Under review as a conference paper at ICLR 2023

COMMUTE-GAN: COMPTETITIVE MULTIPLE EFFI-
CIENT GENERATIVE ADVERSARIAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

In complex creative scenarios, co-creativity by multiple agents offers great advan-
tages. Each agent has a specific skill set and a set of abilities, which is generally
not enough to perform a large and complex task single-handed. These kinds of
tasks benefit substantially from collaboration. In deep learning applications, data
generation is an example of such a complex, potentially multi-modal task. Previous
Generative Adversarial Networks (GANs) focused on using a single generator to
generate multi-modal datasets, which is sometimes known to face issues such as
mode-collapse and failure to converge. Single generators also have to be very large
so that they can generalize complex datasets, so this method can easily run into
memory constraints. The current multi-generator based works such as MGAN,
MMGAN, MADGAN and AdaGAN either require training a classifier online,
the use of complex mixture models or sequentially adding generators, which is
computationally complex. In this work, we present a simple, novel approach of
training competitive multiple efficient GANs (ComMutE-GANSs), with multiple
generators and a single critic/discriminator, without introducing external complexi-
ties such as a classifier model. We introduce a new component to the generator loss
during GAN training, based on the Total Variation Distance (TVD). Our method
offers a robust, stable, memory efficient and easily parallelizable architecture. We
present a proof-of-concept on the MNIST dataset, which has 10 modes of data. The
individual generators learn to generate different digits from the distribution, and
together learn to generate the whole distribution. We compare ComMutE-GANs
with larger single-generator GANs and show its memory efficiency and increased
accuracy.

1 INTRODUCTION

With respect to human beings, ’Creators” refer to any and all who engage in creative thinking. When
people learn about new topics, they create cognitive structures that allow them to understand the
topics; they generate concepts that are new to them, although possibly already very well known to
others. This is creativity at a strictly intra-personal level. When working in a social setting, such as
a company or a classroom, one has to broaden this horizon to include "Co-creativity”.”Creativity
through collaboration” summarizes the definition of co-creativity as defined by |[Lubart| (2017)). Often,
collaborators have different or complementary skills that enable them to frequently produce shared
creations that they could not or would not produce on their own (Lubart & Thornhill-Miller, [2020)).
Al-aided co-creation has also been proven to improve general well-being (Yu et al., 2021).

Generative Adversarial Nets (GANs) are implicit generative models where one or more generators
play a zero-sum game with a discriminator to recreate and potentially expand a chosen dataset.
According to the definition established above, the generator models in modern day GANs such
as those described in the works of |[Karras et al.| (2018)); [Sauer et al.| (2022); Karras et al.| (2020);
Goodfellow et al.|(2014); Radford et al.|(2015)); |Arjovsky et al.|(2017); Gulrajani et al.|(2017) exhibit
creativity on an intra-personal level. Accordingly, generative networks have been applied in many
creative applications such as painting (Ganin et al.,[2018; [Mellor et al.| 2019} [Parikh & Zitnickl [2020)),
doodling (Ha & Eck, 2017} |Cao et al., |2019) and extending fictional languages (Zacharias et al.,
2022). Most noticeable, in all the applications listed above, a single, large, generative agent was
applied to perform a complex task rather than breaking it down into smaller, more easily manageable
sub-tasks. This approach, although effective, is upper-bounded by memory constraints. Inspiration

Under review as a conference paper at ICLR 2023

from co-creativity research aims to resolve these constraints.

Other implementations of GANSs that use collaboration, such as MGAN (Hoang et al., 2017), MM-
GAN (Pandeva & Schubert, [2019), MADGAN (Ghosh et al., 2018)) and AdaGAN (Tolstikhin et al.|
2017) try to rectify the missing co-creativity functionality of GANs by using a mixture of multiple
generators, modeling the input latent space as a mixture model, requiring the discriminator to classify
as well and sequentially train and add generators to the mixture, respectively. MGAN and MADGAN
require the discriminator to have classification capabilities and both implementations force the gener-
ators to generate different modes. The AdaGAN implementation poses a problem of computational
complexity because of the sequential training nature. MMGAN on the other hand focuses on using
mixtures at the input latent space level rather than on separating generators.

Our work stands to provide an easier approach to co-creativity than the ones presented above. It does
not require the online training of a classifier, we do use a pre-trained MNIST classifier to augment the
generator loss with the Total Variation Distance (TVD) to enforce mode separation during training,
but mode separation maybe enforced using other methods, not requiring this pre-trained classifier at
all. We also show that this is easily and efficiently scalable to more than two generators, which can
all be trained in parallel without making complex transformations to the latent space.

Analogous to human behaviour in a social setting, collaboration among two or more such generators
allows each individual generator to focus on and specialize in a specific sub-task, making the training
process more stable, more efficient (memory-wise), the generated images clearer and the distribution
of the generated images closer to the actual distribution of the chosen MNIST dataset.

