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Abstract

Complex question generation (CQG) aims to
generate questions involving multiple Knowl-
edge Base (KB) relations or functional con-
straints. Existing methods train an encoder-
decoder-based model to fit all questions. How-
ever, the questions in the real world exhibit an
imbalanced distribution in many dimensions,
such as question type, relation class, entity
class, and query structure. This results in in-
sufficient learning for minority class samples
under different dimensions. To address this
problem, we propose a meta-learning frame-
work for complex question generation. It trains
a unique generator for each sample via retriev-
ing a few most related training samples, which
can deeply and quickly dive into the content
features (e.g. relation and entity) and structure
features (e.g. query structure) of each sample.
As retrieved samples directly determine the ef-
fectiveness of each unique generator, we design
a self-supervised graph retriever to learn the po-
tential features of samples and retrieve the most
related samples according to multiple dimen-
sions. We conduct experiments on both We-
bQuestionSP and ComplexWebQuestion, the
results on the minority class of different dimen-
sions have been significantly improved, which
demonstrates the effectiveness of the proposed
framework

1 Introduction

Complex question generation (QG) aims to gener-
ate complex questions from knowledge base (KB)
queries containing multiple relations or functional
constraints, such as comparison and sorting. It can
be applied in the education area and improve the
performance of question answering (QA) over the
KB by data augmentation for training corpora.

In the real world, complex questions are un-
evenly distributed across multiple dimensions. As
shown in Figure 1, we take the widely used dataset
WebQuestionsSP (WebQSP) (Yih et al., 2016) as
an example and show the uneven distribution of
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Figure 1: The distribution of question type (Single-hop,
Multi-hop, type constraint, entity constraint, compar-
ative constraint, and ordinal constraint), relation type,
query structure (chain style, tree style and ring style)
and entity type in training set of WebQSP.

complex questions from four dimensions: question
type, relation type, entity type, and query structure,
where a small portion of types have massive sam-
ples (i.e. the majority types) but the others have
only a few samples (i.e. the minority types). Cur-
rent methods train one model to fit all questions,
and the model tends to pay more attention to the
majority types while neglecting the minority ones,
resulting in insufficient training on minority ones
across different dimensions and making it challeng-
ing to generate various complex questions.

To deal with the data imbalance problem, we
propose a meta-learning framework for complex
question generation, namely Meta-CQG, where the
QG model adapts to the target KB query by tri-
als on the retrieved similar instances. Specifically,
the proposed framework adopts the model-agnostic
meta learning (MaML) (Finn et al., 2017) algo-
rithm and is composed of the meta learner, the
learner, and the retriever. The meta learner learns
the initial parameters for the learner in the meta-
training stage. In the testing stage, for each target



KB query, the retriever selects a few related sam-
ples from the training set to form the support set.
Then, the learner (i.e. the question generator) are
obtained by training the meta learner on the sup-
port set to adapt to the target sample. Therefore,
we change the data distribution for each sample,
and the learner is able to focus on the knowledge
most related to the target query.

Here, one critical problem is how to select re-
lated samples and construct the support set for the
framework, which comprehensively consider po-
tential features. Since the queries are usually rep-
resented as graphs, this problem can be defined as
a graph retrieval problem, which aims to retrieve
most similar graphs for a given graph. The core
of graph retrieval is to measure the similarity be-
tween graphs. However, in the complex question
generation task there is no label data and the graph
contains rich edge label information. This leads to
inefficiency and inaccuracy during the retrieving
process. To address the challenge, we design a self-
supervised graph retriever, which adopt variational
graph auto-encoder (V-GAE) (Kipf and Welling,
2016) to comprehensively model the content fea-
tures and structure features.

In general, our main contributions are listed as
follows:

* We propose a meta-learning framework Meta-
CQG for complex question generation over
knowledge bases, to overcome the challenge
of data imbalance.

