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Abstract

Complex question generation (CQG) aims to001
generate questions involving multiple Knowl-002
edge Base (KB) relations or functional con-003
straints. Existing methods train an encoder-004
decoder-based model to fit all questions. How-005
ever, the questions in the real world exhibit an006
imbalanced distribution in many dimensions,007
such as question type, relation class, entity008
class, and query structure. This results in in-009
sufficient learning for minority class samples010
under different dimensions. To address this011
problem, we propose a meta-learning frame-012
work for complex question generation. It trains013
a unique generator for each sample via retriev-014
ing a few most related training samples, which015
can deeply and quickly dive into the content016
features (e.g. relation and entity) and structure017
features (e.g. query structure) of each sample.018
As retrieved samples directly determine the ef-019
fectiveness of each unique generator, we design020
a self-supervised graph retriever to learn the po-021
tential features of samples and retrieve the most022
related samples according to multiple dimen-023
sions. We conduct experiments on both We-024
bQuestionSP and ComplexWebQuestion, the025
results on the minority class of different dimen-026
sions have been significantly improved, which027
demonstrates the effectiveness of the proposed028
framework029

1 Introduction030

Complex question generation (QG) aims to gener-031

ate complex questions from knowledge base (KB)032

queries containing multiple relations or functional033

constraints, such as comparison and sorting. It can034

be applied in the education area and improve the035

performance of question answering (QA) over the036

KB by data augmentation for training corpora.037

In the real world, complex questions are un-038

evenly distributed across multiple dimensions. As039

shown in Figure 1, we take the widely used dataset040

WebQuestionsSP (WebQSP) (Yih et al., 2016) as041

an example and show the uneven distribution of042

1 2 3
Sorted Query Structure Id

0

1000

2000

3000

4000
Qu

er
y 

St
ru

ct
ur

e
La

be
l F

re
qu

en
cy

0 200 400 600
Sorted Relation Type Id

0

50

100

150

200

Re
la

tio
n 

La
be

l F
re

qu
en

cy

0 10 20 30
Sorted Entity Type Id

0

200

400

600

800

1000

En
tit

y 
Cl

as
s

La
be

l F
re

qu
en

cy

1 2 3 4 5 6
Sorted Question Type Id

500

1000

1500

2000

Qu
es

tio
n 

Ty
pe

La
be

l F
re

qu
en

cy

Figure 1: The distribution of question type (Single-hop,
Multi-hop, type constraint, entity constraint, compar-
ative constraint, and ordinal constraint), relation type,
query structure (chain style, tree style and ring style)
and entity type in training set of WebQSP.

complex questions from four dimensions: question 043

type, relation type, entity type, and query structure, 044

where a small portion of types have massive sam- 045

ples (i.e. the majority types) but the others have 046

only a few samples (i.e. the minority types). Cur- 047

rent methods train one model to fit all questions, 048

and the model tends to pay more attention to the 049

majority types while neglecting the minority ones, 050

resulting in insufficient training on minority ones 051

across different dimensions and making it challeng- 052

ing to generate various complex questions. 053

To deal with the data imbalance problem, we 054

propose a meta-learning framework for complex 055

question generation, namely Meta-CQG, where the 056

QG model adapts to the target KB query by tri- 057

als on the retrieved similar instances. Specifically, 058

the proposed framework adopts the model-agnostic 059

meta learning (MaML) (Finn et al., 2017) algo- 060

rithm and is composed of the meta learner, the 061

learner, and the retriever. The meta learner learns 062

the initial parameters for the learner in the meta- 063

training stage. In the testing stage, for each target 064
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KB query, the retriever selects a few related sam-065