2 BACKGROUND

2.1 GANSs, WGANsS AND WGAN-GP

Generative Adversarial Nets (GANs) (Goodfellow et al.l [2014) consist of two neural networks: a
generator (G(z)) that takes in randomly sampled noise, and generates fake images; a discriminator
(D(x)), that takes in batches of real and fake data points and outputs a 0 for fake images or 1 for real
ones. They minimize the well-known GAN objective function

mén mgxIEprr [log(D(x)] + Egp, [log(1 — D(X)] (1)

Where X = G(z), z ~ P,, P, is the data distribution, P, is the generator distribution and G and D
are the generator function and discriminator function, respectively.

A variation of this method is the Deep Convolution GAN (DCGAN) (Radford et al., 2015)), that uses
Convolutional Neural Networks (CNNs), to improve image data generation significantly.
Wasserstein GAN (WGAN) (Arjovsky et al.l 2017) improves vanilla GANs by presenting and
rectifying problems with the original GAN objective function. In WGANS, the Wasserstein distance
between real data and generated data is minimized by optimizing over the objective

min max Ex..p, [D(x)] — Ex~p, [D(X)]; 2
The WGAN-GP method (Gulrajani et al.|[2017)) is an improvement over this method which uses their
novel gradient penalty loss, instead of the former weight clipping to implicitly enforce the Lipschitz
constraints. The new objective function solved by WGAN-GP is given by

min max By, [D(9)] — Exer, [DE)] + A Ex (V3D 2 = 1), 3)
where the first two terms are the same as equation (2) and the third one is the gradient penalty (GP)
term. Here, X = ex + (1 — €)X and € ~ U0, 1]. P is the probability distribution associated with X.
Modern GANSs such as [Karras et al.| (2018)); [Sauer et al.| (2022)); [Karras et al.| (2020) that provide
state-of-the-art performance on large-scale image synthesis improve these basic methods by making
their models larger and training procedures more complex. Our method explores another direction,
namely, more instances of compact generators competing with each other. The idea takes inspiration
from social dynamics and co-creativity research.

Under review as a conference paper at ICLR 2023

2.2 GANS FOR MULTI-MODAL DATASETS

In past works, there have been attempts with varied scope, to learn multi-modal datasets such as
multi-class generation. The most notable are the MMGAN by Pandeva & Schubert| (2019), MGAN
by |Hoang et al.|(2017), MAD-GAN by |Ghosh et al.|(2018) and AdaGAN by [Tolstikhin et al.| (2017).
MMGAN approaches multi-modal generation task by considering the latent space z as a Gaussian
mixture model consisting multiple modes. Initially, a Gaussian distribution is sampled from a cluster
of Gaussian distributions (Cat(K, 1/K)), where the dataset has K “clusters”. Then, z is sampled
from this distribution and transformed by the generator to create images. This method uses an extra
encoder (E) model to predict the cluster of data objects.

The MGAN method (Hoang et al.|[2017) implements multiple generators that generate K different
batches. One of these batches is sampled randomly using a predefined distribution 7. The generated
batch is fed into a “discriminator + classifier” network with shared weights in all layers except the
output layer. The goal of the classifier is to predict which generator generated the images, and the
discriminator has the same functionality as the vanilla GAN method.

MAD-GAN (Ghosh et al., |2018) is a method which combines the classifier and discriminator
functionalities into a single model.

All of the previously mentioned methods require that an extra model be trained with the original
GAN or multi-generator setup to force separation of modes among the generators. Unlike these
methods, AdaGAN introduces a sequential “training+adding generators” approach. This approach is
computationally inefficient as shown by |Hoang et al.|(2017).

Although the results suggest that these methods work well, they require adding an extra step in the
training process. The method presented in this contribution manages to achieve promising results
without the need of such additions.

2.3 GAN EVALUATION METRICS

The most commonly used metrics in the GAN community to evaluate the generated images is the
Inception Score (IS) as introduced in |Salimans et al.| (2016). It uses the pre-trained InceptionV3
model (Szegedy et al., 2014)) to predict the class probabilities, the conditional probability of class
prediction given the image p(y|z). The marginal distribution p(y) is calculated using the batch-wise
average of p(y|x). Finally the KL-Divergence is calculated using

KLD = p(y|z) * (log(p(y|x)) — log(p(y))) “

This is performed over multiple batches and the final score is reported as the mean and standard
deviation of all the batches.

Over the past few years, IS has started to be considered an unreliable metric for evaluation, especially
for datasets that are not ImageNet (Barratt & Sharma, 2018]). A better evaluation metric that has
become more popular is the Frechet Inception Distance (FID) (Heusel et al.,|2017). This metric uses
the InceptionV3 model without the final classification layer. The latent distribution generated by the
InceptionV3 network for real and fake images is compared. Specifically, the FID metric is given by

FID = (py — p12)* + Tr(Cy + Co — \/Cy % Cy) 5)

where 111 and po are means of the latent representation of fake and real data, respectively and C; and
(5 are their covariance matrices. This metric was proposed as an improvement over the IS. However,
it suffers from some of the same issues as the IS because of the fact that InceptionV3 is pre-trained
on a 1000 class dataset of RGB images.

For our particular use case with MNIST (a grayscale dataset with only 10 classes), we used the
tensorflow—gan library’s built in method mnist_frechet_distance function. This func-
tion uses a pre-trained MNIST classifier, rather than the less relevant InceptionV3, to calculate the
Frechet distance.

