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Abstract
We study the gradient Expectation-Maximization (EM) algorithm for Gaussian Mixture Models
(GMM) in the over-parameterized setting, where a general GMM with n > 1 components learns
from data that are generated by a single ground truth Gaussian distribution. While results for the
special case of 2-Gaussian mixtures are well-known, a general global convergence analysis for arbi-
trary n remains unresolved and faces several new technical barriers since the convergence becomes
sub-linear and non-monotonic. To address these challenges, we construct a novel likelihood-based
convergence analysis framework and rigorously prove that gradient EM converges globally with a
sublinear rateO(1/

√
t). This is the first global convergence result for Gaussian mixtures with more

than 2 components. The sublinear convergence rate is due to the algorithmic nature of learning over-
parameterized GMM with gradient EM. We also identify a new emerging technical challenge for
learning general over-parameterized GMM: the existence of bad local regions that can trap gradient
EM for an exponential number of steps.

1. Introduction

Learning Gaussian Mixture Models (GMM) is a fundamental problem in machine learning with
broad applications. In this problem, data generated from a mixture of n ≥ 2 ground truth Gaussians
are observed without the label (the index of component Gaussian that data is sampled from), and the
goal is to retrieve the maximum likelihood estimation of Gaussian components. The Expectation
Maximization (EM) algorithm is arguably the most widely-used algorithm for this problem. Each
iteration of the EM algorithm consists of two steps. In the expectation (E) step, it computes the pos-
terior probability of unobserved mixture membership label according to the current parameterized
model. In the maximization (M) step, it computes the maximizer of the Q function, which is the
likelihood with respect to posterior estimation of the hidden label computed in the E step.

Gradient EM, as a popular variant of EM, is often used in practice when the maximization step
of EM is costly or even intractable. It replaces the M step of EM with taking one gradient step
on the Q function. Learning Gaussian Mixture Models with EM/gradient EM is an important and
widely-studied problem. Starting from the seminal work [1], a flurry of work [4, 6, 7, 10, 20] have
studied the convergence guarantee for EM/gradient EM in various settings. However, these works
either only prove local convergence, or consider the special case of 2-Gaussian mixtures. A general
global convergence analysis of EM/gradient EM on n-Gaussian mixtures still remains unresolved.
Jin et al. [8] is a notable negative result in this regard, where the authors show that on GMM with
n ≥ 3 components, randomly initialized EM will get trapped in a spurious local minimum with
high probability.
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Over-parameterized Gaussian Mixture Models. Motivated by the negative results, a line of work
considers the over-parameterized setting where the model uses more Gaussian components than the
ground truth GMM, in the hope that it might help the global convergence of EM and bypass the
negative result. In such over-parameterized regime, the best that people know so far is from [5].
This work proves global convergence of 2-Gaussian mixtures on one single Gaussian ground truth.
The authors also show that EM has a unique sub-linear convergence rate in this over-parameterized
setting (compared with the linear convergence rate in the exact-parameterized setting [1]). This
motivates the following natural open question:

Can we prove global convergence of the EM/gradient EM algorithm on general n-Gaussian
mixtures in the over-parameterized regime?

In this paper, we take a significant step towards answering this question. Our main contributions
can be summarized as follows:

• We prove global convergence of the gradient EM algorithm for learning general n-component
GMM on one single ground truth Gaussian distribution. This is, to the best of our knowledge,
the first global convergence proof for general n-component GMM. Our convergence rate is
sub-linear, reflecting an inherent nature of over-parameterized GMM (see Remark 3 for de-
tails).

• We propose a new analysis framework that utilizes the likelihood function for proving con-
vergence of gradient EM. Our new framework tackles several emerging technical barriers for
global analysis of general GMM.

• We also identify a new geometric property of gradient EM for learning general n-component
GMM: There exists bad initialization regions that traps gradient EM for exponentially long,
resulting in an inevitable exponential factor in the convergence rate of gradient EM.

Paper roadmap We provide technical preliminaries in Section 1.1, and a technical overview of our
analysis in Section 1.2. Our main results are presented in Section 2. For a detailed literature re-
view, see Appendix A. Appendix B includes a negative result on the optimality of our convergence
rate bound. Appendix C presents a proof sketch of our analysis. Appendix ?? reports experimen-
tal results validating our theoretical claims. All the missing proofs of our result are presented in
Appendix E.

1.1. Preliminaries

Gaussian Mixture Model (GMM) We consider the canonical Gaussian Mixture Models with
weights π = (π1, . . . , πn) (

∑n
i=1 πi = 1), means µ = (µ⊤1 , . . . , µ

⊤
n )

⊤ and unit covariance ma-
trices Id in d-dimensional space. Following a widely-studied setting [1, 4, 23], we set the weights
π and covariances Id in student GMM as fixed and the means µ = (µ⊤1 , . . . , µ

⊤
n )

⊤ as trainable pa-
rameters. We use GMM(µ) to denote the GMM model parameterized by µ, which can be described
with probability density function (PDF) pµ : Rd → R≥0 as

pµ(x) =
∑
i∈[n]

πiϕ(x|µi, Id) =
∑
i∈[n]

πi(2π)
−d/2 exp

(
−∥x− µi∥2

2

)
, (1)
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where ϕ(·|µ,Σ) is the PDF of N (µ,Σ), π1 + · · ·+ πn = 1, πi > 0,∀i ∈ [n].
Gradient EM algorithm The EM algorithm is one of the most popular algorithms for retrieving
the maximum likelihood estimator (MLE) on latent variable models. In general, EM and gradient
EM addresses the following problem: given a joint distribution pµ∗(x, y) of random variables x, y
parameterized by µ∗, observing only the distribution of x, but not the latent variable y, the goal of
EM and gradient EM is to retrieve the maximum likelihood estimator

µ̂MLE ∈ argmax
µ

log pµ(x).

The focus of this paper is the non-convex optimization analysis, so we consider using popula-
tion gradient EM algorithm to learn GMM (1), where the observed variable is x ∈ Rd and latent
variable is the index of membership Gaussian in GMM. We follow the standard teacher-student
setting where a student model GMM(µ) with n ≥ 2 Gaussian components learns from data gen-
erated from a ground truth teacher model GMM(µ∗). We consider the over-parameterized set-
ting where the ground truth model GMM(µ∗) is a single Gaussian distribution N (0, Id), namely
µ∗ = (µ∗1

⊤, . . . , µ∗n
⊤)⊤ = (0⊤, . . . , 0⊤)⊤. Our problem could be seen as a strict generalization

of [5], where they studied using mixture model of two Gaussians with symmetric means (they set
constraint µ2 = −µ1) to learn one single Gaussian.

At time step t = 0, 1, 2, . . ., given with parameters µ(t) = (µ1(t)
⊤, . . . , µn(t)

⊤)⊤, population
gradient EM updates µ via the following two steps

• E step: for each i ∈ [n], compute the membership weight function ψi : R
d → R defined as

ψi(x|µ(t)) = Pr[i|x] =
πi exp

(
− ∥x−µi(t)∥

2

2

)
∑

k∈[n] πk exp

(
− ∥x−µk(t)∥2

2

) .

• M step: Define Q(·|, µ(t)) as Q(µ|µ(t)) = Ex∼N (0,Id)

[∑n
i=1−ψi(x|µ(t))∥x−µi∥2

2

]
. Gra-

dient EM with step size η > 0 performs the following update:

µi(t+1) = µi(t)−η∇µiQ(µ(t)|µ(t)) = µi(t)−ηEx∼N (0,Id) [ψi(x|µ(t))(µi(t)− x)] . (2)

The membership weight function x→ ψi(x|µ) represents the posterior probability of data point
x being sampled from the ith Gaussian of GMM(µ). For ease of notation, we sometimes simply
write ψi(x|µ) as ψi(x) when the choice of µ is obvious.
Loss function of gradient EM Since the task of gradient EM is to find the MLE over ground truth
distribution pµ∗ , we can define the MLE loss function for gradient EM as

L(µ) = DKL(pµ∗ ||pµ) = −Ex∼pµ∗

[
log

(
pµ(x)

pµ∗(x)

)]
. (3)

The loss L is the Kullback–Leibler (KL) divergence between the ground truth GMM and the student
model GMM. Since finding MLE is equivalent to minimizing the KL divergence between model and
the ground truth, the goal of gradient EM is equivalent to finding the global minimum of loss L. In
other words, proving that gradient EM finds the MLE is equivalent with proving the convergence of
L to 0. However, we are going to present another reason why loss function L is important, for it is
also closely related to the dynamics of gradient EM.
Gradient EM is gradient descent on L. We present the following important observation. The
proof is deferred to appendix.
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Fact 1 For any µ, ∇Q(µ|µ) = ∇L(µ).

