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Abstract
Image deraining aims to remove rain streaks from
rainy images and restore clear backgrounds. Cur-
rently, some research that employs the Fourier
transform has proved to be effective for image de-
raining, due to it acting as an effective frequency
prior for capturing rain streaks. However, despite
there exists dependency of low frequency and
high frequency in images, these Fourier-based
methods rarely exploit the correlation of different
frequencies for conjuncting their learning proce-
dures, limiting the full utilization of frequency
information for image deraining. Alternatively,
the recently emerged Mamba technique depicts its
effectiveness and efficiency for modeling correla-
tion in various domains (e.g., spatial, temporal),
and we argue that introducing Mamba into its
unexplored Fourier spaces to correlate different
frequencies would help improve image deraining.
This motivates us to propose a new framework
termed FourierMamba, which performs image
deraining with Mamba in the Fourier space. Ow-
ing to the unique arrangement of frequency or-
ders in Fourier space, the core of FourierMamba
lies in the scanning encoding of different fre-
quencies, where the low-high frequency order
formats exhibit differently in the spatial dimen-
sion (unarranged in axis) and channel dimension
(arranged in axis). Therefore, we design Fourier-
Mamba that correlates Fourier space information
in the spatial and channel dimensions with distinct
designs. Specifically, in the spatial dimension
Fourier space, we introduce the zigzag coding to
scan the frequencies to rearrange the orders from
low to high frequencies, thereby orderly correlat-
ing the connections between frequencies; in the
channel dimension Fourier space with arranged
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orders of frequencies in axis, we can directly use
Mamba to perform frequency correlation and im-
prove the channel information representation. Ex-
tensive experiments reveal that our method outper-
forms state-of-the-art methods both qualitatively
and quantitatively.

1. Introduction
Images taken in rainy conditions exhibit significant degra-
dation in detail and contrast due to rain in the air, leading
to unpleasant visual results and the loss of frequency infor-
mation. This issue can severely impact the performance
of outdoor computer vision systems, such as autonomous
driving and video surveillance (Wang et al., 2022a). To mit-
igate the effects of rain, many image deraining methods (Fu
et al., 2011; Xiao et al., 2022) have emerged in recent years,
aiming to remove rain streaks and restore clear backgrounds
in images.

The advent of deep learning has spurred this field forward,
with several learning-based deraining methods achieving
remarkable success (Fu et al., 2017b; Yang et al., 2017;
Zhang & Patel, 2018). Among them, some studies utilize
the Fourier transform for deraining in the frequency do-
main (Zhou et al., 2023; Guo et al., 2022), proving effective.
The key insights inspiring the use of the Fourier transform
for image deraining are twofold: 1) The Fourier transform
can separate image degradation and content components
to some extent, serving as a prior for image deraining, as
shown in Figure 1; 2) The Fourier domain possesses global
properties, where each pixel in Fourier space is involved
with all spatial pixels. Thus, it makes sense to explore the
task of rain removal using the Fourier transform. However,
despite the existence of low frequency and high frequency
dependencies in images, previous Fourier-based methods
rarely utilize the correlation of different frequencies to com-
bine their learning process. As shown in Figure 1, the
commonly used 1× 1 convolutions cannot correlate differ-
ent frequencies, limiting the full utilization of frequency
information in the image. Therefore, we seek to exploit the
beneficial properties of the Fourier transform while explor-
ing correlating different frequencies.
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Figure 1. Observation and comparison of different frequency modeling methods. (a) Observation of the amplitude spectrum exchange.
The degradation is mainly in amplitude components, so the Fourier transform helps to disentangle the image content and rain. (b) The
commonly used 1× 1 convolution cannot model the relationship between different frequencies. (c) Previous scanning in Fourier space
will fail to establish the ordered dependence between frequencies. (d) Our proposed method achieves ordered frequency dependence from
low to high (or vice versa), thus fully utilizing frequency information.

Recently, an improved structured state-space sequence
model (S4) with a selective scanning mechanism, Mamba,
gives us hope. The selective methodology of Mamba can
explicitly build the correlation among image patches or pix-
els. Recent studies have witnessed the effectiveness and
efficiency of Mamba in various domains such as spatial and
temporal. Therefore, we believe that introducing Mamba
into its unexplored Fourier space to correlate different fre-
quencies will improve image deraining.

In this paper, we propose a novel framework named Fouri-
erMamba, which performs image deraining using mamba
in the Fourier domain. Following the ”spatial interaction
+ channel evolution” rule that has also been validated on
Mamba (Guo et al., 2024; Behrouz et al., 2024), we design
the Mamba framework in the Fourier domain from both
spatial and channel dimensions. Considering the unique
arrangement of frequency orders in the Fourier domain,
the core of FourierMamba lies in the scanning encoding
of different frequencies, where the low-high frequency or-
der formats unarranged in the spatial axis and arranged in
the channel axis. Therefore, our proposed FourierMamba
correlates Fourier space information in spatial and channel
dimensions with distinct designs.

Specifically, in the spatial dimension of the Fourier space,
low-high frequencies follow a concentric circular arrange-
ment with lower frequencies near the center and higher
frequencies around the periphery. If previous scanning
method (Liu et al., 2024) is used directly, the orderliness
between frequencies will be destroyed, as shown in Figure 1.
We note that the zigzag coding in the JPEG compression
field can place lower-frequency coefficients at the forefront
of the array, while higher-frequency coefficients are posi-
tioned at the end. Hence, we introduce the zigzag coding to
scan the frequency in the spatial dimension, rearranging the
order from low to high frequency. Due to the symmetry of
the frequency orders in the Fourier space, we do not directly

employ the zigzag coding in its originally used space; in-
stead, we implement it in a circling-like manner that matches
the symmetric frequency orders in Fourier space. In this
way, this method orderly correlates the connections between
frequencies, as shown in Figure 1. In the channel dimen-
sion of the Fourier space, the frequency order is arranged
along the axis, following the order of low in the middle to
high on both sides. Therefore, we can directly use Mamba
for frequency correlation, thus improving channel informa-
tion representation and enhancing global properties on the
channels.

In summary, our contributions are as follows: (1) We
propose a novel framework FourierMamba that combines
Fourier priors and State Space Model for correlating dif-
ferent frequencies in the Fourier space to enhance image
deraining. (2) To rearrange the order from low to high fre-
quency in the spatial dimension Fourier space, we propose a
scanning method based on zigzag coding to orderly correlate
different frequencies. (3) Based on the channel-dimension
Fourier transform, we utilize Mamba to scan on the channels
and correlate different frequencies to improve channel infor-
mation representation. Extensive experiments demonstrate
that the proposed FourierMamba surpasses state-of-the-art
methods both qualitatively and quantitatively.