ples from the training set to form the support set.066

Then, the learner (i.e. the question generator) are067

obtained by training the meta learner on the sup-068

port set to adapt to the target sample. Therefore,069

we change the data distribution for each sample,070

and the learner is able to focus on the knowledge071

most related to the target query.072

Here, one critical problem is how to select re-073

lated samples and construct the support set for the074

framework, which comprehensively consider po-075

tential features. Since the queries are usually rep-076

resented as graphs, this problem can be defined as077

a graph retrieval problem, which aims to retrieve078

most similar graphs for a given graph. The core079

of graph retrieval is to measure the similarity be-080

tween graphs. However, in the complex question081

generation task there is no label data and the graph082

contains rich edge label information. This leads to083

inefficiency and inaccuracy during the retrieving084

process. To address the challenge, we design a self-085

supervised graph retriever, which adopt variational086

graph auto-encoder (V-GAE) (Kipf and Welling,087

2016) to comprehensively model the content fea-088

tures and structure features.089

In general, our main contributions are listed as090

follows:091

• We propose a meta-learning framework Meta-092

CQG for complex question generation over093

knowledge bases, to overcome the challenge094

of data imbalance.095

• We design a graph retriever to select the most096

related samples and construct support set for097

meta-learning method, which adopts V-GAE098

to learn the content features and structure fea-099

tures of queries in an unsupervised approach.100

• We demonstrate the effectiveness of the pro-101

posed framework on two widely-used datasets.102

The results on the minority class of different103

dimensions have been significantly improved,104

which shows the advantage of our method.105

2 Preliminary106

We aim to generate complex questions from queries.107

The input of our task is a query Q and the output108

is a question S. As the query is always displayed109

in the form of graph, we represent the query with110

a query graph G. Then we translate the G to the111

corresponding complex question S112

Knowledge Base. A knowledge base K is a col- 113

lection of triples in the form of (s, r, o), where s, 114

r, and o denote subject, relation, and object respec- 115

tively. 116

Query Graph. As described in (Qiu et al., 117

2020), a query graph G is a restricted subset of 118

λ-calculus in the graph representation. Hence, 119

queries can be represented by query graph (Prud- 120

hommeaux, 2008). Our query graph consists of 121

three types of nodes: constant node, variable node, 122

and answer node. A constant node can be a 123

grounded KB entity or KB type. Variable nodes 124

and answer nodes represent ungrounded KB nodes 125

or values. There are two types of edges: predicate 126

edge and functional edge. A predicate edge rep- 127

resents a KB relation, such as wife. A functional 128

edge indicates a functional operation, such as >, 129

MinatN. We adopt query graph as our input. 130

Complex Question. A natural language com- 131

plex question S corresponds to a query graph G 132

over the K, and involves multiple predicate edges 133

or functional edges. 134

3 Methodology 135

In this section, we will describe the proposed frame- 136

work, Meta-CQG. Figure 2 gives an overview of 137

our framework. Our framework mainly consists 138

of two parts: Question-agnostic Meta Learning 139

(QaML) and the graph retreiver. QaML trains a 140

unique generator for each sample by learning the 141

potential features of support set data, i.e., related 142

samples. The graph retriever selects a few most 143

related samples and construct the support set. 144

3.1 Question-agnostic Meta Learning 145

QaML contains two parts, the learner as the ques- 146

tion generator and the meta learner above the 147

learner, which allocates parameters for the learner. 148

We will describe them in detail below. 149

3.1.1 Meta Learner 150

In this section, we will describe the meta learner, 151

which aims to learn an initial set of parameters 152

that can quickly adapt to a task-specific learner via 153

related samples. 154

In the meta learning setting, a task consists of a 155

support set and a query set. The query set only con- 156

tains one sample to be generated, and the support 157

set contains the training samples which are most 158

related to it. Take a sample q as an example, the 159

query set squery only contains sample q , and we 160
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Figure 2: The overall architecture of our framework for question generation over knowledge bases.

use the graph retriever to select top-N similar sam-161

ples from the training set to construct the support162

set ssupport. ssupport and squery construct one task163

Dq.164

The meta-learning process can be divided into165

meta-training process and meta-testing process.166

In the meta-training process, the meta learner167

trains on the support set data to get the adapted168

learner and test on the query set data to update the169

initial parameter. We denote the model parame-170

ter of learner as θ. When training on the support171

set, the model updates the parameter and gets the172

adapted learner for the query set. After t itera-173

tions of training on ssupport, the question generator,174

parameterized by θ, is updated to θ′ by standard175

gradient descent,176

θ′ ← θ − η1∇θL (1)177

where L is the loss from support set.178

When testing on the query set, we apply again179

stochastic gradient descent on the initial parameter180

θ by minimizing the the loss from query set L′,181

θ ← θ − η2∇θL′ (2)182

where η2 is meta-learning rate. The seudo code of183

meta training process is shown in Algorithm 1.184

In the meta-testing process, we update the model185

parameters once and leverage the adapted model to186

encode the query set data and generate the question.187

We initialize the model by the parameter of the188

meta learner and leverage the support set data to189

update the parameter. Then, we obtain the adapted190

parameter and the adapted model is used to encode191

the query set data and generate the question.192

Algorithm 1 Meta-training process

Require: Dataset: Strain ; step hyper parameters:
η1, η2;

1: start training:
2: Randomly initialize θ
3: for Si in Strain do
4: Expand Si→Di

5:
(
Ssupport
i ,Squery

i

)
∼ Di.

