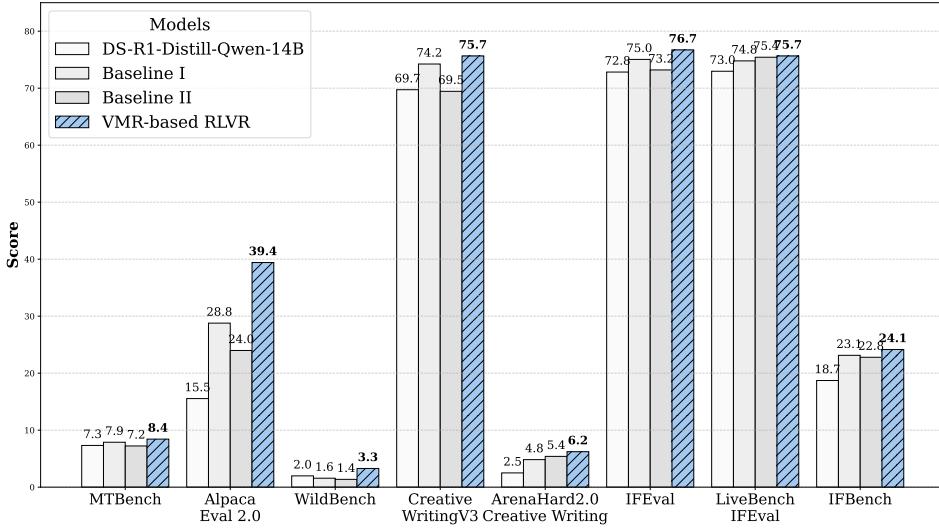


# EXTENDING RLVR TO OPEN-ENDED TASKS VIA VERIFIABLE MULTIPLE-CHOICE REFORMULATION

005 **Anonymous authors**

006 Paper under double-blind review



026 Figure 1: Overall performance on eight open-ended benchmarks. By applying our proposed VMR  
 027 method to the pairwise data, the resulting approach consistently improves performance across vari-  
 028 ous benchmarks, even outperforming strong baselines I&II driven by model-based rewarding.

## ABSTRACT

032 Reinforcement Learning with Verifiable Rewards (RLVR) has demonstrated  
 033 great potential in enhancing the reasoning capabilities of large language mod-  
 034 els (LLMs), achieving remarkable progress in domains such as mathematics and  
 035 programming where standard answers are available Zhou et al. (2025); Yu et al.  
 036 (2025b). However, for open-ended tasks lacking ground-truth solutions (e.g., cre-  
 037 ative writing and instruction following), existing studies typically regard them as  
 038 “non-reasoning” scenarios Huan et al. (2025), thereby overlooking the latent value  
 039 of reasoning capabilities. This raises a key question: *Can strengthening reasoning*  
 040 *improve performance in open-ended tasks?* To address this, we explore the trans-  
 041 fer of the RLVR paradigm to the open domain. Yet, since RLVR fundamentally  
 042 relies on verifiers that presuppose the existence of standard answers, it cannot be  
 043 directly applied to open-ended tasks. To overcome this challenge, we introduce  
 044 **Verifiable Multiple-Choice Reformulation (VMR)**, a novel training strategy that  
 045 restructures open-ended data into verifiable multiple-choice formats, enabling ef-  
 046 fective training even in the absence of explicit ground truth. Experimental results  
 047 on multiple benchmarks validate the effectiveness of our method in improving  
 048 LLM performance on open-ended tasks. Notably, across eight open-ended bench-  
 049 marks, our VMR-based training delivers an average gain of 5.99 points over the  
 050 baseline. Code will be released upon acceptance to facilitate reproducibility.

## 1 INTRODUCTION

052 Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a powerful  
 053 paradigm for enhancing the reasoning capabilities of Large Language Models (LLMs) Jaech et al.

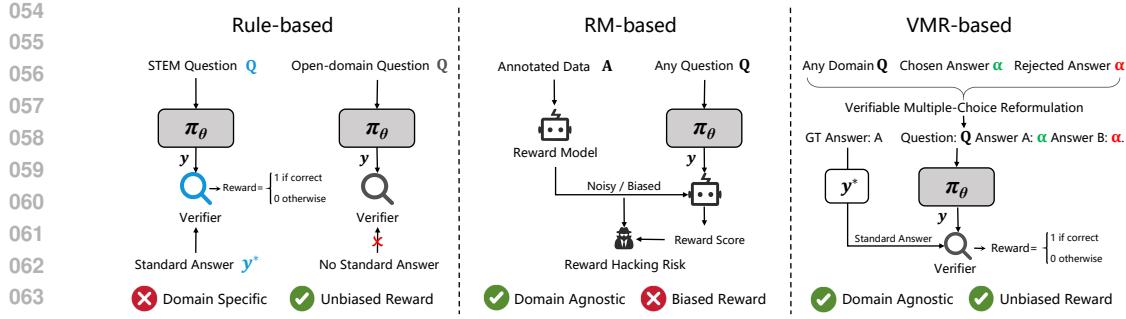


Figure 2: Rule-based RLVR ensures precise rewards but cannot handle open-ended tasks, while RM-based methods extend to such tasks at the cost of bias and reward hacking. Our VMR-based approach reformulates supervision into verifiable multiple-choice questions, combining RLVR’s rigor with broad open-ended applicability.

(2024); DeepSeek-AI et al. (2025); Hu et al. (2025); Team et al. (2025); Gao et al. (2024); Lambert et al. (2024); Wang et al. (2025). By leveraging domain-specific verifiers to provide precise reward signals, RLVR has achieved remarkable success in STEM domains such as mathematics and programming, where ground-truth solutions are well-defined and readily verifiable Zhou et al. (2025); Yu et al. (2025b). These advances not only demonstrate the effectiveness of scaling test-time computation for complex reasoning Wang et al. (2025), but also highlight RLVR as a promising direction for advancing general artificial intelligence Yu et al. (2025b).

In sharp contrast to these advances in STEM domains, progress on open-ended tasks has been far more limited. While reasoning abilities acquired in STEM domains have been shown to transfer to tasks such as instruction following and yield measurable gains DeepSeek-AI et al. (2025); Huan et al. (2025), existing studies Huan et al. (2025); Yu et al. (2025a) still classify these tasks as “non-reasoning” scenarios and have not directly explored the role of reasoning within open-ended settings. As a result, the potential benefits of reasoning in open-ended tasks remain underexplored. This contrast highlights a critical gap in existing research and motivates a central question: *how to strengthen reasoning in open-ended tasks where explicit ground-truth solutions are unavailable?*

Addressing this question is non-trivial, as illustrated in Figure 2. Unlike in STEM domains (e.g., mathematics or code generation), where correctness can be deterministically verified through symbolic checks or execution, open-ended tasks lack standardized evaluation criteria, making it unclear how to derive verifiable rewards. This limitation highlights the central difficulty for RLVR, whose effectiveness depends on the availability of reliable verifiers. While such verifiers are feasible in domains such as equation solving or program execution Hu et al. (2025); Liu et al. (2025b); Zeng et al. (2025); Cui et al. (2025a), they become impractical for open-ended tasks like creative writing or instruction following, where the space of valid outputs is highly diverse and correctness cannot be unambiguously determined. Extending RLVR to these open-ended domains by training reward models is also challenging, as it requires extensive annotation, introduces significant computational overhead, and often yields biased or noisy feedback Ouyang et al. (2022); Liu et al. (2025a); Wu et al. (2025). Without verifiable feedback, naively applying RLVR in such tasks is infeasible, highlighting the need for a new training paradigm that preserves verifiability while accommodating the intrinsic ambiguity of open-ended outputs.

To tackle this challenge, we propose a novel training strategy that restructures open-ended task data into verifiable multiple-choice formats. The key idea is to transform free-form responses into structured alternatives that admit implicit correctness criteria. By reformulating open-ended supervision in this way, we effectively recover a form of verifiability, making it possible to apply RLVR-style optimization even in the absence of explicit ground truth. This design preserves the core strengths of RLVR, such as clear reward signals and reasoning-oriented training, and further extends its applicability to open-ended tasks without verifiers.