* We design a graph retriever to select the most
related samples and construct support set for
meta-learning method, which adopts V-GAE
to learn the content features and structure fea-
tures of queries in an unsupervised approach.

* We demonstrate the effectiveness of the pro-
posed framework on two widely-used datasets.
The results on the minority class of different
dimensions have been significantly improved,
which shows the advantage of our method.

2 Preliminary

We aim to generate complex questions from queries.
The input of our task is a query Q and the output
is a question S. As the query is always displayed
in the form of graph, we represent the query with
a query graph G. Then we translate the G to the
corresponding complex question S

Knowledge Base. A knowledge base X is a col-
lection of triples in the form of (s, r, 0), where s,
r, and o denote subject, relation, and object respec-
tively.

Query Graph. As described in (Qiu et al.,
2020), a query graph G is a restricted subset of
A-calculus in the graph representation. Hence,
queries can be represented by query graph (Prud-
hommeaux, 2008). Our query graph consists of
three types of nodes: constant node, variable node,
and answer node. A constant node can be a
grounded KB entity or KB type. Variable nodes
and answer nodes represent ungrounded KB nodes
or values. There are two types of edges: predicate
edge and functional edge. A predicate edge rep-
resents a KB relation, such as wife. A functional
edge indicates a functional operation, such as >,
MinatN. We adopt query graph as our input.

Complex Question. A natural language com-
plex question S corresponds to a query graph G
over the /C, and involves multiple predicate edges
or functional edges.

3 Methodology

In this section, we will describe the proposed frame-
work, Meta-CQG. Figure 2 gives an overview of
our framework. Our framework mainly consists
of two parts: Question-agnostic Meta Learning
(QaML) and the graph retreiver. QaML trains a
unique generator for each sample by learning the
potential features of support set data, i.e., related
samples. The graph retriever selects a few most
related samples and construct the support set.

3.1 Question-agnostic Meta Learning

QaML contains two parts, the learner as the ques-
tion generator and the meta learner above the
learner, which allocates parameters for the learner.
We will describe them in detail below.

3.1.1 Meta Learner

In this section, we will describe the meta learner,
which aims to learn an initial set of parameters
that can quickly adapt to a task-specific learner via
related samples.

In the meta learning setting, a task consists of a
support set and a query set. The query set only con-
tains one sample to be generated, and the support
set contains the training samples which are most
related to it. Take a sample ¢ as an example, the
query set Sgyery Only contains sample g , and we
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Figure 2: The overall architecture of our framework for question generation over knowledge bases.

use the graph retriever to select top-N similar sam-
ples from the training set to construct the support
set Ssupport- Ssupport aNd Sgyery cOnstruct one task
Dy.

The meta-learning process can be divided into
meta-training process and meta-testing process.

In the meta-training process, the meta learner
trains on the support set data to get the adapted
learner and test on the query set data to update the
initial parameter. We denote the model parame-
ter of learner as #. When training on the support
set, the model updates the parameter and gets the
adapted learner for the query set. After ¢ itera-
tions of training on Sgypport, the question generator,
parameterized by 6, is updated to 8’ by standard
gradient descent,

0' 60— Vol ey

where L is the loss from support set.

When testing on the query set, we apply again
stochastic gradient descent on the initial parameter
6 by minimizing the the loss from query set £/,

0 < 0 — VoLl (2)

where 72 is meta-learning rate. The seudo code of
meta training process is shown in Algorithm 1.

In the meta-testing process, we update the model
parameters once and leverage the adapted model to
encode the query set data and generate the question.
We initialize the model by the parameter of the
meta learner and leverage the support set data to
update the parameter. Then, we obtain the adapted
parameter and the adapted model is used to encode
the query set data and generate the question.

