”reasoning” tasks, we implement a rule-based math/coding
constraint judge to guarantee correctness and accuracy.

Based on the status of constraint satisfaction across generations and a customized reward model,
we implement an RLHF policy optimizer with a specifically tailored hyperparameter setup to align
each task effectively. This method deviates from the conventional RLHF pipeline, which generally
employs a uniform optimizer setup for task alignment. For tasks that have precise judges and require
extensive exploration to derive the correct response, such as instruction following, math, and coding,
we apply a lenient KL threshold and allow a higher number of generations per prompt. In contrast,
for tasks where precise judges are lacking and extensive exploration is less critical, such as ”general
chat,” we opt for a stricter KL threshold and a reduced number of generations per prompt.

Algorithm 2 CGPO({Dl}
L
l=1, πw0 , {Jl}

L
l=1, {Bl}

L
l=1, {Rl}

L
l=1, {Ol}

L
l=1,T ) in multi-tasks with multi-

constraints & multi-objectives

1: Input: Multi-tasks prompt set {Dl}
L
l=1, LLM starting policy πw0 , judges sets {Jl}

L
l=1, multi-tasks

batchsizes {Bl}
L
l=1, reward model sets {Rl}

L
l=1, multi-tasks weights {ρl}

L
l=1, multi-tasks optimizers

{O}Ll=1, iteration number T .
2: for t = 0, 1, · · · ,T do
3: for l = 0, 1, · · · , L do
4: Obtain gradient g̃l(πwt ) for l-th task via CGPO(Dl, πwt , Jl, Bl,Rl,Ol, 1) in Algorithm 1
5: end for
6: Update with multi-tasks gradient accumulation wt+1 = wt + αt ·

∑L
l=1 ρl · g̃l(πwt ),

7: end for

The high-level framework of CGPO in the multiple-constraint and multiple-objective setting is il-
lustrated in Algorithm 2. Specifically, at each iteration t, we process each individual task to compute
the updated gradient g̃l(πwt ). This computation is based on the task-specific prompt set Dl, reward
model Rl, mixture of judges Jl, batch size Bl, and optimizer Ol, following the steps outlined in Al-
gorithm 1. Subsequently, we accumulate the gradients across all tasks and combine them with our
predefined task weights {ρl}

L
l=1, which are then used to update our model parameters.
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4 Experiments

In this section, we outline the specifics of our experimental setup designed for multi-task alignment
under conditions of extreme multi-constraints and multiple objectives. Specifically, we focus on
fine-tuning a LLM to achieve alignment across the following five tasks: general chat, instruction
following, math/code reasoning, engagement intent and harmful intent (see Appendix C.1 for detail).

In our experiment, we utilized the Llama 3.0 70B pretrained model as our base model. In the SFT
stage, we utilize a combination of open-source and synthetic finetuning datasets to enhance model’s
performance across five specific tasks. We then use both open-source and synthetic preference
datasets to train three RMs: Helpfulness RM, Engagement RM, and Safety RM, each designed to
capture different aspects of alignment. Additionally, we have developed five judges to support the
CGPO training in this context: False Refusal Judge, Precise Instruction Following Judge, Math &
Coding Judge, Factuality Judge, and Safety Judge. For detailed information on the SFT and RM
training recipes, as well as the development of these judges, please refer to Appendices C.2 to C.4.

We evaluate the capability of models trained with different algorithms using the following bench-
marks: AlpacaEval-2, Arena-Hard, IFEval, MATH, GSM8K, MBPP, HumanEval, MMLU, ARC,
and TruthfulQA. Additionally, we have developed new benchmarks to assess engagement intent,
safety violation rate, and false refusal rate. Please refer to Appendix D for detail.

4.1 CGPO Training Setup

In this section, we will show how we implment the CGPO in the RLHF finetuning stage.