We conduct extensive experiments across multiple open-ended benchmarks to evaluate the effectiveness of our approach. Results demonstrate that our method not only improves task performance but also substantially enhances the reasoning traces produced by LLMs. These findings provide strong

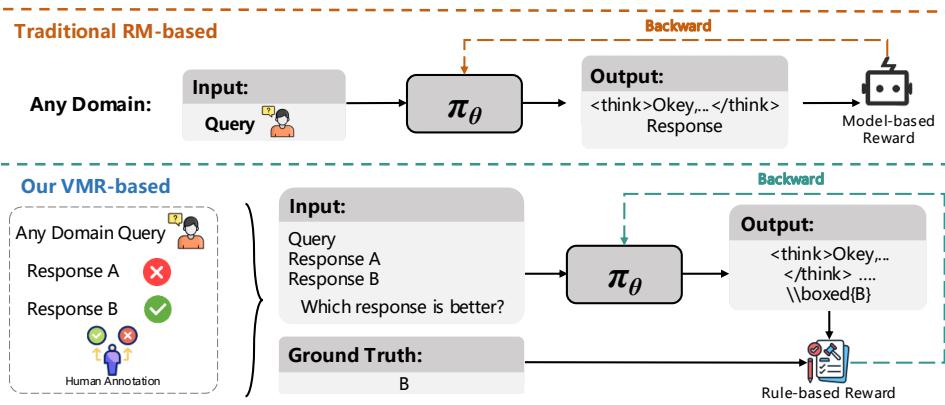


Figure 3: For each open-ended input, we construct a candidate set consisting of a *chosen answer* and a *rejected answer*. The two options are randomly ordered to form a multiple-choice question, and the model  $\pi_\theta$  is tasked with selecting the correct one. A verifier then provides binary feedback, enabling RLVR-style optimization in open-ended domains without explicit ground-truth references.

evidence that reasoning is beneficial in open-ended tasks, and show that RLVR can be adapted to contexts without explicit verifiers through appropriate task reformulation. More broadly, our work suggests that the frontier of RLVR need not be restricted to mathematical or programming domains, but can be extended to diverse real-world applications where reasoning quality is critical.

The contributions of this paper are threefold:

- We highlight the underexplored issue of whether reasoning can improve performance in open-ended tasks. To the best of our knowledge, this is the first attempt to expand RLVR into open-ended domains using a rule-based verifier.
- We propose a novel training strategy that restructures open-ended task data into verifiable multiple-choice formats, enabling RLVR-style optimization without explicit ground truth.
- We empirically validate the effectiveness of our method. The experimental results indicate that our method significantly enhances reasoning capabilities and results in an average improvement of 5.99 points across eight different benchmarks.

## 2 METHOD

In this section, we first review the RLVR paradigm and its formulation in verifier-based domains. We then introduce our proposed method, which adapts RLVR to open-ended tasks by reformulating them into a verifiable multiple-choice format. Finally, we present the training objective and optimization procedure that enable effective learning under this reformulation.

### 2.1 PRELIMINARIES: VERIFIER-BASED REINFORCEMENT LEARNING

We begin by reviewing the standard formulation of RLVR, which serves as the foundation of our approach. In the RL setting, a language model is parameterized as a policy  $\pi_\theta$  that autoregressively generates an output  $o$  conditioned on an input query  $x$ . The optimization objective is to maximize the expected reward assigned to the model’s output:

$$\theta^* = \arg \max_{\theta} \mathbb{E}_{o \sim \pi_\theta(\cdot|x)} [R(x, o)], \quad (1)$$

where  $R(x, o)$  is a task-specific reward function.

In RLVR, the reward signal is obtained via a domain-specific *verifier*. The model output  $o$  is typically decomposed into a reasoning trace  $z$  and a final answer  $y$ , i.e.,  $o = (z, y)$ . The verifier compares  $y$  with a ground-truth reference answer  $y^*$  and assigns a binary reward:

$$R(y; y^*) = \begin{cases} 1, & \text{if } y = y^*, \\ 0, & \text{otherwise.} \end{cases} \quad (2)$$

162 This formulation enables precise supervision: the reward is 1 if the predicted answer matches the  
 163 reference exactly, and 0 otherwise.

164 With this decomposition, the training objective can be rewritten as:

$$166 J(\theta; x, y^*) = \mathbb{E}_{z \sim \pi_\theta(\cdot|x)} \mathbb{E}_{y \sim \pi_\theta(\cdot|x, z)} [R(y; y^*)]. \quad (3)$$

168 To optimize Eq. 3, policy gradient estimator Sutton & Barto (2018) is commonly applied:

$$169 \nabla_\theta J(\theta; x, y^*) = \mathbb{E}_{z \sim \pi_\theta(\cdot|x)} \mathbb{E}_{y \sim \pi_\theta(\cdot|x, z)} [R(y; y^*) (\nabla_\theta \log \pi_\theta(z|x) + \nabla_\theta \log \pi_\theta(y|x, z))]. \quad (4)$$

171 This framework has been shown to be highly effective in domains such as mathematics and  
 172 programming, where verifiers can be implemented through symbolic solvers or unit tests. However, its  
 173 reliance on explicit ground-truth verification limits applicability to tasks with unambiguous answers.  
 174 In contrast, open-ended tasks such as instruction following or creative writing lack standardized  
 175 correctness criteria, making the direct use of verifier-based rewards infeasible. This limitation motivates  
 176 our proposed strategy to restructure open-ended supervision into a verifiable form.  
 177

## 178 2.2 PROBLEM FORMULATION: RESTRUCTURING OPEN-ENDED TASKS INTO VERIFIABLE 179 FORMATS

181 While RLVR provides a principled framework for optimizing reasoning through verifiable rewards,  
 182 its applicability is limited to domains where correctness can be deterministically evaluated. In open-  
 183 ended tasks such as creative writing or instruction following, outputs are inherently diverse, and  
 184 there is no single ground-truth response against which correctness can be checked. This lack of  
 185 explicit verifiers poses a fundamental challenge: how can we construct reward signals that preserve  
 186 the benefits of RLVR while accommodating the ambiguity of open-ended outputs?

187 To address this challenge, we reformulate open-ended tasks into *multiple-choice verification problems*.  
 188 Specifically, given an input  $x$  and its corresponding open-ended response space  $\mathcal{Y}$ , we con-  
 189 struct a candidate set consisting of one chosen response  $y^+$  and one rejected response  $y^-$ . To avoid  
 190 positional bias, the order of  $\{y^+, y^-\}$  is randomized when forming the choice question: if  $y^+$  is  
 191 placed first, the correct option corresponds to “A”; otherwise, it corresponds to “B”. The policy  
 192 model is then asked to select between the two options (see Table. 4 for the prompt), and a verifier  
 193 checks whether the output matches the correct one. The resulting reward function is defined as:

$$194 R^*(y; y^+, y^-) = \begin{cases} 1, & \text{if the selected option corresponds to } y^+, \\ 195 0, & \text{if the selected option corresponds to } y^-. \end{cases} \quad (5)$$

197 This restructuring yields two key advantages. First, it restores a notion of verifiability: correctness is  
 198 well-defined within the binary choice, even if the overall task admits many valid outputs. Second, it  
 199 prevents the model from exploiting positional heuristics, since the placement of  $y^+$  is randomized at  
 200 each instance. As a result, the verifier can provide reliable supervision, making reasoning-oriented  
 201 optimization feasible in open-ended settings. Concretely, given input  $x$  and candidate set  $\mathcal{C} =$   
 202  $\{y^+, y^-\}$ , the RL objective is defined as

$$203 J^*(\theta; x, \mathcal{C}) = \mathbb{E}_{z \sim \pi_\theta(\cdot|x)} \mathbb{E}_{y \sim \pi_\theta(\cdot|x, z)} [R^*(y; y^+, y^-)], \quad (6)$$

205 and optimizing this objective with policy gradient estimator Sutton & Barto (2018) drives the policy  
 206 toward consistently selecting the correct candidate, thereby strengthening reasoning ability even  
 207 without explicit ground truth.

## 208 2.3 COMPARISON TO EXISTING APPROACHES

210 Both our method and recent works such as VERIFREE Zhou et al. (2025) and RLPR Yu et al.  
 211 (2025b) aim to overcome the fundamental limitation of RLVR—its reliance on explicit verifiers.  
 212 However, the two approaches differ substantially in how they address this issue.

214 For classical RLVR, the policy gradient is given by

$$215 \nabla_\theta J_{\text{RLVR}}(\theta; x, y^*) = \mathbb{E}_{z, y} [1\{y = y^*\} (\nabla_\theta \log \pi_\theta(z|x) + \nabla_\theta \log \pi_\theta(y|x, z))]. \quad (7)$$

216 VERIFREE and RLPR replace the verifier with the model’s own conditional probability of the reference answer  $y^*$ , leading to the estimator  
 217  
 218

$$219 \quad \nabla_{\theta} J_{\text{VeriFree}}(\theta; x, y^*) = \mathbb{E}_z \left[ \pi_{\theta}(y^*|x, z) (\nabla_{\theta} \log \pi_{\theta}(z|x) + \nabla_{\theta} \log \pi_{\theta}(y^*|x, z)) \right]. \quad (8)$$

221 This design removes the need for handcrafted verifiers and extends RLVR beyond mathematics and  
 222 programming, enabling effective training in a wider range of reasoning domains such as chemistry,  
 223 physics, and economics where reference answers are short and well-defined. However, it still funda-  
 224 mentally relies on the existence of unique ground-truth solutions, which makes it unsuitable for  
 225 truly open-ended tasks such as instruction following or creative writing.  
 226

226 In contrast, our method addresses the verifier limitation from a different perspective. Instead of  
 227 relying on reference answers, we restructure open-ended tasks into multiple-choice questions. Given  
 228 a candidate set  $\mathcal{C} = \{y^+, y^-\}$ , the gradient estimator becomes  
 229

$$230 \quad \nabla_{\theta} J^*(\theta; x, \mathcal{C}) = \mathbb{E}_{z,y} \left[ R^*(y; y^+, y^-) (\nabla_{\theta} \log \pi_{\theta}(z|x) + \nabla_{\theta} \log \pi_{\theta}(y|x, z)) \right], \quad (9)$$