Fact 1 states that the gradient of Q function that gradient EM optimizes in each iteration is
identical to the gradient of loss function L. This observation is very useful since it implies that
gradient EM is equivalent to gradient descent (GD) algorithm on L. This observation is not a new
discovery of ours but actually a wide-spread folklore (see [8]). However, our new contribution is
to observe Fact 1 is very helpful for analyzing gradient EM, and to construct a new convergence
analysis framework for gradient EM based on it.
Notations In this paper, we adopt the following notational conventions. We denote {1, 2, . . . , n}
with [n]. µ = (µ⊤1 , . . . , µ

⊤
n )

⊤ ∈ Rnd denotes the parameter vector of GMM obtained by concate-
nating Gaussian mean vectors µ1, . . . , µn together. For any vector µ, µ(t) denotes its value at time
step t, sometimes we omit this iteration number t when its choice is clear and simply abbreviate
µ(t) as µ. We define a shorthand of expectation taken over the ground truth GMM Ex∼N (0,Id)[·]
as Ex[·]. For any vector v ̸= 0, we use v := v/∥v∥ to denote the normalization of v. We define
(with a slight abuse of notation) imax := argmaxi∈[n]{∥µi∥} as the index of µi with the maxi-
mum norm, and µmax := ∥µimax∥ = maxi∈[n]{∥µi∥} as the maximum norm of µi. In particular,
µmax(t) = max{∥µ1(t)∥, . . . , ∥µn(t)∥}. Similarly, πmin := mini∈[n] πi and πmax := maxi∈[n] πi
denotes the minimal and maximal πi, respectively. We use ∇µiL to denote the gradient of µi on L,
and ∇L = (∇µ1L⊤, . . . ,∇µnL)⊤ denotes the collection of all gradients.

1.2. Technical overview

Here we provide a brief summary of the major technical barriers for our global convergence analysis
and our techniques for overcoming them.
New likelihood-based analysis framework. The traditional convergence analysis for EM/gradient
EM in previous works [1, 10, 23] proceeds by showing the distance between the model and the
ground truth GMM in the parameter space contracts linearly in every iteration. This type of ap-
proach meets new challenges in the over-parameterized n-Gaussian mixture setting since the con-
vergence is both sub-linear and non-monotonic. To address these problems, we propose a new
likelihood-based convergence analysis framework: instead of proving the convergence of param-
eters, our analysis proceeds by showing the likelihood loss function L converges to 0. The new
analysis framework is more flexible and allows us to overcome the aforementioned technical barri-
ers.
Gradient lower bound. The first step of our global convergence analysis constructs a gradient
lower bound. Using some algebraic transformation techniques, we convert the gradient projection
⟨L(µ),µ⟩ into the expected norm square of a random vector ψ̃(x). (See Section (C) for the full
definition). Although lower bounding the expectation of ψ̃ is very challenging, our key idea is that
the gradient of ψ̃ has very nice properties and can be easily lower bounded, allowing us to establish
the gradient lower bound.
Local smoothness and regularity condition. After obtaining the gradient lower bound, the miss-
ing component of the proof is a smoothness condition of the loss function L. Since proving the
smoothness of L is hard in general, we define and prove a weaker notion of local smoothness,
which suffices to prove our result. In addition, we design and use an auxiliary function U to show
that gradient EM trajectory satisfies the locality required by our smoothness lemma.
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2. Main results

In this section, we present our main result, which states that gradient EM converges to MLE globally.

Theorem 2 (Main result) Consider training a student n-component GMM initialized fromµ(0) =
(µ1(0)

⊤, . . . , µn(0)
⊤)⊤ to learn a single-component ground truth GMM N (0, Id) with population

gradient EM. If the step size satisfies η ≤ O

(
exp(−8nµ2

max(0))π2
min

n2d2( 1
µmax(0)

+µmax(0))2

)
, then gradient EM converges

globally with rate

L(µ(t)) ≤ 1√
γt
,

where constant γ = Ω

(
η exp(−16nµ2

max(0))π4
min

n2d2(1+µmax(0)
√
dn)4

)
∈ R+, µmax(0) = max{∥µ1(0)∥, . . . , ∥µn(0)∥}.

Remark 3 Without over-parameterization, for learning a single Gaussian, one can obtain a linear
convergence exp(−Ω (t)). We would like to note that the sub-linear convergence rate guarantee
of gradient EM stated in Theorem 2 (L(µ(t)) ≤ O(1/

√
t)) is due to the inherent nature of the

algorithm. Dwivedi et al. [5] studied the special case of using 2 Gaussian mixtures with symmetric
means to learn a single Gaussian and proved that EM has sublinear convergence rate when the
weights πi are equal. Since Theorem 2 studies the more general case of n Gaussian mixtures, this
type of subexponential convergence rate is the best than we can hope for.

Remark 4 The convergence rate in Theorem 2 has a factor exponentially small in the initialization
scale (γ ∝ exp(−16nµ2max(0))). We would like to stress that this is again due to algorithmic nature
of the problem rather than the limitation of analysis. In Appendix B, we prove that there exists
bad regions with exponentially small gradients so that when initialized from such region, gradient
EM gets trapped locally for exp(Ω(µ2max(0))) number of steps. Therefore, a convergence speed
guarantee exponentially small in square of initialization scale is inevitable and cannot be improved.

Remark 5 Theorem 2 is fundamentally different from convergence analysis for EM/gradient EM
in previous works [1, 7, 23] which proved monotonic linear contraction of parameter distance
∥µ(t)− µ∗∥. But our result also implies global convergence since loss function L converging to 0
is equivalent to convergence of gradient EM to MLE.

Remark 6 The convergence result in Theorem 2 is for population gradient EM, but it also implies
global convergence for sample-based gradient EM as the sample size tends to infinity. For a similar
reduction from population EM to sample EM, see Section 2.2 of [20].
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Appendix A. Related work

A.1. 2-Gaussian mixtures

There is a vast literature studying the convergence of EM/gradient EM on 2-component GMM.
The initial batch of results proves convergence within a infinitesimally small local region [12, 21].
Balakrishnan et al. [1] proves for the first time convergence of EM and gradient EM within a non-
infinitesimal local region. Among the followed works on the same problem, Klusowski and Brinda
[9] improves the basin of convergence guarantee, Daskalakis et al. [4], Xu et al. [20] proves the
global convergence for 2-Gaussian mixtures. These works focused on the exact-parameterization
scenario where the number of student mixtures is the same as that of the ground truth. More re-
cently, Wu and Zhou [18] proves global convergence of 2-component GMM without any separation
condition. Their result can be viewed as a convergence result in the over-parameterized setting
where the student model has 2 Gaussians and the ground truth is a single Gaussian. On the other
hand, their setting is more restricted than ours because they require the means of 2 Gaussians in
the student model to be symmetric around the ground truth mean. Weinberger and Bresler [17]
extends the convergence guarantee to the case of unbalanced weights. Another line of work [5–7]
studies the over-parameterized setting of using 2-Gaussian mixture to learn a single Gaussian and
proves global convergence of EM. Our result extends this type of analysis to the general case of
n-Gaussian mixtures, which requires significantly different techniques. We note that going beyond
Gaussian mixture models, there are also works studying EM algorithms for other mixture models
such as a mixture of linear regression [11].

A.2. N-Gaussian mixtures

Another line of results focuses on the general case of n Gaussian mixtures. Jin et al. [8] provides a
counter-example showing that EM does not converge globally for n > 2 (in the exact-parameterized
case). Dasgupta and Schulman [3] prove that a variant of EM converges to MLE in two rounds for
n-GMM. Their result relies on a modification of the EM algorithm and is not comparable with ours.
[2] analyzes the structure of local minima in the likelihood function of GMM. However, their result
is purely geometric and does provide any convergence guarantee.

A series of paper [10, 15, 23, 25] follow the framework propose by [1] to prove the local con-
vergence of EM for n-GMM. While their result applies to the more general n-Gaussian mixture
ground truth setting, their framework only provides local convergence guarantee and cannot be di-
rectly applied to our setting.

A.3. Slowdown due to over-parameterization

This paper gives an O
(
1/
√
t
)

bound of over-parameterized Gaussian mixture models to a single
Gaussian. Recall that to learn a single Gaussian, if one’s student model is also a single Gaussian,
then one can obtain an exp(−Ω(t)) rate because the loss is strongly convex. This slowdown effect
due to over-parameterization has been observed for Gaussian mixtures in [6, 18], but has also been
observed in other learning problems, such as learning a two-layer neural network [14, 22] and matrix
sensing problems [19, 24, 26].
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Appendix B. Necessity of exponentially small factor in convergence rate

In this section we prove that a factor of exp(−Θ(µ2max(0))) is inevitable in the global convergence
rate guarantee of gradient EM. To demonstrate this, we show that there exists some bad region
such that initializing from this region will trap gradient EM for an exponentially long time before it
converges to the global minimum. Our result is the following theorem.

Theorem 7 (Existence of bad initialization region) For any n = 2l + 1, consider gradient EM
initialized at point µ1(0) = 0, µ2(0) = · · · = µl+1(0) = 12

√
de1, µl+2(0) = · · · = µ2l+1(0) =

−12
√
de1, where e1 = (1, 0, . . . , 0)⊤ is a standard unit vector. Then population gradient EM

will be trapped in a bad local region around µ(0) for exponentially many number of time steps
T = 1

15nηe
d = 1

15nη exp(Θ(µ2max(0))). More rigorously, for any 0 ≤ t ≤ T , we have

∥µi(t)∥ ≥ 10
√
d,∀i ̸= 1.

