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Abstract

Representation learning plays a vital role in001
natural language processing tasks. More re-002
cent works study the geometry of the repre-003
sentation space for each layer of pre-trained004
language models. They find that the context005
representation of all words is not isotropic in006
any layer of the pre-trained language model.007
However, how contextual are the contextual-008
ized representations produced by transformer-009
based machine translation models? In this pa-010
per, we find that the contextualized represen-011
tations of the same word in different contexts012
have a greater cosine similarity than those of013
two different words, but this self-similarity is014
low between the same words. This suggests015
that output of machine translation models pro-016
duce more context-specific representations. In017
this work, we present a contrastive framework018
for machine translation, that adopts contrastive019
learning to train model in a supervised way. By020
making use of data augmentation, our super-021
vised contrastive learning method solves the022
issue of low-resource machine translation rep-023
resentations learning. Experimental results on024
the IWSLT14 and WMT14 datasets show our025
method can outperform competitive baselines026
significantly.027

1 Introduction028

Recent Neural Machine Translation (NMT)029

(Sutskever et al., 2014; Bahdanau et al., 2014;030

Vaswani et al., 2017) have achieved huge success.031

Still, these representations remain poorly under-032

stood. For instance, just how contextual are the033

contextualized representations produced by mod-034

els? Are there infinitely many context-specific rep-035

resentations for each word, or are words essentially036

assigned one of a finite number of word-sense rep-037

resentations?038

More recent works (Ethayarajh, 2019; Peters039

et al., 2018; Kurita et al., 2019) answer this ques-040

tion by studying the geometry of the representation041

space for each layer of pre-trained language mod- 042

els like BERT (Devlin et al., 2018), and GPT-2 043

(Radford et al., 2019). They find that the contextu- 044

alized representations of all words are not isotropic 045

in any layer of the contextualizing model. This 046

suggests that upper layers of contextualizing mod- 047

els produce more context-specific representations. 048

However, some analysis find that contextualized 049

embeddings at the output layer of these powerful 050

language models tend to degenerate and occupy 051

an anisotropic cone in the vector space, which is 052

called the representation degeneration problem. 053

To better understand the representations, Wang 054

and Isola (2020) identify two key properties align- 055

ment and uniformity. Which takes alignment be- 056

tween semantically-related positive pairs and uni- 057

formity of the whole representation space to mea- 058

sure the quality of learned representations. In this 059

work we use cos similarity to measure alignment 060

and uniformity. Through empirical analysis, we 061

find that low resource machine translation models 062

greatly improve uniformity. However, the align- 063

ment also degrades drastically. While representa- 064

tions of the same word in different contexts still 065

have a greater cosine similarity than those of two 066

different words, this self-similarity is low between 067

the same words. 068

As an alternative, forcing the representation of 069

similar token to be mapped into similar outputs 070

may suggest the usage of contrastive learning. Con- 071

trastive learning (Tian et al., 2020b; Chen and 072

He, 2020; Caron et al., 2021) is a training ap- 073

proach popular in the computer vision field, which 074

aims to bring representations of similar class or 075

instances closer in the representation space, and 076

move them further from different ones. With the 077

success of contrastive learning in the computer vi- 078

sion field, there is an increasing interest in applying 079

this method to NLP tasks (Jiang et al., 2020; Kim 080

et al., 2021; Lee et al., 2021; Gunel et al., 2021; 081

Gao et al., 2021). 082
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Figure 1: Basic architecture. Two augmented data of source and target sentence are processed by the same encoder-
decoder network and a projector MLP. Then we apply contrastive loss to the representations z.

