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Abstract

Representation learning plays a vital role in
natural language processing tasks. More re-
cent works study the geometry of the repre-
sentation space for each layer of pre-trained
language models. They find that the context
representation of all words is not isotropic in
any layer of the pre-trained language model.
However, how contextual are the contextual-
ized representations produced by transformer-
based machine translation models? In this pa-
per, we find that the contextualized represen-
tations of the same word in different contexts
have a greater cosine similarity than those of
two different words, but this self-similarity is
low between the same words. This suggests
that output of machine translation models pro-
duce more context-specific representations. In
this work, we present a contrastive framework
for machine translation, that adopts contrastive
learning to train model in a supervised way. By
making use of data augmentation, our super-
vised contrastive learning method solves the
issue of low-resource machine translation rep-
resentations learning. Experimental results on
the IWSLT14 and WMT14 datasets show our
method can outperform competitive baselines
significantly.

1 Introduction

Recent Neural Machine Translation (NMT)
(Sutskever et al., 2014; Bahdanau et al., 2014;
Vaswani et al., 2017) have achieved huge success.
Still, these representations remain poorly under-
stood. For instance, just how contextual are the
contextualized representations produced by mod-
els? Are there infinitely many context-specific rep-
resentations for each word, or are words essentially
assigned one of a finite number of word-sense rep-
resentations?

More recent works (Ethayarajh, 2019; Peters
et al., 2018; Kurita et al., 2019) answer this ques-
tion by studying the geometry of the representation

space for each layer of pre-trained language mod-
els like BERT (Devlin et al., 2018), and GPT-2
(Radford et al., 2019). They find that the contextu-
alized representations of all words are not isotropic
in any layer of the contextualizing model. This
suggests that upper layers of contextualizing mod-
els produce more context-specific representations.
However, some analysis find that contextualized
embeddings at the output layer of these powerful
language models tend to degenerate and occupy
an anisotropic cone in the vector space, which is
called the representation degeneration problem.

To better understand the representations, Wang
and Isola (2020) identify two key properties align-
ment and uniformity. Which takes alignment be-
tween semantically-related positive pairs and uni-
formity of the whole representation space to mea-
sure the quality of learned representations. In this
work we use cos similarity to measure alignment
and uniformity. Through empirical analysis, we
find that low resource machine translation models
greatly improve uniformity. However, the align-
ment also degrades drastically. While representa-
tions of the same word in different contexts still
have a greater cosine similarity than those of two
different words, this self-similarity is low between
the same words.

As an alternative, forcing the representation of
similar token to be mapped into similar outputs
may suggest the usage of contrastive learning. Con-
trastive learning (Tian et al., 2020b; Chen and
He, 2020; Caron et al., 2021) is a training ap-
proach popular in the computer vision field, which
aims to bring representations of similar class or
instances closer in the representation space, and
move them further from different ones. With the
success of contrastive learning in the computer vi-
sion field, there is an increasing interest in applying
this method to NLP tasks (Jiang et al., 2020; Kim
et al., 2021; Lee et al., 2021; Gunel et al., 2021;
Gao et al., 2021).
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Figure 1: Basic architecture. Two augmented data of source and target sentence are processed by the same encoder-
decoder network and a projector MLP. Then we apply contrastive loss to the representations z.

The common idea in these works is the follow-
ing: pull together an anchor and a “positive” sam-
ple in embedding space, and push apart the anchor
from many “negative” samples. Since no labels
are available, a positive pair often consists of data
augmentations of the sample, and negative pairs
are formed by the anchor and randomly chosen
samples from the mini-batch.

In this work, we propose a supervised contrastive
learning (Khosla et al., 2021) with simple data aug-
mentation. The representations of the same to-
kens are forced to be closer, while others from the
mini-batch should be represented far from the an-
chor. We conducted experiments on the IWSLT14
WMTI14 datasets and low data condition (1/5 of
WMT14 training data), showing our method can
outperform competitive baselines significantly.

2 Approach

2.1 Representation Similarity

We measure how contextual a word representation
is using two different metrics: self-similarity and
universal-similarity (Ethayarajh, 2019).

Let h be a token representation meanwhile o™
means different contextual representations of the

same token. The self similarity of token w is

" 1_ - Z Zcos(h, RT) (1)
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Self-Sim(w) =

where cos denotes the cosine similarity. In other
words, the self-similarity of a word w is the average
cosine similarity between its contextualized repre-
sentations across its n unique contexts. If token
w does not contextualize the representations at all,
then Self-Sim(w) = 1. The more contextualized
the representations are for w, the lower we would
expect its self-similarity to be.

Let h be a token representation meanwhile B
means different token representation by random
sample. The universal similarity of token w is

Un-Sim(w) = 3 1_ - Z Z cos(h, k') (2)
h/

h

The universal representation similarity is the aver-
age cosine similarity between different tokens.

In the following sections, we will also use the
two metrics to justify the inner workings of ma-
chine translation models.

2.2 Representation Learning Framework

Our approach is mainly inspired by SimCLR (Chen
et al., 2020). As shown in Figure 1, there are four
major components in our framework:



iwslt14 en-fr fr-en en-es es-en en-de Avg
transformer 41.18 38.56 37.71 40.60 28.46 37.30
ours 4223 40.68 3896 41.60 29.82 38.66

Table 1: BLEU scores on IWSLT machine translation tasks.

* Data Augmentation. For each input sam-
ple, x, we generate two random augmentations,
xt = Aug(z), each of which represents a differ-
ent view of the data and contains some subset of
the information in the original sample.

* Encoder-Decoder Network, which maps inputs
to representation vectors. Both augmented samples
are separately input to the same network, resulting
in a pair of representation vectors.