Theorem 7 states that, when initialized from some bad points µ(0), after exp(Θ(µ2max(0)))
number of time steps, gradient EM will still stay in this local region and remain 10

√
d distance

away from the global minimum µ = 0. Therefore an exponentially small factor in convergence rate
is inevitable.

Remark 8 Theorem 7 eliminates the possibility of proving any polynomial convergence rate of
gradient EM from arbitrary initialization. However, it is still possible to prove that, with some
specific smart initialization schemes, gradient EM avoids the bad regions stated in Theorem 7 and
enjoys a polynomial convergence rate. We leave this as an interesting open question for future
analysis.

Appendix C. Proof overview

In this section, we provide a technical overview of the proof in our main result (Theorem 2 and
Theorem 7).

C.1. Difficulties of a global convergence proof and our new analysis framework

Proving the global convergence of gradient EM for general n-Gaussian mixture is highly nontrivial.
While there have been many previous works [1, 5, 23] studying either local convergence or the
special case of 2-Gaussian mixtures, they all focus on showing the contraction of parametric error.
Namely, their proof proceeds by showing the distance between the model parameter and the ground
truth contracts, usually by a fixed linear ratio, in each iteration of the algorithm. However, this
kind of approach meets various challenges for our general problem where the convergence is both
sublinear and non-monotonic. Since the convergence rate is sublinear (see Remark 3), showing a
linear contraction per iteration is no longer possible. Since the convergence is non-monotonic1, we
also cannot show a strictly decreasing parametric distance.

To address these challenges, we propose a new convergence analysis framework for gradient
EM by proving the convergence of likelihood L instead of the convergence of parameters µ. There
are several benefits for considering the convergence from the perspective of MLE loss L. Firstly, it

1. To see this, consider n = 2, µ1 = 0, µ2 = (1, 0, . . . , o)⊤, then the norm of µ1 strictly increases after one iteration.
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naturally addresses the problem of non-monotonic and sub-linear convergence since we only need
to show L decreases as the algorithm updates. Also, since gradient EM is equivalent with running
gradient descent on loss function L (see Section 1.1), we can apply techniques from the optimization
theory of gradient descent to facilitate our analysis.

C.2. Proof ideas for Theorem 2

We first briefly outline our proof of Theorem 2.
Proof roadmap. Our proof of Theorem 2 consists of three steps. Firstly, we prove a gradient lower
bound for L (Theorem 12). Then we prove that the MLE L is locally smooth (Theorem 13). Finally,
we combine the gradient lower bound and the smoothness condition to prove the global convergence
of L with mathematical induction.
Step 1: Gradient lower bound.

Our first step aims to show that the gradient norm of L(µ) is lower bounded by the distance of
µ to the ground truth. To do this, we need a few preliminary results. Inspired by Chen et al. [2],
we use Stein’s identity [16] to perform an algebraic transformation of the gradient, describe by the
following lemma.

Lemma 9 For any GMM(µ), i ∈ [n], the gradient of Q satisfies

∇µiL(µ) = ∇µiQ(µ|µ) = Ex

ψi(x)
∑
k∈[n]

ψk(x)µk

 .
The gradient expression above is equivalent with the form in (2), but is easier to manipulate.

Using the transformed gradient in Lemma 9, we have the following corollary.

Corollary 10 Define vector ψ̃µ(x) :=
∑

i∈[n] ψi(x)µi. For any GMM(µ), the projection of the
gradient of ∇L(µ) onto µ satisfies

⟨∇L(µ),µ⟩ = ⟨∇µQ(µ|µ),µ⟩ =
∑
i∈[n]

⟨∇µiQ(µ|µ), µi⟩ = Ex

[∥∥∥ψ̃µ(x)
∥∥∥2] .

Corollary 9 is important since it converts the projection of gradient ∇L(µ) onto µ to the ex-
pected norm square of a vector ψ̃µ. Since a lower bound of the gradient projection implies a lower

bound of the gradient, we only need to construct a lower bound for ⟨∇L(µ),µ⟩ = Ex

[∥∥∥ψ̃µ(x)
∥∥∥2].

Since
∥∥∥ψ̃µ(x)

∥∥∥2 is always non-negative, we already know that the gradient projection is non-

negative. But lower bounding Ex

[∥∥∥ψ̃µ(x)
∥∥∥2] is still highly nontrivial since the expression of

ψ̃ is complicated and hard to handle. However, our key observation is that, although ψ̃ itself is hard
to bound, its gradient has nice properties and can be handled gracefully:

∇xψ̃µ(x) =
1

2

∑
i,j∈[n]

ψi(x)ψj(x)(µi − µj)(µi − µj)
⊤. (4)

10
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The gradient (4) is nicely-behaved. One can see immediately from (4) that the matrix ∇xψ̃µ(x) is
positive-semi-definite, and its eigenvalues can be directly bounded. To utilize these properties, we
use the following algebraic trick to convert the task of lower bounding ψ̃ itself into the task of lower
bounding its gradient.

Ex

[
∥ψ̃µ(x)∥2

]
=

1

4
Ex

[(∫ 1

t=−1
∥x∥ · x⊤∇ψ̃µ(tx)xdt

)2
]
. (5)

See detailed derivation in (22). Using (4), combined with the properties of ∇xψ̃µ(x), we can obtain
the following lemma.

Lemma 11 For any GMM(µ) we have

Ex

[
∥ψ̃µ(x)∥2

]
≥

exp
(
−8µ2max

)
40000d(1 + 2µmax

√
d)2

 ∑
i,j∈[n]

πiπj∥µi − µj∥2
2

.

On top of Lemma 11, we can easily lower bound the gradient projection in the following theo-
rem, finishing the first step of our proof.

Lemma 12 (Gradient projection lower bound) For any GMM(µ) we have

⟨∇µQ(µ|µ),µ⟩ = Ex[∥ψ̃µ(x)∥2] = Ω

(
exp

(
−8µ2max

)
π2min

d(1 + µmax

√
d)2

µ4max

)
.

Step 2: Local smoothness.
To construct a global convergence analysis for gradient-based methods, after obtaining a gra-

dient lower bound, we still need to prove the smoothness of loss L. (Recall that global smooth-
ness of function f means that there exists constant C such that ∥∇f(x1) − ∇f(x2)∥ ≤ C∥x1 −
x2∥,∀x1, x2.) However, proving the smoothness for L in general is very challenging since the mem-
bership function ψi cannot be bounded when µ is unbounded. To address this issue, we prove that
L is locally smooth, i.e., the smoothness between two points µ and µ′ is satisfied if both ∥µ∥ and
∥µ− µ′∥ are upper bounded. Our result is the following theorem.

Theorem 13 (Local smoothness of loss function) At any two points µ = (µ⊤1 , . . . , µ
⊤
n )

⊤ and
µ+ δ = ((µ1 + δ1)

⊤, . . . , (µn + δn)
⊤)⊤, if

∥δi∥ ≤ 1

max {6d, 2∥µi∥}
,∀i ∈ [n],

then the loss function L satisfies the following smoothness property: for any i ∈ [n] we have

∥∇µi+δiL(µ+ δ)−∇µiL(µ)∥ ≤ nµmax(30
√
d+ 4µmax)∥δi∥+

∑
k∈[n]

∥δk∥. (6)

Step 3: putting everything together.
Given with the gradient lower bound and the smoothness condition, we still need to resolve two

remaining problems. The first one is that the gradient lower bound in Lemma 12 is given in terms
of µ, which we need to convert to an lower bound in terms of L(µ). For this we need the following
upper bound of L.

11
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Theorem 14 (Loss function upper bound) The loss function can be upper bounded as

L(µ) ≤
∑
i∈[n]

πi
2
∥µi∥2 ≤

µ2max

2
.

The second problem is that our local smoothness theorem requiresµ to be bounded, therefore we
need to show a regularity condition that for each i, µi(t) stays in a bounded region during gradient
EM updates. This is not easy to prove for each individual µi due to the same non-monotonic issue
mentioned in Section C.1. To establish such a regularity condition, we introduce the following
potential-function.

Definition 15 Define potential function U : Rnd → R for GMM(µ) as

U(µ) =
∑
i∈[n]

∥µi∥2.

We prove that the potential function U remains bounded, implying the regularity condition for
each µi. With the regularity condition, combined with the previous two steps, we finish the proof
of Theorem 2 by mathematical induction.

C.3. Proof ideas for Theorem 7

Proving Theorem 7 is much more simpler. The idea is natural: we found that there exists some bad
regions where the gradient of L is exponentially small, characterized by the following lemma.

Lemma 16 (Gradient norm upper bound) For anyµ satisfying ∥µ1∥ ≤
√
d, ∥µ2∥, ∥µ3∥, . . . , ∥µn∥ ≥

10
√
d, the gradient of L at µ can be upper bounded as

∥∇µiL(µ)∥ ≤ 2∥µ1∥+ 2 exp(−d)
∑
i ̸=1

∥µi∥, ∀i ∈ [n].

Utilizing Lemma 16, we can prove Theorem 7 by showing that initialization from these bad
regions will get trapped in it for exponentially long, since the gradient norm is exponentially small.
The full proof can be found in Appendix F.2.