Under review as a conference paper at ICLR 2023

3 METHODS

3.1 DATASET

MNIST is a very well-known dataset. It contains 60,000 images (train set) and 10,000 images (test
set) of handwritten digits belonging to 10 classes (numbers 0-9) of 28x28x1 pixels per image. It
is widely used for proof-of-concepts of various model architectures and training protocols related
to image classification or generation. This is because it is easily available through TensorFlow and
PyTorch, smaller images make it easier to implement on simplistic hardware and it has well-defined
modes in the dataset. This is the dataset we used for our experiments. The train set was used during
the training procedures and the test set was used to evaluate our models. We resized the images to
32x32 to maintain the dimensions as a power of 2, to maintain even dimensions while using strided
convolutions. We also normalized pixel values to lie between -1 and 1, as this has been shown to
perform better in WGAN-GP (Gulrajani et al.,[2017)).

3.2 THE TVD LOSS COMPONENT

The Total Variation Distance (TVD) is a quantity that measures the distance between two categorical
distributions and is defined as:

1
TVD(P,Q) =5 > |P(x) - Q)] ©)
zeX

Where P and @ are two categorical distribution vectors, X are the number of categories in the
distribution and P(z) and Q(x) denote the probability of class = in the distribution P and @
respectively. We assumed each class in the MNIST dataset is a mode. To enforce mode separation
among individual generators, we augmented the generator loss in the original WGAN-GP paper
(Gulrajani et al.} 2017) with a TVD based component. We chose this as the preferred metric because
it has well defined bounds (TV D(P, Q) € [0, 1]) and is easy to compute for categorical distributions.
It is also commutative, that is TV D(i, j) = TV D(j,).
Subsequently, we defined the distance metric:

1 n n _ _

A=52 D TVD(CK),C()) @)
1=1 =141

which is just the average pairwise TVD. Here, C'(X;) and C(X;)) are categorical distributions
generated by a pre-trained MNIST classifier (C) on X; and X;, the images generated by generator ¢
and j respectively. The classifier is a very basic convolution neural network. Refer to Appendix [A]
for more information on classifier training. We obtained a peak accuracy of 99% after training.
N = n(n — 1)/2 is the number of unique pairs of categorical distributions using ’n’ generators.

Finally, we introduced this term to the loss of each generator to get:

Lgi=—Ezp;;D(X;)+7* (1 —A) 1=1,2,..,n ®)

where the first term is the original generator loss from the WGAN-GP paper. The hyperparameter
~ is the distance weight. We carried out experiments to find the optimal v which produces the best
possible FID (refer to Section).

3.3 THE TRAINING ALGORITHM

The training algorithm remained the same for all the experiments. However, in each experiment, the
effect of each newly introduced parameter (namely, v and n) was tested. The specific values used for
each experiment, are specified in Section[d} All other hyperparameters are constant throughout all
experiments. The batch size m has to be varied to maintain divisibility by n in step 4 of the algorithm.
However, we restricted this value to one of two possible values [500, 504], to maintain approximate
similarity. Specifically, forn = 1,2,4, 5,10, m = 500 and for n = 3,6,7,8,9, m = 504. We used
the generator learning rate and discriminator learning rate ocy = g = 0.0002. We chose the number
of discriminator training iterations per generator iteration, ng = 3, following the recommendations of
Gulrajani et al.|(2017). Also following their recommendations, we used the Adam optimizer, setting
B1 = 0.5 and B2 = 0.9 for all our experiments. The o symbol denotes concatenation along batch
dimension. A = 10 is the gradient penalty weight as described in Eq. equation 3| The algorithm
pseudocode can be found in Algorithm [I|below.

Under review as a conference paper at ICLR 2023

Algorithm 1 Training algorithm

Require: (1, 52, o, the Adam parameters; -y the distance weight; n the number of generators; 14 the
number of discriminator iterations per generator iteration; A the GP coefficient; m the batch size;
Qyg, 0, the learning rates; a pre-trained classifier (C).
Require: initial discriminator parameters wy, initial generator parameters 6y ;Vi = 1,2,...,n
1: while 6; have not converged do
2 fort=1,...,nqgdo
3 Sample real data batch x ~ P,., latent variable batch z ~ p(z) and e ~ U[0, 1].
4: Split the latent vector batch into n sub-batches (z1, ..., Z;)
5:)NKZ (—Gi(Zi) Vi = 1,...,?1
6: X< X]0X00...0X,,
7 X ex+ (1—e)x
8 La+ L5 [Du(®) — Du(x) + A([I VD)2 — 17
o: w <+ Adam(V La, w, o, B1, B2)

10: end for
11: sample n latent variable batches z; ~ p(z) Vi=1,2,...,n

12: iz — Gz(zz) Vi = 1,...n
13: if v # 0 then

14: A« % i Z?:i-&-l TVD(C(x;),C(x5))
15: Lyi L5 [-DEM)+~4(1-4)] Vi=1,2,..,n
o elseL Ly m _p(Ek) =
: g & 2oner —D(@;7) Vi=1,2,...,n
18: end if

19: Gi <—Adam(VgiLm,Gi,oz,ﬂl,ﬁg) Vi = 1,2,...n
20: end while

4 EXPERIMENTS

For all the experiments below, we used the same model architectures for all the generators and the
discriminators, the details of which can be found in Appendix [B]
We performed 3 broad categories of experiments -

1. Baseline experiments as a proof of concept of our new method.
2. Optimizing for the hyperparameter ~.
3. Experiments comparing number of generators versus performance (in terms of FID).