Algorithm 1 Meta-training process

Require: Dataset: Sy, ; step hyper parameters:
s 125
start training:
Randomly initialize 0
for S; in Sy, do

Expand S; —D;
(Sisupport 7S;]uery ) ~ Dz

Evaluate V£ using S;"PP*"

Compute adapted parameters with gradient
descent:

0 «— 06— T]1Vg£

: Evaluate VL' using

10: 00— T]QV9£/
11: end for
12: end training
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3.1.2 Learner

In our task, actually, the learner is the question
generator. It translates the generated query graph
into a natural language question. Based on the
query graph constructed above, we adopt a novel
graph-to-sequence model to generate sequences.
Specifically, we leverage DCGCN to encode the
query graph into a low-dimensional vector. Then it
adopts LSTM to decode the vector into a question.

Graph Neural Networks have achieve great suc-
cess in modeling graph-like data. However, ex-
isting study which uses graph neural networks in
KBQG (Chen et al., 2020) faces difficulty in captur-
ing the non-local interactions among nodes. For ex-
ample, knowledge subgraph usually contains CVT
nodes, which are used to express the relationship
among several other nodes. Yet this node will never
appear in the question. Therefore, the generated




question should express the meaning of the multi-
hop paths connected by the CVT nodes, which we
call the non-local interactions.

To better capture non-local interactions among
nodes, we leverage DCGCN (Guo et al., 2019)
as the graph encoder. It applies dense connectiv-
ity among Graph Convolutional Network (GCN)
layers. Each DCGCN block consists of two sub-
blocks to capture graph structure at different ab-
stract levels. Each sub-block consists of several
GCN layers, where each GCN layer is connected
to all previous layers. The input of layer [ for node
u 1s defined as,

) —

g = |xu;hlDs . sh{TY 3)

u u

where [-; -] denotes the concatenation of vectors; x,,
denotes the node embedding of u; and hq(f )
the output of layer ¢ for node .

In order to model both the node and edge in-
formation with GNNs, we utilize levi graph trans-
formed above. Following (Beck et al., 2018), we
add reverse and self-loop edges to the Levi graph.
To compute the graph-level embedding, we lever-
age the pooling-based method, which feeds the out-
put node embeddings into a fully-connected neural
network and applies the element-wise max-pooling
operation on all node embeddings to derive the
graph embedding h¥ € R?.

We adopt an attention-based LSTM de-
coder (Bahdanau et al., 2014) that generates the
output sequence one word at a time. The graph
embedding hY is used as the initial input of the
decoder. We carefully follow the attention mecha-
nism used in (Tu et al., 2016).

denotes

3.2 Graph Retriever

To construct the support set, we retrieve samples
that are most similar to the sample to be generated,
i.e., query-question pairs. As queries are always
be represented by graphs, this problem is defined
as a graph retrieval problem. The core and most
challenging part is to measure similarity.
Considering both the structure and content in-
formation of the query graph, we adopt the neural-
based method to measure graph similarity. Most
neural-based model only focus on homogeneous
graphs and ignore the edge label information. To
enhance the predicate information when calculating
graph similarity, we utilize Levi graph transforma-
tion method to transform the input query graph into

its equivalent Levi graph(Levi, 1942), which views
predicate as a type of node in the graph.

In our situation, there is no gold label about the
similarity between graphs. Therefore, we should
train the graph retriever in an unsupervised way.
With respect to the graphs, the variational graph
auto-encoder (V-GAE) is a typical network to au-
tomatically learn the features of graph-structured
data, which can be used as the measurement of the
graph similarity. Specifically, V-GAE takes the ad-
jacency matrix M and node features as input and
tries to recover the graph adjacency matrix through
the hidden layer embeddings H. We denote the
node embedding as X. Specifically, V-GAE model
calculates node embeddings via a GCN encoder,

H=GCN(X,M) 4)

Then, the V-GAE samples the latent variables h; €
H from a normal distribution,

N
=1

The generative model is given by an inner product
between latent variables,

N N
pM | H)=]][]r @ | hihy), (6
i=1j=1

where M;; are the elements of M. The training
loss is given as,

(M
—KL[q(H | X, M)|[p(Z)]

where KL[q(+)||p(+)] is the Kullback-Leibler diver-
gence between ¢(-) and p(+). In the inference stage,
the reconstructed adjacency matrix M is the inner
product of the latent parameters H,