Appendix D. Experiments

In this section we include a few simulation results of gradient EM verifying our theoretical argu-
ments. We choose the experimental setting of d = 5, η = 0.7. We use n = 2, 5, 10 Gaussian
mixtures to learn data generated from one single ground truth Gaussian distribution N (µ∗, Id), re-
spectively. Since a closed form expression of the population gradient is intractable, we approximate
the gradient step via Monte Carlo method, with sample size 3.5 × 105. The mixing weights of
student GMM are randomly sampled from a standard Dirichlet distribution and set as fixed during
gradient EM update. The covariances of all component Gaussians are set as the identity matrix. We
recorded the convergence of likelihood function L (estimated also by Monte Carlo method on fresh
samples each iteration) and parametric distance

∑
i∈[n] πi∥µi − µ∗∥2 along gradient EM trajectory.

The results are reported in Figure 1 (left and middle panel). Simulation outcome indicates that

12
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Figure 1: Left: Sublinear convergence of the likelihood loss L. Middle: Sublinear convergence of the
parametric distance

∑
i∈[n] πi∥µi−µ∗∥2 between student GMM and the ground truth. Right: Gradient norm

∥∇L(µ(0))∥ in the counter-example in Theorem 7 decreases exponentially fast w.r.t. dimension d.

both the likelihood L and the parametric distance converges sublinearly, verifying our theoretical
arguments.

To verify our negative result Theorem 7, we consider the bad initialization point µ(0) described
in Theorem 7 2 and plot the gradient norm at µ(0) w.r.t. different dimension d in Figure 1 (right
panel). Simulation result shows that the gradient norm ∥∇L(µ(0))∥ atµ(0) decreases exponentially
in dimension d, verifying the existence of bad initialization regions.

Appendix E. Missing Proofs and Auxiliary lemmas

Proof [Proof of Fact 1] It is well known that (see Section 1 of [18])

Q(µ′|µ) = Ex∼pµ∗

[
log(pµ′(x))−DKL(pµ(·|x)||pµ′(·|x))−H(pµ(·|x))

]
,

where pµ(·|x) denotes the distribution of hidden variable y (in our case of GMM the index of
Gaussian component) conditioned on x, and H denotes information entropy.

Sinceµ′ = µ is a global minimum ofDKL(pµ(·|x)||pµ′(·|x)), we have ∇DKL(pµ(·|x)||pµ(·|x)) =
0. Also ∇H(pµ(·|x)) = 0 since H(pµ(·|x)) is a constant. Therefore

∇Q(µ|µ) = Ex∼pµ∗ [∇ log(pµ(x))] = ∇L(µ).

The proof of Lemma 9 uses ideas from Theorem 1 of Chen et al. [2] and relies on Stein’s identity,
which is given by the following lemma.

Lemma 17 (Stein [16]) For x ∼ N (µ, σ2Id) and differentiable function g : Rd → R we have

E[g(x)(x− µ)] = σ2E[∇xg(x)],

if the two expectations in the above identity exists.

Now we are ready to prove Lemma 9.

2. To prevent numerical underflow issues, we change the constant 12 in µ(0) to 2.

13
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Lemma 9 For any GMM(µ), i ∈ [n], the gradient of Q satisfies

∇µiL(µ) = ∇µiQ(µ|µ) = Ex

ψi(x)
∑
k∈[n]

ψk(x)µk

 .
Proof Applying Stein’s identity (Lemma 17), for each i ∈ [n] we have

∇µiQ(µ|µ) = Ex∼N (0,Id) [ψi(x)(µi − x)]

= Ex∼N (0,Id) [ψi(x)]µi −Ex∼N (0,Id) [ψi(x)x]

= Ex∼N (0,Id) [ψi(x)]µi −Ex∼N (0,Id)[∇xψi(x)].

Recall that

ψi(x) = Pr[i|x] =
πi exp

(
−∥x−µi∥2

2

)
∑

k∈[n] πk exp
(
−∥x−µk∥2

2

) .
The gradient ∇xψi(x) could be calculated as

∇xψi(x)

=
1(∑

k∈[n] πk exp
(
−∥x−µk∥2

2

))2
[∑

k∈[n]

πk exp

(
−∥x− µk∥2

2

)πi exp

(
−∥x− µi∥2

2

)
(µi − x)

− πi exp

(
−∥x− µi∥2

2

)∑
k∈[n]

πk exp

(
−∥x− µk∥2

2

)
(µk − x)

]

= ψi(x)(µi − x)− ψi(x)
∑
k∈[n]

ψk(x)(µk − x)

= ψi(x)(µi − x) + ψi(x)x−
∑
k∈[n]

ψi(x)ψk(x)µk

= ψi(x)

µi − ∑
k∈[n]

ψk(x)µk

 ,

(7)

note that we used
∑

k∈[n] ψi(x) = 1.
Then we have

∇µiQ(µ|µ) = Ex [ψi(x)]µi −Ex[∇xψi(x)]

= Ex [ψi(x)]µi −Ex

ψi(x)

µi − ∑
k∈[n]

ψk(x)µk

 = Ex

ψi(x)
∑
k∈[n]

ψk(x)µk

 .

14



TOWARD GLOBAL CONVERGENCE OF GRADIENT EM FOR OVER-PARAMTERIZED GMM

Proof [Proof of Corollary 10]

⟨∇µQ(µ|µ),µ⟩ =
∑
i∈[n]

⟨∇µiQ(µ|µ), µi⟩ =
∑
i∈[n]

〈
Ex

ψi(x)
∑
k∈[n]

ψk(x)µk

 , µi〉

=
∑
i∈[n]

∑
k∈[n]

Ex ⟨ψi(x)ψk(x)µk, µi⟩ = Ex

∥∥∥∥∥∥
∑
i∈[n]

ψi(x)µi

∥∥∥∥∥∥
2 = Ex

[∥∥∥ψ̃µ(x)
∥∥∥2] .

Lemma 18 For any constant c satisfying 0 < c ≤ 1
3d , we have

Ex∼N (0,Id) [exp (c∥x∥)] ≤ 1 + 5
√
dc.

Proof
Note that Ex∼N (0,Id) [exp (c∥x∥)] = M∥x∥(c) is the moment-generating function of ∥x∥. To

upper bound the value of a moment generating function at c, we use Lagrange’s Mean Value Theo-
rem:

M∥x∥(c) = M∥x∥(0) +M′
∥x∥(ξ)c, (8)

where ξ ∈ [0, c]. Note that M∥x∥(0) = 1, So the remaining task is to bound M′
∥x∥(ξ). We bound

this expectation using truncation method as:

M′
∥x∥(ξ) = Ex [∥x∥ exp(ξ∥x∥)] ≤ Ex [∥x∥ exp(c∥x∥)]

=

∫
x∈Rd

∥x∥ exp(c∥x∥)(2π)−d/2 exp

(
−∥x∥2

2

)
dx

=

∫
∥x∥≤1

∥x∥ exp(c∥x∥)(2π)−d/2 exp

(
−∥x∥2

2

)
dx

+

∫
∥x∥≥1

∥x∥ exp(c∥x∥)(2π)−d/2 exp

(
−∥x∥2

2

)
dx

≤ exp(c)(2π)−d/2Vd +

∫
∥x∥≥1

∥x∥(2π)−d/2 exp

(
c∥x∥ − ∥x∥2

2

)
dx

≤ exp(c)(2π)−d/2Vd +

∫
∥x∥≥1

∥x∥(2π)−d/2 exp

(
c∥x∥ − ∥x∥2

2

)
dx,

(9)

where Vd = πd/2

Γ(d/2+1) is the volume of d-dimensional unit sphere.
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Since ∥x∥ ≥ 1 ⇒ c∥x∥ − ∥x∥2
2 ≤ 1

3d∥x∥ −
∥x∥2
2 ≤ −∥(1−1/(2d))x∥2

2 , we have∫
∥x∥≥1

∥x∥(2π)−d/2 exp

(
c∥x∥ − ∥x∥2

2

)
dx

≤
∫
∥x∥≥1

∥x∥(2π)−d/2 exp

(
−
∥2d−1

2d x∥2

2

)
dx

=

∫
∥y∥≥ 2d−1

2d

2d

2d− 1
∥y∥(2π)−d/2 exp

(
−∥y∥2

2

)(
2d

2d− 1

)d

dy

≤
(

2d

2d− 1

)d+1

Ey∼N (0,Id) [∥y∥]

=

(
2d

2d− 1

)d+1
√
2Γ
(
d+1
2

)
Γ
(
d
2

)
≤ 4

√
d,

where we used
(

2d
2d−1

)d+1
≤ 4 and the log convexity of Gamma function at the last line. Plugging

this back to (9), we get

M′
∥x∥(ξ) ≤ exp(c)(2π)−d/2Vd +

∫
∥x∥≥1

∥x∥(2π)−d/2 exp

(
c∥x∥ − ∥x∥2

2

)
dx

≤ exp(1/(3d))(2π)−d/2 + 4
√
d

≤ 5
√
d.

