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Abstract

Power converters (PC) are a major component in any current
electronic hardware device. The development and design is
usually guided by expert knowledge and heavily relies on hu-
man intuition and experience. The process is a very time con-
suming and costly activity and it is generally hard to improve
upon current designs. As a first step towards autonomous PC
design, we are here proposing a new framework for the sizing
of components for fixed topology PCs based on given design
requirements. To this end, we developed surrogate models for
rapid evaluation of new topologies and adapt the deep sym-
bolic optimization (DSO) framework to generate new topolo-
gies guided by a reinforcement learning training signal. In an
empirical evaluation, we show that our DSO based approach
is able to find the optimal configuration for all investigated
topologies, while reducing the learning time by at least a fac-
tor of 100 compared to popular RL algorithms.

Introduction and Background
Power converters (PC) are an integral component in today’s
electronic devices and play a major role in technological de-
velopment. With the increasing rate of electrification and
digitalization, the PC market is projected to grow contin-
uously over the next years. This will mainly be driven by
developments in the energy and power sector, as well as
by massive growth of the aerospace and robotics industries,
having implications on many aspects of our daily lives (Ver-
tical 2021).

Designing efficient PCs is an expensive task, requiring hu-
man experience and costly testing and simulation. The ba-
sic building blocks are electronic components such as re-
sistors, capacitors, inductors, diodes, and switching devices.
The complexity and difficulty come from the combination
of these blocks in highly interconnected circuits. As small
changes can lead to inefficiencies, the whole process is time-
consuming, inefficient, and labor intensive. This effect is in-
tensified by application-specific considerations, such as cost,
thermal, or packaging constraints. Nevertheless, the state-of-
the-art process is still heavily reliant on human experts to se-
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lect the optimal topology and search for design parameters
based on the expert’s experience and intuitions.

On the other hand, Machine Learning (ML) as a tool to
automate general processes has started to make an increas-
ing impact. Deep Learning (DL) (LeCun, Bengio, and Hin-
ton 2015) approaches have led to a number of breakthroughs
in computer vision (Voulodimos et al. 2018), natural lan-
guage processing (Otter, Medina, and Kalita 2020), and rec-
ommendation systems (Batmaz et al. 2019). The represen-
tational generalization abilities of DL also led the way to
new developments in autonomous decision making based on
Deep Reinforcement Learning (DRL) (Arulkumaran et al.
2017; Sutton and Barto 2018). DRL has shown to learn
super-human control in areas such as board games (Silver
et al. 2016), Atari game playing (Mnih et al. 2015; Glatt
et al. 2020), electric vehicle control (Pettit et al. 2019; Silva
et al. 2019), robotics (Levine et al. 2016), energy applica-
tions (Zhang, Zhang, and Qiu 2019; Liang et al. 2021), chip
design (Mirhoseini et al. 2020) and many other domains.

More recently, ML has been employed into power elec-
tronics system design with the goal of speeding up the pro-
cess. Dragičević, Wheeler, and Blaabjerg (2018) establish a
functional relationship between design parameters and relia-
bility metrics, and use them as the basis for optimal design in
a grid-connected photo-voltaic converter case study. Wang
et al. (2018) leverage reinforcement learning to automati-
cally search circuit parameters and evaluate their methods
on two different trans-impedance amplifiers circuits. Their
approach is able to design circuits with better performance
than random search, Bayesian Optimization and human ex-
perts. In an extension of their work, Wang et al. (2020)
propose GCN-RL Circuit Designer, an RL agent based on
Graph Convolutional Neural Network (GCN) architecture to
transfer knowledge between different technology nodes and
topologies for transistor sizing. Their experiments demon-
strate that the method can achieve better results than others
through knowledge transfer and enables more effective and
efficient transistor sizing and design porting.