6: Evaluate∇θL using Ssupport
i

7: Compute adapted parameters with gradient
descent:

8: θ′ ← θ − η1∇θL
9: Evaluate∇θL′ using Squery

i

10: θ ← θ − η2∇θL′

11: end for
12: end training

3.1.2 Learner 193

In our task, actually, the learner is the question 194

generator. It translates the generated query graph 195

into a natural language question. Based on the 196

query graph constructed above, we adopt a novel 197

graph-to-sequence model to generate sequences. 198

Specifically, we leverage DCGCN to encode the 199

query graph into a low-dimensional vector. Then it 200

adopts LSTM to decode the vector into a question. 201

Graph Neural Networks have achieve great suc- 202

cess in modeling graph-like data. However, ex- 203

isting study which uses graph neural networks in 204

KBQG (Chen et al., 2020) faces difficulty in captur- 205

ing the non-local interactions among nodes. For ex- 206

ample, knowledge subgraph usually contains CVT 207

nodes, which are used to express the relationship 208

among several other nodes. Yet this node will never 209

appear in the question. Therefore, the generated 210

3



question should express the meaning of the multi-211

hop paths connected by the CVT nodes, which we212

call the non-local interactions.213

To better capture non-local interactions among214

nodes, we leverage DCGCN (Guo et al., 2019)215

as the graph encoder. It applies dense connectiv-216

ity among Graph Convolutional Network (GCN)217

layers. Each DCGCN block consists of two sub-218

blocks to capture graph structure at different ab-219

stract levels. Each sub-block consists of several220

GCN layers, where each GCN layer is connected221

to all previous layers. The input of layer l for node222

u is defined as,223

g(l)u =
[
xu;h

(1)
u ; . . . ;h(l−1)

u

]
, (3)224

where [·; ·] denotes the concatenation of vectors; xu225

denotes the node embedding of u; and h
(i)
u denotes226

the output of layer i for node u.227

In order to model both the node and edge in-228

formation with GNNs, we utilize levi graph trans-229

formed above. Following (Beck et al., 2018), we230

add reverse and self-loop edges to the Levi graph.231

To compute the graph-level embedding, we lever-232

age the pooling-based method, which feeds the out-233

put node embeddings into a fully-connected neural234

network and applies the element-wise max-pooling235

operation on all node embeddings to derive the236

graph embedding hG ∈ Rd.237

We adopt an attention-based LSTM de-238

coder (Bahdanau et al., 2014) that generates the239

output sequence one word at a time. The graph240

embedding hG is used as the initial input of the241

decoder. We carefully follow the attention mecha-242

nism used in (Tu et al., 2016).243

3.2 Graph Retriever244

To construct the support set, we retrieve samples245

that are most similar to the sample to be generated,246

i.e., query-question pairs. As queries are always247

be represented by graphs, this problem is defined248

as a graph retrieval problem. The core and most249

challenging part is to measure similarity.250

Considering both the structure and content in-251

formation of the query graph, we adopt the neural-252

based method to measure graph similarity. Most253

neural-based model only focus on homogeneous254

graphs and ignore the edge label information. To255

enhance the predicate information when calculating256

graph similarity, we utilize Levi graph transforma-257

tion method to transform the input query graph into258

its equivalent Levi graph(Levi, 1942), which views 259

predicate as a type of node in the graph. 260

In our situation, there is no gold label about the 261

similarity between graphs. Therefore, we should 262

train the graph retriever in an unsupervised way. 263

With respect to the graphs, the variational graph 264

auto-encoder (V-GAE) is a typical network to au- 265

tomatically learn the features of graph-structured 266

data, which can be used as the measurement of the 267

graph similarity. Specifically, V-GAE takes the ad- 268

jacency matrix M and node features as input and 269

tries to recover the graph adjacency matrix through 270

the hidden layer embeddings H . We denote the 271

node embedding as X . Specifically, V-GAE model 272

calculates node embeddings via a GCN encoder, 273

H = GCN(X,M) (4) 274

Then, the V-GAE samples the latent variables hi ∈ 275

H from a normal distribution, 276

q(H | X,M) =

N∏
i=1

q (hi | X,M) , (5) 277

The generative model is given by an inner product 278

between latent variables, 279

p(M | H) =

N∏
i=1

N∏
j=1

p (Mij | hi,hj) , (6) 280

where Mij are the elements of M . The training 281

loss is given as, 282

L = Eq(H|X,M)[log p(M | H)]