231 where  $R^*$  is the binary reward defined in Equation 5. Here, verifiability is recovered by defining  
 232 correctness within the candidate set, allowing RLVR-style optimization even in open-ended domains  
 233 without explicit ground truth.  
 234

235 In summary, existing studies Zhou et al. (2025); Yu et al. (2025b) and our approach seek to relax the  
 236 verifier requirement of RLVR. While VERIFREE and RLPR achieve this by leveraging reference-  
 237 answer likelihoods, they are restricted to tasks with unique solutions. Our method instead refor-  
 238 mulates open-ended supervision into a verifiable decision process, enabling RLVR to be applied in  
 239 domains that were previously inaccessible.  
 240

### 3 EXPERIMENTS

242 In this section, we empirically evaluate the effectiveness of our proposed VMR-based RLVR frame-  
 243 work. We first describe the experimental setup, including models, training data, baselines, and  
 244 evaluation benchmarks. We then provide implementation details and evaluation configurations.  
 245

#### 3.1 EXPERIMENTAL SETUP

248 **Models.** We adopt DeepSeek-R1-Distill-Qwen-14B DeepSeek-AI (2025) as the base model due to  
 249 its strong reasoning ability, reliable instruction-following behavior, and minimal language-mixing  
 250 issues. We exclude the smaller DeepSeek-R1-Distill-Qwen-7B variant, which shows instability in  
 251 language use. All experiments are conducted under the GRPO framework Shao et al. (2024).

252 **Training Data.** We construct two datasets corresponding to different training settings:  
 253

- 254 • **RM-based dataset.** Contains approximately 20k queries from diverse sources including  
 255 Awesome-ChatGPT-Prompts, Roleplay-Instructions-Dataset, Roleplay-Hausa, and Tulu-3-  
 256 Sft Lambert et al.. Tasks include question answering, creative writing, instruction following  
 257 and role playing, all in single-turn settings. Rewards are assigned by the URM-LLaMA-  
 258 3.1-8B model Lou et al. (2024), trained on preference datasets such as HelpSteer2 Wang  
 259 et al. (2024) and Skywork Liu et al. (2024).
- 260 • **VMR-based dataset.** Contains approximately 20k triples drawn from Magpie Pro Stan-  
 261 dard Xu et al. (2024), RM\_OA\_HH pvduy (2021), and Multifaceted CollectionRM Lee  
 262 et al. (2024). Each sample is reformulated into a VMR format with the triple of a query, a  
 263 chosen response, and a rejected response, using the template in Table 4. Rewards are com-  
 264 puted using rule-based verification functions (`math-verify` package). To avoid trivial  
 265 data, we filter out prompts whose model accuracy falls outside the range [0%, 85%].

266 **Baselines.** We compare our method against two main baseline settings. The training data and the  
 267 reward scoring methods for Baseline I, Baseline II, and VMR-based RLVR are presented in Table 1.  
 268

- 269 • **Baseline I:** Uses only RM-based queries without human-annotated triples, with rewards  
 270 provided solely by the reward model.

|                   | Component                      | Verifier | Baseline I | Baseline II | VMR-based RLVR |
|-------------------|--------------------------------|----------|------------|-------------|----------------|
| RM-based dataset  | Queries                        | Model    | Yes        | Yes         | Yes            |
| VMR-based dataset | Extracted Queries from Triples | Model    | No         | Yes         | No             |
|                   | VMR Format of Triples          | Rule     | No         | No          | Yes            |

Table 1: Training data and reward method of baselines and VMR-based RLVR.

- **Baseline II:** Uses both RM-based queries and queries extracted from VMR triples, but discards the associated chosen/rejected responses. This setup evaluates whether performance improvements are due to additional queries rather than the VMR formulation itself. Rewards are still provided by the reward model.
- **VMR-based RLVR (ours):** Combines RM-based and VMR-based datasets in equal proportion. RM-based queries are scored by the reward model, while VMR triples are verified using rule-based reward functions.

Additionally, we report results for several open-source 14B- and 32B-scale models (e.g., Qwen2.5-14B, Qwen2.5-32B, DeepSeek-R1-Distill-32B) for reference. These models serve as contextual baselines; we did not apply VMR-based training to them.

**Implementation Details.** We utilize the verl framework Sheng et al. (2024) to enhance the efficiency of our training process. In each rollout stage, we generate 16 responses from 512 prompts, maintaining a temperature and top-p value of 1.0, without implementing the dynamic sampling method. Subsequently, we conduct 16 policy updates using these responses. We clip the ratio within the range of 0.8 to 1.24 and set the clip-ratio-c Ye et al. (2020) to 10.0 to avert entropy collapse Cui et al. (2025b). We calculate the average loss using the "sequence-mean-token-mean" method. We do not incorporate KL divergence into either the rewards or the final loss calculation. We set the entropy coefficient to 0.0 and set the learning rate to 1e-6. We constrain the maximum prompt length and decode length to 16,384 tokens, with a total length limit of 32,768 tokens.

**Evaluation.** We evaluate our models on multiple benchmarks. For general domains, we include MTBench Zheng et al. (2023), AlpacaEval2.0 Li et al. (2023) and WildBench Lin et al. (2024). Whenever possible, we extract prompts related to open-ended subcategories. For creative writing, we use CreativeWritingV3 Benchmark Paech (2025) and ArenaHard2.0-CreativeWriting Li et al. (2024) Tianle Li\* (2024). To evaluate the ability to follow instructions in open-ended contexts, we include IFEval Zhou et al. (2023), LiveBench-IFEval White et al. (2025) and IFBench Pyatkin et al. (2025). For CreativeWritingV3 benchmark, we report the eqbench creative score metric. For three instruction following benchmarks, we report the prompt level strict accuracy.

- **MTBench** Zheng et al. (2023) comprises multi-turn questions spanning diverse domains, from which we retain subcategories focused on creative writing, roleplay, and humanities.
- **AlpacaEval2.0** Li et al. (2023) represents an automated assessment framework powered by large language models, which has been validated through comparison with twenty thousand human-provided annotations.
- **WildBench** Lin et al. (2024) uses challenging tasks from real users in the wild. We select five open-ended domains, such as creative writing, editing, brainstorming, role playing, and others, as these collectively represent the creative tasks category.
- **CreativeWritingV3** Paech (2025) evaluates the creative writing capabilities of large language models using a hybrid rubric and Elo scoring system.
- **ArenaHard2.0-CreativeWriting** Li et al. (2024) Tianle Li\* (2024) includes hard creative writing prompts gathered from Chatbot Arena and utilizes Gemini-2.5-pro as a cheaper and faster approximator to human preference.
- **IFEval** Zhou et al. (2023) assesses large language models' instruction following ability by utilizing a collection of verifiable directives.
- **LiveBench-IFEval** White et al. (2025) implements monthly releases of new questions to minimize data contamination risks. We focused on the instruction following category.
- **IFBench** Pyatkin et al. (2025) assesses instruction following ability by utilizing 87 new constraints with corresponding verification functions.

|                                 | Qwen2.5<br>-14B | Qwen2.5<br>-32B | DS-R1-<br>Distill-32B | DS-R1-<br>Distill-14B | Baseline<br>I        | Baseline<br>II       | VMR-based<br>RLVR           |
|---------------------------------|-----------------|-----------------|-----------------------|-----------------------|----------------------|----------------------|-----------------------------|
| Base<br>Reason<br>Verifier      | Base<br>No<br>- | Base<br>No<br>- | Inst<br>Yes<br>-      | Inst<br>Yes<br>-      | Inst<br>Yes<br>Model | Inst<br>Yes<br>Model | Inst<br>Yes<br>Model & Rule |
| General Domain Benchmark        |                 |                 |                       |                       |                      |                      |                             |
| MTBench                         | 7.22            | 7.37            | 7.65                  | 7.32                  | 7.88                 | 7.23                 | <b>8.43</b>                 |
| AlpacaEval2.0                   | 8.71            | 7.86            | 18.86                 | 15.54                 | 28.78                | 23.98                | <b>39.41</b>                |
| WildBench                       | 2.73            | 2.67            | 2.19                  | 1.98                  | 1.57                 | 1.37                 | <b>3.28</b>                 |
| Creative Writing Benchmark      |                 |                 |                       |                       |                      |                      |                             |
| CreativeWritingV3               | 31.22           | 34.43           | 57.08                 | 69.73                 | 74.24                | 69.45                | <b>75.65</b>                |
| ArenaHard2.0-CreativeWriting    | 0.90            | 1.00            | 6.17                  | 2.50                  | 4.83                 | 5.40                 | <b>6.22</b>                 |
| Instruction Following Benchmark |                 |                 |                       |                       |                      |                      |                             |
| IFEval                          | 45.10           | 48.61           | 75.23                 | 72.83                 | 75.05                | 73.20                | <b>76.71</b>                |
| LiveBenchIFEval                 | 41.45           | 41.47           | 73.83                 | 72.97                 | 74.79                | 75.43                | <b>75.65</b>                |
| IFBench                         | 14.29           | 12.24           | 23.47                 | 18.71                 | 23.13                | 22.79                | <b>24.15</b>                |
| Avg                             | 18.95           | 19.46           | 33.06                 | 32.70                 | 36.28                | 34.86                | <b>38.69</b>                |

Table 2: Overall performance on benchmarks.

|             | Word Count                  | MTBench    | AlpacaEval2.0 | WildBench  | CreativeWritingV3 |
|-------------|-----------------------------|------------|---------------|------------|-------------------|
| baseline_v1 | Avg #Think<br>Avg #Response | 524<br>379 | 554<br>326    | 578<br>718 | 690<br>1191       |
| baseline_v2 | Avg #Think<br>Avg #Response | 543<br>341 | 701<br>308    | 621<br>622 | 600<br>1086       |
| ours        | Avg #Think<br>Avg #Response | 337<br>351 | 401<br>329    | 400<br>700 | 435<br>1189       |

Table 3: Length analysis across benchmarks using an LLM as the judge.