2. Related Works
Fourier transform. Recently, the Fourier Transform has
demonstrated its effectiveness in global modeling (Chi et al.,
2019; 2020). This transformation converts signals into a
domain characterized by global statistical properties, facil-
itating advancements across various fields (Huang et al.,
2022; Lee et al., 2018; Li et al., 2023; Pratt et al., 2017; Xu
et al., 2021; Yang & Soatto, 2020). Due to its efficacy in
global modeling, the Fourier Transform has been introduced
into low-level vision tasks (Fuoli et al., 2021; Mao et al.,
2023). As an early attempt, (Fuoli et al., 2021) proposes

2



FourierMamba: Fourier Learning Integration with State Space Models for Image Deraining

High Freq

+FF
T

Low FreqHigh Freq

Low FreqHigh Freq High Freq

Symmetric Spectrum Halving(SSH)

SS
H

C-FFT

Progressive Zigzag Bilateral Zigzag

Figure 2. Our proposed Fourier space scanning method in the spatial dimension (top) and channel dimension (bottom). For simplicity,
only one direction is shown for each scanning method, and in fact each method also performs a scan opposite to that shown.

a Fourier Transform-based loss to optimize global high-
frequency information for efficient image super-resolution.
DeepRFT (Mao et al., 2023) is proposed for image deblur-
ring, employing a global receptive field to capture both low
and high-frequency characteristics of various blurs, a con-
cept similarly applied in image inpainting (Suvorov et al.,
2022). FECNet (Huang et al., 2022) demonstrates that the
amplitude of Fourier features decouples global luminance
components, thereby proving effective for image enhance-
ment. (Yu et al., 2022) observes a similar phenomenon in
image dehazing, where the amplitude reflects global haze-
related information. In contrast, we introduce a progres-
sive scanning strategy in the Fourier domain, enhancing the
global modeling capability while addressing the directional
sensitivity issues of visual Mamba.

State Space Models. State Space Models (SSMs) have
received a lot of attention recently due to their global mod-
eling capabilities as well as linear complexity, with (Gu
et al., 2022) initially introducing the base design of SSM
models, and (Mehta et al., 2022) further enhancing their
performance through gating units.More recently, the per-
formance of Mamba (Gu & Dao, 2023), proposed based
on selective scan mechanism and efficient hardware de-
sign, has seen significant enhancement. It stands as an
efficient alternative to Transformers, finding applications in
various domains including image classification (Zhu et al.,
2024)(Liu et al., 2024), object detection(Chen et al., 2024),
and remote sensing(Zhao et al., 2024).In the field of image
restoration, (Guo et al., 2024) (Shi et al., 2024) initially
introduced a general restoration framework based on the
Mamba module but did not fully exploit the frequency do-
main information of images. (Sun et al., 2024) introduces
a network combining Transformer and Mamba to capture
long-range dependencies related to rain. (Yamashita & Ike-
hara, 2024) achieves effective deraining by parallelizing

frequency-domain processing branches with the Mamba
branch. (Zhen et al., 2024) introduced a wavelet transform
branch, yet the scanning in the wavelet domain fails to
fully extract global frequency domain information. This
paper proposes a novel Mamba restoration network based
on Fourier transform, aiming to comprehensively exploit
the frequency domain information of images. Please see the
Appendix for more related works.

3. Methodology
3.1. Preliminary

Fourier transform. Fourier transform is a widely used
technique for analyzing the frequency content of an im-
age. For images with multiple color channels, the Fourier
transform is applied to each channel separately. Given an
image X ∈ RH×W×C , the Fourier transform F converts it
to Fourier space as the complex component F(x), which is
expressed as:

F (x) (u, v) =
1√
HW

H−1∑
h=0

W−1∑
w=0

x (h,w) e−j2π( h
H u+ w

W v),

(1)
where u and v indicate the coordinates of the Fourier space.
F−1 (x) defines the inverse Fourier transform accordingly.
Both the Fourier transform and its inverse procedure can be
efficiently implemented using FFT/IFFT algorithms (Frigo
& Johnson, 1998). The amplitude component A (x) (u, v)
and phase component P (x) (u, v) are expressed as:

A (x) (u, v) =
√
R2 (x) (u, v) + I2 (x) (u, v),

P (x) (u, v) = arctan

[
I (x) (u, v)

R (x) (u, v)

]
,

(2)

where R(x) (u, v) and I(x) (u, v) represent the real and
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Figure 3. The overall architecture of the FourierMamba. Our FourierMamba consists of multiscale hierarchical design Fourier Residual
State-Space Blocks(FRSSB). The core modules of FRSSB are Fourier Spatial Interaction SSM(FSI-SSM) and Fourier Channel Evolution
SSM(FCE-SSM).

imaginary parts respectively. The Fourier transform and its
inverse procedure are applied independently to each channel
of the feature maps.

Channel-dimension Fourier transform. We introduce
the channel-dimension Fourier transform (C-FFT) by in-
dividually applying the Fourier transform along the chan-
nel dimension for each spatial position. For each position
(h ∈ RH−1, w ∈ RW−1) within X ∈ RH×W×C , denoted
as x(h,w, 0 : C − 1) and abbreviated as y(0 : C − 1),
Fourier transform F (·) converts it to Fourier space as the
complex component F (y), which is expressed as:

F(y(0 : C − 1))(z) =
1

C

C−1∑
c=0

y(c)e−j2π c
C z, (3)

.

Similarly, the amplitude component A(y(0 : C−1))(z) and
phase component P(y(0 : C−1))(z) of F(y(0 : C−1))(z)

are expressed as:

A(y(0 : C − 1))(z)

=
√
R2 (y(0 : C − 1)) (z) + I2 (y(0 : C − 1)) (z),

P(y(0 : C − 1))(z)

= arctan

[
I (y(0 : C − 1)) (z)

R (y(0 : C − 1)) (z)

]
.

These operations can also be applied for the global vector de-
rived by the pooling operation. In this way, A(z) and P(z)
signify the magnitude and directional changes in the magni-
tude of various channel frequencies, respectively. Both of
these metrics encapsulate global statistics related to channel
information.

State Space Models. State Space Models (SSMs) serve
as the cornerstone for transforming one-dimensional inputs
into outputs through latent states, utilizing a framework
of linear ordinary differential equations. Mathematically,
SSMs can be formulated as follows, representing linear
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ordinary differential equations (ODEs):

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t) +Dx(t),
(4)

where, h(t) ∈ RN denotes the hidden state vector, where N
represents the size of the state. The parametersA ∈ RN×N ,
B ∈ RN , and C ∈ RN are associated with the state size N,
while D ∈ R1 represents the skip connection.

Discrete versions of these models, such as Mamba(Gu &
Dao, 2023), include a discretization step via the zero-order
hold (ZOH) method. This enables the models to adaptively
scan and adjust to the input data using a selective scanning
mechanism. This mechanism provides a global receptive
field with linear complexity, which is advantageous for im-
age restoration tasks.

3.2. Scanning in Fourier Space

Despite the unique characteristics of the selective scan mech-
anism (S6), it processes input data causally. Given the non-
causal nature of visual data, directly applying this strategy
to patches and flat images fails to estimate relations with un-
scanned patches, leading to a ”directional sensitivity” issue
constrained by the acceptance domain. Numerous meth-
ods have attempted to tackle this problem in the spatial
domain (Liu et al., 2024; Guo et al., 2024). However, for
image restoration, the Fourier space and its associated priors
are crucial. Hence, we explore addressing the ”directional
sensitivity” issue within this domain. Specifically, we cus-
tomize Fourier scanning strategies from both spatial and
channel dimensions.