Despite the efforts in those works, autonomous develop-
ment (or recommendation) of efficient PC topologies re-
mains a challenging and unresolved research field. Given
the successful recent history of ML-powered design specifi-
cation, we propose a method to support the development of



Figure 1: The figure shows different representations of the
same converter topology with varying detail and structure:
1) topology description in a tree structure as generated with
our framework, 2) simple circuit diagram derived from the
tree, and 3) full model generated using a simulation software
.

PC topologies as part of an intelligent system for automatic
selection of DC-DC converters (Wang et al. 2022). The main
contributions of this paper are (1) the representation of PC
topologies as a tree structure, (2) an RL based framework
to optimize component selection for a desired topology, and
(3) an empirical evaluation showing that our method is use-
ful for this task.

Power Converter Representation
Figure 1 illustrates how electric circuits are interchange-
ably represented in different levels of abstraction by our
approach. In this example, we use a step-down converter,
or buck converter, to regulate a voltage level, designated as
Vin, to a lower voltage of Vout. We depict the buck con-
verter because it can can be ubiquitously found in almost
all modern electronics devices and is also one of the fun-
damental topologies in power electronics. In Figure 1 (1),
a high-level representation of the circuit as a discrete token
tree is shown. Tokens can either represent how components
are linked (serial or parallel connections) or actual compo-
nents. This token tree representation is convenient for ma-
nipulation by our learning algorithm, described in the next

section. By traversing the tree from left to right, we can
uniquely recover an electric circuit from the token tree, il-
lustrated in Figure 1 (2). This simple circuit model can be
fully implemented through physical components or by using
commercial simulation software, as in Figure 1 (3).

Deep Symbolic Optimization (DSO)
Given the circuit token tree representation discussed in the
previous section, we propose to use the Deep Symbolic Op-
timization (DSO) framework to learn how to optimize cir-
cuits. DSO is a framework that allows to explore the space of
possible solutions that optimize hierarchical, variable-length
discrete objects under a black box performance metric (Pe-
tersen et al. 2021; Landajuela et al. 2021a,b). DSO refers to
solutions as programs τ = [τ0, τ1, . . . , τ|τ |] which are gen-
erated by the sequential combination of functional tokens
that are sampled from a token library L = {τ1, . . . , τ t} un-
der the consideration of prior knowledge and logical con-
straints. The programs form an expression tree with tokens
that present internal nodes, which are operators, and termi-
nal nodes which are constants or the input variables of the
dataset. The programs are evaluated based on a reward func-
tion which indicates how good a specific program is.

DSO is composed of a sequence generating neural net-
work, is based on a Recurrent Neural Network (RNN) archi-
tecture. The RNN provides a parameterized distribution over
all tokens in the library p(τ |θ) with parameters θ. The RNN
is trained using a batch of programs T and backpropagating
the gradients of a defined loss function, naturally, intended
to learn to generate programs that optimize the reward:

L(θ) = 1

ε|T |
∑
τ∈T

(R(τ)− R̃ε)∇θ log p(τ |θ)1R(τ)>R̃ε
(1)

where ε determines the degree of risk-seeking and R̃ε is the
empirical (1 − ε) reward quantile of T . Risk-seeking here
refers to degree in which DSO optimizes the best-case sce-
nario, i.e., is concerned only in the best solutions for the
problem found so far. This is unlike typical RL methods,
which optimize the average performance.

DSO is especially well-suited for our problem at hand,
since: (i) circuits can be represented in a “symbolic” way
through tokens; and (ii) we are interested in finding the best
circuit for a particular setting. In the next section, we present
our modeling of circuit optimization as a symbolic optimiza-
tion problem.

Topology Generation framework
Our goal is the development of a ML-driven system that sup-
ports the design of new PCs, by quickly optimizing the com-
ponent selection constrained to a desired circuit topology.
We use DSO for the problem at hand, where a hierarchi-
cal specification (the PC) of discrete objects (the electronic
components) is needed.