−KL[q(H | X,M)∥p(Z)]
(7) 283

where KL[q(·)∥p(·)] is the Kullback-Leibler diver- 284

gence between q(·) and p(·). In the inference stage, 285

the reconstructed adjacency matrix M̂ is the inner 286

product of the latent parameters H , 287

M̂ = σ
(
HHT

)
(8) 288

Suppose a query graph has qn non-variable 289

nodes, qv variable nodes and qp edges including 290

predicate and functional edges. When generating 291

questions, the variable nodes provide some seman- 292

tic structure information in the questions but do not 293

explicitly appear in the questions. However, non- 294

variable nodes, the predicate and functional edges 295

will transform into corresponding tokens, which 296

will be generated in the appropriate position in the 297

question. After Levi graph transformation, qv is 298
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always more than qp and qv, which may introduce299

noise during question generation. Moreover, query300

graph is our input, the predicate information and301

functional edges are critical for our study. There-302

fore, we design a weighting strategy that enhances303

the predicate information and weakens the influ-304

ence of variable nodes.305

After VGAE model training to convergence, we306

get the node representation from H , including node307

vector hn and edge vector he. We utilize aver-308

age pooling to aggregate information for edge and309

nodes separately,310

HN = avgpool (hn) ,

HE = avgpool (he)
(9)311

We calculate their weight to get the graph embed-312

ding according to the number of non-variable nodes313

and edges.314

HG =
qn

qn + qp
HN +

qp
qn + qp

HE (10)315

Then we use graph embedding to retrieve the316

most similar samples through cosine similarity317

function.318

4 Experiments319

We conduct experiments on two widely-used bench-320

mark datasets, i.e., WebQSP (Yih et al., 2016), and321

ComplexWebQuestions (CWQ) (Talmor and Be-322

rant, 2018). The baselines that we compare with323

are the state-of-the-art models over the adopted324

datasets.325

326

4.1 Datasets and Preprocessing327

The two adopted datasets are all from the gen-328

eral domain and based on Freebase (Bollacker329

et al., 2008). Specifically, WebQSP consists of330

4,737 question-answer pairs. All the questions331

are collected through Google Suggest API, and332

the answers are fetched from Freebase with the333

help of Amazon Mechanical Turk. CWQ modi-334

fied the SPARQLs in WebQSP by including more335

constraints, and then generated natural language336

questions with the help of templates and Amazon337

Mechanic Turk. It contains 34,689 questions in338

total. For each dataset, we randomly select 80% of339

the examples for training, 10% for validation, and340

10% for testing.341

4.2 Baseline Methods 342

We have several baseline methods, including the 343

current state-of-the-art model over the two bench- 344

mark datasets. L2A(Du et al., 2017), an attention- 345

based Seq-to-Seq model to generate natural lan- 346

guage questions from context in open domain 347

conversational systems. Zero-shot(Elsahar et al., 348

2018), an RNN-based Seq-to-Seq model paired 349

with an original part-of-speech copy action mecha- 350

nism to generate questions. MHQG(Kumar et al., 351

2019), a Transformer-based model for automatic 352

generation of multi-hop questions over knowledge 353

bases. BiGraph2seq(Chen et al., 2020), a graph- 354

to-sequence model which leverages Bi-GNN as the 355