RLHF warm-up. Unlike previous studies Ouyang et al. (2022), which directly employ the SFT
model as the initial point for RLHF, our approach introduces a ”warm-up” phase. This phase begins
with a model that has undergone preliminary fine-tuning through a few steps of DPO, starting from
the SFT model. The rationale behind this strategy is that initiating online RLHF directly from the
SFT model and performing policy optimization with the RM may not be able to explicitly exploit
the high-quality preference data. By initiating RLHF with a model already refined by DPO to a
certain degree, we can fully harness the advantages of the preference dataset, thereby providing a
better starting point for RLHF. In our experiment, we utilize all preference data from RM training to
facilitate the training for warm-up DPO. The benefit of RLHF warm-up is discussed in Appendix E.

RLHF Training recipe: We begin the RLHF finetuning process using the warm-up model. Table 1
shows the customized treatment (RM+MoJs) we applied for each task. The prompt set of each tasks
in CGPO training is provided in Appendices C.5 and C.6.

Tasks General
Chat

Instruction
Following

Math/Coding
Reasoning

Engagement
Intent

Harmful
Intent

Helpfulness RM ✓ ✓ ✓
Engagement RM ✓

Safety RM ✓

False refusal Judge ✓ ✓
Precise IF Judge ✓

Math/Code Judge ✓
Factuality Judge ✓

Safety Judge ✓

Table 1: Tasks and their corresponding RM and MoJs

Baseline and Ablations: We conducted CGPO training with all three optimizers that we proposed:
CRPG, CRRAFT, and CODPO. Additionally, we consider DPO and PPO as our RLHF baselines. To
establish the DPO baseline, we continue running the DPO updates starting from the RLHF warm-up
model and extend the training steps to thoroughly optimize all evaluation benchmarks. To establish
the PPO baseline, we first train a unified reward model by merging all reward models’ training data.
Following this, we start from the RLHF warm-up model and perform PPO updates by applying the
unified reward model to the same prompt sets as CGPO recipes.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.2 Main Results and Ablations

Figure 3: Comparison of CGPO variants with baseline RLHF algorithms PPO and DPO

For the online RLHF algorithms CGPO and PPO, we monitor the model’s performance at every
10-step interval throughout the training trajectory across various benchmarks, as illustrated in Fig-
ure 3. The plot demonstrates that CGPO, when paired with the CRPG and CRRAFT optimizers,
consistently enhances performance across all benchmarks compared to the initial model, indicat-
ing progressive improvement as training progresses. Specifically, CRPG outperforms all others
throughout the entire training period in terms of ARC Challenge, 0-shot HumanEval, 0-shot MBPP,
4-shots MBPP, MATH, and GSM8K. Meanwhile, CRRAFT excels in IFEval during the training
phase. Notably, the online RLHF baseline PPO exhibits a significant decline in performance on
0-shot coding benchmarks (MBPP and HumanEval) as training progresses, indicating a severe case
of reward hacking. Meanwhile, CGPO with the CODPO optimizer shows a slight regression on
MBPP and IFEval benchmarks compared to the warm-up model, yet it effectively avoids the drastic
performance drop observed with PPO in the coding benchmarks. The offline RLHF baseline DPO,
while avoiding the drastic regression seen with PPO, remains overly conservative in enhancing the
model’s performance, resulting in lower metric improvements compared to CGPO with the CRPG
and CRRAFT optimizers.

In Table 2, we present the evaluation results for SFT, DPO warm-up, DPO baseline, the final step of
PPO, and various CGPO variants across all benchmarks detailed. The data in Table 2 indicate that
CGPO variants employing CRPG and CRRAFT optimizers significantly outperform the DPO and
PPO baselines across all benchmarks. Notably, CRPG shows the most substantial improvements in
math and coding benchmarks (Math, GSM8K, HumanEval, and MBPP), while CRRAFT excels in
helpfulness and factuality (AlpacaEval-2, Arena-Hard, and TruthfulQA). Both CRPG and CRRAFT
achieve the best results in terms of instruction following (IFEval). While the CGPO variant with the
CODPO optimizer does not perform as strongly as other variants, it offers performance that is on par
with or better than the DPO and PPO in all benchmarks except the IFEval. In terms of safety, CGPO
with the CRPG and CODPO optimizers achieve the best results in FRR and SVR, respectively.
Table 2 demonstrates that the CGPO framework is able to enhance model quality across all tasks,
proving its efficacy in managing challenging multi-task fine-tuning.