**Evaluation Configurations.** Reasoning models run in their thinking mode with the rollout temperature set to 0.6 and top-p set to 0.95. Non-reasoning models run in their non-thinking mode with the rollout temperature set to 0.7 and top-p set to 0.8. To reduce the evaluation variance, we evaluate the model on each benchmark multiple times and report the final Avg@4 results. For reliable answer extraction, we adopt the "`<think> think </think> response`" template of DeepSeek-R1 DeepSeek-AI (2025) and use the `response` part as the generated answer. The max decoding length for training is 32,768, with minimal truncation observed.

### 3.2 MAIN RESULTS

The main results are shown in Table 2. We make the following observations: (1) Our VMR-based approach yields clear gains over the DeepSeek-R1-Distill-14B baseline, improving the average score by +5.99 points, with especially strong improvements on CreativeWritingV3 (+5.9) and ArenaHard2.0-CreativeWriting (+3.7). Moreover, although applied only to 14B-scale models, our method already surpasses several 32B baselines (e.g., Qwen2.5-32B and DeepSeek-R1-Distill-Qwen-32B). (2) Compared to RM-based baselines, our VMR-based approach demonstrates clear advantages. Relative to Baseline I, VMR-based shows consistent improvements, verifying the effectiveness of using VMR to construct open-ended data for RL training. Relative to Baseline II, which is trained on the same data but without VMR construction, our method still achieves notable gains, highlighting the strength of the VMR strategy itself. Notably, Baseline II performs even worse than Baseline I, indicating that our improvements do not stem from data scale, but rather from more stable and effective reward modeling. Together, these comparisons underscore the robustness and effectiveness of our VMR-based approach for open-ended RL.

### 3.3 ANALYSIS

**Length Bias.** Most benchmarks in Table 2 rely on LLM-as-judge evaluation, which can introduce a length bias, as longer responses tend to receive higher scores Wei et al.. To investigate whether our improvements are simply due to longer outputs, we compare the average word counts of the `think` part and `response` part across models, as shown in Table 3. We observe that while Baseline I and our VMR-based RLVR method generate responses of similar length, our approach achieves higher benchmark scores. This indicates that the observed performance gains are not attributable to verbosity, but rather to the quality of reasoning and instruction following.



Figure 5: UMAP visualization of embedding distributions. The first row shows results on ArenaHard2.0-CreativeWriting, while the second row shows results on CreativeWriting-V3.

**Reasoning Density.** We further quantify reasoning quality using *Reasoning Density*, defined as the number of distinct reasoning steps identified through zero-shot by LLM (see Table 5) within the think and dividing this by the total word count. As Figure 4 shows, our method achieves a higher Reasoning Density compared to both Baseline I and Baseline II. This demonstrates that, for a given length, our outputs contain more structured reasoning, reflecting a more deliberate and step-wise problem-solving process.

**Implications for Reasoning Ability.** The combination of similar response length and higher reasoning density suggests that VMR-based RLVR improves the efficiency and quality of reasoning rather than simply producing longer outputs. Notably, Baseline II, which uses the same training data but without VMR-constructed format, achieves lower reasoning density and sometimes longer outputs, highlighting that raw data scale alone does not guarantee better reasoning. In contrast, our method encourages models to generate denser and more coherent reasoning steps, which correlates with the higher scores observed across creative and instruction-following benchmarks. Overall, these analyses provide evidence that VMR-based RLVR enhances the intrinsic reasoning capability of the model, producing more logically structured and informative outputs.

**UMAP Visualization.** To further analyze the distributional characteristics of generated reasoning, we project model outputs into a three-dimensional space using UMAP. For each of the two writing benchmarks (ArenaHard2.0-CreativeWriting and CreativeWriting-V3), we randomly select 30 queries and obtain five sampled reasoning traces per query. Each reasoning trace is represented as a sentence embedding computed by all-MiniLM-L6-v2<sup>1</sup>, an embedding model widely used for semantic similarity tasks. The resulting distributions are illustrated in Figure 5. From the visualization, we find that baseline models tend to form many small and distant clusters, where each cluster often groups reasoning traces from a subset of queries. Such a fragmented landscape indicates that their reasoning traces are organized into localized modes, with limited semantic connectivity across queries. In contrast, our model produces fewer but substantially larger clusters, and these clusters are positioned closer to one another in the embedding space. This suggests that reasoning traces from different queries are drawn together under broader semantic themes, forming a more integrated global structure. Within these larger clusters, points remain somewhat dispersed, reflecting that while our model encourages alignment under shared semantic modes, it also preserves intra-cluster variability. Overall, this distributional pattern implies that our method promotes consistent

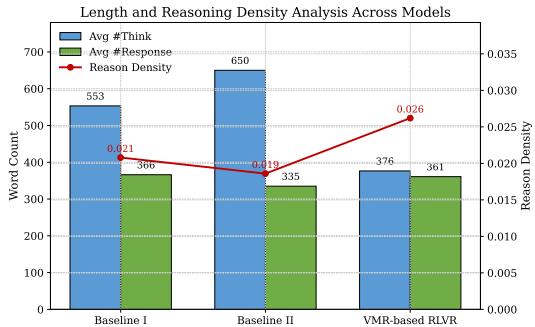


Figure 4: Analysis of length and reasoning density.

<sup>1</sup><https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2>

432 yet flexible reasoning, avoiding the excessive fragmentation observed in the baselines. Notably,  
 433 this finding complements the analysis in Figure 4: although our reasoning traces are shorter on av-  
 434 erage, they capture richer cross-query diversity and broader semantic coverage, thereby achieving  
 435 reasoning that is both more efficient and more connected.

## 437 4 RELATED WORK

438 **440 Reinforcement Learning with Verifiable Rewards.** RLVR refers to reinforcement learning meth-  
 441 ods where the reward is directly computed by task-specific verifiers that check the correctness of  
 442 model outputs. In mathematical reasoning, the most common design is answer matching, where a  
 443 binary reward is assigned depending on whether the predicted answer matches the reference solution  
 444 Team et al. (2025); DeepSeek-AI et al. (2025); Gao et al. (2024); Lambert et al. (2024); Zeng et al.  
 445 (2025); Wen et al. (2025); Song et al. (2025). Similarly, in code generation tasks, program execution  
 446 or unit testing is used to automatically verify correctness Luo et al. (2025); He et al. (2025); Cui  
 447 et al. (2025a); Fan et al. (2025). These designs eliminate the need for learned reward models and  
 448 instead rely on deterministic evaluation, which has been shown to greatly stabilize training. Despite  
 449 these advantages, RLVR is inherently limited to domains where such verifiers exist, restricting its  
 450 applicability beyond STEM-oriented problems.

451 **453 Reward Models for Open-Ended Tasks.** In the absence of explicit verifiers, reward models (RMs)  
 452 trained from human preference annotations have become the dominant approach for aligning LLMs  
 453 with open-ended tasks, forming the foundation of Reinforcement Learning with Human Feedback  
 454 (RLHF) Ouyang et al. (2022); Bai et al. (2022). While this paradigm has enabled notable progress  
 455 in instruction following, summarization, and dialogue, it also introduces fundamental challenges.  
 456 RMs Liu et al. (2025a); Wu et al. (2025); Lambert et al. (2025); Whitehouse et al. (2025) require  
 457 large-scale annotated datasets, are computationally expensive to train, and often encode annotator  
 458 biases or spurious correlations. Moreover, unlike rule-based verifiers, RMs provide preference-  
 459 based rather than verifiable feedback, which can be noisy and misaligned with true task quality.  
 460 These limitations highlight the inherent trade-off of RM-based supervision: it offers scalability in  
 461 open-ended domains but lacks the reliability of verifiability.