For the spatial dimension, each pixel point in the Fourier
space contains global information, with its frequencies dis-
tributed in concentric circles. Scanning methods based on
spatial arrangements (Liu et al., 2024) disrupt the high-low
frequency relationships in the frequency domain, thus hin-
dering the modeling of image degradation information.

Therefore, we aim to devise a scanning method in the
Fourier space to progressively model the frequency charac-
teristics of images. An intuitive approach is to calculate the
Euclidean distance from each point in the spectrum to the
center point. On the shifted Fourier spectrum, the smaller
the distance to the center point, the lower the frequency. The
flaw of this intuitive approach is that for images of differ-
ent sizes, it requires recalculating the Euclidean distance
from each point to the center point. The additional computa-
tional overhead introduced by this flaw makes this approach
impractical in the field of image restoration.

In JPEG compression, zigzag coding is commonly used
among the Discrete Cosine Transform (DCT) coefficients
of JPEG, where it prioritizes the energy-concentrated low-
frequency coefficients at the beginning of the array, and

places the less significant high-frequency coefficients to-
wards the end, thereby facilitating more effective compres-
sion. Inspired by compression algorithms, we introduce a
method that adopts the zigzag coding approach to scan the
magnitude and phase spectra.

Additionally, due to the symmetry of the two-dimensional
Fourier transform, scanning the entire spectrum would dis-
rupt the symmetry in the Fourier space, potentially leading
to the collapse of network optimization. Therefore, we scan
half of the spectrum and then deduce the other half based on
the central symmetry of the amplitude and the anti-central
symmetry of the phase.

Specifically, we design two scanning strategies, as illus-
trated in the Figure 2. The first scanning method employs a
dual zigzag pattern named bilateral zigzag, starting from
the vertex of the highest frequency on one side of the spec-
trum, progressing in a zigzag pattern toward the center’s
low frequencies; similarly, it then zigzags to the opposite
side’s highest frequency. This scanning approach not only
models the association between high and low frequencies
but also takes into account the periodicity of the Fourier
spectrum. Due to the periodic nature of the Fourier trans-
form, the high-frequency ends on either side should, in fact,
be contiguous. The second method builds upon the low-
to-high frequency sequence established by zigzag scanning
and conducts a scan from low to high frequencies, which is
named progressive zigzag. This method is motivated by the
tendency of neural networks to initially learn low-frequency
information when extracting image characteristics. Follow-
ing the previous method (Liu et al., 2024; Guo et al., 2024),
we reverse the above two scanning methods as additional
scanning directions.

For the channel dimension Fourier space, since it is a one-
dimensional sequence arranged in order of low to high fre-
quencies, we directly scan it one-dimensionally. Similarly,
due to the symmetry of the Fourier transform, we scan
only half and derive the other half. Through Fourier space
scanning in both spatial and channel dimensions, we can
correlate the connections between frequencies in an orderly
manner, thereby making full use of frequency information
to improve rain removal.

3.3. FourierMamba

3.3.1. OVERALL FRAMEWORK

In Figure 3, we illustrate our proposed FourierMamba.
Given a rainy image I ∈ RH×W×3, FourierMamba first
uses 3× 3 convolution layers to generate shallow features
with dimensions of H ×W ×C, where H and W represent
height and width, and C denotes the number of channels.
Subsequently, we employ a multi-scale U-Net architecture
to obtain deep features. This stage consists of a stack of
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OursProgressiveBilateralClassicalInput GT

Figure 4. The error map between the GT and the restored images using various scanning methods in Fourier space. The two scanning
methods we propose can achieve smaller errors than using classical scanning method (Liu et al., 2024). And the combination of the two
scanning methods is better than either one.

Fourier Residual State-Space Groups, each containing sev-
eral Fourier Residual State-Space Blocks (FRSSB). The
FRSSB incorporates our two core designs: the Fourier Spa-
tial Interaction SSM block and the Fourier Channel Evolu-
tion SSM block.

3.3.2. FOURIER SPATIAL INTERACTION SSM

The structure of the Fourier Spatial Interaction State Space
Model (FSI-SSM) is shown in Figure 3. We first apply
LayerNorm to transform the input features Fin into Fl. To
facilitate the interaction between spatial and frequency in-
formation, FSI-SSM employs both a Fourier branch and a
spatial branch to collaboratively process Fin.

Fourier Branch: Fl is transformed into the Fourier spec-
trum through the Fast Fourier Transform, subsequently de-
composed into the amplitude spectrum A(Fl) and phase
spectrum P(Fl). The amplitude spectrum and phase spec-
trum are then processed separately using the progressive
frequency scanning method illustrated in Figure 2 to obtain
A′(Fl) and P ′(Fl).

A′(Fl) = FourScan(A(Fl)),

P ′(Fl) = FourScan(P(Fl)),
(5)

where FourScan is the sequence transformation using the
Fourier space scan described in Sec. 3.2. Following a series
of works (Liu et al., 2024; Guo et al., 2024; Zhen et al.,
2024), the sequence transformation employs the following
operation sequence: DWConv → SiLU → SSM →
LayerNorm. We then perform an inverse Fourier trans-
form on the processed spectrum and multiply it with the
output of SiLU.

Ff = (F−1(A′(Fl),P ′(Fl)))⊙ SiLU(Fl), (6)

where Ff is the output of the fourier branch, and ⊙ is the
Hadamard product.

Spatial Branch In the spatial domain, we feed the input
features Fl into two parallel sub-branches. One sub-branch

activates the features using the SiLU function. The other
sub-branch performs spatial Mamba on features after 1× 1
convolution. Specifically, spatial Mamba adopts the same
operation sequence as the above frequency branch but the
scanning in SSM uses the two-dimensional selective scan-
ning module shown in Figure 3, which follows previous
work (Liu et al., 2024; Guo et al., 2024). Finally, the out-
puts of the two sub-branches are multiplied element-wise to
obtain the output Fs.

Fs = SpaScan(Conv(Fl))⊙ SiLU(Fl), (7)

where Conv is 1 × 1 convolution and SpaScan is the spa-
tial Mamba mentioned above. Subsequently, we employ a
residual connection to add the spatial output to Fin. The
spatial branch captures global features in the spatial domain
which complement the frequency correlations captured by
the Fourier branch in the frequency domain, thereby bene-
fiting the performance of image deraining. Hence, we con-
catenate the outputs of the spatial and frequency branches
and use a 1 × 1 convolution for the fusion of spatial and
frequency information.

3.3.3. FOURIER CHANNEL EVOLUTION SSM

Previous work (Guo et al., 2024) claims that selecting key
channels can avoid channel redundancy in SSM. Since each
channel contains the information of all channels after the
channel-dimension Fourier transform (C-FFT), we perform
channel interaction in the Fourier domain to efficiently cor-
relate different frequencies of channels. As depicted in Fig-
ure 3, our proposed Fourier Channel Evolution SSM (FCE-
SSM) consists of three sequential parts: applying the Fourier
transform along the channel dimension to obtain channel-
wise Fourier domain features, scanning its amplitude and
phase, then restoring to the spatial domain. Specifically, as-
suming the input features are denoted as Fr ∈ RHr×Wr×Cr ,
we first perform global average pooling on it.