In the baseline experiments, we ran two types of tests:

* Model size experiments

* TVD loss experiments

In the first type, we ran the original WGAN-GP procedure, with bigger generators and compared
performance with 4 small generators using our method. We used two different ways to make the
generators bigger - using dense layers to increase depth and using residual blocks. When using 4 small
generators, we used v = 12.5. We kept the discriminator the same throughout these experiments. All
three models were trained for 70 epochs. In the second type, we ran two experiments, one with y = 0
(termed as batch concatenation) and one with v = 5.0, an arbitrary value to see the impact of the
new loss component on convergence. Here we trained all models until convergence was reached.

In the second category, we fixed the number of generators n = 5 and the number of epochs = 70.
We carried out 3 tests:

* Constant ~ throughout training at discrete values [0, 5, 10,11, 12,13, 14, 15, 20].

* Linear decay from v = 20 to 7 = 5, so that the effective weight is equal to the average of
the two (.fs = 12.5), which we found to be close to the optimal for the setup.

* Sudden death, where v = 20 for the first 20 epochs of training and then it is equal to O for
the remainder.

Under review as a conference paper at ICLR 2023

In the final category, we swept the number of generators n = [1,2, ..., 10] to see how it affects the
performance. In this category of experiments, the constant parameter v = 12.2 was chosen after the

optimizations performed in the second category of experiments. Here, we trained all models until
convergence was reached.

5 RESULTS AND DISCUSSION

If we run our experiments, with n = 1, we can also evaluate the state-of-the-art FID for a vanilla
WGAN-GP. We performed a session of training under these conditions and as can be observed in the
Fig. 4] the current state-of-the-art WGAN-GP gives us an F'1D ~ 4.25. In all the future discussions,
we will compare the obtained values to this one.

5.1 BASELINE EXPERIMENTS
5.1.1 MODEL SIZE EXPERIMENTS

In all experiments the discriminator was identical and had 4,306,177 parameters. In the first
experiment, we trained 4 generators using the TVD loss method (v = 12.5). Each generator model
was the same as presented in [B]and had 910, 660 parameters for a total of 3,642, 640 parameters.
Running these 4 small generators resulted in a final average F'/ D = 2.6. In the second experiment,
we added an extra dense layer to the generator model, resulting in 69, 657,924 parameters (76.5
times the original generator). After training using the WGAN-GP protocol, it converged to an average
FID = 5.56. In the third experiment, we replaced the generator with a much deeper network that
uses residual blocks. The total number of parameters in the generator is 3, 882,049 (4.3 times the
original generator). This model did not converge because the discriminator was easily overpowered.
The average F'ID = 23.42. This model converges if we add more parameters to the discriminator.
The models used in the latter two experiments are also available in |B} From the above results, it is
clear that two or more competing generators exceed the performance of bigger and more complex
ones. Our method can be efficiently parallelized due to the architecture.

5.1.2 TVD LOSS EXPERIMENTS

We ran both of the two generators experiments until convergence 3 times, to test robustness. The
convergence graphs for one training session are presented in Fig. [I] Fig.[Ib]shows the convergence
graph for batch concatenation (b.c.) + TVD and Fig. [T shows just batch concatenation (b.c.) based
generator loss. We see from the graphs that both of the generators are converging at a similar pace
(the lines overlap with each other), under both loss functions. The discriminator loss going to 0
indicates that it predicts negative and positive values with almost equal probability (meaning the

system has converged). The network managed to converge all 3 times for both loss functions (y = 0
and v = 9).

X batch concatenation + TVD convergence
batch concatenation convergence

—— d_loss
40 f =

}: —— d_loss 1 X g0_loss

40 4 i‘, X g0_loss 30 *‘l === gl_loss
=== gl_loss X
x 209

4 1

20 \ 10 X
3 RS o - X

&W

o

-204

—401

T T T y y T 0 20 40 60 80 100
0 20 40 60 80 100 epochs
epochs

(b) Convergence graphs for batch concatenation aug-

(a) Convergence graphs for batch concatenation only mented with TVD

Figure 1: 2 Generator convergence graphs

Under review as a conference paper at ICLR 2023

After convergence, we measured 3 metrics: FID, calculated according to Eq. equation
TV D(C(G1(z1)), C(G2(z2))) and; average class probabilities (softmax) for each generators’ gener-
ations, as predicted by C. These metrics are presented in Tables [I]and [2]

Table 1: FID and TVD metric comparison

Loss FID TVD

b.c. only 4.738 0.9832
TVD +b.c. 3.602 0.9965

Table 2: Average class probabilities

b.c. only 0 1 2 3 4 5 6 7 8 9

generator 0 00.00 27.23 13.23 00.63 1891 00.00 00.00 2246 00.32 17.23
generator | 19.15 00.01 0894 19.75 00.06 17.19 1835 0029 1493 01.31

TVD+b.c. 0 1 2 3 4 5 6 7 8 9

generator 0 18.98 21.77 0047 00.03 18.96 00.00 00.13 1947 00.49 19.69
generator 1 00.51 00.04 21.25 19.79 00.16 17.90 23.48 00.01 16.82 00.05

We see in Table 2] that the two generators specialize in generating disjoint subsets of classes. The
actual samples generated by each generator can be seen in Fig[2] We see that they are indeed from
separate classes for different generators and of very high quality. We can also observe (Table[I)) how
introducing a small non-zero constant v = 5 drastically improves the FID as well as the TVD.