M=o (HHT) ®

Suppose a query graph has ¢, non-variable
nodes, g, variable nodes and g, edges including
predicate and functional edges. When generating
questions, the variable nodes provide some seman-
tic structure information in the questions but do not
explicitly appear in the questions. However, non-
variable nodes, the predicate and functional edges
will transform into corresponding tokens, which
will be generated in the appropriate position in the
question. After Levi graph transformation, g, is



always more than ¢, and g, which may introduce
noise during question generation. Moreover, query
graph is our input, the predicate information and
functional edges are critical for our study. There-
fore, we design a weighting strategy that enhances
the predicate information and weakens the influ-
ence of variable nodes.

After VGAE model training to convergence, we
get the node representation from H, including node
vector h,, and edge vector h,. We utilize aver-
age pooling to aggregate information for edge and
nodes separately,

Hy = avgpool (h,), ©
Hp = avgpool (h,)

We calculate their weight to get the graph embed-
ding according to the number of non-variable nodes
and edges.

qn Hy + dp
an + Qp

HG = HE

= 10
qn + qp (10)

Then we use graph embedding to retrieve the
most similar samples through cosine similarity
function.

4 Experiments

We conduct experiments on two widely-used bench-
mark datasets, i.e., WebQSP (Yih et al., 2016), and
ComplexWebQuestions (CWQ) (Talmor and Be-
rant, 2018). The baselines that we compare with
are the state-of-the-art models over the adopted
datasets.

4.1 Datasets and Preprocessing

The two adopted datasets are all from the gen-
eral domain and based on Freebase (Bollacker
et al., 2008). Specifically, WebQSP consists of
4,737 question-answer pairs. All the questions
are collected through Google Suggest API, and
the answers are fetched from Freebase with the
help of Amazon Mechanical Turk. CWQ modi-
fied the SPARQLSs in WebQSP by including more
constraints, and then generated natural language
questions with the help of templates and Amazon
Mechanic Turk. It contains 34,689 questions in
total. For each dataset, we randomly select 80% of
the examples for training, 10% for validation, and
10% for testing.

4.2 Baseline Methods

We have several baseline methods, including the
current state-of-the-art model over the two bench-
mark datasets. L2A(Du et al., 2017), an attention-
based Seq-to-Seq model to generate natural lan-
guage questions from context in open domain
conversational systems. Zero-shot(Elsahar et al.,
2018), an RNN-based Seq-to-Seq model paired
with an original part-of-speech copy action mecha-
nism to generate questions. MHQG(Kumar et al.,
2019), a Transformer-based model for automatic
generation of multi-hop questions over knowledge
bases. BiGraph2seq(Chen et al., 2020), a graph-
to-sequence model which leverages Bi-GNN as the
graph encoder to encode the KB subgraphs, and en-
hance the RNN decoder with copying mechanism.
DCGCN, our question generator which applys
DCGCN as graph encoder and LSTM as decoder.
We denote this model by DCGCN. DCGCN+ROS,
We leverage DCGCN as basic model and adopt
another classical strategy to solve the data imbal-
ance in question type, i.e., Random Over Sampling
(ROS).

4.3 Results and Discussion

Following previous KBQG works, we measure the
method performance by a set of N-grams-based
metrics for question generation: BLEU-4(Papineni
et al., 2002)(B-4.), METEOR(Banerjee and Lavie,
2005), and ROUGE-L(Lin, 2004). Besides these
automatic metrics, we conduct manual evaluations
on 100 randomly chosen questions from the test set
of datasets. We pair the questions generated by our
model and state-of-the-art model in the test set, and
scramble them. Two human annotators are asked
to judge which is better in pairs from three aspects:
naturalness, correctness, and semantic.

