Contrastive Learning for Low Resource Machine Translation

Anonymous ACL submission

Abstract

Representation learning plays a vital role in natural language processing tasks. More recent works study the geometry of the representation space for each layer of pre-trained language models. They find that the context representation of all words is not isotropic in any layer of the pre-trained language model. However, how contextual are the contextualized representations produced by transformer-based machine translation models? In this paper, we find that the contextualized representations of the same word in different contexts have a greater cosine similarity than those of two different words, but this self-similarity is low between the same words. This suggests that output of machine translation models produce more context-specific representations. In this work, we present a contrastive framework for machine translation, that adopts contrastive learning to train model in a supervised way. By making use of data augmentation, our supervised contrastive learning method solves the issue of low-resource machine translation representations learning. Experimental results on the IWSLT14 and WMT14 datasets show our method can outperform competitive baselines significantly.

1 Introduction

Recent Neural Machine Translation (NMT) (Sutskever et al., 2014; Bahdanau et al., 2014; Vaswani et al., 2017) have achieved huge success. Still, these representations remain poorly understood. For instance, just how contextual are the contextualized representations produced by models? Are there infinitely many context-specific representations for each word, or are words essentially assigned one of a finite number of word-sense representations?

More recent works (Ethayarajh, 2019; Peters et al., 2018; Kurita et al., 2019) answer this question by studying the geometry of the representation space for each layer of pre-trained language models like BERT (Devlin et al., 2018), and GPT-2 (Radford et al., 2019). They find that the contextualized representations of all words are not isotropic in any layer of the contextualizing model. This suggests that upper layers of contextualizing models produce more context-specific representations. However, some analysis find that contextualized embeddings at the output layer of these powerful language models tend to degenerate and occupy an anisotropic cone in the vector space, which is called the representation degeneration problem.

To better understand the representations, Wang and Isola (2020) identify two key properties alignment and uniformity. Which takes alignment between semantically-related positive pairs and uniformity of the whole representation space to measure the quality of learned representations. In this work we use cos similarity to measure alignment and uniformity. Through empirical analysis, we find that low resource machine translation models greatly improve uniformity. However, the alignment also degrades drastically. While representations of the same word in different contexts still have a greater cosine similarity than those of two different words, this self-similarity is low between the same words.

As an alternative, forcing the representation of similar token to be mapped into similar outputs may suggest the usage of contrastive learning. Contrastive learning (Tian et al., 2020b; Chen and He, 2020; Caron et al., 2021) is a training approach popular in the computer vision field, which aims to bring representations of similar class or instances closer in the representation space, and move them further from different ones. With the success of contrastive learning in the computer vision field, there is an increasing interest in applying this method to NLP tasks (Jiang et al., 2020; Kim et al., 2021; Lee et al., 2021; Gunel et al., 2021; Gao et al., 2021).
The common idea in these works is the following: pull together an anchor and a “positive” sample in embedding space, and push apart the anchor from many “negative” samples. Since no labels are available, a positive pair often consists of data augmentations of the sample, and negative pairs are formed by the anchor and randomly chosen samples from the mini-batch.

In this work, we propose a supervised contrastive learning (Khosla et al., 2021) with simple data augmentation. The representations of the same tokens are forced to be closer, while others from the mini-batch should be represented far from the anchor. We conducted experiments on the IWSLT14 WMT14 datasets and low data condition (1/5 of WMT14 training data), showing our method can outperform competitive baselines significantly.

2 Approach

2.1 Representation Similarity

We measure how contextual a word representation is using two different metrics: self-similarity and universal-similarity (Ethayarajh, 2019).

Let h be a token representation meanwhile h^+ means different contextual representations of the same token. The self similarity of token w is

$$\text{Self-Sim}(w) = \frac{1}{n^2 - n} \sum_h \sum_{h^+} \cos(h, h^+)$$ \hspace{1cm} (1)$$

where \cos denotes the cosine similarity. In other words, the self-similarity of a word w is the average cosine similarity between its contextualized representations across its n unique contexts. If token w does not contextualize the representations at all, then $\text{Self-Sim}(w) = 1$. The more contextualized the representations are for w, the lower we would expect its self-similarity to be.