(a) Samples generated (b) Samples generated (c) Samples generated (d) Samples generated
by genO (tvd+b.c.) by genl (tvd+b.c.) by genO (b.c. only) by genl (b.c. only)

Figure 2: Samples generated by both the methods

5.2 TVD LOSS WEIGHT EXPERIMENTS
5.2.1 DISCRETE CONSTANT

In this experiment we swept gamma across the following values - [0, 5, 10,11, 12,13, 14, 15, 20] and
kept it constant throughout the 70 epochs of training. We fixed the number of generators to 5. We
evaluated each time using the FID metric. The plot of the parametric sweep is seen in Figure|3] We
can see that there is an optimum value for the TVD loss weight (approximately v = 12.2).

5.2.2 LINEAR DECAY

In this experiment, we again fixed the number of generators to 5 and the number of epochs to 70. We
linearly decayed the parameter v from 20 to 5, giving us an effective v,y = 12.5. We evaluated
the FID and TVD after training is complete and received F'ID = 3.5379 and TV D = 0.9999.This
method clearly gives an improvement over the state-of-the-art FID as well as optimal mode separation.

5.2.3 SUDDEN DEATH

Keeping the other elements of the setup exactly the same, we now keep v = 20 for the first 20
epochs of training and then v = 0 for the remaining 50. We end up with FID = 2.6685 and

Under review as a conference paper at ICLR 2023

FID vs TVD loss weight

5.5 1
—— gamma vs FID
—=== Sudden death
>0 ___ Linear decay
4.5 1
a)
o 40 7
3.5 A
3.0 A

0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5 20.0
TVD loss weight

Figure 3: FID vs v sweep

TV D = 0.9998, which again is an improvement over the state-of-the-art FID along with great mode
separation.

This result is interesting as it suggests that one does not need to enforce mode separation (or compute
the pairwise TVD) for all of the training epochs. Once the modes have sufficiently separated, we can
remove the TVD loss component and the generators will keep generating separate modes and in a
much better quality than current state-of-the-art.

5.3 NUMBER OF GENERATORS SWEEP

From the above experiments we found an optimal value for v = 12.2 which we fixed and kept
constant for this experiment. We changed n from 1 to 10 (1 representing current state-of-the-art). We
trained each setup until convergence or 250 epochs, whichever came first. We set the early stopping
criterion as: less than 0.01 change in the objective for 5 consecutive epochs. We decided to do this
because when we tried running for a fixed number of epochs, we realized that for n = 3,6, 7,9 the
generators did not converge in the same number of epochs. Here we notice that the mode separation
problem is much more difficult because of the non-divisibility of 10 (the number of modes) by n,
which results in one or more modes of the dataset being assigned to a different generator during
different training epochs. As we can also see in Fig. 4| the FID values for these specific values
of n are much higher, denoting a much worse performance. The FID for n = 4 and n = 5 is the
lowest, showing us that having more generators does not imply better performance and this is another
parameter that can be optimized.

6 CONCLUSIONS

We introduced a novel approach in training WGANSs in a collaborative manner which we call
ComMutE-GANSs. This approach is inspired by the principles of co-creativity. Our approach gives
improved generation performance under space constraints as we saw in section[5.1.1] This method
also manages to improve overall stability, robustness and performance of GANs. We also introduced

Under review as a conference paper at ICLR 2023

FID vs no. of generators

6.5

6.0

5.5 A1

5.0

FID

4.5

4.0

3.5 1

3.0 A

2.5 1

2 4 6 8 10
no. of generators

Figure 4: FID vs no. of generators

a new loss component that can be added to the generator loss during training. We observed that even
adding this loss for a short amount of time in the initial training can drastically improve performance.
We can also tune the weight of this loss to fit the number of generators we plan to use.

A major disadvantage of the current method is the fact that we need a pre-trained classifier to calculate
a loss during training, which is not efficient. Majority of the future work will involve finding better
losses to enforce mode separation without the use of a classifier. The eventual goal of this research
is to use multiple simple generator models to generate multi-modal data rather than a single large,
complex network. This research is a also contribution towards modelling co-creativity in humans.
Study of this model can help us better understand and implement creativity promoting interactions.

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan, 2017. URL https:
//arxiv.org/abs/1701.07875.

Shane Barratt and Rishi Sharma. A note on the inception score, 2018. URL https://arxiv.
org/abs/1801.01973.

Nan Cao, Xin Yan, Yang Shi, and Chaoran Chen. Ai-sketcher : A deep generative model for
producing high-quality sketches. Proceedings of the AAAI Conference on Artificial Intelligence,
33:2564-2571, 07 2019. doi: 10.1609/aaai.v33i01.33012564.

Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, S. M. Ali Eslami, and Oriol Vinyals. Synthesizing
programs for images using reinforced adversarial learning, 2018. URL https://arxiv.org/
abs/1804.01118.

Arnab Ghosh, Viveka Kulharia, Vinay Namboodiri, Philip H.S. Torr, and Puneet K. Dokania. Multi-
agent diverse generative adversarial networks. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8513-8521, 2018. doi: 10.1109/CVPR.2018.00888.

https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1801.01973
https://arxiv.org/abs/1801.01973
https://arxiv.org/abs/1804.01118
https://arxiv.org/abs/1804.01118

Under review as a conference paper at ICLR 2023

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014. URL https
//arxiv.org/abs/1406.2661.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of wasserstein gans. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.
cc/paper/2017/file/892c3blcodccd52936e27cbd0ff683d6—Paper.pdf.

David Ha and Douglas Eck. A neural representation of sketch drawings, 2017. URL https:
//arxiv.org/abs/1704.03477.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. 2017. doi:
10.48550/ARXIV.1706.08500. URL https://arxiv.org/abs/1706.08500.

Quan Hoang, Tu Dinh Nguyen, Trung Le, and Dinh Phung. Multi-generator generative adversarial
nets, 2017. URL https://arxiv.org/abs/1708.02556.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks, 2018. URL https://arxiv.org/abs/1812.04948.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
and improving the image quality of stylegan. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 8107-8116, 2020. doi: 10.1109/CVPR42600.2020.00813.

Todd Lubart. The 7 c’s of creativity. The Journal of Creative Behavior, 51(4):293-296, 2017.
doi: https://doi.org/10.1002/jocb.190. URL https://onlinelibrary.wiley.com/doi/
abs/10.1002/7jockb.190.

Todd Lubart and Branden Thornhill-Miller. Creativity: An Overview of the 7C’s of Creative Thought,
pp. 277-305. 04 2020. ISBN ISBN 978-3-947732-35-7 (Hardcover) ISBN 978-3-947732-34-0
(Softcover) ISBN 978-3-947732-33-3 (PDF). doi: 10.17885/heiup.470.c6678.

John F. J. Mellor, Eunbyung Park, Yaroslav Ganin, Igor Babuschkin, Tejas Kulkarni, Dan Rosenbaum,
Andy Ballard, Theophane Weber, Oriol Vinyals, and S. M. Ali Eslami. Unsupervised doodling and
painting with improved spiral, 2019. URL https://arxiv.org/abs/1910.01007,

Teodora Pandeva and Matthias Schubert. Mmgan: Generative adversarial networks for multi-modal
distributions, 2019. URL https://arxiv.org/abs/1911.06663.

Devi Parikh and C. Lawrence Zitnick. Exploring crowd co-creation scenarios for sketches, 2020.
URLhttps://arxiv.org/abs/2005.07328.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks, 2015. URLhttps://arxiv.org/abs/1511|
06434,

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Im-
proved techniques for training gans, 2016. URL https://arxiv.org/abs/1606.03498.

Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse
datasets, 2022. URL https://arxiv.org/abs/2202.00273.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions, 2014. URL
https://arxiv.org/abs/1409.4842.

Ilya O Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann SIMON-GABRIEL, and Bernhard
Scholkopf. Adagan: Boosting generative models. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.
cc/paper/2017/fi1e/d0010a6f34908640ad4a6da2389772a78-Paper.pdfl

10

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://arxiv.org/abs/1704.03477
https://arxiv.org/abs/1704.03477
https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1708.02556
https://arxiv.org/abs/1812.04948
https://onlinelibrary.wiley.com/doi/abs/10.1002/jocb.190
https://onlinelibrary.wiley.com/doi/abs/10.1002/jocb.190
https://arxiv.org/abs/1910.01007
https://arxiv.org/abs/1911.06663
https://arxiv.org/abs/2005.07328
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/2202.00273
https://arxiv.org/abs/1409.4842
https://proceedings.neurips.cc/paper/2017/file/d0010a6f34908640a4a6da2389772a78-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/d0010a6f34908640a4a6da2389772a78-Paper.pdf

Under review as a conference paper at ICLR 2023

Haizi Yu, James A. Evans, Donna Gallo, Adam Kruse, William M. Patterson, and Lav R. Varshney. Ai-
aided co-creation for wellbeing. In Andrés Gémez de Silva Garza, Tony Veale, Wendy Aguilar, and
Rafael Pérez y Pérez (eds.), Proceedings of the Twelfth International Conference on Computational
Creativity, México City, México (Virtual), September 14-18, 2021, pp. 453—456. Association
for Computational Creativity (ACC), 2021. URL https://computationalcreativityl
net/iccc2l/wp—-content/uploads/2021/09/Wkshp4.pdfl

Thomas Zacharias, Ashutosh Taklikar, and Raja Giryes. Extending the vocabulary of fictional
languages using neural networks. CoRR, abs/2201.07288, 2022. URL https://arxiv.org/
abs/2201.07288.