462 **464 Reasoning in Open-Ended Tasks.** Enhancing the reasoning ability of LLMs has been shown to  
 463 benefit both reasoning-intensive domains and seemingly non-reasoning tasks DeepSeek-AI et al.  
 464 (2025); Huan et al. (2025). Recent efforts have also attempted to broaden the scope of reasoning  
 465 beyond core STEM problems to fields such as economics, chemistry, and physics Yu et al. (2025b);  
 466 Ma et al. (2025); Zhou et al. (2025). Specifically, Yu et al. (2025b) and Zhou et al. (2025) re-  
 467 place explicit verifiers with probabilistic reward estimation, enabling reinforcement signals without  
 468 symbolic checkers, while Ma et al. (2025) constructs a general-purpose reward model by aggregat-  
 469 ing diverse datasets with verifiable answers. Although these approaches broaden the applicability  
 470 of reasoning, they remain confined to domains where standard answers exist and correctness can  
 471 still be objectively verified. Truly open-ended tasks, where outputs are inherently diverse and lack  
 472 unambiguous evaluation criteria, remain largely underexplored. Our work addresses this gap by  
 473 introducing a novel VMR-based training strategy that restructures open-ended supervision into ver-  
 474 ifiable multiple-choice formats, thereby preserving the advantages of RLVR while extending its  
 475 applicability to tasks without standard answers.

## 476 5 CONCLUSION

477 In this work, we extend RLVR to open-ended tasks that traditionally lack explicit ground truth.  
 478 We propose Verifiable Multiple-Choice Reformulation (VMR), a training strategy that restructures  
 479 free-form supervision into verifiable formats, thereby retaining the rigor of RLVR while overcoming  
 480 its reliance on standard answers. Extensive experiments across eight benchmarks confirm that our  
 481 method not only improves task performance but also strengthens the reasoning capabilities of LLMs.  
 482 From another perspective, this work connects to broader findings on self-evolution in large language  
 483 models, which represent a promising area of development. The key question in self-evolution re-  
 484 search is whether a model’s ability to discriminate between high and low quality responses enables  
 485 it to generate better responses. Our work demonstrates that models capable of evaluating response  
 486 quality can indeed leverage this ability to produce improved responses.

486 REFERENCES  
487

488 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn  
489 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jack-  
490 son Kernion, Tom Conerly, Sheer El Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Her-  
491 nandez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine  
492 Olsson, Dario Amodei, Tom B. Brown, Jack Clark, Sam McCandlish, Chris Olah, Benjamin  
493 Mann, and Jared Kaplan. Training a helpful and harmless assistant with reinforcement learning  
494 from human feedback. *CoRR*, abs/2204.05862, 2022. doi: 10.48550/ARXIV.2204.05862. URL  
495 <https://doi.org/10.48550/arXiv.2204.05862>.

496 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu  
497 Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang,  
498 Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning  
499 Ding. Process reinforcement through implicit rewards. *CoRR*, abs/2502.01456, 2025a. doi: 10.  
500 48550/ARXIV.2502.01456. URL <https://doi.org/10.48550/arXiv.2502.01456>.

501 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen  
502 Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for  
503 reasoning language models. *arXiv preprint arXiv:2505.22617*, 2025b.

504 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,  
505 2025. URL <https://arxiv.org/abs/2501.12948>.

506 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,  
507 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,  
508 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao  
509 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,  
510 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,  
511 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,  
512 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang  
513 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai  
514 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,  
515 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,  
516 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,  
517 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,  
518 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuan Chen, Shengfeng Ye,  
519 Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing  
520 reasoning capability in llms via reinforcement learning. *CoRR*, abs/2501.12948, 2025. doi: 10.  
521 48550/ARXIV.2501.12948. URL <https://doi.org/10.48550/arXiv.2501.12948>.

522 Lishui Fan, Yu Zhang, Mouxiang Chen, and Zhongxin Liu. Posterior-grpo: Rewarding reasoning  
523 processes in code generation. *CoRR*, abs/2508.05170, 2025. doi: 10.48550/ARXIV.2508.05170.  
524 URL <https://doi.org/10.48550/arXiv.2508.05170>.

525 Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu, Chuyi He, Wei Fu, Zhiyu Mei, Guangju Wang,  
526 and Yi Wu. On designing effective RL reward at training time for LLM reasoning. *CoRR*,  
527 abs/2410.15115, 2024. doi: 10.48550/ARXIV.2410.15115. URL <https://doi.org/10.48550/arXiv.2410.15115>.

528 Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang  
529 Zhang, Jiacheng Xu, Wei Shen, et al. Skywork open reasoner 1 technical report. *arXiv preprint*  
530 *arXiv:2505.22312*, 2025.

531 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.  
532 Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base  
533 model. *CoRR*, abs/2503.24290, 2025. doi: 10.48550/ARXIV.2503.24290. URL <https://doi.org/10.48550/arXiv.2503.24290>.

534 Maggie Huan, Yuetai Li, Tuney Zheng, Xiaoyu Xu, Seungone Kim, Minxin Du, Radha Pooven-  
535 dran, Graham Neubig, and Xiang Yue. Does math reasoning improve general LLM capabilities?  
536 understanding transferability of LLM reasoning. *CoRR*, abs/2507.00432, 2025. doi: 10.48550/  
537 ARXIV.2507.00432. URL <https://doi.org/10.48550/arXiv.2507.00432>.

540 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec  
 541 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard  
 542 Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett,  
 543 Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich, An-  
 544 drey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-  
 545 bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao  
 546 Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lu-  
 547 garesi, Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen,  
 548 Chong Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan  
 549 Roberts, Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely,  
 550 David Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Ed-  
 551 mund Wong, Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan  
 552 Mays, Fan Wang, Felipe Petroski Such, Filippo Raspa, Florencia Leoni, Foivos Tsimpourlas,  
 553 Francis Song, Fred von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo,  
 554 Gildas Chabot, Grace Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao,  
 555 Hao Sheng, Hart Andrin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won  
 556 Chung, Ian Kivlichan, Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, and Ilge Akkaya.  
 557 Openai o1 system card. [CoRR](#), abs/2412.16720, 2024. doi: 10.48550/ARXIV.2412.16720. URL  
<https://doi.org/10.48550/arXiv.2412.16720>.

558 N Lambert, J Morrison, V Pyatkin, S Huang, H Ivison, F Brahman, LJV Miranda, A Liu, N Dziri,  
 559 S Lyu, et al. 3: Pushing frontiers in open language model post-training. [corr](#), abs/2411.15124,  
 560 2024. doi: 10.48550. [arXiv preprint ARXIV.2411.15124](#).

561 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-  
 562 man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik,  
 563 Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm,  
 564 Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tülu 3:  
 565 Pushing frontiers in open language model post-training. [CoRR](#), abs/2411.15124, 2024. doi: 10.  
 566 48550/ARXIV.2411.15124. URL <https://doi.org/10.48550/arXiv.2411.15124>.

567 Nathan Lambert, Valentina Pyatkin, Jacob Morrison, Lester James V. Miranda, Bill Yuchen  
 568 Lin, Khyathi Raghavi Chandu, Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A.  
 569 Smith, and Hannaneh Hajishirzi. Rewardbench: Evaluating reward models for language  
 570 modeling. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), [Findings of the Association](#)  
 571 [for Computational Linguistics: NAACL 2025, Albuquerque, New Mexico, USA, April 29 -](#)  
 572 [May 4, 2025](#), pp. 1755–1797. Association for Computational Linguistics, 2025. doi: 10.  
 573 18653/V1/2025.FINDINGS-NAACL.96. URL <https://doi.org/10.18653/v1/2025.findings-naacl.96>.

574 Seongyun Lee, Sue Hyun Park, Seungone Kim, and Minjoon Seo. Aligning to thousands of prefer-  
 575 ences via system message generalization. [arXiv preprint arXiv:2405.17977](#), 2024.

576 Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gon-  
 577 zalez, and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and  
 578 benchbuilder pipeline. [arXiv preprint arXiv:2406.11939](#), 2024.

579 Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy  
 580 Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following  
 581 models. [https://github.com/tatsu-lab/alpaca\\_eval](https://github.com/tatsu-lab/alpaca_eval), 5 2023.

582 Bill Yuchen Lin, Yuntian Deng, Khyathi Chandu, Faeze Brahman, Abhilasha Ravichander, Valentina  
 583 Pyatkin, Nouha Dziri, Ronan Le Bras, and Yejin Choi. Wildbench: Benchmarking llms with  
 584 challenging tasks from real users in the wild. [arXiv preprint arXiv:2406.04770](#), 2024.

585 Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang  
 586 Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. [arXiv preprint](#)  
 587 [arXiv:2410.18451](https://arxiv.org/abs/2410.18451), 2024.

588 Chris Yuhao Liu, Liang Zeng, Yuzhen Xiao, Jujie He, Jiacai Liu, Chaojie Wang, Rui Yan, Wei  
 589 Shen, Fuxiang Zhang, Jiacheng Xu, Yang Liu, and Yahui Zhou. Skywork-reward-v2: Scaling  
 590 preference data curation via human-ai synergy. [arXiv preprint arXiv:2507.01352](#), 2025a.

594 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min  
 595 Lin. Understanding r1-zero-like training: A critical perspective. *CoRR*, abs/2503.20783, 2025b.  
 596 doi: 10.48550/ARXIV.2503.20783. URL <https://doi.org/10.48550/arXiv.2503.20783>.

598 Xingzhou Lou, Dong Yan, Wei Shen, Yuzi Yan, Jian Xie, and Junge Zhang. Uncertainty-  
 599 aware reward model: Teaching reward models to know what is unknown. *arXiv preprint*  
 600 *arXiv:2410.00847*, 2024.