(10)

Plugging (10) into (8), we obtain the final bound

Ex [exp (2∥δi∥(∥x∥+ ∥µi∥))− 1] = M∥x∥(c) = M∥x∥(0) +M′
∥x∥(ξ)c ≤ 1 + 5

√
dc.

Lemma 19 For any fixed x ∈ Rd, x ̸= 0 and any µ we have∫ 1

t=−1
ψi(tx|µ)ψj(tx|µ)dt ≥

1

2µmax∥x∥
πiπj exp

(
−4µ2max

)
(1− exp (−4µmax∥x∥)) .
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Proof

ψi(tx) =
πi exp

(
−∥tx−µi∥2

2

)
∑

k∈[n] πk exp
(
−∥tx−µk∥2

2

)
=

πi∑
k∈[n] πk exp

(
1
2(∥tx− µi∥2 − ∥tx− µk∥2)

)
=

πi∑
k∈[n] πk exp

(
1
2(∥tx− µi∥2 − ∥tx− µk∥2)

)
=

πi∑
k∈[n] πk exp

(
1
2 ⟨2tx− µi − µk, µk − µi⟩

)
≥ πi∑

k∈[n] πk exp
(
1
2(2∥tx∥+ 2µmax) · 2µmax

)
= πi exp (−2µmax(∥tx∥+ µmax))

(11)

Therefore∫ 1

t=−1
ψi(tx)ψj(tx)dt ≥

∫ 1

t=−1
πiπj exp (−4µmax(∥tx∥+ µmax)) dt

= πiπj exp
(
−4µ2max

)
· 2
∫ 1

t=0
exp (−4µmax∥x∥t) dt

=
1

2µmax∥x∥
πiπj exp

(
−4µ2max

)
(1− exp (−4µmax∥x∥)) .

(12)

Appendix F. Proofs for Section 2 and C

F.1. Proofs for global convergence analysis

Theorem 13 At any two points µ = (µ⊤1 , . . . , µ
⊤
n )

⊤ and µ+δ = ((µ1+δ1)
⊤, . . . , (µn+δn)

⊤)⊤,
if

∥δi∥ ≤ 1

max {6d, 2∥µi∥}
,∀i ∈ [n],

then the loss function L satisfies the following smoothness property: for any i ∈ [n] we have

∥∇µi+δiL(µ+ δ)−∇µiL(µ)∥ ≤ nµmax(30
√
d+ 4µmax)∥δi∥+

∑
k∈[n]

∥δk∥. (13)

Proof
Note that

exp (−∥δi∥(∥x∥+ ∥µi∥)) exp
(
−∥δi∥2

2

)
≤

exp
(
−∥x−(µi+δi)∥2

2

)
exp

(
−∥x−µi∥2

2

) = exp

(
⟨x− µi, δi⟩ −

∥δi∥2

2

)

≤ exp (∥δi∥(∥x∥+ ∥µi∥)) exp
(
−∥δi∥2

2

)
.

17



TOWARD GLOBAL CONVERGENCE OF GRADIENT EM FOR OVER-PARAMTERIZED GMM

Therefore ψi(x|µ+ δ) can be bounded as

ψi(x|µ+ δ) =
πi exp

(
−∥x−(µi+δi)∥2

2

)
∑

k∈[n] πk exp
(
−∥x−(µk+δk)∥2

2

)
≤

πi exp
(
−∥x−µi∥2

2

)
exp (∥δi∥(∥x∥+ ∥µi∥)) exp

(
−∥δi∥2

2

)
∑

k∈[n] πk exp
(
−∥x−µk∥2

2

)
exp (−∥δi∥(∥x∥+ ∥µi∥)) exp

(
−∥δi∥2

2

) ≤ exp (2∥δi∥(∥x∥+ ∥µi∥))ψi(x|µ).

(14)

Similarly, we have

ψi(x|µ+ δ) =
πi exp

(
−∥x−(µi+δi)∥2

2

)
∑

k∈[n] πk exp
(
−∥x−(µk+δk)∥2

2

)
≥

πi exp
(
−∥x−µi∥2

2

)
exp (−∥δi∥(∥x∥+ ∥µi∥)) exp

(
−∥δi∥2

2

)
∑

k∈[n] πk exp
(
−∥x−µk∥2

2

)
exp (∥δi∥(∥x∥+ ∥µi∥)) exp

(
−∥δi∥2

2

) ≥ exp (−2∥δi∥(∥x∥+ ∥µi∥))ψi(x|µ).

(15)

Recall that by Lemma 9 we have ∇µiL(µ) = Ex

[
ψi(x|µ)

∑
k∈[n] ψk(x|µ)µk

]
, so

∥∇µi+δiL(µ+ δ)−∇µiL(µ)∥

=

∥∥∥∥∥∥Ex

ψi(x|µ+ δ)
∑
k∈[n]

ψk(x|µ+ δ)(µk + δk)

−Ex

ψi(x|µ)
∑
k∈[n]

ψk(x|µ)µk

∥∥∥∥∥∥
=

∥∥∥∥∥Ex

∑
k∈[n]

ψi(x|µ+ δ)ψk(x|µ+ δ)δk


+Ex

∑
k∈[n]

(ψi(x|µ+ δ)ψk(x|µ+ δ)− ψi(x|µ)ψk(x|µ))µk

∥∥∥∥∥
≤ Ex

∑
k∈[n]

ψi(x|µ+ δ)ψk(x|µ+ δ)∥δk∥


+Ex

∑
k∈[n]

|ψi(x|µ+ δ)ψk(x|µ+ δ)− ψi(x|µ)ψk(x|µ)| · ∥µk∥


≤
∑
k∈[n]

∥δk∥+
∑
k∈[n]

Ex [|ψi(x|µ+ δ)ψk(x|µ+ δ)− ψi(x|µ)ψk(x|µ)|] ∥µk∥

≤
∑
k∈[n]

∥δk∥+
∑
k∈[n]

Ex [exp (2∥δi∥(∥x∥+ ∥µi∥))− 1] ∥µk∥,

(16)

where the last inequality is because ψi, ψk ≤ 1 and applying (14) and (15).
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The remaining task is to bound Ex [exp (2∥δi∥(∥x∥+ ∥µi∥))− 1]. Since 2∥δi∥ ≤ 1
3d , we can

use Lemma 18 to bound it as

Ex [exp (2∥δi∥(∥x∥+ ∥µi∥))− 1] = exp(2∥δi∥∥µi∥)Ex [exp (2∥δi∥ · ∥x∥))]− 1

≤ exp(2∥δi∥∥µi∥)(1 + 10
√
d∥δi∥)− 1 = exp(2∥δi∥∥µi∥)− 1 + 10

√
d∥δi∥ exp(2∥δi∥∥µi∥)

≤ 4∥δi∥∥µi∥+ 10
√
d∥δi∥ exp(1) ≤ (30

√
d+ 4∥µi∥)∥δi∥.

(17)

where we used exp(1 + x) ≤ 1 + 2x, ∀x ∈ [0, 1] at the last line. Plugging this back to (16), we get

∥∇µi+δiL(µ+ δ)−∇µiL(µ)∥

≤
∑
k∈[n]

∥δk∥+
∑
k∈[n]

Ex [exp (2∥δi∥(∥x∥+ ∥µi∥))− 1] ∥µk∥

≤
∑
k∈[n]

∥δk∥+
∑
k∈[n]

(30
√
d+ 4∥µi∥)∥δi∥∥µk∥

≤ nµmax(30
√
d+ 4µmax)∥δi∥+

∑
k∈[n]

∥δk∥.

(18)

Theorem 14 The loss function can be upper bounded as

L(µ) ≤
∑
i∈[n]

πi
2
∥µi∥2 ≤

µ2max

2
.

Proof Since the logarithm function is concave, by Jensen’s inequality we have

L(µ) = DKL(pµ∗ ||pµ) = −Ex

[
log

(
pµ(x)

pµ∗(x)

)]

= −Ex

log
∑i πi exp

(
−∥x−µi∥2

2

)
exp

(
−∥x∥2

2

)


≤ −Ex

∑
i

πi log

exp
(
−∥x−µi∥2

2

)
exp

(
−∥x∥2

2

)


= −
∑
i

πiEx

[
⟨x, µi⟩ −

∥µi∥2

2

]
=
∑
i∈[n]

πi
2
∥µi∥2 ≤

µ2max

2
.
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Lemma 12 For any GMM(µ) we have

⟨∇µQ(µ|µ),µ⟩ = Ex[∥ψ̃µ(x)∥2] ≥ Ω

(
exp

(
−8µ2max

)
π2min

d(1 + µmax

√
d)2

µ4max

)
.

Proof Consider two cases:
Case 1. There exists k ∈ [n] such that ∥µk − µimax∥ ≥ µmax

2 . Then by Lemma 20 and Lemma 11
we have

Ex

[
∥ψ̃µ(x)∥2

]
≥

exp
(
−8µ2max

)
40000d(1 + 2µmax

√
d)2

 ∑
i,j∈[n]

πiπj∥µi − µj∥2
2

≥
exp

(
−8µ2max

)
40000d(1 + 2µmax

√
d)2

(πmin

8
µ2max

)2
=

exp
(
−8µ2max

)
π2min

2560000d(1 + 2µmax

√
d)2

µ4max.