The common idea in these works is the follow-083

ing: pull together an anchor and a “positive” sam-084

ple in embedding space, and push apart the anchor085

from many “negative” samples. Since no labels086

are available, a positive pair often consists of data087

augmentations of the sample, and negative pairs088

are formed by the anchor and randomly chosen089

samples from the mini-batch.090

In this work, we propose a supervised contrastive091

learning (Khosla et al., 2021) with simple data aug-092

mentation. The representations of the same to-093

kens are forced to be closer, while others from the094

mini-batch should be represented far from the an-095

chor. We conducted experiments on the IWSLT14096

WMT14 datasets and low data condition (1/5 of097

WMT14 training data), showing our method can098

outperform competitive baselines significantly.099

2 Approach100

2.1 Representation Similarity101

We measure how contextual a word representation102

is using two different metrics: self-similarity and103

universal-similarity (Ethayarajh, 2019).104

Let h be a token representation meanwhile h+105

means different contextual representations of the106

same token. The self similarity of token w is 107

Self-Sim(w) =
1

n2 − n

∑
h

∑
h+

cos(h, h+) (1) 108

where cos denotes the cosine similarity. In other 109

words, the self-similarity of a word w is the average 110

cosine similarity between its contextualized repre- 111

sentations across its n unique contexts. If token 112

w does not contextualize the representations at all, 113

then Self-Sim(w) = 1. The more contextualized 114

the representations are for w, the lower we would 115

expect its self-similarity to be. 116

Let h be a token representation meanwhile h
′

117

means different token representation by random 118

sample. The universal similarity of token w is 119

Un-Sim(w) =
1

n2 − n

∑
h

∑
h′

cos(h, h
′
) (2) 120

The universal representation similarity is the aver- 121

age cosine similarity between different tokens. 122

In the following sections, we will also use the 123

two metrics to justify the inner workings of ma- 124

chine translation models. 125

2.2 Representation Learning Framework 126

Our approach is mainly inspired by SimCLR (Chen 127

et al., 2020). As shown in Figure 1, there are four 128

major components in our framework: 129
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iwslt14 en-fr fr-en en-es es-en en-de Avg
transformer 41.18 38.56 37.71 40.60 28.46 37.30
ours 42.23 40.68 38.96 41.60 29.82 38.66

Table 1: BLEU scores on IWSLT machine translation tasks.

• Data Augmentation. For each input sam-130

ple, x, we generate two random augmentations,131

x+ = Aug(x), each of which represents a differ-132

ent view of the data and contains some subset of133

the information in the original sample.134

• Encoder-Decoder Network, which maps inputs135

to representation vectors. Both augmented samples136

are separately input to the same network, resulting137

in a pair of representation vectors.138

• Projector Network, which maps representation139

to a vector z = Proj(h). We instantiate Proj as140

either a multi-layer MLP. We normalize the out-141

put of this network to lie on the unit hypersphere,142

which enables using an inner product to measure143

cos similarity.144

• A contrastive loss layer on top of the Frame-145

work. It maximizes the agreement between one146

representation and its corresponding version that147

is augmented from the same token while keeping148

it distant from other token representations in the149

same batch.150

For each input sentence, we first pass it to the151

data augmentation module, in which two transfor-152

mations Aug1 and Aug2 are applied to generate153

two versions of token embeddings: ei = Aug1(x),154

ej = Aug2(x). After that, both ei and ejwill be155

encoded by multi-layer transformer-based encoder-156

decoder blocks and Projector Network produce the157

contextualized representations zi and zj . During158

each training step, we randomly sample N sen-159

tences to construct a mini-batch, resulting in 2N160

representations after augmentation. Each data point161

is trained to find out its counterpart among in-batch162

samples B:163

Lscl =
∑
p∈P

log
exp (zi · zp/τ)∑
a∈B exp (zi · za/τ)