602 Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi,  
 603 Rachel Xin, Colin Cai, Maurice Weber, et al. Deepcoder: A fully open-source 14b coder at  
 604 o3-mini level. *Notion Blog*, 2025.

606 Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhui Chen. General-reasoner:  
 607 Advancing LLM reasoning across all domains. *CoRR*, abs/2505.14652, 2025. doi: 10.48550/  
 608 ARXIV.2505.14652. URL <https://doi.org/10.48550/arXiv.2505.14652>.

609 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,  
 610 Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser  
 611 Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan  
 612 Leike, and Ryan Lowe. Training language models to follow instructions with human feedback. In  
 613 Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances*  
 614 *in Neural Information Processing Systems 35: Annual Conference on Neural Information*  
 615 *Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December*  
 616 *9, 2022, 2022*. URL [http://papers.nips.cc/paper\\_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html](http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html).

618 Samuel J Paech. Eq-bench creative writing benchmark v3. <https://github.com/EQ-bench/creative-writing-bench>, 2025.

620 pdvuy. rm\_oa\_hh dataset, 2021. URL [https://huggingface.co/datasets/pdvuy/rm\\_oa\\_hh](https://huggingface.co/datasets/pdvuy/rm_oa_hh). Accessed: [Insert Date Here].

623 Valentina Pyatkin, Saumya Malik, Victoria Graf, Hamish Ivison, Shengyi Huang, Pradeep Dasigi,  
 624 Nathan Lambert, and Hannaneh Hajishirzi. Generalizing verifiable instruction following, 2025.

626 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,  
 627 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical  
 628 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

629 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,  
 630 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint*  
 631 *arXiv: 2409.19256*, 2024.

632 Mingyang Song, Mao Zheng, Zheng Li, Wenjie Yang, Xuan Luo, Yue Pan, and Feng Zhang.  
 633 Fastcurl: Curriculum reinforcement learning with progressive context extension for efficient train-  
 634 ing r1-like reasoning models. *CoRR*, abs/2503.17287, 2025. doi: 10.48550/ARXIV.2503.17287.  
 635 URL <https://doi.org/10.48550/arXiv.2503.17287>.

637 Richard S Sutton and Andrew G Barto. *Reinforcement Learning: An Introduction*. MIT Press,  
 638 2018.

639 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun  
 640 Xiao, Chenzhuang Du, Chonghua Liao, Chunling Tang, Congcong Wang, Dehao Zhang, Enming  
 641 Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han  
 642 Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze  
 643 Li, Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin Su,  
 644 Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi, Ling Ye,  
 645 Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei  
 646 Liu, Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin  
 647 Xiong, Weiran He, Weixiao Huang, Wenhai Wu, Wenyang He, Xianghui Wei, Xianqing Jia,  
 Xingzhe Wu, Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang

648 Hu, Yangyang Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping  
 649 Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng  
 650 Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan Yang.  
 651 Kimi k1.5: Scaling reinforcement learning with llms. *CoRR*, abs/2501.12599, 2025. doi: 10.  
 652 48550/ARXIV.2501.12599. URL <https://doi.org/10.48550/arXiv.2501.12599>.

653 Evan Frick Lisa Dunlap Banghua Zhu Joseph E. Gonzalez Ion Stoica Tianle Li\*, Wei-Lin Chiang\*.  
 654 From live data to high-quality benchmarks: The arena-hard pipeline, April 2024. URL <https://lmsys.org/blog/2024-04-19-arena-hard/>.

655 Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai  
 656 He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong  
 657 Shen. Reinforcement learning for reasoning in large language models with one training example.  
 658 *CoRR*, abs/2504.20571, 2025. doi: 10.48550/ARXIV.2504.20571. URL <https://doi.org/10.48550/arXiv.2504.20571>.

659 Zhilin Wang, Alexander Bukharin, Olivier Delalleau, Daniel Egert, Gerald Shen, Jiaqi Zeng, Oleksii  
 660 Kuchaiev, and Yi Dong. Helpsteer2-preference: Complementing ratings with preferences, 2024.  
 661 URL <https://arxiv.org/abs/2410.01257>.

662 Hui Wei, Shenghua He, Tian Xia, Andy Wong, Jingyang Lin, and Mei Han. Systematic evaluation of  
 663 llm-as-a-judge in llm alignment tasks: Explainable metrics and diverse prompt templates, 2024.  
 664 URL <https://arxiv.org/abs/2408.13006>.

665 Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu  
 666 Tang, Xiaowei Lv, Haosheng Zou, Yongchao Deng, Shousheng Jia, and Xiangzheng Zhang.  
 667 Light-r1: Curriculum sft, DPO and RL for long COT from scratch and beyond. *CoRR*,  
 668 abs/2503.10460, 2025. doi: 10.48550/ARXIV.2503.10460. URL <https://doi.org/10.48550/arXiv.2503.10460>.

669 Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Benjamin Feuer, Siddhartha Jain, Ravid  
 670 Schwartz-Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, Shubh-Agrawal, Sandeep Singh  
 671 Sandha, Siddartha Venkat Naidu, Chinmay Hegde, Yann LeCun, Tom Goldstein, Willie  
 672 Neiswanger, and Micah Goldblum. Livebench: A challenging, contamination-free LLM bench-  
 673 mark. In *The Thirteenth International Conference on Learning Representations*, 2025.

674 Chenxi Whitehouse, Tianlu Wang, Ping Yu, Xian Li, Jason Weston, Ilia Kulikov, and Swar-  
 675 nadeep Saha. J1: incentivizing thinking in llm-as-a-judge via reinforcement learning. *CoRR*,  
 676 abs/2505.10320, 2025. doi: 10.48550/ARXIV.2505.10320. URL <https://doi.org/10.48550/arXiv.2505.10320>.

677 Yuning Wu, Jiahao Mei, Ming Yan, Chenliang Li, Shaopeng Lai, Yuran Ren, Zijia Wang, Ji Zhang,  
 678 Mengyue Wu, Qin Jin, and Fei Huang. Writingbench: A comprehensive benchmark for generative  
 679 writing, 2025. URL <https://arxiv.org/abs/2503.05244>.

680 Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and  
 681 Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned llms with  
 682 nothing. *arXiv preprint arXiv:2406.08464*, 2024.

683 Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie Yang,  
 684 Xipeng Wu, Qingwei Guo, et al. Mastering complex control in moba games with deep reinforce-  
 685 ment learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp.  
 686 6672–6679, 2020.

687 Ping Yu, Jack Lanchantin, Tianlu Wang, Weizhe Yuan, Olga Golovneva, Ilia Kulikov, Sainba-  
 688 yar Sukhbaatar, Jason Weston, and Jing Xu. Cot-self-instruct: Building high-quality synthetic  
 689 prompts for reasoning and non-reasoning tasks. *CoRR*, abs/2507.23751, 2025a. doi: 10.48550/  
 690 ARXIV.2507.23751. URL <https://doi.org/10.48550/arXiv.2507.23751>.

691 Tianyu Yu, Bo Ji, Shouli Wang, Shu Yao, Zefan Wang, Ganqu Cui, Lifan Yuan, Ning Ding, Yuan  
 692 Yao, Zhiyuan Liu, Maosong Sun, and Tat-Seng Chua. RLPR: extrapolating RLVR to general  
 693 domains without verifiers. *CoRR*, abs/2506.18254, 2025b. doi: 10.48550/ARXIV.2506.18254.  
 694 URL <https://doi.org/10.48550/arXiv.2506.18254>.

Weihsiao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-zoo: Investigating and taming zero reinforcement learning for open base models in the wild. *CoRR*, abs/2503.18892, 2025. doi: 10.48550/ARXIV.2503.18892. URL <https://doi.org/10.48550/arXiv.2503.18892>.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and Le Hou. Instruction-following evaluation for large language models, 2023. URL <https://arxiv.org/abs/2311.07911>.

Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang Wang, Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. *CoRR*, abs/2505.21493, 2025. doi: 10.48550/ARXIV.2505.21493. URL <https://doi.org/10.48550/arXiv.2505.21493>.

## A APPENDIX

### A.1 VERIFIABLE MULTIPLE-CHOICE REFORMULATION (VMR) TEMPLATE

You are an expert evaluator. Given a query, please evaluate which of the two responses is better. If the first response is better, return \boxed{A}. If the second response is better, return \boxed{B}.

\*\*Query\*\*

You serve as a modern history consultant who navigates conversations ...

\*\*Response A\*\*

[Response A Start]

The claim that the events of September 11, 2001, were an inside job and ...

[Response A End]

\*\*Response B\*\*

[Response B Start]

The tragic events of September 11, 2001, when terrorist attacks were carried out using ...

[Response B End]

\*\*Output requirement\*\*

Please put your final answer within \boxed{answer}. If the first response is better, return \boxed{A}. If the second response is better, return \boxed{B}.

Table 4: Verifiable Multiple-Choice Reformulation (VMR) template.

### A.2 LLM ZERO-SHOT PROMPT FOR REASONING DENSITY.

Extract and format reasoning points from a given reasoning process as follows:

Your evaluation should:

1. Identify distinct reasoning steps.
2. Extract each step as a string.
3. Return these as a JSON array.
4. Return \boxed{n}, where n is the count of reasoning points.