Case2. For ∀k ∈ [n], ∥µimax − µk∥ < µmax

2 . Then by Lemma 21 we have Ex

[
∥ψ̃µ(x)∥2

]
≥

1
4µ

2
max ≥ Ω(exp(−8µ2max)µ

4
max) ≥ Ω

(
exp(−8µ2

max)π2
min

d(1+µmax

√
d)2

µ4max

)
, (since e−xx ≤ 1, ∀x).

Lemma 20 For any GMM(µ), if there exists k ∈ [n] such that ∥µk−µimax∥ ≥ µmax

2 , then we have∑
i,j∈[n]

πiπj∥µi − µj∥2 ≥
πmin

8
µ2max.

Proof By Cauchy–Schwarz inequality, we have ∥a∥2 + ∥b∥2 ≥ 1
2∥a− b∥2, so for ∀i ∈ [n] we have∑

j∈[n]

πj∥µi − µj∥2 ≥ πimax∥µi − µimax∥2 + πk∥µi − µk∥2

≥ πmin

2
∥(µi − µimax)− (µi − µk)∥2 =

πmin

2
∥µk − µimax∥2.

Therefore∑
i,j∈[n]

πiπj∥µi − µj∥2 =
∑
i∈[n]

πi
∑
j∈[n]

πj∥µi − µj∥2 ≥
∑
i∈[n]

πi
πmin

2
∥µk − µimax∥2 ≥

πmin

8
µ2max,

where the last inequality is because ∥µk − µimax∥ ≥ µmax

2 and
∑

i πi = 1.

Lemma 21 For any GMM(µ), if for ∀k ∈ [n] we have ∥µimax − µk∥ < µmax

2 , then

Ex

[
∥ψ̃µ(x)∥2

]
≥ 1

4
µ2max.
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Proof For any k ∈ [n], by Cauchy–Schwarz inequality we have

⟨µk, µimax⟩ = ⟨µimax − (µimax − µk), µimax⟩ = ∥µimax∥2 − ⟨µimax − µk, µimax⟩

≥ µ2max − ∥µimax − µk∥µmax >
1

2
µ2max,

(19)

where the last inequality is because ∥µimax − µk∥ < µmax

2 .
Note that (19) implies ⟨µk, µimax⟩ > 1

2µmax, so for ∀x ∈ Rd we have

∥ψ̃µ(x)∥ =

∥∥∥∥∥∥
∑
k∈[n]

ψk(x)µk

∥∥∥∥∥∥ ≥

〈∑
k∈[n]

ψk(x)µk, µimax

〉
=
∑
k∈[n]

ψk(x) ⟨µk, µimax⟩ >
1

2
µmax,

(20)
where we used

∑
k∈[n] ψk(x) = 1 at the last inequality.

Lemma 11 For any GMM(µ) we have

Ex

[
∥ψ̃µ(x)∥2

]
≥

exp
(
−8µ2max

)
40000d(1 + 2µmax

√
d)2

 ∑
i,j∈[n]

πiπj∥µi − µj∥2
2

.

Proof The key idea for proving lemma 11 is to consider the gradient of ψ̃µ, which can be calculated
as

∇xψ̃µ(x) =
∑
i

µi

(
∂ψi(x)

∂x

)⊤

=
∑
i

ψi(x)µiµ
⊤
i −

∑
i,j

ψi(x)ψj(x)µiµ
⊤
j

=
∑

i,j∈[n]

ψi(x)ψj(x)µiµ
⊤
i −

∑
i,j

ψi(x)ψj(x)µiµ
⊤
j

=
∑

i,j∈[n]

ψi(x)ψj(x)µi(µi − µj)
⊤

=
∑

i,j∈[n]

ψi(x)ψj(x)
1

2

(
µi(µi − µj)

⊤ + µj(µj − µi)
⊤
)

=
1

2

∑
i,j∈[n]

ψi(x)ψj(x)(µi − µj)(µi − µj)
⊤,

(21)

where we used (7) in the second identity.
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By Cauchy-Schwarz inequality, we have ∥a∥2 + ∥b∥2 ≥ 1
2∥a− b∥2, which implies

Ex

[
∥ψ̃µ(x)∥2

]
=

1

2
Ex

[
∥ψ̃µ(x)∥2 + ∥ψ̃µ(−x)∥2

]
≥ 1

4
Ex

[∥∥∥ψ̃µ(x)− ψ̃µ(−x)
∥∥∥2]

≥ 1

4
Ex

[〈
ψ̃µ(x)− ψ̃µ(−x), x

〉2]
=

1

4
Ex

[(∫ 1

t=−1

∂

∂t
⟨ψ̃µ(tx), x⟩dt

)2
]

=
1

4
Ex

[(∫ 1

t=−1
x⊤∇ψ̃µ(tx)xdt

)2
]

=
1

4
Ex

[(∫ 1

t=−1
∥x∥ · x⊤∇ψ̃µ(tx)xdt

)2
]
,

(22)

where we used ∂
∂tψ̃µ(tx) = ∇ψ̃µ(tx)x at the second to last identity. Careful readers might notice

that the term
(∫ 1

t=−1 ∥x∥ · x
⊤∇ψ̃µ(tx)xdt

)2
is not well-defined when x = 0, but we can still

calculate its expectation over the whole probability space since the integration is only singular on a
zero-measure set.

For each x ̸= 0, by (21) we have

x⊤∇ψ̃µ(tx)x =
1

2

∑
i,j∈[n]

ψi(tx)ψj(tx)⟨µi − µj , x⟩2.

So

Ex

[
∥ψ̃µ(x)∥2

]
≥ 1

16
Ex

∫ 1

t=−1
∥x∥

∑
i,j∈[n]

ψi(tx)ψj(tx)⟨µi − µj , x⟩2dt

2
=

1

16
Ex

∥x∥
∑

i,j∈[n]

⟨µi − µj , x⟩2
∫ 1

t=−1
ψi(tx)ψj(tx)dt

2
≥ 1

16
Ex

∥x∥
∑

i,j∈[n]

⟨µi − µj , x⟩2
1

2µmax∥x∥
πiπj exp

(
−4µ2max

)
(1− exp (−4µmax∥x∥))

2
=

exp
(
−8µ2max

)
64

Ex

 ∑
i,j∈[n]

πiπj⟨µi − µj , x⟩2
1− exp (−4µmax∥x∥)

µmax

2
≥

exp
(
−8µ2max

)
64

 ∑
i,j∈[n]

πiπjEx

[
⟨µi − µj , x⟩2

1− exp (−4µmax∥x∥)
µmax

]2

(23)
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where we used Lemma 19 at the fourth line and Cauchy-Schwarz inequality at the last line.
The last step is to lower bound Ex

[
⟨µi − µj , x⟩2 (1− exp (−4µmax∥x∥)) /µmax

]
. Since x is

sampled from N (0, Id), which is spherically symmetric, we know that the two random variables
{x, ∥x∥} are independent. Therefore

Ex

[
⟨µi − µj , x⟩2

1− exp (−4µmax∥x∥)
µmax

]
= Ex

[
⟨µi − µj , x⟩2

]
Ex

[
1− exp (−4µmax∥x∥)

µmax

]
.

(24)
For the first term in (24), we have Ex

[
⟨µi − µj , x⟩2

]
= ∥µi−µj∥2/d since x is spherically symmet-

rically distributed. By norm-concentration inequality of Gaussian [3] we know that Pr
[
∥x∥ ≥

√
d
2

]
≥

1/50, ∀d. The second term in (24) can be therefore lower bounded as

Ex

[
1− exp (−4µmax∥x∥)

µmax

]
≥ Pr

[
∥x∥ ≥

√
d

2

]
1− exp

(
−4µmax ·

√
d
2

)
µmax

≥
1− exp

(
−2µmax

√
d
)

50µmax
.

(25)

Plugging (25) into (24), we get

Ex

[
⟨µi − µj , x⟩2

1− exp (−4µmax∥x∥)
µmax

]
≥

1− exp
(
−2µmax

√
d
)

50dµmax
∥µi − µj∥2. (26)

Now we can plug (26) into (23) and get

Ex

[
∥ψ̃µ(x)∥2

]
≥

exp
(
−8µ2max

)
64

 ∑
i,j∈[n]

πiπjEx

[
⟨µi − µj , x⟩2

1− exp (−4µmax∥x∥)
µmax

]2

≥
exp

(
−8µ2max

)
64

 ∑
i,j∈[n]

πiπj
1− exp

(
−2µmax

√
d
)

50dµmax
∥µi − µj∥2

2

≥
exp

(
−8µ2max

)
64

 ∑
i,j∈[n]

πiπj
1− 1

1+2µmax

√
d

50dµmax
∥µi − µj∥2

2

=
exp

(
−8µ2max

)
40000d(1 + 2µmax

√
d)2

 ∑
i,j∈[n]

πiπj∥µi − µj∥2
2

(27)

where we used the inequality ∀t ≥ 0, e−t ≤ 1
1+t at the second to last line.