Table 1 shows the results of Meta-CQG and the
adopted baselines on automatic metrics. We also
conduct experiments with traditional setting, which
will be discussed in Section 4.4. As is reported,
Meta-CQG outperforms all the baselines on the
three benchmark datasets. Specifically, Meta-CQG
improves the BLEU-4 score by 4.16% on CWQ,
5.81% on WebQSP. Meanwhile, Meta-CQG ex-
ceeds the baselines by a larger margin on METEOR
and ROUGE-L too.

Compared to the Seq-to-Seq model (Du et al.,
2017; Elsahar et al., 2018; Kumar et al., 2019), we
can see the advantages of GNN-based encoders
for modeling query graphs, since the RNN-based



Method CWQ WebQSP
BLEU-4 METEOR Rouge-L | BLEU-4 METEOR Rouge-L
L2A 4.01 13.78 30.59 8.01 19.45 32.58
Zero-shot 6.37 16.32 32.10 9.45 21.52 34.78
MHQG 9.35 19.42 35.78 13.34 24.88 39.14
BiGraph2seq 26.01 28.12 53.58 27.86 30.24 62.77
DCGCN 27.36 29.53 54.11 29.82 31.28 63.93
DCGCN+ROS 28.15 30.13 54.69 30.68 32.19 64.56
Meta-CQG 30.17 32.01 56.58 33.67 33.08 65.99
w/o Graph Retriever 27.66 29.68 53.88 29.87 31.45 64.08
w/o Weighting Strategy | 29.13 31.26 55.68 32.53 32.10 64.88
Table 1: Experimental results of automatic metrics on two benchmark datasets.
Dimesion Categories BiGraph2Seq DCGCN Meta-CQG
B4. ME. R-L. B4, ME. R-L. |B4. ME. R-L.
Single-hop(>40%) 28.56 31.38 63.89 | 30.56 31.79 64.30 | 33.88 34.03 62.41
Question Multi-hop(>20%) 27.60 29.76 63.01 | 28.86 31.05 64.08 | 32.97 32.77 64.95
Type Type Constraint(<10%) | 26.53 28.76 60.23 | 28.27 30.19 62.76 | 32.60 32.86 64.59
Ordinal(<5%) 23.43 27.01 53.99 | 2473 2753 57.07 | 2991 31.50 64.09
Chain-Style(>75%) 29.38 31.23 63.65 | 31.45 3296 64.45 | 34.23 3422 66.58
Sgll;cemryre Tree-Style(<20%) 23.53 2346 58.17 | 25.77 26.08 59.39 | 33.21 32.75 65.22
Ring-Style(<5%) 6.78 17.01 48.65 | 948 20.57 50.78 | 23.23 30.79 56.79
Notable Types(>30%) | 28.77 30.94 60.17 | 31.27 3248 62.59 | 34.14 3540 65.11
RSE;KH Inventor(<10%) | 17.53 2296 4747 | 2029 2457 51.86 | 2733 31.88 62.13
Award Honor(<1%) 458 1477 3358 | 7.33 1545 37.54 | 2029 24.11 52.77
Entity Country(>30%) 28.66 31.27 63.48 | 30.23 32.83 64.09 | 3422 33.79 67.06
Class Book(<10%) 13.27 18.86 42.76 | 1533 2132 4536 | 25.02 29.36 60.43
Island Group(<5%) 5.77 1585 32.87 | 9.89 17.84 38.66 | 22.18 27.66 54.79

Table 2: Experimental results of automatic metrics on different dimensions.

model and the transformer-based model ignores
the explicit graph structure of query graphs. Thus,
Meta-CQG and BiGraph2seq outperform a large
margin on both benchmarks. Instead of Bi-GNN
leveraged in BiGraph2seq, we employ DC-GCN
to capture the non-local interactions between the
nodes in the graphs. Moreover, Meta-CQG over-
comes the imbalanced problem. Hence our model
outperforms than BiGraph2Seq significantly.