Fg =
1

HrWr

Hr−1∑
h=0

Wr−1∑
w=0

Fg(h,w), (8)
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Figure 5. Qualitative comparison on Rain100H (Yang et al., 2017). Zoom in for better visualization.

where Fg ∈ R1×1×Cr corresponds to the center point of
the amplitude spectrum of Fr (see supplementary material),
which effectively encapsulates the global information of the
feature. Then, we use the channel-dimensional Fourier trans-
form shown in Equ. 3 on Fg to obtain F(Fg)(z). Based
on this, we use Equ. 4 for F(Fg)(z) to obtain its ampli-
tude component A(Fg)(z) and phase component P(Fg)(z).
Since the amplitude spectrum and phase spectrum have ob-
vious information meaning, we choose to perform Mamba
scanning on these two components.

A(Fg)(z)
′ = ChaScan(A(Fg)(z)),

P(Fg)(z)
′ = ChaScan(P(Fg)(z)),

(9)

where ChaScan is a one-dimensional sequence transfor-
mation that uses the following sequence of operations:
DWConv → SiLU → SSM → LayerNorm. Its scan-
ning method is shown in Figure 2. After the Mamba cor-
relates different frequencies in the channel dimension, we
perform an inverse Fourier transform on it and multiply the
result with the channel features after SiLU activation.

Fa = (F−1(A(Fg)(z)
′,P(Fg)(z)

′))⊙ SiLU(Fg), (10)

where Fa ∈ R1×1×Cr is the channel feature after corre-
lating different frequencies. Finally, we multiply it with
the spatial feature in a form of attention to get the output
Fc ∈ RHr×Wr×Cr .

Fc = Fa ⊙ Fr. (11)

3.3.4. OPTIMIZATION

We impose constraints in both the spatial and frequency
domains. In the spatial domain, we utilize the L1 loss
between the final output Yout and the ground truth Ygt. In
the frequency domain, we apply the L1 loss based on the
Fourier transform. The overall loss function is formulated
as follows:

Ltotal = ∥Yout − Ygt∥1 + λ ∥F(Yout)−F(Ygt)∥1 , (12)

where λ is the balancing weight. In particular,λ is set to
0.02 empirically.

4. Experiment
4.1. Experimental Settings

Datasets. For training, we employ the widely used Rain13k
dataset (Chen et al., 2021). It contains 13,712 image
pairs in the training set, and we evaluate the results on
Rain100H (Yang et al., 2017), Rain100L (Yang et al., 2017),
Test2800 (Fu et al., 2017b), and Test1200 (Zhang & Patel,
2018).

Evaluation Metrics. Following previous work (Zamir et
al., 2021; 2022), we adopt two commonly used quantitative
metrics for evaluations: Peak Signal-to-Noise Ratio (PSNR)
(Huynh-Thu & Ghanbari, 2008) and Structural Similarity
Index (SSIM) (Wang et al., 2004).

Implementation Details. Our model is implemented within
the PyTorch framework and executed on an NVIDIA A100
GPU. The number of blocks per layer has an impact on both
the model’s parameter count and its deraining performance.
After balancing the weights, we configure the blocks per
layer as [2, 3, 3, 4, 3, 3, 2], which allows us to achieve com-
mendable performance with a reasonable number of parame-
ters. We adopt the progressive training strategy. Specifically,
we set the total number of iterations to 80,000 and image
sizes to [160, 256, 320, 384], with the corresponding batch
sizes of [8, 4, 2, 1]. We utilize the Adam optimizer with
default parameters. The initial learning rate is established
at 3× e−4, followed by a gradual decay to 1× e−6 using a
cosine annealing schedule.

4.2. Comparison with State-of-the-art Methods

Comparison on Benchmark Datasets. We first verify the
effectiveness of FourierMamba through training models on
a mixture of synthetic datasets. We compare our method
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Table 1. Quantitative comparison (PSNR/SSIM) for Image Deraining on five benchmark datasets. The highest and second-highest
performances are marked in bold and underlined. ’-’ indicates the result is not available.

Method Venue Rain100H (Yang et al., 2017) Rain100L (Yang et al., 2017) Test2800 (Fu et al., 2017b) Test1200 (Zhang & Patel, 2018) Param(M) GFlopsPNSR ↑ SSIM ↑ PNSR ↑ SSIM ↑ PNSR ↑ SSIM ↑ PNSR ↑ SSIM ↑
DerainNet (Fu et al., 2017b) TIP’17 14.92 0.592 27.03 0.884 24.31 0.861 23.38 0.835 0.058 1.453

UMRL (Yasarla & Patel, 2019) CVPR’19 26.01 0.832 29.18 0.923 29.97 0.905 30.55 0.910 0.98 -
RESCAN (Li et al., 2018) ECCV’18 26.36 0.786 29.80 0.881 31.29 0.904 30.51 0.882 1.04 20.361
PreNet (Ren et al., 2019) CVPR’19 26.77 0.858 32.44 0.950 31.75 0.916 31.36 0.911 0.17 73.021

MSPFN (Jiang et al., 2020) CVPR’20 28.66 0.860 32.40 0.933 32.82 0.930 32.39 0.916 13.22 604.70
SPAIR (Purohit et al., 2021) ICCV’21 30.95 0.892 36.93 0.969 33.34 0.936 33.04 0.922 - -
MPRNet (Zamir et al., 2021) CVPR’21 30.41 0.890 36.40 0.965 33.64 0.938 32.91 0.916 3.64 141.28

Restormer (Zamir et al., 2022) CVPR’22 31.46 0.904 38.99 0.978 34.18 0.944 33.19 0.926 24.53 174.7
Fourmer (Zhou et al., 2023) ICML’23 30.76 0.896 37.47 0.970 - - 33.05 0.921 0.4 16.753
IR-SDE (Luo et al., 2023a) ICML’23 31.65 0.904 38.30 0.980 30.42 0.891 - - 135.3 119.1
MambaIR (Guo et al., 2024) arxiv’24 30.62 0.893 38.78 0.977 33.58 0.927 32.56 0.923 31.51 80.64
VMambaIR (Shi et al., 2024) arxiv’24 31.66 0.909 39.09 0.979 34.01 0.944 33.33 0.926 - -

FreqMamba (Zhen et al., 2024) arxiv’24 31.74 0.912 39.18 0.981 34.25 0.951 33.36 0.931 14.52 36.49

FourierMamba(Ours) - 31.79 0.913 39.73 0.986 34.23 0.949 34.76 0.938 17.62 22.56

Input PreNet MPRNet Restormer MambaIR VmambaIR FreqMamba Ours

Figure 6. Qualitative comparison of real-world rainy images from Internet-Data (Wang et al., 2019).

with these deraining methods: DerainNet (Fu et al., 2017a),
UMRL (Yasarla & Patel, 2019), RESCAN (Li et al., 2018),
PreNet (Ren et al., 2019), MSPFN (Jiang et al., 2020) ,
SPAIR (Purohit et al., 2021) , MPRNet (Zamir et al., 2021) ,
Restormer(Zamir et al., 2022), Fourmer (Zhou et al., 2023),
IR-SDE (Luo et al., 2023b), MambaIR (Guo et al., 2024)
VMambaIR(Shi et al., 2024) and FreqMamba(Zhen et al.,
2024). Table 1 reports the performance evaluation on four
datasets. It can be seen that our method achieves the best
performance on most datasets, which emphasizes the effec-
tiveness of FourierMamba in improving deraining perfor-
mance.