Theorem 2 Consider training a student n-component GMM initialized fromµ(0) = (µ1(0)
⊤, . . . , µn(0)

⊤)⊤

to learn a single-component ground truth GMM N (0, Id) with population gradient EM. If the step

size satisfies η ≤ O

(
exp(−8nµ2

max(0))π2
min

n2d2( 1
µmax(0)

+µmax(0))2

)
, then gradient EM converges globally with rate

L(µ(t)) ≤ 1√
γt
,

23



TOWARD GLOBAL CONVERGENCE OF GRADIENT EM FOR OVER-PARAMTERIZED GMM

where constant γ = Ω

(
η exp(−16nµ2

max(0))π4
min

n2d2(1+µmax(0)
√
dn)4

)
∈ R+, µmax(0) = max{∥µ1(0)∥, . . . , ∥µn(0)∥}.

Proof We use mathematical induction to prove Theorem 2, by proving the following two conditions
inductively:

U(t) ≤ nµ2max(0), ∀t. (28)

1

L2(µ(t))
≥ γt+

1

L2(µ(0))
, ∀t. (29)

Note that (29) directly implies the theorem, so now we just need to prove (28) and (29) together.
The induction base for t = 0 is trivial. Now suppose the conditions hold for time step t, consider

t+ 1. By induction hypothesis (28) we have ∥µi(t)∥ ≤ µmax(t) ≤
√
nµmax(0),∀t.

Proof of (29). Since ∇µQ(µ|µ) = ∇µL(µ), we can apply classical analysis of gradient descent
[13] as

L(µ(t+ 1))− L(µ(t))
= L(µ(t)− η∇L(µ(t)))− L(µ(t))

= −
∫ 1

s=0
⟨∇L(µ(t)− sη∇L(µ(t))), η∇L(µ(t))⟩ ds

= −
∫ 1

s=0
⟨∇L(µ(t)), η∇L(µ(t))⟩ds+

∫ 1

s=0
⟨∇L(µ(t))−∇L(µ(t)− sη∇L(µ(t))), η∇L(µ(t))⟩ds

= −η∥∇L(µ(t))∥2 + η

∫ 1

s=0
⟨∇L(µ(t))−∇L(µ(t)− sη∇L(µ(t))),∇L(µ(t))⟩ ds

(30)

Note that the gradient norm can be upper bounded as

∥∇µiL(µ(t))∥ =

∥∥∥∥∥∥Ex

ψi(x)
∑
k∈[n]

ψk(x)µk(t)

∥∥∥∥∥∥ ≤ Ex

ψi(x)
∑
k∈[n]

ψk(x) ∥µk(t)∥


≤
∑
k

∥µk(t)∥ ≤
√
nU(t) ≤ nµmax(0).

Then for any s ∈ [0, 1], we have ∥sη∇µiL(µ(t))∥ ≤ ηnµmax(0) ≤ 1
max{6d,2∥µi(t)∥} . So we can

apply Theorem 13 and get

∥∇µiL(µ(t))−∇µiL(µ(t)− sη∇µiL(µ(t)))∥

≤ nµmax(t)(30
√
d+ 4µmax(t))∥sη∇µiL(µ(t))∥+

∑
k∈[n]

∥sη∇µk
L(µ(t))∥.

24



TOWARD GLOBAL CONVERGENCE OF GRADIENT EM FOR OVER-PARAMTERIZED GMM

Therefore for ∀s ∈ [0, 1],

⟨∇L(µ(t))−∇L(µ(t)− sη∇L(µ(t))),∇L(µ(t))⟩

≤
∑
i∈[n]

∥∇µiL(µ(t))−∇µiL(µ(t)− sη∇µiL(µ(t)))∥ · ∥∇µiL(µ(t))∥

≤
∑
i∈[n]

nµmax(t)(30
√
d+ 4µmax(t))∥sη∇µiL(µ(t))∥+

∑
k∈[n]

∥sη∇µk
L(µ(t))∥

 ∥∇µiL(µ(t))∥

≤ η
(
nµmax(t)(30

√
d+ 4µmax(t)) + n2

)
∥∇L(µ(t))∥2

≤ η
(
4n2µmax(0)

2 + 30
√
dn3/2µmax(0) + n2

)
∥∇L(µ(t))∥2

≤ 20η
√
dn2(µ2max(0) + 1)∥∇L(µ(t))∥2.

(31)

Plugging (31) into (30), since η ≤ O
(

1√
dn2(µ2

max(0)+1)

)
we have

L(µ(t+1))−L(µ(t)) ≤ −η∥∇L(µ(t))∥2+20η
√
dn2(µ2max(0)+1)∥∇L(µ(t))∥2 ≤ −η

2
∥∇L(µ(t))∥2.

(32)
By Lemma 12 we can lower bound the gradient norm as

∥∇L(µ(t))∥ ≥ ⟨∇L(µ(t)),µ(t)⟩
∥µ(t)∥

≥ ⟨∇L(µ(t)),µ(t)⟩
nµmax(t)

≥ Ω

(
exp

(
−8µ2max(t)

)
π2min

nd(1 + µmax(t)
√
d)2

)
µ3max(t)

Theorem 14
≥ Ω

(
exp

(
−8µ2max(t)

)
π2min

nd(1 + µmax(t)
√
d)2

)
(2L(µ(t))3/2 ≥ Ω

(
exp

(
−8nµ2max(0)

)
π2min

nd(1 + µmax(0)
√
dn)2

)
L3/2(µ(t)).

(33)

Combining (33) and (32), we have

L(µ(t+1)) ≤ L(µ(t))−η
2
∥∇L(µ(t))∥2 ≤ L(µ(t))−Ω

(
η exp

(
−16nµ2max(0)

)
π4min

n2d2(1 + µmax(0)
√
dn)4

)
L3(µ(t)).

(34)
Note that the above inequality implies L(µ(t+ 1)) ≤ L(µ(t)), therefore

1

L2(µ(t+ 1))
− 1

L2(µ(t))
=

(L(µ(t))− L(µ(t+ 1)))(L(µ(t)) + L(µ(t+ 1)))

L2(µ(t))L2(µ(t+ 1))

≥ (L(µ(t))− L(µ(t+ 1))L(µ(t))
L4(µ(t))

(34)
≥ Ω

(
η exp

(
−16nµ2max(0)

)
π4min

n2d2(1 + µmax(0)
√
dn)4

)
= γ.

On the other hand, by induction hypothesis we have 1
L2(µ(t))

≥ γt + 1
L2(µ(0))

, combined with

the above inequality, we have 1
L2(µ(t+1))

≥ 1
L2(µ(t))

+ γ ≥ γ(t+ 1) + 1
L2(µ(0))

, which finishes the
proof of (29).
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Proof of (28). The dynamics of potential function U can be calculated as

U(µ(t+ 1)) =
∑
i∈[n]

∥µi(t+ 1)∥2

=
∑
i∈[n]

∥µi(t)− η∇µiQ(µ(t)|µ(t))∥2

= U(µ(t))− η
∑
i∈[n]

⟨µi(t),∇µiQ(µ(t)|µ(t))⟩+ η2
∑
i∈[n]

∥∇µiQ(µ(t)|µ(t))∥2

Corollary 10
= U(µ(t))− ηEx

[
∥ψ̃µ(t)(x)∥2

]
︸ ︷︷ ︸

I1

+ η2
∑
i∈[n]

∥∇µiQ(µ(t)|µ(t))∥2

︸ ︷︷ ︸
I2

.

(35)

The first term I1 can be bounded by Lemma 12 as

I1 ≥ ηΩ

(
exp

(
−8µ2max(t)

)
π2min

d(1 + µmax(t)
√
d)2

)
µ4max(t) ≥ ηΩ

(
exp

(
−8nµ2max(0)

)
π2min

n2d(1 + µmax(0)
√
nd)2

)
U2(µ(t)). (36)

The second term I2 is a perturbation term that can be lower bounded by Lemma 9 as

I2 = η2
∑
i∈[n]

∥∇µiQ(µ(t)|µ(t))∥2 = η2
∑
i∈[n]

∥∥∥∥∥∥Ex

ψi(x)
∑
k∈[n]

ψk(x)µk(t)

∥∥∥∥∥∥
2

≤ η2
∑
i∈[n]

Ex

∥∥∥∥∥∥ψi(x)
∑
k∈[n]

ψk(x)µk(t)

∥∥∥∥∥∥
2

≤ η2
∑
i∈[n]

Ex

ψi(x)
∑
k∈[n]

ψk(x) ∥µk(t)∥

2

≤ η2
∑
i∈[n]

Ex


√√√√√
∑

k∈[n]

ψ2
i (x)ψ

2
k(x)

∑
k∈[n]

∥µk(t)∥2



2

≤ η2
∑
i∈[n]

Ex

∑
k∈[n]

ψ2
i (x)ψ

2
k(x)

Ex

∑
k∈[n]

∥µk(t)∥2


= η2U(µ(t))Ex

∑
i∈[n]

∑
k∈[n]

ψ2
i (x)ψ

2
k(x)


≤ η2U(µ(t))Ex

∑
i∈[n]

ψi(x)

∑
k∈[n]

ψk(x)


= η2U(µ(t)).