graph encoder to encode the KB subgraphs, and en- 356

hance the RNN decoder with copying mechanism. 357

DCGCN, our question generator which applys 358

DCGCN as graph encoder and LSTM as decoder. 359

We denote this model by DCGCN. DCGCN+ROS, 360

We leverage DCGCN as basic model and adopt 361

another classical strategy to solve the data imbal- 362

ance in question type, i.e., Random Over Sampling 363

(ROS). 364

4.3 Results and Discussion 365

Following previous KBQG works, we measure the 366

method performance by a set of N-grams-based 367

metrics for question generation: BLEU-4(Papineni 368

et al., 2002)(B-4.), METEOR(Banerjee and Lavie, 369

2005), and ROUGE-L(Lin, 2004). Besides these 370

automatic metrics, we conduct manual evaluations 371

on 100 randomly chosen questions from the test set 372

of datasets. We pair the questions generated by our 373

model and state-of-the-art model in the test set, and 374

scramble them. Two human annotators are asked 375

to judge which is better in pairs from three aspects: 376

naturalness, correctness, and semantic. 377

Table 1 shows the results of Meta-CQG and the 378

adopted baselines on automatic metrics. We also 379

conduct experiments with traditional setting, which 380

will be discussed in Section 4.4. As is reported, 381

Meta-CQG outperforms all the baselines on the 382

three benchmark datasets. Specifically, Meta-CQG 383

improves the BLEU-4 score by 4.16% on CWQ, 384

5.81% on WebQSP. Meanwhile, Meta-CQG ex- 385

ceeds the baselines by a larger margin on METEOR 386

and ROUGE-L too. 387

Compared to the Seq-to-Seq model (Du et al., 388

2017; Elsahar et al., 2018; Kumar et al., 2019), we 389

can see the advantages of GNN-based encoders 390

for modeling query graphs, since the RNN-based 391
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Method
CWQ WebQSP

BLEU-4 METEOR Rouge-L BLEU-4 METEOR Rouge-L

L2A 4.01 13.78 30.59 8.01 19.45 32.58
Zero-shot 6.37 16.32 32.10 9.45 21.52 34.78
MHQG 9.35 19.42 35.78 13.34 24.88 39.14
BiGraph2seq 26.01 28.12 53.58 27.86 30.24 62.77
DCGCN 27.36 29.53 54.11 29.82 31.28 63.93
DCGCN+ROS 28.15 30.13 54.69 30.68 32.19 64.56

Meta-CQG 30.17 32.01 56.58 33.67 33.08 65.99
w/o Graph Retriever 27.66 29.68 53.88 29.87 31.45 64.08
w/o Weighting Strategy 29.13 31.26 55.68 32.53 32.10 64.88

Table 1: Experimental results of automatic metrics on two benchmark datasets.

Dimesion Categories
BiGraph2Seq DCGCN Meta-CQG

B-4. ME. R-L. B-4. ME. R-L. B-4. ME. R-L.

Question
Type

Single-hop(>40%) 28.56 31.38 63.89 30.56 31.79 64.30 33.88 34.03 62.41
Multi-hop(>20%) 27.60 29.76 63.01 28.86 31.05 64.08 32.97 32.77 64.95

Type Constraint(<10%) 26.53 28.76 60.23 28.27 30.19 62.76 32.60 32.86 64.59
Ordinal(<5%) 23.43 27.01 53.99 24.73 27.53 57.07 29.91 31.50 64.09

Query
Structure

Chain-Style(>75%) 29.38 31.23 63.65 31.45 32.96 64.45 34.23 34.22 66.58
Tree-Style(<20%) 23.53 23.46 58.17 25.77 26.08 59.39 33.21 32.75 65.22
Ring-Style(<5%) 6.78 17.01 48.65 9.48 20.57 50.78 23.23 30.79 56.79

Query
Relation

Notable Types(>30%) 28.77 30.94 60.17 31.27 32.48 62.59 34.14 35.40 65.11
Inventor(<10%) 17.53 22.96 47.47 20.29 24.57 51.86 27.33 31.88 62.13

Award Honor(<1%) 4.58 14.77 33.58 7.33 15.45 37.54 20.29 24.11 52.77

Entity
Class

Country(>30%) 28.66 31.27 63.48 30.23 32.83 64.09 34.22 33.79 67.06
Book(<10%) 13.27 18.86 42.76 15.33 21.32 45.36 25.02 29.36 60.43

Island Group(<5%) 5.77 15.85 32.87 9.89 17.84 38.66 22.18 27.66 54.79

Table 2: Experimental results of automatic metrics on different dimensions.