To demonstrate the enhanced fidelity and detail levels ex-
hibited by the images generated by our proposed Fouri-
erMamba, we compare the visual quality of challenging
degraded images from the Rain100H dataset in Figure 5.
Our method achieves excellent results when faced with com-
plex or extremely severe rain streaks. Compared to previous
methods, our FourierMamba achieves impeccable perfor-
mance in both global and local restoration. For instance, by

zooming into the red boxed area in Figure 5, our method
removes more rain streak residues while better restoring
texture details.

Real-world Deraining Transferred from Synthetic
Datasets.

To verify the generalization of the proposed method in real-
world scenarios, we use the model trained on Rain13k to
examine the real-world deraining capabilities. We evaluate
the model trained on the synthetic dataset on the real-world
dataset Inrernet-Data (Wang et al., 2019) without ground
truth. As shown in Figure 6, FourierMamba is able to re-
move these complex rains and restore the clean background.
In contrast, other deraining methods do not handle the effect
of rain cleanly. More generalization results in real-world
scenarios can be found in the Appendix.

Training On Real-world Rainy Datasets.

To further explore the potential of the proposed method, we
use the real-world dataset SPAData (Wang et al., 2019) to
train FourierMamba. In Table 2, our method is compared
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Table 2. Quantitative comparison of training and testing on the real-world dataset SPA-Data.
Method RESCAN PReNet SPDNet DualGCN Restormer DRSformer Ours
PSNR 38.11 40.16 43.20 44.18 47.98 48.54 49.18
SSIM 0.9707 0.9816 0.9871 0.9902 0.9921 0.9924 0.9931

Table 3. Ablation studies of key designs in the proposed method.
w/o FSI-SSM w/o FCE-SSM w/o SDF w/o CDF Ours

PSNR 39.05 39.08 38.25 38.72 39.73
SSIM 0.9835 0.9836 0.9810 0.9827 0.9856

with these methods RESCAN (Li et al., 2018), PReNet (Ren
et al., 2019), SPDNet (Yi et al., 2021), DualGCN (Fu
et al., 2021), Restormer (Zamir et al., 2022), and DRS-
former (Chen et al., 2023a) with the same experimental
settings. Surprisingly, we observe that FourierMamba ac-
quires significant real-world rain removal capabilities. This
shows that our method can effectively learn the precipitation
model of real rain.

4.3. Ablation Studies

We perform ablations on the key designs and scanning meth-
ods of the framework on the Rain100L.

Fourier Spatial Interaction SSM (FSI-SSM) and Fourier
Channel Evolution SSM (FCE-SSM). We replace the
mamba scan in FSI-SSM and FCE-SSM with 1×1 convolu-
tion, called w/o FSI-SSM and w/o FCE-SSM respectively. It
can be seen from Table 3 that since 1×1 convolution cannot
model the dependence of different frequencies, its perfor-
mance is worse than the mamba scan in the Fourier domain
in both the spatial dimension and the channel dimension.

Fourier prior. We do not use Fourier transform in the
spatial dimension and channel dimension respectively, but
directly perform mamba scanning, which are called without
spatial dimension Fourier (w/o SDF) and without channel
dimension Fourier (w/o CDF) respectively. It can be seen
from Table 3 that after losing the Fourier prior in the spatial
dimension and channel dimension, the performance drops
significantly. This proves the effectiveness of Fourier prior
for removing rain from images. The Fourier prior also
improves the visual effect; please refer to the Appendix.

Scanning method in Fourier space. We compare several
scanning methods of the spatial dimension Fourier space,
with the same amount of calculation. Table 4 illustrates
that the performance of the two scanning methods we pro-
posed is better than the classic two-dimensional scanning
method (Liu et al., 2024). And thanks to complementar-
ity, the combination of the two methods can also further
improve performance. The visual comparison in Figure 4
supports this.

Table 4. Ablation of different scanning methods in Fourier space.
Classic(Liu et al., 2024) Bilateral Progressive Ours

PSNR 38.82 39.31 39.28 39.73
SSIM 0.9817 0.9844 0.9843 0.9856

5. Conclusion
In this paper, we propose a novel image deraining frame-
work, FourierMamba, which utilizes mamba to correlate
frequencies in the Fourier space, thus fully exploiting fre-
quency information. Specifically, we design the mamba
framework by integrating the unique arrangement of fre-
quency orderings within the Fourier domain across spatial
and channel dimensions. In the spatial dimension, we devise
two zigzag-based methods to scan frequencies, systemat-
ically correlating them. In the channel dimension, due to
the ordered arrangement of frequencies along the axis, we
directly apply mamba for frequency correlation. This work
introduces a novel strategy to address the underutilization
of frequency information in image deraining that affects per-
formance. Extensive experiments on multiple benchmarks
validate the effectiveness of the proposed method.

Impact Statement
Due to uncontrollable weather conditions, image acquisi-
tion systems inevitably suffer interference from rain. Images
captured during rainy conditions experience a significant de-
cline in the quality of object details and contrast due to rain
present in the air. Images tainted by rain can also severely
impact the performance of outdoor computer vision sys-
tems, including autonomous driving and video surveillance.
Therefore, image deraining itself holds significant research
and application value. Our proposed FourierMamba com-
bines the priors of Fourier space and the correlation mod-
eling capability of Mamba, enabling the network to tackle
more complex image deraining tasks. However, from a soci-
etal perspective, negative consequences might also follow.
For instance, over-reliance on image deraining technology
could introduce deviations from actual image textures, af-
fecting effective judgment in autonomous driving and video
surveillance. In these cases, it is necessary to combine
expert knowledge to make rational decisions.
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A. Appendix
A.1. Limitation

In this work, we introduce FourierMamba and extensively validate its efficacy for image deraining through experiments.
Our experiments primarily leverage the widely used U-shaped architecture. We plan to further validate the effectiveness of
combining Fourier priors with Mamba on more architectures, such as isotropic and multi-stage architecture.

Furthermore, given the proven priors of Fourier transform for capturing rain streaks, we choose to first validate FourierMamba
on image deraining. Our work could also offer novel insights for other low-level vision fields, though it may necessitate
integrating priors tailored to the distinct differences between various low-level tasks. Given the universal need across
various low-level tasks for Fourier priors and the importance of correlating frequencies, the performing improvements can
be positively anticipated. We will explore applications in other low-level tasks in our future work.