(3)164

Here, z = Proj(EncDec(x, y<t)), the • symbol165

denotes the inner (dot) product, τ is a scalar tem-166

perature parameter. The index i is called the anchor,167

P ≡
{
p ∈ B : ỹp = ỹi

}
is the set of indices of all168

positives in the mini batch.169

3 Experiments 170

To show the effectiveness of our method, exper- 171

iments are conducted on both low-resource and 172

rich-resource translation tasks. 173

3.1 Settings 174

To compare with Vaswani et al. (2017), we con- 175

ducted our experiments on different scale datasets. 176

The datasets of low-resource scenario are from 177

IWSLT competitions, which include IWSLT14 178

English-German (En-De), English-Spanish (En- 179

Es) and English-French (En-Fr) translations. The 180

rich-resource datasets come from the widely ac- 181

knowledged WMT translation tasks, and we take 182

the WMT14 English-German tasks. The IWSLT 183

datasets contain about 170k training sentence pairs. 184

The WMT data size is 4.5M, and validation and 185

test data are from the corresponding newstest data. 186

We applied joint Byte-Pair Encoding (BPE) 187

(Sennrich et al., 2015) with 32k merging operations 188

on WMT data sets and 10k merging operations on 189

IWSLT data sets. We used a dropout of 0.3 for all 190

IWSLT experiments except for the Transformer- 191

base setting on the WMT En-De task which was 192

0.1. The temprature in supervised contrastive loss 193

is set as 0.1 for all translation tasks. 194

Figure 2: Self-Sim of our approach and transformer-
base model. The X-axis is token frequency which drops
gradually from left to right.
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BLEU Self-Sim
full 27.62 0.421
low 22.88 0.393
+SCL 23.42 0.429

Table 2: BLEU scores and Self-Sim on WMT14.

3.2 Analysis195

The self-similarity of a word, is the average co-196

sine similarity between its representations in dif-197

ferent contexts. If the self-similarity is 1, then198

the representations are not context-specific at all;199

if the self-similarity is 0, that the representations200

are maximally context specific. In Figure 2, we201

plot the average self similarity of uniformly ran-202

domly sampled words, the higher the word fre-203

quency, the lower the self-similarity is on aver-204

age. In other words, the higher the word frequency,205

the more context-specific the contextualized rep-206

resentations. But the lower the word frequency207

not have high self-similarity, implying that their208

contextualized representations are among the most209

context-specific.This is relatively surprising, given210

that these words are not polysemous. This finding211

suggests that the variety of contexts a word appears212

in, rather than its inherent polysemy, is what drives213

variation in its contextualized representations.214

3.3 Main Results215

We calculate the BLEU scores on these tasks for216

evaluation. The performances are shown in Table 1.217

We can see that our approach achieves more than218

1.3 BLEU score improvements on IWSLT, which219

clearly shows the effectiveness of our method. In220

Table 2, we can see that the supervised contrastive221

learning enhances self-sim, and BLEU has also222

improved on WMT14 low data condition.223

The efficacy of the data augmentation and the224

supervised positive sampling contrastive learning225

is evaluated. The variants are: the transformer226

baseline; DA, with additional word-dropout data227

augmentation; SCL, the contrastive learning us-228

ing supervised positive sampling to optimize; and229

DA+SCL, trained with the addition of DA and SCL.230

The result is shown in Table 3.231

From the result, it is clear that adding a con-232

trastive objective can generally improve the recom-233

mendation performance compared with the base-234

line. Compared with DA+SCL, it can be concluded235

that the model-level dropout augmentation can pro-236

vide a more semantically consistent unsupervised237

BLEU iwslt14 en-de
baseline 28.46
+ SCL 29.02
+ DA 29.20
+ SCL + DA 29.87

Table 3: Ablation study on IWSLT14 en-de dataset.

sample than the data-level augmentation. Further- 238

more, SCL relies on the target item to sample a 239

semantically consistent supervised sample,which 240

shows a large margin improvement over the unsu- 241

pervised methods. 242

4 Related Work 243

Contrastive learning has become a very popular 244

technique in unsupervised visual representation 245

learning with solid performance. The main method 246

is (Oord et al., 2018; He et al., 2020; Chen et al., 247

2020; Chen and He, 2020) encoding of different 248

views of the same image as positive pairs. Con- 249

trastive learning also has been widely applied in lan- 250

guage model pre-training task (Fang et al., 2020). 251

Recently, several approaches on contrastive 252

learning for NMT have also been studied. Yang 253

et al. (2019) proposed leveraging contrastive learn- 254

ing for reducing word omission errors. Pan et al. 255

(2021) applied contrastive learning for multilingual 256

MT. While these works have been conducted on 257

sentence-level contrastive, we focus on extending 258

contrastive learning on token-level NMT. 259

5 Conclusion and Future Work 260

In this work we propose a simple supervised con- 261

trastive framework for machine translation. We find 262

that the variety of contexts a word appears in, rather 263

than its inherent polysemy, is what drives variation 264

in its contextualized representations. Meanwhile 265

Our approach improves neural machine translation 266

tasks with promising results. Future works should 267

include a thorough study on better similarity mea- 268

sures and different data augmentation. 269
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