model and the transformer-based model ignores392

the explicit graph structure of query graphs. Thus,393

Meta-CQG and BiGraph2seq outperform a large394

margin on both benchmarks. Instead of Bi-GNN395

leveraged in BiGraph2seq, we employ DC-GCN396

to capture the non-local interactions between the397

nodes in the graphs. Moreover, Meta-CQG over-398

comes the imbalanced problem. Hence our model399

outperforms than BiGraph2Seq significantly.400

We conduct experiment to verify the effective-401

ness of our strategy to overcome date imbalance.402

As shown in Table 1, We achieve the balance403

between majority classes and minority classes404

through randomly copying some samples of mi-405

nority classes, i.e., DCGCN+ROS. The results in-406

dicate the ability of our meta-learning approach to 407

deal with the data imbalance. 408

As mentioned above, complex questions are im- 409

balanced in four dimensions. We divide the ques- 410

tions in the WebQSP according to these dimen- 411

sions and obtain the experimental results of Bi- 412

Graph2Seq, DCGCN, and Meta-CQG. As there 413

are too many categories in some dimensions, we 414

sample one category from the majority class and 415

two categories from the minority class for each 416

dimension, as shown in Table 2. 417

As can be seen, Meta-CQG also achieves the best 418

performance in all four dimensions. This demon- 419

strates the effectiveness of our method for task- 420

specific knowledge. In Table 2, We can see that 421
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Figure 3: Case study on different models for generation.

Meta-CQG delivers the best performance in the422

Type Constraint and Ordinal Constraint category,423

which account for less than 10% of the training424

set. It validates the outstanding learning ability of425

Meta-CQG for the minority class.426

As shown in Table 2, DCGCN , the model that427

trained to fit all samples, performs worse in all428

categories than Meta-CQG. One possible reason is429

that it is difficult for the one-size-fits-all model to430

find the corresponding weight as the examples vary431

greatly. Besides, the imbalanced distribution also432

results in degradation of the model performance.433

Meta-CQG is designed to train a unique model for434

each sample, which can select appropriate weight435

to generate various questions. This demonstrates436

the adaptability of our model. which can quickly437

adapt to new samples by leveraging the similar-438

sample knowledge.439

In all four dimensions, compared with other cat-440

egories, our model has more significant improve-441

ment in the last two categories. As they account442

for less in the training data, the baseline model and443

DCGCN pay more attention to the majority class444

and neglect the minority class. When the propor-445

tion of category in the data decreases, the improve-446

ment effect of Meta-CQG is gradually significant.447

In Table 2, from the question type dimension, we448

also observe that the least effect of improvement is449

the largest proportion type, i.e., Single-hop ques-450

tions . For each sample in Single-hop questions,451

there may be much more related samples than we452

set. This results in insufficient knowledge of simi-453

lar samples for model learning.454

In addition to automatic metrics, we also con-455

duct a manual evaluation between Meta-CQG and456

the current state-of-the-art BiGraph2seq. Results457

are shown in Table 3. Our approach is preferred as458

it has more winning instances than losing instances459

on all two datasets. The results indicate that our460

model improves the quality of questions from three461

dimensions, i.e., naturalness, correctness, and se-462

mantic. 463

Results
CWQ WebQSP

Nat. Sem. Cor. Nat. Sem. Cor.

Win 19 37 28 35 35 29
Tie 79 59 69 59 59 64
Lose 2 4 3 6 6 7

Table 3: Wins, losses, and ties of Meta-CQG against
the current SOAT (BiGraph2seq) based on the manual
evaluation.

4.4 Ablation study 464

To have a deep insight into the design of Meta- 465

CQG, we perform ablation studies where we re- 466

move the query graph retriever and weighting strat- 467

egy, as shown in Table 1. 468

Graph Retriever. To evaluate the effectiveness 469

of graph retriever, we remove it and randomly se- 470

lect samples for each training sample. As presented 471

in Table 1, the results show that the performance 472

of the model has deteriorated. This indicates that 473

random select samples cannot provide task-specific 474

knowledge for the training sample, and they may 475

introduce noise during training. 476

Weighting Strategy. We evaluate Meta-CQG 477

without weighting strategy on the two datasets. The 478

results shown in Table 1 demonstrate that the strat- 479

egy can improve the overall performance, as it is 480

designed to enhance the information of predicates 481

in the query graph . 482

4.5 Comparison with different sampling 483

strategies 484

In this section, we design different sampling strate- 485

gies to verify the effectiveness of our graph re- 486

triever. First, we devise different retrievers accord- 487

ing to the four dimensions we mentioned above. 488

For each dimension, the retriever selects a few sam- 489

ples that belong to the same class of the sample to 490
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be generated. The results shown in Table 4 demon-491

strate the effectiveness of our model and verify that492

our model is able to comprehensively consider the493

imbalance in all dimensions.494

Strategies B-4. ME. R-L.