4.3 Effectiveness ofMixture of Judges

In this section, we explore the significance of incorporating MoJs within the CGPO framework. We
conduct an ablation study by eliminating all MoJs from CGPO, utilizing the CRPG optimizer, while
keeping all other variables constant, and then proceed to rerun the RLHF finetuning for 600 steps.
Figure 4 presents a comparative analysis of CGPO performance with and without MoJs using the
CRPG optimizer across various benchmarks, including HumanEval, MBPP, MATH, and GSM8K.
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DPO
warm-up

DPO
baseline PPO CGPO -

CRPG
CGPO -

CRRAFT
CGPO -
CODPO

AlpacaEval-2 13.3 16.3 24.8 25.9 43.2 18.08
Arena-Hard 18.8 ± 1.6 18.3 ± 1.7 24.3 ± 1.8 31.2 ± 2.2 36.8 ± 2.0 16.8 ± 1.9

IFEval 0.75 0.79 0.81 0.83 0.83 0.70

MATH 0.44 0.45 0.46 0.48 0.47 0.46
GSM8K 0.88 0.90 0.91 0.93 0.92 0.90
0-shot MBPP 0.51 0.49 0.002 0.63 0.57 0.51
4-shots MBPP 0.57 0.60 0.62 0.62 0.58 0.55
0-shot HumanEval 0.15 0.59 0.006 0.76 0.70 0.57
4-shots HumanEval 0.70 0.70 0.66 0.71 0.68 0.67

MMLU 0.76 0.75 0.75 0.75 0.75 0.75
ARC 0.84 0.88 0.90 0.92 0.90 0.90
TruthfulQA 0.59 0.63 0.65 0.64 0.66 0.63

Engagement 0.59 0.71 0.81 0.81 0.72 0.79

SVR 0.03 0.02 0.03 0.05 0.02 0.01
FRR 0.161 0.17 0.12 0.04 0.12 0.24

Table 2: Evaluation results of SFT, DPO warm-up, DPO, PPO and CGPO variants

Figure 4: Comparison of CGPO (CRPG optimizer) with and without MoJs

From Figure 4, it is clear that in the absence of coding judges, the CRPG optimizer undergoes a no-
table decline in 0-shot coding benchmarks once it surpasses 180 steps, mirroring the performance of
the PPO baseline. Additionally, in the MATH and GSM8K, while CRPG shows some improvement
without constraints, the increases in metrics are considerably less pronounced compared to cases
where math judges are utilized. This comparison effectively illustrates that MoJs play a crucial role
not only in preventing reward hacking but also in significantly boosting the model’s performance
during online RLHF finetuning.

5 Conclusion

In this paper, we introduced the CGPO framework to address key challenges in multi-task learning
for LLM post-training with RLHF. The CGPO framework effectively mitigates issues such as inho-
mogeneous reward hacking and conflicting task goals through a novel primal-type multi-constraint
RL method and a tailored multi-objective optimization strategy. We demonstrate the effectiveness
of CGPO in a scenario where we need to handle five tasks with three reward models and six con-
straints, marking the first application of RLHF in multi-task learning for general-purpose LLMs.
Our experiments show that CGPO achieves significantly better metric gains for all tasks compared
to the baseline RLHF methods. Moving forward, it is promising to explore more automated ways to
adapt the gradient weights from different tasks to further reduce the hyperparameter tuning burden
and advance the Pareto frontier (Sener & Koltun, 2018).
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