On a high level, the framework is composed of a topol-
ogy generator and a policy evaluator. While the former gen-
erates topology parameters that seem promising, the latter
evaluates the generated topologies and produces a training
signal for the generator to improve topology generation over



Figure 2: Topology generation process based ob the DSO
framework.

time. The performance indicator for our purposes is the ef-
ficiency of the topology. The evaluation process for a single
topology is usually computationally expensive in commer-
cial simulation software. As we frequently need to evaluate
new topologies, the long time taken for computing the effi-
ciency was a significant obstacle. Therefore, we developed
a surrogate model to quickly estimate the efficiency which
allows us to iterate over designs quickly.

Note that DSO generates different samples from the dis-
tribution that might have different tree structures of different
size; thus, the search space is inherently both hierarchical
and variable in length. In order to improve search and en-
sure that valid circuits are generated, pre-defined constraints
can be applied. For example, one can fix certain positions
in the tree or impose length or architecture demands on the
generated topologies to integrate human knowledge. These
constraints can guide if the learning is more focused on gen-
erating completely new topologies or modifications of exist-
ing ones. Eventually, the framework produces a number of
topologies that meet the user defined requirements and pro-
poses them to the user to make a final selection based on
user preference or just suggests the best performing topol-
ogy. DSO produces a Hall of Fame (HoF) containing the
best performing topologies which makes this process trivial.

In this work, we are only considering topologies defined
by the user, which allows us to focus the learning on the siz-
ing of the electronic components. As described earlier, we
can represent topologies as a tree structure. By fixing the
topology, we can define constraints on the components that
the generator can place at each node in the tree. In Figure 2,
we can see the process of generating a topology in more de-
tail (shown token are randomly selected for demonstration
only). In the left box, we can see the columns that repre-
sent the token selection process at each step that sequentially
build the topology tree. The input to the RNN is comprised
of a parent node and the sibling nodes of the token that will
be selected next. Initially, no tokens have been drawn so that
neither parent nor sibling nodes exist. The categorical dis-
tribution is a probability distribution over all tokens in the li-
brary considering any prior knowledge or constraint and will
change at every step depending on the current sequence. The
selected token then becomes a parent or sibling node in the
next step until all branches end in terminal tokens.

Buck.r Buck Boost BuckBoost
Vin[V] 48 48 5 20
Vout[V] 5 5 15 10
Pout[W] 20 20 20 5

Table 1: Fixed design requirements for the selected topolo-
gies.

Experiments
We investigated the benefits of our proposed framework
through an empirical evaluation on fixed topology compo-
nent sizing. For this purpose, we focus on three PC topolo-
gies: (1) Buck, (2) Boost, and (3) BuckBoost. Those topolo-
gies have in common that they are generally built from the
same type of components consisting of (1) inductances, (ii)
capacitances, and (iii) pulse width modulators (PWMs); al-
lowing us to use an identical tokenset for all topologies. De-
sign requirements are other important parameters of each
topology and remain fixed as shown in Table 1.

Generated topologies are evaluated by an estimate of their
efficiency. Although the efficiency can be accurately esti-
mated through the use of a simulation software (such as
Modelica (Urquı́a et al. 2018)), simulation times can take
up to several minutes, which makes it unfeasible to run sim-
ulations as part of a learning process. We overcome this is-
sue by developing a surrogate model that approximates full
circuit simulations with a much faster execution speed, en-
abling to evaluate circuits immediately. We use an individual
surrogate model for each topology that has been previously
trained to evaluate the performance of each of the aforemen-
tioned topologies. The surrogate models are based on a deep
neural network architecture and trained on data generated
by Matlab/Simulink. For every model, we generated about
30,000 input combinations of switching frequency, induc-
tance, and capacitance and their respective power efficiency.
The model architecture is a simple feed-forward neural net-
work with 10 topology parameters as input, 512 nodes in a
hidden layer, and a single output node representing the effi-
ciency based on the input parameters.