Let h be a token representation meanwhile h' means different token representation by random sample. The universal similarity of token w is

$$\text{Un-Sim}(w) = \frac{1}{n^2 - n} \sum_h \sum_{h'} \cos(h, h')$$ \hspace{1cm} (2)$$

The universal representation similarity is the average cosine similarity between different tokens.

In the following sections, we will also use the two metrics to justify the inner workings of machine translation models.
Table 1: BLEU scores on IWSLT machine translation tasks.

<table>
<thead>
<tr>
<th></th>
<th>en-fr</th>
<th>fr-en</th>
<th>en-es</th>
<th>es-en</th>
<th>en-de</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>transformer</td>
<td>41.18</td>
<td>38.56</td>
<td>37.71</td>
<td>40.60</td>
<td>28.46</td>
<td>37.30</td>
</tr>
<tr>
<td>ours</td>
<td>42.23</td>
<td>40.68</td>
<td>38.96</td>
<td>41.60</td>
<td>29.82</td>
<td>38.66</td>
</tr>
</tbody>
</table>

- **Data Augmentation.** For each input sample, x, we generate two random augmentations, \(x^+ = Aug(x) \), each of which represents a different view of the data and contains some subset of the information in the original sample.

- **Encoder-Decoder Network,** which maps inputs to representation vectors. Both augmented samples are separately input to the same network, resulting in a pair of representation vectors.

- **Projector Network,** which maps representation to a vector \(z = Proj(h) \). We instantiate \(Proj \) as either a multi-layer MLP. We normalize the output of this network to lie on the unit hypersphere, which enables using an inner product to measure cos similarity.

- **A contrastive loss layer** on top of the Framework. It maximizes the agreement between one representation and its corresponding version that is augmented from the same token while keeping it distant from other token representations in the same batch.

For each input sentence, we first pass it to the data augmentation module, in which two transformations \(Aug1 \) and \(Aug2 \) are applied to generate two versions of token embeddings: \(e_i = Aug1(x) \), \(e_j = Aug2(x) \). After that, both \(e_i \) and \(e_j \) will be encoded by multi-layer transformer-based encoder-decoder blocks and Projector Network produce the contextualized representations \(z_i \) and \(z_j \). During each training step, we randomly sample \(N \) sentences to construct a mini-batch, resulting in \(2N \) representations after augmentation. Each data point is trained to find out its counterpart among in-batch samples \(B \):

\[
\mathcal{L}_{\text{scl}} = \sum_{p \in P} \log \frac{\exp(z_i \cdot z_p / \tau)}{\sum_{a \in B} \exp(z_i \cdot z_a / \tau)} \quad (3)
\]

Here, \(z = Proj(EncDec(x, \hat{y}_{<t})) \), the \(\cdot \) symbol denotes the inner (dot) product, \(\tau \) is a scalar temperature parameter. The index \(i \) is called the anchor, \(P \equiv \{p \in B : \hat{y}_p = \hat{y}_i\} \) is the set of indices of all positives in the mini batch.

3 Experiments

To show the effectiveness of our method, experiments are conducted on both low-resource and rich-resource translation tasks.

3.1 Settings

To compare with Vaswani et al. (2017), we conducted our experiments on different scale datasets. The datasets of low-resource scenario are from IWSLT competitions, which include IWSLT14 English-German (En-De), English-Spanish (En-Es) and English-French (En-Fr) translations. The rich-resource datasets come from the widely acknowledged WMT translation tasks, and we take the WMT14 English-German tasks. The IWSLT datasets contain about 170k training sentence pairs. The WMT data size is 4.5M, and validation and test data are from the corresponding newest data.

We applied joint Byte-Pair Encoding (BPE) (Sennrich et al., 2015) with 32k merging operations on WMT data sets and 10k merging operations on IWSLT data sets. We used a dropout of 0.3 for all IWSLT experiments except for the Transformer-base setting on the WMT En-De task which was 0.1. The temperature in supervised contrastive loss is set as 0.1 for all translation tasks.

Figure 2: Self-Sim of our approach and transformer-base model. The X-axis is token frequency which drops gradually from left to right.
Table 2: BLEU scores and Self-Sim on WMT14.