A.2. More related works

Image deraining. Traditional image deraining methods focus on separating rain components by utilizing meticulously
designed priors, such as Gaussian Mixture Models (Li et al., 2016), Sparse Representation Learning (Gu et al., 2017; Fu
et al., 2011), and Directional Gradient Priors (Ran et al., 2020). Although these methods are insightful, they often struggle
to cope with complex precipitation patterns and the diverse real-world scenarios. The advent of deep learning has heralded
a new era for image deraining. (Fu et al., 2017b) introduces pioneering deep residual networks for image deraining. The
initiation of CNNs marked a significant advancement, facilitating more nuanced and adaptive processing of rain streaks
across a vast array of images (Yang et al., 2017; Zhang & Patel, 2018). With the evolution of transformers, the development
of architectures that incorporate attention mechanisms (Valanarasu et al., 2022; Wang et al., 2022b) has further refined
the capacity to recognize and eliminate rain components, addressing previous shortcomings in model generalization and
detail preservation. COIC (Ran et al., 2024) presents a Context-based Instance-level Modulation mechanism integrated with
rain-/detail-aware contrastive learning to enhance CNN and Transformer models for improved image deraining on mixed
datasets. (Hsu & Chang, 2023) proposes a wavelet approximation-aware residual network, which efficiently removes rain
from low-frequency structures and high-frequency details at each level separately. In this work, we propose a novel baseline
with a block based on Fourier and Mamba to enhance deraining performance.

A.3. Inference time of the model

In this section, we compare the inference time of the proposed method with several state-of-the-art methods. The comparison
results of the model inference time using 512 × 512 images on NVIDIA RTX 4090 GPU are shown in Table 5. It can be
seen that the inference time of our model is comparable to that of other methods.

Table 5. Runtime comparison between our method and other approaches.
Method MambaIR VmambaIR FreqMamba Restormer Ours

Runtime (s) 0.534s 0.423s 1.837s 0.253s 0.523s

A.4. Results on test100

In this section, we add some performance comparisons with other methods on Test100 as shown in Table 6. All methods are
trained on rain13k and then tested on Test100. It can be seen that our method still achieves excellent deraining performance.

Table 6. Performance comparison on Test100. PSNR (↑) and SSIM (↑) are reported.
Metric PReNet MPRNet Restormer MambaIR VmambaIR FreqMamba Ours
PSNR 24.81 30.27 32.00 31.82 31.84 31.89 32.07
SSIM 0.851 0.897 0.923 0.922 0.918 0.921 0.925

A.5. Ablation studies and computational overhead

To further demonstrate the effectiveness of Mamba, we present the impact of computational overhead in the first ablation
study. For the ablation of FSI-SSM, we compress our model by reducing the number of channels and blocks, achieving a
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computational cost similar to that of the ”w/o FSI-SSM” variant. The comparison is shown in Table 7. As observed, the
model with FSI-SSM still achieves better performance. For the ablation of FCE-SSM, the computational overhead of the
variant without FCE-SSM (w/o FCE-SSM) in Table 3 is similar to that of the model with FCE-SSM. The ”w/o FCE-SSM”
variant stacks several 1× 1 convolutions with residual connections to match the parameter count of Mamba. The specific
computational overhead and performance are shown in Table 8. It is evident that, with a similar parameter count, our method
outperforms the ”w/o FCE-SSM” variant.

Table 7. The computational overhead of the ablation study on FSI-SSM.
Method PSNR SSIM Flops(G) Params(M)

w/o FSI-SSM 39.05 0.9835 14.42 10.82
Ours 39.37 0.9845 14.64 10.12

Table 8. The computational overhead of the ablation study on FCE-SSM.
Method PSNR SSIM Flops(G) Params(M)

w/o FCE-SSM 39.08 0.9836 21.08 17.81
Ours 39.73 0.9856 22.56 17.62

A.6. Reasons for using channel-dimensional Fourier

To address the limitation of Fourier transform not accounting for channel evolution, we introduce channel-dimension Fourier
transform. A pivotal motivation is due to different channels often displaying varying properties of degradation information,
which also determine the global information of the image when conjunct different channels. A comparable deduction can be
drawn from style transfer research, where the Gram matrix signifies global style information (Li et al., 2017). This inspires
us to employ Fourier transform on the channel dimension to enrich the representation of global information.

A.7. The Relationship between Global Average Pooling and Fourier Transform

We believe that the global average pooling equals A(0, 0) in the amplitude. In the Appendix, we further verify this. Typically,
the Spatail Fourier transform is expressed as:

F (x) (u, v) =
1√
HW

H−1∑
h=0

W−1∑
w=0

x (h,w) e−j2π( h
H u+ w

W v). (13)

The center point of the amplitude spectrum means that u and v are 0. The formula is as follows:

F (x) (0, 0) =
1√
HW

H−1∑
h=0

W−1∑
w=0

x (h,w) . (14)

It can be seen that the above formula is essentially to find the average value of the entire feature map. Therefore, global
average pooling (GAP) is equivalent to taking the center point of the amplitude spectrum.

A.8. Performance on other low-level vision tasks

To further demonstrate the effectiveness of our approach, we investigate the performance of our model on other low-
level vision tasks. Following FreqMamba (Zhen et al., 2024), we evaluate our method on low-light enhancement and
image dehazing. We use the LOL-V1 (Wei et al., 2018) and LOL-V2-synthetic (Wei et al., 2018) datasets to evaluate the
performance of our method on low-light enhancement, and the Dense-Haze (Ancuti et al., 2019) and NH-HAZE (Ancuti
et al., 2020) datasets are used to evaluate the performance of our method on real-world image dehazing. The results for
low-light enhancement are shown in the Table 9. The comparison results for image dehazing are presented in the Table 10.
It can be seen that our method also demonstrates significant potential for other image restoration tasks.

A.9. Differences between the proposed method and FreqMamba

Our method focuses on customized design based on the characteristics of Fourier space, combining Fourier priors with state
space models and exploring the potential of introducing Mamba directly in the Fourier domain. In contrast, FreqMamba
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Table 9. Comparison of methods on LOL-V1 and LOL-V2-Syn datasets.

Method LOL-V1 LOL-V2-Syn
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

RetinexNet (Wei et al., 2018) 18.38 0.7756 19.92 0.8847
KinD (Zhang et al., 2019) 20.38 0.8248 22.62 0.9041
ZeroDCE (Guo et al., 2020) 16.8 0.5573 17.53 0.6072
KinD++ (Zhang et al., 2021) 21.3 0.8226 21.17 0.8814
URetinex-Net (Wu et al., 2022) 21.33 0.8348 22.89 0.895
FECNet (Huang et al., 2022) 22.24 0.8372 22.57 0.8938
SNR-Aware (Xu et al., 2022) 23.38 0.8441 24.12 0.9222
FreqMamba (Zhen et al., 2024) 23.57 0.8453 24.46 0.9355
Ours 23.78 0.8467 24.75 0.9452

Table 10. Comparison of methods on Dense-Haze and NH-HAZE datasets.

Method Dense-Haze NH-HAZE
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

DCP (He et al., 2010) 10.06 0.3856 10.57 0.5196
DehazeNet (Cai et al., 2016) 13.84 0.4252 16.62 0.5238
GridNet (Bozcan et al., 2021) 13.31 0.3681 13.80 0.5370
MSBDN (Dong et al., 2020) 15.37 0.4858 19.23 0.7056
AECR-Net (Wu et al., 2021) 15.80 0.4660 19.88 0.7173
FreqMamba (Zhen et al., 2024) 17.35 0.5827 19.93 0.7372
Ours 18.91 0.6763 20.03 0.7508

operates in the Fourier space using only 1×1 convolutions, which fails to fully utilize the rich frequency information inherent
to the Fourier domain. Specifically, FreqMamba applies Mamba scanning in a wavelet-transformed domain. However, the
wavelet-transformed domain lacks the notable advantages of the Fourier domain, such as the Fourier transform’s ability
to decouple degradations and its global representation properties. Additionally, after wavelet decomposition, FreqMamba
divides the image into multiple patches and performs spatial scanning within each patch. This design limits FreqMamba’s
ability to effectively model frequency correlations.

