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Abstract

The behavior of no-regret learning algorithms is well under-
stood in two-player min-max (i.e, zero-sum) games. In this
paper, we investigate the behavior of no-regret learning in
min-max games with dependent strategy sets, where the strat-
egy of the first player constrains the behavior of the second.
Such games are best understood as sequential, i.e., min-max
Stackelberg, games. We consider two settings, one in which
only the first player chooses their actions using a no-regret
algorithm while the second player best responds, and one in
which both players use no-regret algorithms. For the former
case, we show that no-regret dynamics converge to a Stack-
elberg equilibrium. For the latter case, we introduce a new
type of regret, which we call Lagrangian regret, and show that
if both players minimize their Lagrangian regrets, then play
converges to a Stackelberg equilibrium. We then observe that
online mirror descent (OMD) dynamics in these two settings
correspond respectively to a known nested (i.e., sequential)
gradient descent-ascent (GDA) algorithm and a new simulta-
neous GDA-like algorithm, thereby establishing convergence
of these algorithms to Stackelberg equilibrium. Finally, we
analyze the robustness of OMD dynamics to perturbations by
investigating dynamic min-max Stackelberg games. We prove
that OMD dynamics are robust for a large class of dynamic
min-max games with independent strategy sets. In the depen-
dent case, we demonstrate the robustness of OMD dynamics
experimentally by simulating them in dynamic Fisher mar-
kets, a canonical example of a min-max Stackelberg game
with dependent strategy sets.

1 Introduction

Min-max optimization problems (i.e., zero-sum games)
have been attracting a great deal of attention recently be-
cause of their applicability to problems in fairness in ma-
chine learning (Dai et al. 2019; Edwards and Storkey 2016;
Madras et al. 2018; Sattigeri et al. 2018), generative ad-
versarial imitation learning (Cai et al. 2019; Hamedani
et al. 2018), reinforcement learning (Dai et al. 2018), gen-
erative adversarial learning (Sanjabi et al. 2018a), adver-
sarial learning (Sinha et al. 2020), and statistical learn-
ing, e.g., learning parameters of exponential families (Dai
et al. 2019). These problems are often modelled as min-
max games, i.e., constrained min-max optimization prob-
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lems of the form: mingex maxycy f(x,y), where f :
X xY — R is continuous, and X C R" and Y C
R™ are non-empty and compact. In convex-concave min-
max games, where f is convex in « and concave in v,
von Neumann and Morgenstern’s seminal minimax theorem
holds (Neumann 1928): i.e., mingec x maxyey f(x,y) =
maxXycy Mingecx f(x,y), guaranteeing the existence of a
saddle point, i.e., a point that is simultaneously a mini-
mum of f in the x-direction and a maximum of f in the
y-direction. This theorem allows us to interpret the opti-
mization problem as a simultaneous-move, zero-sum game,
where y* (resp. ©*) is a best-response of the outer (resp.
inner) player to the other’s action * (resp. y*), in which
case a saddle point is also called a minimax point or a Nash
equilibrium.

In this paper, we study min-max Stackelberg games
(Goktas and Greenwald 2021), i.e., constrained min-max
optimization problems with dependent feasible sets of the
form: minge x maxyey.g(w,y)>o0 f(x,y), where f : X x
Y — Riscontinuous, X C R" and Y C R™ are non-empty

and compact, and g(2.y) = (91(2,y),. .., gx(2.y))
with g : X XY — R. Goktas and Greenwald observe that
the minimax theorem does not hold in these games (2021).
As a result, such games are more appropriately viewed as
sequential, i.e., Stackelberg, games for which the relevant
solution concept is the Stackelberg equilibrium,' where the
outer player chooses & € X before the inner player responds
with their choice of y(&) € Y s.t. g(&, y(&)) > 0. In these
games, the outer player seeks to minimize their loss, assum-
ing the inner player chooses a feasible best response: i.e.,
the outer player’s objective, also known as their value func-
tion in the economics literature (Milgrom and Segal 2002),
is defined as Vx () = maxycy.g(z,y)>0 f(z,y). The in-
ner player’s value function, Vy : X — R, which they seek
to maximize, is simply the objective function given the outer
player’s action &: i.e., Vy (y; &) = f(&,y).