Question Type 31.07 32.87 64.97
Query Relation 31.22 32.39 64.43
Query Structure 30.09 31.53 64.27
Entity Class 30.48 31.98 64.42
Our Model 33.67 33.08 65.99

Table 4: Experimental results of different sampling
strategies.

4.6 Case Study495

As presented in Figure 3, we conduct a case study496

on generated questions. We select questions from497

different types to verify the effectiveness of our498

overall framework. For example, when generating499

the Ordinal Constraint question in Table, the ques-500

tion generated by BiGraph2seq was not smooth due501

to the lack of modeling non-local interactions. And502

DCGCN was puzzled about what token should be503

used to correspond to the predicate in the query504

graph. We can see that DCGCN failed to distin-505

guish the two predicates for two tokens and thus506

generate inconsistent questions. As illustrated in507

Figure 3, our model can generate complex ques-508

tions of high quality.509

5 Related Work510

Question generation over knowledge bases has511

been developed for a long time. Some methods (Be-512

rant and Liang, 2014) reconstructs the question text513

from a candidate structured query, and compare514

it with the original question to score the candi-515

date query. The reconstruction is based on pre-516

defined templates. Some methods (Jia and Liang,517

2016; Kočiskỳ et al., 2016; Hu et al., 2019; Cao518

et al., 2019) leverage the generated questions to519

train question answering models in a dual learning520

or semi-supervised learning framework. Recently,521

many works focus on question generation instead522

of augmentation for question answering. These523

works mainly adopt encoder-decoder models, and524

focus on enriching the input information. In (Ser-525

ban et al., 2016), recurrent neural networks are first526

introduced for generating natural language ques-527

tions from KB facts. In (Indurthi et al., 2017), ques-528

tions are generated from an RNN based model with 529

corresponding triples and entity types. To address 530

the challenge of unseen predicates and entity types, 531

(Elsahar et al., 2018) leverages auxiliary contexts in 532

the WiKidata corpus in an encoder-decoder archi- 533

tecture, paired with a part-of-speech copy action 534

mechanism to generate questions. However, the 535

context cannot cover all predicates. Thus, (Liu 536

et al., 2019) presents a neural encoder-decoder 537

model that integrates diversified off-the-shelf con- 538

texts. To tackle the semantic drift problem, (Bi 539

et al., 2020) presents a knowledge-enriched, type- 540

constrained, and grammar-guided KBQG model. 541

However, these methods only focus on generating 542

one-hop or multi-hop questions from chain-like 543

KB subgraph. The employed RNN-based mod- 544

els cannot handle graph-structured data. Recently 545

(Kumar et al., 2019) proposes a model for generat- 546

ing complex multi-hop and difficulty-controllable 547

questions over knowledge bases, and (Chen et al., 548

2020) applied a bidirectional Gated Graph Neural 549

Network model to encode the KB subgraph. How- 550

ever, existing methods train one model to fit all 551

questions, ignoring the data imbalance in the real 552

world. To the best of our knowledge, we are the 553

first to deal with the data imbalance in the complex 554

question generation. 555

6 Conclusion 556

In this paper, we focus on the task of complex ques- 557

tion generation over knowledge base. We propose 558

a simple yet effective framework for complex ques- 559

tion generation, namely Meta-CQG, to deal with 560

the data imbalance problem. To consider the im- 561

balance of all dimensions, we adopt the MAML 562

method to train a unique generator for each sam- 563

ple to be generated via a few most related training 564

samples. Specially, we design a self supervised 565

graph retriever to flexibly retrieve most related sam- 566

ples. Besides, we propose a question generator, 567

which leverages DCGCN to encode the queries 568

and LSTM to decode the question . We evaluate 569

the effectiveness of the proposed framework Meta- 570

CQG on two widely-used benchmark datasets, and 571

it outperforms all the baselines. In future work, we 572

plan to explore the way of controlling the question 573

complexity during generation. 574
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