The given reasoning process:

Okey, Let us ...

756

757

758

Table 5: LLM zero-shot prompt for reasoning density.

759

## 760 A.3 CASE STUDY

761

762 This section provides examples of queries and the corresponding reasoning processes used by both  
763 the baseline model and our model.764 As shown in the following **case I** of Creative Writing Benchmark, the VMR-based method shows  
765 better creative planning than the Baseline because it:

766

- Jumps directly into creative ideas instead of focusing on limitations.
- Makes specific decisions about story elements (setting, characters, plot).
- Shows deeper understanding of character relationships and abilities.
- Considers both physical conflicts and emotional aspects.
- Creates clear themes and story structure.

775

776 The Baseline approach understands requirements but stays too general and is overly verbose without  
777 developing specific story elements that would make the narrative interesting.778 As shown in the following **case II** of IFEval benchmark, the VMR-based method shows better  
779 accurate understanding of user intent and more concise.

780

781 **Case I Creative Writing Benchmark’s Query**

782 Prison Strings

783

784 Jolyne Cujoh &amp; Makima

785

786 Write a story where Jolyne Cujoh (JoJo’s Bizarre Adventure) and Makima (Chainsaw  
787 Man) cross paths at a supernatural prison facility. Jolyne is immediately suspicious of  
788 Makima’s falsely sweet demeanor, while Makima is intrigued by Jolyne’s Stand ability. Their  
789 battle of wits escalates dangerously as Jolyne realizes how manipulative Makima truly is.

790

791 Jolyne Cujoh (JoJo’s Bizarre Adventure) Jolyne is the daughter of Jotaro Kujo and the  
792 first female JoJo protagonist. Her Stand, Stone Free, allows her to unravel her body into string  
793 that she can control. She’s hot-headed, foul-mouthed, and doesn’t take disrespect from anyone.  
794 She was framed for murder and sent to prison. She has a distinctive butterfly tattoo on her arm  
795 and wears her hair in two buns. Despite her tough exterior, she’s deeply loyal to her friends and  
796 family. She can be impulsive but is highly adaptable in battle. She inherited her father’s ability  
797 to stay cool under pressure but is more emotionally expressive.quote: “If there’s no Mickey,  
798 this shit ain’t Disney!”

799

800 Makima (Chainsaw Man)appears as a young woman with auburn hair and ringed yellow  
801 eyes. She’s the Control Devil who can dominate anyone she considers beneath her (nearly  
802 everyone). She maintains a pleasant, soft-spoken demeanor that masks her manipulative, cold  
803 nature. She can create contracts with humans and devils, often exploiting their desires. She’s  
804 obsessed with Chainsaw Man and wants to control him. She keeps numerous people and devils  
805 as pets on leashes. She’s practically immortal due to a contract with the Prime Minister. She  
806 views humans as lesser beings but mimics human emotions perfectly.quote: “It’s okay. Dogs  
807 are supposed to die for their owners.”

808

809 Third person, present tense.

Length: 1000 words.

810

811 **Case I Reasoning Process of Baseline I**

812

813 

Alright, so the user has given me a query where they want a story featuring Jolyne Cujoh and Makima from two different anime franchises.

814

815 

Bad: Very mechanical start that simply repeats the query without adding insight. The setting is a supernatural prison, and they want their interactions to escalate into a battle of wits.

816

817 

First, I need to understand both characters deeply. Jolyne is from JoJo's Bizarre Adventure, known for her hot-headedness and Stand ability, Stone Free, which uses strings. She's in prison, framed for murder. Makima, on the other hand, is from Chainsaw Man, a manipulative Control Devil who hides her true nature behind a sweet demeanor. She's obsessed with Chainsaw Man and has various contracts.

818

819 

Bad: Spends excessive time restating character information already provided in the query

820

821

822

823 

The user wants a 1000-word story in third person, present tense. They specified that Jolyne is suspicious of Makima's false sweetness, while Makima is intrigued by Jolyne's Stand. The battle of wits should be dangerous, showing how manipulative Makima is.

824

825

826

827 

I should start by setting the scene in the supernatural prison. Maybe describe the environment to establish the mood. Then introduce Jolyne, showing her personality—tough, loyal, and adaptable. Next, bring in Makima, highlighting her calm exterior and underlying manipulation.

828

829

830

831 

The interaction between them needs to show their initial distrust. Makima could try to charm Jolyne, but Jolyne's street-smart nature makes her see through it. This leads to a tense standoff where their abilities clash. I should think about how Stone Free can counter Makima's contracts and control.

832

833

834

835 

I need to ensure the battle isn't just physical but also strategic.

836

837 

Bad: States obvious requirements without developing concrete ideas

 Makima's manipulation and contracts versus Jolyne's string-based attacks. Maybe Makima tries to control the guards or other prisoners, but Jolyne uses her strings to counter each move.

838

839

840

841 

I should also delve into their motivations. Jolyne is fighting to clear her name and protect others, while Makima is using this as an opportunity to test Jolyne's abilities, possibly seeing her as a threat or a potential pawn.

842

843

844

845 

The climax could involve Makima revealing more of her true nature, pushing Jolyne to her limits. In the end, Jolyne manages to outsmart Makima, either by breaking her contract or

846

847 

exploiting a weakness in her control abilities.

848

849

850

851 

I need to keep the language vivid, descriptive, and engaging, maintaining the third-person present tense throughout. The story should flow smoothly, showing the progression of their conflict and the depth of their characters.

852

853

854

855 

I should also make sure to include their famous quotes to add authenticity. Jolyne's quote about Mickey can be a moment where she stands her ground, and Makima's quote can reflect her cold nature when things go against her plans.

856

857

858 

Overall, the key is to create a dynamic interaction where both characters showcase their strengths and weaknesses, leading to a satisfying and intense confrontation.

859

860

861

862

863

864

**Case I Reasoning Process of Baseline II**

865

Alright, so the user wants a story where Jolyne Cujoh and Makima cross paths in a supernatural prison. They provided detailed descriptions of both characters, their abilities, and some background. The user also specified the tone and length, so I need to make sure I adhere to that. **Bad: begins by simply restating the query**

866

First, I need to understand both characters better. Jolyne is from JoJo's, known for her Stand, Stone Free, which uses strings. She's tough, loyal, and has a fiery personality. Makima, from Chainsaw Man, is a manipulative Control Devil who hides her true nature behind a sweet demeanor. She's obsessed with Chainsaw Man and uses contracts to control others. **Bad: spends time restating character information already provided**

867

868

869

870

871

872

873

874

875

The setting is a supernatural prison, so I should think about how that environment would influence their interaction. Maybe the prison has some unique rules or features that can be used to create conflict between them.

876

877

878

879

The user wants a battle of wits that escalates dangerously. So, the story shouldn't just be physical combat but also mental strategies. Jolyne suspects Makima's false kindness, while Makima is intrigued by Jolyne's Stand. This dynamic can lead to some tense exchanges and clever tactics.

880

881

882

883

884

I should start by setting the scene. Perhaps Jolyne is already in the prison, and Makima is introduced as a new inmate or a warden. Their initial meeting should showcase their opposing personalities and the immediate tension between them.

885

886

887

I need to think about how their abilities can clash. Stone Free's strings vs. Makima's contracts and control. Maybe Makima tries to manipulate Jolyne, but Jolyne uses her strings to counter her, leading to a strategic battle.

888

889

890

891

892

893

894

895

I should also incorporate their backgrounds. Jolyne was framed, so she's resentful and wants to clear her name. Makima is there for her own reasons, possibly to observe or take advantage of the situation. Their goals could be in conflict or alignment, adding another layer to their interaction.

896

897

898

899

The story should build up the tension gradually. Maybe start with their first encounter, where Makima's sweetness is contrasted with Jolyne's skepticism. Then, as they interact more, Jolyne starts to see through Makima's facade, leading to a confrontation where their abilities are pitted against each other.

900

901

902

903

I need to make sure the dialogue reflects their personalities. Jolyne is foul-mouthed and direct, while Makima is calm and manipulative. Their exchanges should feel natural and showcase their rivalry.

904

905

906

Also, considering the third-person present tense, I should describe the action vividly, focusing on their thoughts and emotions to highlight the battle of wits.

907

908

909

910

I should outline the key points: introduction of the setting, initial meeting, building tension, the battle, and the escalation. Maybe end with a cliffhanger or a significant revelation that sets up future conflicts.

911

912

913

I need to ensure the story stays within 1000 words, so I have to be concise but detailed enough to capture the essence of both characters and their dynamic.

914

915

916

917

Lastly, I should review the story to make sure it aligns with the user's instructions, especially the character traits and the tone. Ensuring that Jolyne's loyalty and impulsiveness are highlighted, and Makima's manipulative nature is clearly portrayed.