In contrast, our method performs Mamba scanning directly in the Fourier domain, fully leveraging the global characteristics
of the Fourier transform. This allows our approach to better capture rain streaks, which often exhibit high apparent
repetitiveness. Consequently, from a visual perspective, our method demonstrates significantly better performance in
removing rain streaks. As shown in Figure 7, we show the feature maps and restoration results of FreqMamba and our
method. It can be seen that our method can better capture the rain lines and thus remove the rain lines more cleanly.

Input Freq_fea Ours_fea Freq_result Ours_result GT

Figure 7. Feature maps and restoration results of FreqMamba and our method.

A.10. Comparison with other methods such as DRSformer and FADformer

In this section, we compare our method with RCDNet (Wang et al., 2020),MPRNet (Zamir et al., 2021), SPDNet (Yi et al.,
2021),DualGCN (Fu et al., 2021),HCN (Fu et al., 2023),Uformer (Wang et al., 2022b),IDT (Xiao et al., 2022),Restormer (Za-
mir et al., 2022),DRSformer (Chen et al., 2023a) and FADformer (Gao et al.), as shown in Table 11. To ensure fairness,
we adopt the same experimental setup as the other methods, performing independent training and testing on each dataset,
including Rain200L/H (Yang et al., 2017), DID-Data (Zhang & Patel, 2018), DDN-Data (Fu et al., 2017b), and SPA (Wang
et al., 2019). The results demonstrate that our method achieves superior performance on the majority of the datasets.
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Table 11. Performance comparison of methods across various datasets.

Method
Rain200L Rain200H DID-Data DDN-Data SPA-Data Average

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
RCDNet 39.17 0.9885 30.24 0.9048 34.08 0.9532 33.04 0.9472 43.36 0.9831 35.97 0.9554
MPRNet 39.47 0.9825 30.67 0.911 33.99 0.959 33.1 0.9347 43.64 0.9844 36.17 0.9543
SPDNet 40.5 0.9875 31.28 0.9207 34.57 0.956 33.15 0.9457 43.2 0.9871 36.54 0.9594

DualGCN 40.73 0.9886 31.15 0.9125 34.37 0.962 33.01 0.9489 44.18 0.9902 36.68 0.9604
HCN 41.31 0.9892 31.34 0.9248 34.7 0.9613 33.42 0.9512 45.03 0.9907 37.16 0.9634

Uformer 40.2 0.986 30.8 0.9105 35.02 0.9621 33.95 0.9545 46.13 0.9913 37.22 0.9609
IDT 40.74 0.9884 32.1 0.9344 34.89 0.9623 33.84 0.9549 47.35 0.993 37.78 0.9666

Restormer 40.99 0.989 32.0 0.9329 35.29 0.9641 34.20 0.9571 47.98 0.9921 38.09 0.9670
DRSformer 41.23 0.9894 32.17 0.9326 35.35 0.9646 34.35 0.9588 48.54 0.9924 38.32 0.9676
FADformer 41.80 0.9906 32.48 0.9359 35.48 0.9657 34.42 0.9602 49.21 0.9934 38.67 0.9691

Ours 42.27 0.9908 32.71 0.9395 35.49 0.9659 35.58 0.9599 49.18 0.9931 39.05 0.9698

A.11. Difference between mamba and convolution in processing Fourier frequencies

First, Mamba utilizes sequence modeling to integrate information across all frequency bands, effectively leveraging the
complementary relationships between different bands. In contrast, convolution, as a local operation, struggles to holistically
model global features across all frequency bands when processing frequency information in the Fourier domain. This
limitation significantly constrains its capacity in the Fourier space. Second, Mamba’s sequence modeling is orderly, which
can help the network establish an orderly dependency relationship between different frequencies. This characteristic is critical
for modeling image degradation information. Conversely, convolution is insufficient in capturing the dependencies between
high and low frequencies in the Fourier domain, thereby weakening its ability to accurately represent degradation features.
In summary, based on these two advantages, Mamba achieves better coordination of high-frequency and low-frequency
information in the Fourier domain during the image restoration process.

We process the Fourier frequencies using both Mamba and convolution separately, and then visualize their features, as
shown in Figure 8. It can be seen our method (i.e., Mamba) not only captures rain streaks effectively but also extracts
structural information from the background with high accuracy.

Input Mamba GTConvolution

Figure 8. Feature visualization comparison of frequency-domain convolution and mamba on Rain100H.

A.12. More visual deaining comparison on synthetic datasets

In this section, we provide more visual deraining comparisons on synthetic datasets to further demonstrate the effectiveness
of our method. Specifically, we perform visual comparisons on several datasets in Table 1. Figure 9 shows more visualization
results on Rain100H. As with the results in the main text, it shows that our method can better remove rain effects and prevent
artifacts, which is attributed to the progressive frequency correlation. Figures 10, 11, and 12 show the visualization results
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MAXIM RestormerPreNet MPRNet Ours GTInput

Figure 9. More qualitative comparison on Rain100H (Yang et al., 2017).

Table 12. Quantitative comparison of testing on the real-world dataset SPA-Data.
Method PReNet RESCAN HiNet MSPFN Restormer MPRNet Ours
PSNR 31.33 31.56 33.89 34.03 34.18 34.54 35.27
SSIM 0.9501 0.9423 0.9500 0.9471 0.9493 0.9548 0.9575

on the simulation datasets Rain100L, Test2800, and Test1200, respectively.

A.13. More real-world detraining results by using synthetic data

In this section, we provide more real-world rain removal cases to verify the generalization ability of the model trained
on the synthetic dataset (rain13k). The quantitative comparisons directly tested on SPA-Data are shown in Table 12. The
visualization results are shown in Figure 13. Our method is superior to other methods in rain removal and detail recovery. To
further demonstrate its generalization ability in the real world, we also tested it on a real-world dataset RE-RAIN —(Chen
et al., 2023b) , as shown in Figure 14. FourierMamba can obtain the most visually pleasing results. In addition, we also
tested our method directly on RainDS-Real (Quan et al., 2021), and the quantitative results are shown in the table 13.
Figure 15 shows the visualization results on RainDS-Real. It can be seen that our method can effectively remove real rain.

A.14. More real-world visual deraining results by training real-world rainy images

Training and testing on real-world rainy images can verify the representation ability of the model in the real world. In
Section 4.2, we use the real-world dataset SPA-Data to train FourierMamba and report quantitative results. In this section,
we show the visualization results of training and testing using SPA-Data, as shown in Figure 16. It can be seen that our
method excels at removing rain and recovering details to obtain pleasing visual results. In addition, we also train and test
FourierMamba on RainDS-Real (Quan et al., 2021) to further verify its effectiveness in real-world scenes. As shown in
Table 14, our method can still achieve excellent performance.