(37)

where we used triangle inequality twice at the second and third line, and Cauchy-Schwarz inequality
twice at the fourth and fifth line.
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Putting (37), (36) and (35) together, we get

U(µ(t+ 1)) ≤ U(µ(t))− ηΩ

(
exp

(
−8nµ2max(0)

)
π2min

n2d(1 + µmax(0)
√
nd)2

)
U2(µ(t)) + η2U(µ(t)).

Consider two cases:
a). If n

2µ
2
max(0) ≤ U(µ(t)) ≤ nµ2max(0), then

U(µ(t+ 1)) ≤ U(µ(t))− ηU(µ(t))

(
Ω

(
exp

(
−8nµ2max(0)

)
π2min

n2d(1 + µmax(0)
√
nd)2

)
U(µ(t))− η

)

≤ U(µ(t))− ηU(µ(t))

(
Ω

(
exp

(
−8nµ2max(0)

)
π2min

n2d(1 + µmax(0)
√
nd)2

)
n

2
µ2max(0)− η

)
≤ U(µ(t)) ≤ nµ2max(0),

note that we used η ≤ O

(
exp(−8nµ2

max(0))π2
min

n2d(1+µmax(0)
√
nd)2

)
n
2µ

2
max(0).

b). If n
2µ

2
max(0) > U(µ(t)), then U(µ(t+ 1)) ≤ (1 + η2)U(µ(t)) ≤ 2U(µ(t)) ≤ nµ2max(0).

Since (28) holds in both cases, our proof is done.

F.2. Proofs for Section B

Lemma 16 For any µ satisfying ∥µ1∥ ≤
√
d, ∥µ2∥, ∥µ3∥, . . . , ∥µn∥ ≥ 10

√
d, the gradient of L at

µ can be upper bounded as

∥∇µiL(µ)∥ ≤ 2∥µ1∥+ 2 exp(−d)
∑
i ̸=1

∥µi∥, ∀i ∈ [n].

Proof Recall that the gradient has the form ∇µiL(µ) = Ex

[
ψi(x)

∑
k∈[n] ψk(x)µk

]
, hence its

norm can be upper bounded as

∥∇µiL(µ)∥ ≤ Ex

ψi(x)
∑
k∈[n]

ψk(x)∥µk∥


≤ Ex

∑
k∈[n]

ψk(x)∥µk∥

∣∣∣∣∣∥x∥ ≤ 2
√
d

+Ex

∑
k∈[n]

ψk(x)∥µk∥

∣∣∣∣∣∥x∥ > 2
√
d

Pr
[
∥x∥ > 2

√
d
]
.

(38)

For any ∥x∥ ≤ 2
√
d, we have exp(−∥x−µ1∥2/2) ≥ exp(−(∥x∥+∥µ1∥)2/2) ≥ exp(−9d/2),

while for ∀i ̸= 1, exp(−∥x− µi∥2/2) ≤ exp(−(∥µi∥ − ∥x∥)2/2) ≤ exp(−(10
√
d− 2

√
d)2/2) =

exp(−32d). Since ψi(x) ∝ exp(−∥x− µi∥2/2) we have

∥x∥ ≤ 2
√
d⇒ ψi(x) ≤

exp(−∥x− µi∥2/2)
exp(−∥x− µ1∥2/2)

≤ exp(−32d)

exp(−9d/2)
≤ exp(−25d), ∀i ̸= 1.
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Therefore the first term in (35) can be bounded as Ex

[∑
k∈[n] ψk(x)∥µk∥

∣∣∣∣∣∥x∥ ≤ 2
√
d

]
≤

∥µ1∥+ exp(−25d)
∑

i ̸=1 ∥µi∥.
On the other hand, by tail bound of the norm of Gaussian vectors (see Lemma 8 of [23]) we

have Pr
[
∥x∥ > 2

√
d
]
≤ exp(−d). Putting everything together, (38) can be further bounded as

∥∇µiL(µ)∥ ≤ ∥µ1∥+ exp(−25d)
∑
i ̸=1

∥µi∥+ exp(−d)
∑
i∈[n]

∥µi∥ ≤ 2∥µ1∥+ 2 exp(−d)
∑
i ̸=1

∥µi∥.

Theorem 7 For any n = 2l + 1, consider gradient EM initialized at point µ1(0) = 0, µ2(0) =
· · · = µl+1(0) = 12

√
de1, µl+2(0) = · · · = µ2l+1(0) = −12

√
de1, where e1 = (1, 0, . . . , 0)⊤ is

a standard unit vector. Then population gradient EM will be trapped in a bad local region around
µ(0) for exponentially long time T = 1

15nηe
d = 1

15nη exp(Θ(µ2max(0))). More rigorously, for any
0 ≤ t ≤ T , we have

∥µi(t)∥ ≥ 10
√
d,∀i ̸= 1.

Proof we prove the following statement inductively for ∀0 ≤ t ≤ T :

µ1(t) = 0, µ2(t) = . . . = µl+1(t) = −µl+2(t) = . . . = −µ2l+1(t) (39)

∀i, ∥µi(t)− µi(0)∥ ≤ ηt · (30
√
dne−d). (40)

(39) states that during the gradient EM update, µ1 will keep stationary at 0. while the symmetry
between µ2, . . . , µn will be preserved.

The induction base is trivial. Now suppose (40), (39) holds for 0, 1, . . . , t, we prove the case for
t+ 1.
Proof of (39). Due to the induction hypothesis, one can see from direct calculation that ∀x, ψ1(x|µ(t)) =
ψ1(−x|µ(t)), ψ2(x|µ(t)) = · · · = ψl+1(x|µ(t)) = ψl+2(−x|µ(t)) = · · · = ψ2l+1(−x|µ(t)).
For the ease of notation, we denote ψ+(x) := ψ2(x|µ(t)) = · · · = ψl+1(x|µ(t)), ψ−(x) :=
ψl+2(x|µ(t)) = · · · = ψ2l+1(x|µ(t)), µ+ := µ2(t) = . . . = µl+1(t), µ

− := µl+2(t) = . . . =
−µ2l+1(t). Then µ+ = −µ−, ψ+(x) = ψ−(−x). Consequently

∇µ1L(µ(t)) = Ex

ψ1(x|µ(t))
∑
k∈[n]

ψk(x|µ(t))µk(t)

 = Ex

[
ψ1(x)(lψ+(x)µ

+ + lψ−(x)µ
−)
]

=
1

2
Ex

[
ψ1(x)(lψ+(x)µ

+ + lψ−(x)µ
−) + ψ1(−x)(lψ+(−x)µ+ + lψ−(−x)µ−)

]
=

1

2
Ex

[
ψ1(x)(lψ+(x)(µ

+ + µ−) + lψ−(x)(µ
+ + µ−))

]
= 0 ⇒ µ1(t+ 1) = µ1(t) = 0.

Similarly, ∀2 ≤ i ≤ l + 1, l + 2 ≤ j ≤ 2l + 1 we have

∇µiL(µ(t)) = Ex

ψi(x|µ(t))
∑
k∈[n]

ψk(x|µ(t))µk(t)

 = Ex

[
ψ+(x)(lψ+(x)µ

+ + lψ−(x)µ
−)
]

= Ex

[
ψ+(−x)(lψ+(−x)µ+ + lψ−(−x)µ−)

]
= −Ex

[
ψ−(x)(lψ+(x)µ

+ + lψ−(x)µ
−)
]
= −∇µjL(µ(t)).
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This indicates that ∇µ2L(µ(t)) = · · · = ∇µl+1
L(µ(t)) = −∇µl+2

L(µ(t)) = · · · = −∇µ2l+1
L(µ(t)),

combined with the induction hypothesis we have µ2(t+1) = . . . = µl+1(t+1) = −µl+2(t+1) =
. . . = −µ2l+1(t+ 1), (39) is proved.
Proof of (40).

By induction hypothesis, we have ∀i, ∥µi(t)−µi(0)∥ ≤ ηt·(30
√
dne−d) ≤ ηT ·(30

√
dne−d) ≤

2
√
d. So ∀i ̸= 1, ∥µi(t)∥ ≤ ∥µi(0)∥+ 2

√
d < 15

√
d. Then by Lemma 16, ∀i ∈ [n] we have

∥∇µiL(µ(t))∥ ≤ 2∥µ1(t)∥+ 2 exp(−d)
∑
i ̸=1

∥µi(t)∥ ≤ 2n exp(−d) · 15
√
d = 30

√
dne−d,

note that here we used µ1(t) = 0. Therefore by the induction hypothesis we have ∥µi(t + 1) −
µi(0)∥ ≤ ηt · (30

√
dne−d) + η∥∇µiL(µ(t))∥ ≤ η(t+ 1) · (30

√
dne−d), (40) is proven.

By (40), ∀i ̸= 1, 0 ≤ t ≤ T we have ∥µi(t)∥ ≥ ∥µi(0)∥ − ∥µi(t) − µi(0)∥ ≥ 12
√
d −

ηT (30
√
dne−d) ≥ 12

√
d− 2

√
d = 10

√
d. Our proof is done.
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