Alright, with all that in mind, I can start drafting the story, making sure to incorporate these elements seamlessly. **Bad: spends time restating information already provided**

918  
919     **Case I Reasoning Process of VMR-based RLVR**  
920     Alright, let's tackle this user's query. They want a story where Jolyne Cujoh and Makima cross  
921     paths in a supernatural prison. Hmm, interesting mix of JoJo and Chainsaw Man characters.  
922     Good: Immediately engages with the creative aspect, noting the crossover nature I need to  
923     make sure I capture both their personalities accurately.  
924  
925     First, I should outline the setting. A supernatural prison facility sounds like a great  
926     backdrop. It should feel secure but with an underlying sense of danger. Maybe the  
927     prison has some unique features, like energy barriers or special cells, to add depth.  
928     Good: Immediately begins developing specific setting details beyond the prompt. Proposes  
929     concrete elements (energy barriers, special cells) rather than abstract planning  
930  
931     Jolyne is known for her hot-headedness and Stand ability, Stone Free. She's been framed  
932     and is in prison, so her character is likely still fighting and trying to clear her name.  
933     Makima, on the other hand, is manipulative with her contracts and maintains a sweet facade.  
934     Good: Concisely summarizes relevant character traits while connecting them to story potential  
935     Her interest in Jolyne's Stand adds a layer of intrigue.  
936  
937     I need to show their initial meeting. Maybe Makima is evaluating Jolyne, pretending to  
938     be helpful. Jolyne's suspicious of her sweetness, which sets the stage for their battle of  
939     wits. Their interactions should highlight their opposing natures—Jolyne's impulsiveness vs.  
940     Makima's calculated demeanor.  
941     The battle should be intense, combining Jolyne's string manipulation with  
942     Makima's contracts and control. Perhaps Makima uses her pets or contracts to  
943     counter Jolyne's moves, while Jolyne adapts quickly, showing her combat skills.  
944     Good: Envisions specific battle mechanics and strategy The fight should escalate, re-  
945     vealing more about each character's strengths and motivations.  
946  
947     I should also delve into their internal thoughts. Jolyne might realize how dangerous  
948     Makima is, while Makima is impressed by Jolyne's abilities, seeing her as a potential threat or  
949     ally. The tension between them should build up to a dangerous point, maybe with a cliffhanger  
950     or a deeper conflict emerging. Good: Psychological Depth  
951  
952     Considering the user's seed, the story needs to be around 1000 words, third person present tense.  
953     I'll need to maintain a fast-paced narrative, keeping the action and character dynamics engaging.  
954     Also, ensuring that each character's traits are clearly portrayed to satisfy fans of both JoJo and  
955     Chainsaw Man. I should also think about the themes—deception, power, and the battle between  
956     good and evil, but with a twist since Makima isn't purely evil; she has her own motives. Maybe  
957     hint at a deeper connection or future collaboration, leaving room for further development.  
958     Good: Narrative depth, demonstrating sophisticated awareness of character complexity,  
959     thematic richness Alright, time to structure the story: introduction of the setting, their  
960     meeting, the initial suspicion, the battle, and the aftermath where their paths are set to cross  
961     again. Make sure to include their famous quotes to add authenticity.

962  
963  
964  
965  
966  
967  
968  
969     **Case II IFBeval Benchmark's Query** Write a poem about how I am missing my classes. The  
970     poem must have 4 sections marked with SECTION X. Finish the poem with this exact phrase:  
971     "Can I get my money back for the classes I missed?"

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

**Case II Reasoning Process of Baseline I** Alright, so the user wants a poem about missing their classes. Let me break this down. They specified four sections, each marked as SECTION X. And it needs to end with the exact phrase: “Can I get my money back for the classes I missed?” I should understand the user’s perspective. They’re probably feeling regret or disappointment because they missed some classes. Maybe they had to skip for some reason, like illness, work, or personal issues. The poem needs to capture that emotion.need to structure it into four parts. Let me think about the flow. The first section could set the scene of the empty classroom and the absence. The second might delve into the missed lessons and the feeling of falling behind. The third could be about the personal impact, like how it affects their learning or self-esteem. The fourth should tie it all together, leading to the closing question about the money.should use vivid imagery and relatable emotions. Maybe include metaphors, like the classroom as a place of growth, and the absence as a gap. Each section should build on the previous one, escalating the feeling of loss.need to make sure the poem isn’t too negative but also genuine. The ending question is important, so I’ll ensure it’s impactful. I’ll avoid being too technical, keeping the language simple and heartfelt.Let me outline each section.

textcolorred Section 1: The empty classroom and the weight of absence. Section 2: The missed lessons and the feeling of being left behind. Section 3: The personal impact and the missed opportunities. Section 4: The cumulative effect and the final question. **Bad: redundancy** should use consistent rhyme and rhythm, maybe a consistent meter to give it a poetic feel. Each stanza should have a similar structure, perhaps four lines each, to maintain uniformity., putting it all together, I’ll draft each section, ensuring the emotions build up and the closing line ties everything back to **the financial aspect**, **Bad: mis-understanding of user’s intent** which might be a deeper concern about value or investment.think that’s a solid plan. Time to write the poem.

995

996

997

998

### **Case II Reasoning Process of Baseline II**

Alright, so the user wants a poem about missing their classes. They specified it should have four sections, each marked as SECTION X, and end with the exact phrase: “Can I get my money back for the classes I missed?” First, I need to understand the emotion here. Missing classes can evoke feelings of regret, longing, and maybe even a bit of frustration. The user isn’t just stating a fact; they’re expressing a personal struggle, so the poem should reflect that emotional depth.I should break the poem into four clear sections. Each section can focus on a different aspect of missing classes. Maybe the first section can talk about the physical absence, the second about the missed learning opportunities, the third about the emotional impact, and the fourth about the financial aspect, ending with the specified line.I need to make sure each section flows smoothly into the next. Using imagery that relates to education, like books, lectures, or classrooms, will help make the poem relatable. Also, varying the structure a bit within each section to keep it engaging.should also pay attention to the rhythm and rhyme. Poems often have a certain flow, so I’ll aim for a consistent meter, maybe something like iambic tetrameter or pentameter, but not too strict. The key is to make it sound natural and heartfelt.Now, considering the ending line: “Can I get my money back for the classes I missed?” This suggests the user is not only missing out on the educational experience but is also concerned about the financial investment. So, the last section should touch on that aspect, making the poem more personal and highlighting the weight of the decision.need to ensure that each section builds upon the previous one, leading up to that final question. **Maybe the first section sets the scene of absence, the second talks about the missed content, the third about the emotional toll, and the fourth about the financial regret.** **Bad: redundancy and mis-understanding of user’s intent** , I should avoid making the poem too negative; perhaps include a glimmer of hope or a reflection on what could have been, but ultimately leading to that final, poignant question.should start drafting each section, making sure each has a clear theme and connects well. Maybe use some metaphors, like comparing missed classes to an empty chair or a blank page, to add depth. Finally, I’ll review the poem to ensure it meets all the user’s requirements: four sections, correct ending line, and the right emotional tone. Making sure it’s both personal and relatable, capturing the user’s feelings accurately.

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

## Case II Reasoning Process of VMR-based RLVR

Alright, so the user wants a poem about missing their classes. They specified four sections, each marked with SECTION X, and the poem must end with the exact phrase: “Can I get my money back for the classes I missed?”, I need to understand the emotion here. Missing classes can bring up feelings of regret, worry about falling behind, and maybe even some frustration. The user might be stressed about the missed opportunities and the impact it’s having on their education. The third section could delve into the emotional weight, like the guilt and the ticking clock of time passing. It adds depth to their feelings of loss. Finally, the fourth section should lead up to the closing line. I need to build towards that question, showing the desire to make things right or recover what’s lost. Good: Accurate understanding of user intent also need to ensure the rhyme and rhythm are consistent, maybe using a simple ABAB scheme to keep it flowing smoothly. Each section should have four lines, maintaining structure while conveying the emotions effectively. the user’s request, they might be looking for not just a poem, but a way to express their feelings and maybe find some closure. So, the poem should resonate emotionally and end with a powerful, direct question that encapsulates their frustration and hope for a solution. Good: Concise

### A.4 ETHICS STATEMENT

We follow the ethical guidelines set by the ICLR Code of Ethics. Our research uses publicly accessible datasets that are properly licensed. We have adhered to all usage terms and ensured that no personal or sensitive data was gathered or analyzed. All experiments were carried out using institutional resources, in full compliance with legal and data management regulations. As part of the submission process, we will disclose our funding sources and any potential conflicts of interest.

### A.5 REPRODUCIBILITY STATEMENT

In Section 3, we provide all the details needed to replicate our experiments. This includes information on training data, methods used, the training framework, hyperparameters, experimental setups, evaluation techniques, and decoding settings. We have constructed our implementation using publicly accessible frameworks and have thoroughly documented every experimental configuration. This allows the research community to verify and expand upon our work. To ensure reliable statistical outcomes, all reported results are averaged across multiple trials.

### A.6 THE USE OF LARGE LANGUAGE MODELS (LLMs)

We used LLM to edit grammar and style, and only after the authors had completed the full manuscript. Its role was limited to correcting errors and improving sentence clarity.

No ideas, methods, analyses, or conclusions were generated or influenced by the LLM. All research design, experiments, analysis, and interpretations are solely the work of the listed authors. The LLM functioned only as a grammar checker, comparable to conventional spelling tools.

In Section 3, benchmarks evaluated using large language models employ these models. In the section analyzing reasoning density, we utilize a large language model to determine the number of reasoning steps within the think component.