A.15. Metrics that can better reflect human perceptions

In this section, we use some metrics that better reflect human perception to evaluate our method. We use the more widely
used perceptual metrics BRISQUE (Mittal et al., 2012b), NIQE (Mittal et al., 2012a), SSEQ (Liu et al., 2014), as shown in
Table 15. It can be seen that our method can also achieve excellent performance on perceptual metrics.

Table 13. Quantitative results of testing on the real-world dataset RainDS-Real (Quan et al., 2021).
Method PReNet RESCAN Restormer HINet MSPFN MPRNet Ours
PSNR 24.15 24.29 24.54 24.71 24.76 25.07 25.12
SSIM 0.711 0.717 0.727 0.9731 0.729 0.736 0.738
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Input PreNet MPRNet MAXIM Restormer Ours GT

Figure 10. Qualitative comparison on Rain100L (Yang et al., 2017). Zoom in for better visualization.

OursInput GTMAXIM RestormerMPRNet

Figure 11. Qualitative comparison on Test2800 (Fu et al., 2017b). Zoom in for better visualization.
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Input PreNet MPRNet MAXIM Restormer Ours GT

Figure 12. Qualitative comparison on Test1200 (Zhang & Patel, 2018). Zoom in for better visualization.

Input PreNet MPRNet Restormer Ours GT

Figure 13. Qualitative comparison of real-world rainy images from SPA-Data(Wang et al., 2019).
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Input PreNet MPRNet Restormer Ours

Figure 14. Qualitative comparison of real-world rainy images from RE-RAIN (Chen et al., 2023b).

Input PreNet MPRNet Restormer Ours GT

Figure 15. Qualitative results of real-world rainy images from RainDS-Real. (Quan et al., 2021).
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Restormer DRSformerDualGCN SPDNet Ours GTInput

Figure 16. Qualitative results of training and testing on SPA-Data. (Wang et al., 2019).

Table 14. Quantitative comparison of training and testing on the real-world dataset RainDS-Real.
Method PReNet MSPFN RCDNet MPRNet SwinIR Restormer Ours
PSNR 26.43 26.45 26.71 27.51 27.53 27.57 27.69
SSIM 0.7294 0.7270 0.7180 0.7355 0.7425 0.7438 0.7482

A.16. More about the Optimization

In the main body, we describe that apply the L1 loss based on the Fourier transform. Here, we introduce the loss function in
the frequency domain in further detail. we first use the Fourier transform to convert Yout and Ygt into the Fourier space.
Then, the L1-norm of the amplitude difference and phase difference between Yout and Ygt are calculated and summed to
produce the total frequency loss as following:

∥F(Yout)−F(Ygt)∥1 = ∥A(Yout)−A(Ygt)∥1 + ∥P(Yout)− P(Ygt)∥1 . (15)

A.17. Ablation study on different frequency domain loss functions

We use three additional frequency domain loss functions: Phase Consistency Loss (PCL), Frequency Distribution Loss
(PDL), and Focal Frequency Loss (FFL) (Jiang et al., 2021) for comparison with the L1 frequency domain loss we use. PCL
is defined as the mean squared error of the phase difference between two images in the frequency domain, expressed as:

LPCL =
1

HW

∑
u,v

|P(Yout)(u, v)− P(Ygt)(u, v)|2 . (16)

FDL represents the difference in frequency domain amplitude distributions between two images, expressed as:

LFDL =
1

HW

∑
u,v

|A(Yout)(u, v)−A(Ygt)(u, v)|2 . (17)

FFL focuses on frequency components that are difficult to synthesize by down-weighting the easier ones, expressed as:

w(u, v) = |F(Yout)(u, v)−F(Ygt)(u, v)|α,

LFFL =
1

HW

H−1∑
u=0

W−1∑
v=0

w(u, v)|F(Yout)(u, v)−F(Ygt)(u, v)|2,
(18)

where F(·)(u, v) represents the Fourier Transform, w(u, v) is the weight for the spatial frequency at(u, v), and α is the
scaling factor for flexibility (α = 1 in practice).
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Table 15. Performance comparison of different methods on various datasets. Metrics include BRISQUE, NIQE, and SSEQ.
Dataset Rain100L Rain100H Test2800 Test1200 Test100
Method BRISQUE ↓ NIQE ↓ SSEQ ↓ BRISQUE ↓ NIQE ↓ SSEQ ↓ BRISQUE ↓ NIQE ↓ SSEQ ↓ BRISQUE ↓ NIQE ↓ SSEQ↓ BRISQUE ↓ NIQE ↓ SSEQ ↓
MPRNet 17.791 6.816 12.702 16.287 6.973 13.860 15.782 6.251 9.470 23.434 5.742 12.653 23.526 6.903 12.767
MAXIM 11.960 6.402 9.658 14.622 6.929 8.034 15.272 6.114 8.760 25.026 5.573 14.760 22.433 6.770 12.615
Restormer 16.253 6.555 11.480 17.606 6.843 13.953 18.601 6.169 9.579 25.507 5.534 16.121 23.937 7.024 14.382
MambaIR 15.662 6.553 11.527 10.350 6.104 8.719 13.246 6.165 8.332 20.743 5.570 10.877 17.886 5.969 8.390
VmambaIR 16.073 6.651 11.061 11.686 5.713 8.302 13.465 6.114 8.306 20.851 5.553 10.610 17.805 5.751 8.548
FreqMamba 14.894 6.465 10.286 15.151 5.450 4.704 19.942 5.439 10.371 22.132 5.785 10.742 18.934 5.898 7.247
Ours 12.178 6.261 10.008 10.607 6.009 5.826 12.895 5.258 8.286 21.467 5.538 10.839 17.738 5.958 7.102

We conduct ablation comparison experiments on these loss functions, as shown in Table 16. It can be seen that the
performance obtained by these four loss functions is similar. The focus of this work is on the design of the network
architecture, so we follow existing methods (Zhou et al., 2023; Zhen et al., 2024) to use the L1 norm in the frequency
domain. We will explore more frequency-domain loss functions in future work.

Table 16. Comparison results of different frequency-domain loss functions.
PCL FDL FFL Ours

PSNR 39.67 39.69 39.75 39.73
SSIM 0.9848 0.9852 0.9859 0.9856

A.18. More visualizations for ablation studies

In Section 4.3, we perform ablation studies on the key designs and scanning methods of the proposed method. To further
verify the effectiveness of the proposed method, we provide visualizations of the above ablation studies. Specifically, we
subtract the restored images obtained from each ablation study from the ground truth to show the effect of each design.
Figure 17 shows the visualization of the ablation study in Table 3. It can be seen that all designs have a significant effect on
rain removal. Figure 18 shows the visualization of the ablation study of various scanning methods in Table 4. Both Figures 4
and Figures 18 illustrate that orderly correlation of different frequencies can promote rain removal.

Input OursW/o FCE SSM W/o CDFW/o SDFW/o FSI SSM

Figure 17. Visualization of ablation studies of various key designs of the proposed method.
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Input GT Classical OursProgressiveBilateral

Figure 18. Visualization of ablation studies of different scanning methods in Fourier space.
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