In all experiments, we compare the DSO framework
against Bruteforce, Q-Learning (Watkins and Dayan 1992),
and DDPG (Lillicrap et al. 2015). Bruteforce searches
naively evaluating all possible component combinations
among a discretized set of possible components. It should al-
ways find the best result for the discrete tokenset which is the
same in DSO and Q-Learning, so it serves as a upper base-
line for our algorithm. DDPG, on the other hand, operates
in continuous space (in a given range) and might be able to
achieve a better efficiency after training than the discrete al-
gorithms. However, notice that DDPG can possibly propose
circuits composed of components that are not commercially
available, due to the continuous space of possible parameter
values. Q-Learning and DDPG were trained by finetuning
a given initial setting of the parameters and adjusting each
component to increase the efficiency over a number of steps.
Differently, in the DSO framework, we are sampling each
token sequentially using the RNN and additionally constrain
the sample process by allowing the algorithm to only sam-



Buck.r Buck Boost BuckBoost
BruteForce 0.955 0.976 0.995 0.988
Q-Learning 0.955 0.975 0.995 0.954
DDPG 0.951 0.977 0.992 0.969
DSO 0.955 0.976 0.995 0.988

Table 2: Highest efficiencies and running time for each algo-
rithm in our empirical evaluation for the three PC topologies
(bold=best). DSO finds optimal settings for all topologies.

ple the right type of token for each position in the topology
tree. For our experiments, this means that one token of each
type, switching frequency fPWM , inductance I , and capac-
itance C will be sampled, while the rest of the tree remains
constant at their respective positions.

We performed two rounds of experiments. In the first
round, we only considered the Buck converter and also only
used a reduced tokenset (19 tokens) in the DSO framework.
The results of this experiment are denoted as Buck.r in tables
and figures. In Table 2 we can see that the reduced tokenset
in general achieves lower efficiency than the full tokenset,
however, we can see that DSO manages to find the best so-
lution as indicated by Bruteforce. Figure 3 shows the effi-
ciency of the top 100 topologies, the Hall of Fame (HoF),
found by our algorithm during the training process for all
experiments. The top graph shows the results for Buck.r. As
an interesting side effect, the HoF graph revealed the com-
ponent most responsible for improving the efficiency in this
example. The observable steps in the curve have an over-
whelmingly common component which is the frequency to-
ken that shows increases with rising frequency, posing an in-
teresting conclusion that could be used for further improve-
ments and increase in human knowledge.

The second round of experiments considered all topolo-
gies and an extended tokenset (40 tokens). In Table 2 we
can see that DSO recovers the best solution for all topolo-
gies as indicated by Bruteforce. Q-Learning fails to find the
best performing solution reliably and DDPG only once out-
performs the Bruteforce approach but trails slightly in the
other settings. As all learning approaches show good perfor-
mance, only DSO consistently recovers the optimal compo-
nent selection for the different PCs. Another great benefit is
that while a complete training run in Q-Learning and DDPG
takes well over 30 minutes for each topology to converge to
good solutions, DSO reduces the training time by a factor of
more than 100 to less than 20 seconds. The HoF and the best
performing component selection for each topology as found
by DSO are shown in Figure 3.

Discussion & Conclusion
In this paper, we proposed a framework to support the design
and development of PCs. By leveraging RL-based symbolic
optimization, we represent PC topologies as sequences of
discrete components and autonomously learn how to opti-
mally size the components in a fixed topology. We also de-
veloped a simple surrogate model to quickly estimate topol-
ogy quality and overcome the restrictions of long computing
cycles for efficiency determination. We presented an empiri-

cal evaluation that shows that our method finds optimal solu-
tions by using much less computation time. For future work,
we plan to extend our framework to generate new converter
topologies with fewer architecture restrictions by integrating
more human knowledge in form of priors and constraints to
guarantee validity of generated topologies.

Figure 3: Overview of the top 100 generated topologies by
DSO ordered by reward (efficiency) for (from top to bot-
tom): (a) Buck power converter with reduced tokenset, (b)
Buck power converter with full tokenset, (c) Boost power
converter with full tokenset, and (d) Boost power converter
with full tokenset.
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