We conduct experiment to verify the effective-
ness of our strategy to overcome date imbalance.
As shown in Table 1, We achieve the balance
between majority classes and minority classes
through randomly copying some samples of mi-
nority classes, i.e., DCGCN+ROS. The results in-

dicate the ability of our meta-learning approach to
deal with the data imbalance.

As mentioned above, complex questions are im-
balanced in four dimensions. We divide the ques-
tions in the WebQSP according to these dimen-
sions and obtain the experimental results of Bi-
Graph2Seq, DCGCN, and Meta-CQG. As there
are too many categories in some dimensions, we
sample one category from the majority class and
two categories from the minority class for each
dimension, as shown in Table 2.

As can be seen, Meta-CQG also achieves the best
performance in all four dimensions. This demon-
strates the effectiveness of our method for task-
specific knowledge. In Table 2, We can see that
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Figure 3: Case study on different models for generation.

Meta-CQG delivers the best performance in the
Type Constraint and Ordinal Constraint category,
which account for less than 10% of the training
set. It validates the outstanding learning ability of
Meta-CQG for the minority class.

As shown in Table 2, DCGCN , the model that
trained to fit all samples, performs worse in all
categories than Meta-CQG. One possible reason is
that it is difficult for the one-size-fits-all model to
find the corresponding weight as the examples vary
greatly. Besides, the imbalanced distribution also
results in degradation of the model performance.
Meta-CQG is designed to train a unique model for
each sample, which can select appropriate weight
to generate various questions. This demonstrates
the adaptability of our model. which can quickly
adapt to new samples by leveraging the similar-
sample knowledge.

In all four dimensions, compared with other cat-
egories, our model has more significant improve-
ment in the last two categories. As they account
for less in the training data, the baseline model and
DCGCN pay more attention to the majority class
and neglect the minority class. When the propor-
tion of category in the data decreases, the improve-
ment effect of Meta-CQG is gradually significant.
In Table 2, from the question type dimension, we
also observe that the least effect of improvement is
the largest proportion type, i.e., Single-hop ques-
tions . For each sample in Single-hop questions,
there may be much more related samples than we
set. This results in insufficient knowledge of simi-
lar samples for model learning.

In addition to automatic metrics, we also con-
duct a manual evaluation between Meta-CQG and
the current state-of-the-art BiGraph2seq. Results
are shown in Table 3. Our approach is preferred as
it has more winning instances than losing instances
on all two datasets. The results indicate that our
model improves the quality of questions from three
dimensions, i.e., naturalness, correctness, and se-

mantic.

CWQ WebQSP

Result:
esults Nat. Sem. Cor.|Nat. Sem. Cor.

Win 19 37 28|35 35 29
Tie 79 59 69|59 59 64
Lose 2 4 3 6 6 7

Table 3: Wins, losses, and ties of Meta-CQG against
the current SOAT (BiGraph2seq) based on the manual
evaluation.

4.4 Ablation study

To have a deep insight into the design of Meta-
CQG, we perform ablation studies where we re-
move the query graph retriever and weighting strat-
egy, as shown in Table 1.

Graph Retriever. To evaluate the effectiveness
of graph retriever, we remove it and randomly se-
lect samples for each training sample. As presented
in Table 1, the results show that the performance
of the model has deteriorated. This indicates that
random select samples cannot provide task-specific
knowledge for the training sample, and they may
introduce noise during training.

Weighting Strategy. We evaluate Meta-CQG
without weighting strategy on the two datasets. The
results shown in Table 1 demonstrate that the strat-
egy can improve the overall performance, as it is
designed to enhance the information of predicates
in the query graph .