<table>
<thead>
<tr>
<th>BLEU</th>
<th>Self-Sim</th>
</tr>
</thead>
<tbody>
<tr>
<td>full</td>
<td>27.62</td>
</tr>
<tr>
<td>low</td>
<td>22.88</td>
</tr>
<tr>
<td>+SCL</td>
<td>23.42</td>
</tr>
</tbody>
</table>

Table 3: Ablation study on IWSLT14 en-de dataset.

<table>
<thead>
<tr>
<th>BLEU</th>
<th>iwslt14 en-de</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>28.46</td>
</tr>
<tr>
<td>+ SCL</td>
<td>29.02</td>
</tr>
<tr>
<td>+ DA</td>
<td>29.20</td>
</tr>
<tr>
<td>+ SCL + DA</td>
<td>29.87</td>
</tr>
</tbody>
</table>

3.2 Analysis

The self-similarity of a word, is the average cosine similarity between its representations in different contexts. If the self-similarity is 1, then the representations are not context-specific at all; if the self-similarity is 0, that the representations are maximally context specific. In Figure 2, we plot the average self similarity of uniformly randomly sampled words, the higher the word frequency, the lower the self-similarity is on average. In other words, the higher the word frequency, the more context-specific the contextualized representations. But the lower the word frequency not have high self-similarity, implying that their contextualized representations are among the most context-specific. This is relatively surprising, given that these words are not polysemous. This finding suggests that the variety of contexts a word appears in, rather than its inherent polysemy, is what drives variation in its contextualized representations.

3.3 Main Results

We calculate the BLEU scores on these tasks for evaluation. The performances are shown in Table 1. We can see that our approach achieves more than 1.3 BLEU score improvements on IWSLT, which clearly shows the effectiveness of our method. In Table 2, we can see that the supervised contrastive learning enhances self-sim, and BLEU has also improved on WMT14 low data condition.

The efficacy of the data augmentation and the supervised positive sampling contrastive learning is evaluated. The variants are: the transformer baseline; DA, with additional word-dropout data augmentation; SCL, the contrastive learning using supervised positive sampling to optimize; and DA+SCL, trained with the addition of DA and SCL. The result is shown in Table 3.

From the result, it is clear that adding a contrastive objective can generally improve the recommendation performance compared with the baseline. Compared with DA+SCL, it can be concluded that the model-level dropout augmentation can provide a more semantically consistent unsupervised sample than the data-level augmentation. Furthermore, SCL relies on the target item to sample a semantically consistent supervised sample, which shows a large margin improvement over the unsupervised methods.

4 Related Work

Contrastive learning has become a very popular technique in unsupervised visual representation learning with solid performance. The main method is (Oord et al., 2018; He et al., 2020; Chen et al., 2020; Chen and He, 2020) encoding of different views of the same image as positive pairs. Contrastive learning also has been widely applied in language model pre-training task (Fang et al., 2020).

Recently, several approaches on contrastive learning for NMT have also been studied. Yang et al. (2019) proposed leveraging contrastive learning for reducing word omission errors. Pan et al. (2021) applied contrastive learning for multilingual MT. While these works have been conducted on sentence-level contrastive, we focus on extending contrastive learning on token-level NMT.

5 Conclusion and Future Work

In this work we propose a simple supervised contrastive framework for machine translation. We find that the variety of contexts a word appears in, rather than its inherent polysemy, is what drives variation in its contextualized representations. Meanwhile, Our approach improves neural machine translation tasks with promising results. Future works should include a thorough study on better similarity measures and different data augmentation.

References

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Momentum contrast for unsupervised visual representation learning.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam Trischler, and Yoshua Bengio. 2019. Learning deep representations by mutual information estimation and maximization.

Pranmay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Philip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2021. Supervised contrastive learning.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. 2020b. *What makes for good views for contrastive learning?*

Dong Wang, Ning Ding, Piji Li, and Hai-Tao Zheng. 2021a. *Cline: Contrastive learning with semantic negative examples for natural language understanding.*

Liwei Wang, Jing Huang, Yin Li, Kun Xu, Zhengyuan Yang, and Dong Yu. 2021b. *Improving weakly supervised visual grounding by contrastive knowledge distillation.*