A APPENDIX - CLASSIFIER TRAINING

We present specific information about the classifier in this section. The network architecture Fig. [3]
and convergence graphs Fig. [6|are presented below. Each conv_block contains a convolutional
layer with a 5x5 filter and number of filters going from 64 to 512 in powers of 2. Each convolutional
layer is followed by BatchNormalization, ReLU and Dropout with drop_prob = 0.3. The MLP block
contains 2 layers of 128 neurons each followed by a 10 neuron output layer. As observed in [6b] the
peak accuracy of our classifier was ~ 99%.

\ input: | [(None, 32, 32, 1)] |

InputL
"PUTAYET [output: | [(None, 32, 32, 1)1 |

input_1

| input: [(None, 32, 32, 1)]

ConvBlock
| output: | (None, 16, 16, 64) |

conv_block

[input: [(None, 16, 16, 64) |

ConvBlock
| output: | (None, 8, 8, 128) |

conv_block 1

input: | (None, 8, 8, 128)
output: | (None, 4, 4, 256)

conv_block 2 | ConvBlock

input: | (None, 4, 4, 256)
output: | (None, 2, 2, 512)

conv_block 3 | ConvBlock

input: | (None, 2, 2, 512)
output: | (None, 2048)

flatten | Flatten

input: | (None, 2048)
Dropout
output: | (None, 2048)

l

input: | (None, 2048)
MLP
output: (None, 10)

dropout_2

MLP

Figure 5: Classifier model

B APPENDIX - GENERATOR AND DISCRIMINATOR MODELS

We implemented very simple Generator and Discriminator. The exact models are presented in Fig.
and Fig. Each conv_block is exactly the same as the one implemented for the Classifier,
except the use of Layer normalization instead of Batch normalization, as recommended in |Arjovsky
et al.[|(2017). Each upsample_ block consists of a 2D Upsampling layer with a factor of 2x2
followed by a convolutional layer with filter size 3x3 and stride 1x1. These operations are followed
by LeakyReLU activation with o = 0.2. Batch normalization is applied after the activation. The final
upsample block also uses dropout with drop_prob = 0.3. The final upsample block uses
the tanh activation function to squash the values between -1 and 1.

In the model size experiments (Section [5.1.1)) we extend the generator model by one extra dense
layer of size 16, 384 to the structure above. The final model can be seen in fig[§]

We also replaced the above mentioned generator with a generator that uses residual blocks in the
generation. The full architecture can be seen in fig[9]

11

https://computationalcreativity.net/iccc21/wp-content/uploads/2021/09/Wkshp4.pdf
https://computationalcreativity.net/iccc21/wp-content/uploads/2021/09/Wkshp4.pdf
https://arxiv.org/abs/2201.07288
https://arxiv.org/abs/2201.07288

Under review as a conference paper at ICLR 2023

classifier loss classifier accuracy
1.00
0.25 4
0.20 0.98 4
0.15 9
0 0151 © 0.96
8 2
®
0.10 4
0.94 4
0.05 4
0.92 4
0.00 4
0 20 40 60 80 100 0 20 40 60 80 100
epochs epochs
(a) Training loss (b) Training accuracy

Figure 6: Classifier convergence graphs

input: | [(None, 128)] | input: | [(None, 32, 32, 1)] |
input_2 | InputLayer input_2 | InputLayer

output: | [(None, 128)] | output: | [(None, 32, 32, 1)] |

] input: | (None, 128) | input: [(None, 32, 32, 1)]
gen_inp | Dense conv_block | ConvBlock
output: | (None, 4096) | output: | (None, 16, 16, 64) |
O input: | (None, 4096) [input: | (None, 16, 16, 64) |
BatchNormalization conv_block 1 ConvBlock ‘

batch_normalization
= output: | (None, 4096) output: | (Nene, 8, 8, 128) |

l

input: | (None, 4096) input: \ (None, 8, 8, 128) |
leaky_re_lu_2 | LeakyRelLU conv_block 2 | ConvBlock
output: | (None, 4096) output:] (None, 4, 4, 256) |
[input: [(None, 4096) | input: | (None, 4, 4, 256) |
reshape | Reshape conv_block 3 | ConvBlock
| output: | (None, 4, 4, 256) | - = output: | (None, 2, 2, 512) |
Lo block | U LoBL k\ input: [(None, 4, 4, 256) | ot Flatt [input: | (None, 2, 2, 512) |
upsample, Leled sample. Leled atten atten
psample] psamp [output: | (None, 8, 8, 128) | [output: | (None, 2048) |

]

[input: | (None, 2048) |
J output: | (None, 2048) ‘

[input: | (None, 8, 8, 128) |
| output: [(None, 16, 16, 64) |

dropout_2 ‘ Dropout

upsample_block 1 ’ UpsampleBlock

upsample_block 2 | UpsampleBlock ‘ input: | (None, 16, 16, 64) ‘ Disc | Dense | nput: [(None, 2048)]
‘ output: | (None, 32, 32, 1) ‘ | output: ‘ (None, 1) ‘
(a) Generator model (b) Discriminator model

Figure 7: Models

C APPENDIX - OTHER EXPERIMENTS

Setting v = 0 and n = 4, we ran the setup until convergence. This method is an extended version
of the batch concatenation (b.c.) method as described inEI, to four generators instead of two. The
convergence graphs show that all 4 generators converge at the same pace (the lines overlap) and
the discriminator loss converges to 0 (Fig.[T0). Our method improves the state-of-the-art with an
FID = 2.9439 implying that high quality images are generated that match the dataset distribution.
Table[3]and Fig.[TT]show the average class probabilities and correspondingly generated samples. This
method of training results in an average pairwise TV D = 0.9633.