4.5 Comparison with different sampling
strategies

In this section, we design different sampling strate-
gies to verify the effectiveness of our graph re-
triever. First, we devise different retrievers accord-
ing to the four dimensions we mentioned above.
For each dimension, the retriever selects a few sam-
ples that belong to the same class of the sample to



be generated. The results shown in Table 4 demon-
strate the effectiveness of our model and verify that
our model is able to comprehensively consider the
imbalance in all dimensions.

Strategies B-4. ME. R-L.
Question Type | 31.07 32.87 64.97
Query Relation | 31.22 3239 64.43
Query Structure | 30.09 31.53 64.27
Entity Class 3048 3198 64.42
Our Model 33.67 33.08 65.99

Table 4: Experimental results of different sampling
strategies.

4.6 Case Study

As presented in Figure 3, we conduct a case study
on generated questions. We select questions from
different types to verify the effectiveness of our
overall framework. For example, when generating
the Ordinal Constraint question in Table, the ques-
tion generated by BiGraph2seq was not smooth due
to the lack of modeling non-local interactions. And
DCGCN was puzzled about what token should be
used to correspond to the predicate in the query
graph. We can see that DCGCN failed to distin-
guish the two predicates for two tokens and thus
generate inconsistent questions. As illustrated in
Figure 3, our model can generate complex ques-
tions of high quality.

5 Related Work

Question generation over knowledge bases has
been developed for a long time. Some methods (Be-
rant and Liang, 2014) reconstructs the question text
from a candidate structured query, and compare
it with the original question to score the candi-
date query. The reconstruction is based on pre-
defined templates. Some methods (Jia and Liang,
2016; Kocisky et al., 2016; Hu et al., 2019; Cao
et al., 2019) leverage the generated questions to
train question answering models in a dual learning
or semi-supervised learning framework. Recently,
many works focus on question generation instead
of augmentation for question answering. These
works mainly adopt encoder-decoder models, and
focus on enriching the input information. In (Ser-
ban et al., 2016), recurrent neural networks are first
introduced for generating natural language ques-
tions from KB facts. In (Indurthi et al., 2017), ques-

tions are generated from an RNN based model with
corresponding triples and entity types. To address
the challenge of unseen predicates and entity types,
(Elsahar et al., 2018) leverages auxiliary contexts in
the WiKidata corpus in an encoder-decoder archi-
tecture, paired with a part-of-speech copy action
mechanism to generate questions. However, the
context cannot cover all predicates. Thus, (Liu
et al., 2019) presents a neural encoder-decoder
model that integrates diversified off-the-shelf con-
texts. To tackle the semantic drift problem, (Bi
et al., 2020) presents a knowledge-enriched, type-
constrained, and grammar-guided KBQG model.
However, these methods only focus on generating
one-hop or multi-hop questions from chain-like
KB subgraph. The employed RNN-based mod-
els cannot handle graph-structured data. Recently
(Kumar et al., 2019) proposes a model for generat-
ing complex multi-hop and difficulty-controllable
questions over knowledge bases, and (Chen et al.,
2020) applied a bidirectional Gated Graph Neural
Network model to encode the KB subgraph. How-
ever, existing methods train one model to fit all
questions, ignoring the data imbalance in the real
world. To the best of our knowledge, we are the
first to deal with the data imbalance in the complex
question generation.

6 Conclusion

In this paper, we focus on the task of complex ques-
tion generation over knowledge base. We propose
a simple yet effective framework for complex ques-
tion generation, namely Meta-CQG, to deal with
the data imbalance problem. To consider the im-
balance of all dimensions, we adopt the MAML
method to train a unique generator for each sam-
ple to be generated via a few most related training
samples. Specially, we design a self supervised
graph retriever to flexibly retrieve most related sam-
ples. Besides, we propose a question generator,
which leverages DCGCN to encode the queries
and LSTM to decode the question . We evaluate
the effectiveness of the proposed framework Meta-
CQG on two widely-used benchmark datasets, and
it outperforms all the baselines. In future work, we
plan to explore the way of controlling the question
complexity during generation.
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