* Projector Network, which maps representation
to a vector z = Proj(h). We instantiate Proj as
either a multi-layer MLP. We normalize the out-
put of this network to lie on the unit hypersphere,
which enables using an inner product to measure
cos similarity.

* A contrastive loss layer on top of the Frame-
work. It maximizes the agreement between one
representation and its corresponding version that
is augmented from the same token while keeping
it distant from other token representations in the
same batch.

For each input sentence, we first pass it to the
data augmentation module, in which two transfor-
mations Augl and Aug?2 are applied to generate
two versions of token embeddings: e¢; = Augl(x),
ej = Aug2(x). After that, both e; and e;will be
encoded by multi-layer transformer-based encoder-
decoder blocks and Projector Network produce the
contextualized representations z; and z;. During
each training step, we randomly sample N sen-
tences to construct a mini-batch, resulting in 2N
representations after augmentation. Each data point
is trained to find out its counterpart among in-batch
samples B:

exp (zi - zp/T)
aeB exp (2; - 2a/T)

3

L1 = Z log

peP

Here, z = Proj(EncDec(x,y<t)), the « symbol
denotes the inner (dot) product, 7 is a scalar tem-
perature parameter. The index i is called the anchor,
P = {pe B:y,=y,}is the set of indices of all
positives in the mini batch.

3 Experiments

To show the effectiveness of our method, exper-
iments are conducted on both low-resource and
rich-resource translation tasks.

3.1 Settings

To compare with Vaswani et al. (2017), we con-
ducted our experiments on different scale datasets.
The datasets of low-resource scenario are from
IWSLT competitions, which include IWSLT14
English-German (En-De), English-Spanish (En-
Es) and English-French (En-Fr) translations. The
rich-resource datasets come from the widely ac-
knowledged WMT translation tasks, and we take
the WMT14 English-German tasks. The IWSLT
datasets contain about 170k training sentence pairs.
The WMT data size is 4.5M, and validation and
test data are from the corresponding newstest data.

We applied joint Byte-Pair Encoding (BPE)
(Sennrich et al., 2015) with 32k merging operations
on WMT data sets and 10k merging operations on
IWSLT data sets. We used a dropout of 0.3 for all
IWSLT experiments except for the Transformer-
base setting on the WMT En-De task which was
0.1. The temprature in supervised contrastive loss
is set as 0.1 for all translation tasks.
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Figure 2: Self-Sim of our approach and transformer-
base model. The X-axis is token frequency which drops
gradually from left to right.



BLEU Self-Sim
full 27.62 0421
low 22.88  0.393
+SCL 2342 0.429

Table 2: BLEU scores and Self-Sim on WMT14.

3.2 Analysis

The self-similarity of a word, is the average co-
sine similarity between its representations in dif-
ferent contexts. If the self-similarity is 1, then
the representations are not context-specific at all;
if the self-similarity is 0O, that the representations
are maximally context specific. In Figure 2, we
plot the average self similarity of uniformly ran-
domly sampled words, the higher the word fre-
quency, the lower the self-similarity is on aver-
age. In other words, the higher the word frequency,
the more context-specific the contextualized rep-
resentations. But the lower the word frequency
not have high self-similarity, implying that their
contextualized representations are among the most
context-specific.This is relatively surprising, given
that these words are not polysemous. This finding
suggests that the variety of contexts a word appears
in, rather than its inherent polysemy, is what drives
variation in its contextualized representations.

3.3 Main Results

We calculate the BLEU scores on these tasks for
evaluation. The performances are shown in Table 1.
We can see that our approach achieves more than
1.3 BLEU score improvements on IWSLT, which
clearly shows the effectiveness of our method. In
Table 2, we can see that the supervised contrastive
learning enhances self-sim, and BLEU has also
improved on WMT14 low data condition.

The efficacy of the data augmentation and the
supervised positive sampling contrastive learning
is evaluated. The variants are: the transformer
baseline; DA, with additional word-dropout data
augmentation; SCL, the contrastive learning us-
ing supervised positive sampling to optimize; and
DA+SCL, trained with the addition of DA and SCL.
The result is shown in Table 3.

From the result, it is clear that adding a con-
trastive objective can generally improve the recom-
mendation performance compared with the base-
line. Compared with DA+SCL, it can be concluded
that the model-level dropout augmentation can pro-
vide a more semantically consistent unsupervised

BLEU iwslt14 en-de
baseline 28.46
+ SCL 29.02
+ DA 29.20

+SCL + DA 29.87

Table 3: Ablation study on IWSLT14 en-de dataset.

sample than the data-level augmentation. Further-
more, SCL relies on the target item to sample a
semantically consistent supervised sample,which
shows a large margin improvement over the unsu-
pervised methods.

4 Related Work

Contrastive learning has become a very popular
technique in unsupervised visual representation
learning with solid performance. The main method
is (Oord et al., 2018; He et al., 2020; Chen et al.,
2020; Chen and He, 2020) encoding of different
views of the same image as positive pairs. Con-
trastive learning also has been widely applied in lan-
guage model pre-training task (Fang et al., 2020).
Recently, several approaches on contrastive
learning for NMT have also been studied. Yang
et al. (2019) proposed leveraging contrastive learn-
ing for reducing word omission errors. Pan et al.
(2021) applied contrastive learning for multilingual
MT. While these works have been conducted on
sentence-level contrastive, we focus on extending
contrastive learning on token-level NMT.

5 Conclusion and Future Work

In this work we propose a simple supervised con-
trastive framework for machine translation. We find
that the variety of contexts a word appears in, rather
than its inherent polysemy, is what drives variation
in its contextualized representations. Meanwhile
Our approach improves neural machine translation
tasks with promising results. Future works should
include a thorough study on better similarity mea-
sures and different data augmentation.
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