In Table 3] the values in bold represent which generator gives the maximum probability over that
class. The number 2 is generated by generator 1, 2 and 3 and the "workload” required for this digit is
being distributed among the three of them. We can see that for v = 0, the TVD metric goes down
as expected, but we can still obtain a comparable FID to what we can achieve using the TVD loss
component.

12

Under review as a conference paper at ICLR 2023

input: | [(None, 128)]

input_1 | InputL:
IRPUEL | Inputiayer St | [(None, 128)]
input: | (None, 128)
dense | Dense
output: | (None, 16384)
input: | (None, 16384)
dense_1 | Dense
- output: | (None, 4096)
batch lization | BatchNormalizati input: | (None, 4096)
nor ion or ion
e e output: | (None, 4096)
input: | (None, 4096)
leaky_re lu 2 | LeakyReLU
output: | (None, 4096)
input: | (None, 4096)
reshape | Reshape
output: | (None, 4, 4, 256)
block | U o | input: |(Nnne, 4,4, 256)\
- | output: | (None, 8, 8, 128) \
o block 1 | U, o \ input: \ (None, 8, 8, 128) |
- = \ output: \ (None, 16, 16, 64) |
oy | input: | (None, 16, 16, 64) |

‘ le_block 2 ‘ U [‘output: | (None, 32,32, 1) |

Figure 8: Deep generator model

Table 3: Average class probabilities(y = 0, n = 4)

Generator number 0 1 2 3 4 5 6 7 8 9
generator 0 00.02 00.15 00.04 13.00 0691 0492 3691 00.11 33.14 04.79
generator 1 38.99 00.00 11.32 22.84 00.01 24.13 00.03 00.00 0233 00.33
generator 2 00.15 45.49 15.88 00.14 3199 00.68 02.65 0086 00.84 01.31
generator 3 00.36 00.29 22.05 0246 00.72 0095 00.00 4196 0194 29.24

13

Under review as a conference paper at ICLR 2023

a0
P ot | v, 1201

[t | o, 120 |
vty [onm, 20967

gt | Mo, 2,2.00 | [. put. | (o, 2,2, 10240
oy ro. 13 | ooty | ST EE | comvdwnapose 1 | Convabrpone | S5 2

[o
[[None, 3,4, 64) |

EnEnEa
[output; | (None, 3, 4, 256) |

uum Vo, 4,1, 256) Nons, 44, 3560
[oupor | "one, 43,756 |

[o e e
[output | " None. 4. 4750 |

[o fmf =
T o —

i | o 0,578
Lok ReLl [gt | owe, .8, 5121

[put. | (Nowe, 8,9, 512
[
VR oot | one, .8, 5121

e e e e e

T | o 8,550
T e e e e

[t oo, 16, 16, 561
ke 016 | LoakyROLY ot | oo, 16,16, 561

comd srmmposn. | Conatranapon [0 L8

[Cinput- | Nano, 16, 16,2561
[output [(Nowe, 16, 16, 10247 |

T ot @ons 6. 16, 70247 (ono, 6, 16, 102071
[output:] None, 16, 16, 1024)

p—— i e .70 1020
[t | o, 16,25 |

ey T T RO Y OF
o O ot e, 6, 16, 528

g [(@one 16,16, T058) (Nowe, 16, 16, 10201
foupar] o 10,1610 |

losky.

[input: TNene, 16, 16, 1026) |
0 [Lonky el
R oot | oo 1, 16,1020 |

[[[P)
[output: T ®one. 52.32.17_]

Figure 9: Deep generator model

14

Under review as a conference paper at ICLR 2023

4 generators convergence

401 —— ¢g0_loss
30 4 gl_loss
—— g2_loss
20 A —— 9g3_loss
—— d_loss
10 A
g [\
S 01 v X
_10 -4
_20 -
_30 -4
—40 = T T T T T
0 20 40 60 80 100
epochs

Figure 10: Convergence graph for 4 generators

“f

L&/ 29
417/ 7 A
R L 2]

(2 99 2 9

(a) Samples generated (b) Samples generated (c) Samples generated (d) Samples generated
by gen0 by genl by gen2 by gen3

Figure 11: Samples generated by the 4 generators

15

	Introduction
	Background
	GANs, WGANs and WGAN-GP
	GANs for multi-modal datasets
	GAN evaluation metrics

	Methods
	Dataset
	The TVD loss component
	The training algorithm

	Experiments
	Results and discussion
	Baseline experiments
	Model size experiments
	TVD loss experiments

	TVD loss weight experiments
	Discrete constant
	Linear decay
	Sudden death

	Number of generators sweep

	Conclusions
	Appendix - Classifier training
	Appendix - Generator and discriminator models
	Appendix - Other experiments