Goktas and Greenwald (2021) proposed a polynomial-
time first-order method by which to compute Stackelberg

!One could also view such games as pseudo-games (also known
as abstract economies) (Arrow and Debreu 1954), in which players
move simultaneously under the unreasonable assumption that the
moves they make will satisfy the game’s dependency constraints.
Under this view, the relevant solution concept is generalized Nash
equilibrium (Facchinei and Kanzow 2007, 2010).



equilibria, which they called nested gradient descent as-
cent (GDA). This method can be understood as an algorithm
a third party might run to find an equilibrium, or as a game
dynamic that the players might employ if their long-run goal
were to reach an equilibrium. Rather than assume that play-
ers are jointly working towards the goal of reaching an equi-
librium, it is often more reasonable to assume that they play
so as to not regret their decisions: i.e., that they employ a
no-regret learning algorithm, which minimizes their loss
in hindsight. It is well known that when both players in a
min-max game are no-regret learners, the players’ strategy
profile over time converges to a Nash equilibrium in average
iterates: i.e., empirical play converges to a Nash equilibrium
(e.g., (Freund and Schapire 1996)).

In this paper, we investigate no-regret learning dynamics
in min-max Stackelberg games. We assume both pessimistic
and optimistic settings. In the pessimistic setting, the outer
player is a no-regret learner while the inner player best re-
sponds; in the optimistic setting, both players are no-regret
learners. In the pessimistic case, we show that if the outer
player uses a no-regret algorithm that achieves e-pessimistic
regret after 7' iterations, then the outer player’s empirical
play converges to their e-Stackelberg equilibrium strategy.
In the optimistic case, we introduce a new type of regret,
which we call Lagrangian regret, which assumes access to
a solution oracle for the optimal KKT multipliers of the
game’s constraints. We then show that if both players use
no-regret algorithms that achieve e-Lagrangian regret after
T iterations, the players’ empirical play converges to an &-
Stackelberg equilibrium.

We then restrict our attention to online mirror descent
(OMD) dynamics, which yield two algorithms, namely max-
oracle gradient descent (Jin, Netrapalli, and Jordan 2020)
and nested GDA (Goktas and Greenwald 2021) in the pes-
simistic setting, and a new simultaneous GDA-like algo-
rithm (Nedic and Ozdaglar 2009) in the optimistic setting,
which we call Lagrangian GDA (LGDA). Convergence of
the former two algorithms in O(1/e?) iterations then fol-
lows from our previous theorems. Additionally, the iteration
complexity of O(1/e?) suggests the superiority of LGDA
over nested-GDA when a Lagrangian solution oracle exists,
since nested-GDA converges in O(1/<?) iterations (Goktas
and Greenwald 2021), while LGDA converges in O(1/?) it-
erations, assuming the objective function is only Lipschitz
continuous.

Finally, we analyze the robustness of OMD dynamics to
perturbations by investigating dynamic min-max Stackel-
berg games. We prove that OMD dynamics are robust, in
that even when the game changes with each iteration of the
algorithm, OMD dynamics track the changing equilibrium
closely for a large class of dynamic min-max games with in-
dependent strategy sets. In the dependent strategy set case,
we demonstrate the robustness of OMD dynamics experi-
mentally by simulating them in dynamic Fisher markets, a
canonical example of a min-max Stackelberg game (with de-
pendent strategy sets). Even when the Fisher market changes
with each iteration, our OMD dynamics are able to track the
changing equilibria closely. Our findings can be summarized
as follows:

* In min-max Stackelberg games, when the outer player
is a no-regret learner and the inner-player best-responds,
the average of the outer player’s strategies converges to
their Stackelberg equilibrium strategy.

* We introduce a new type of regret we call Lagrangian re-
gret and show that in min-max Stackelberg games when
both players minimize Lagrangian regret, the average of
the players’ strategies converges to a Stackelberg equi-
librium.

* We provide novel convergence guarantees for two known
algorithms, max-oracle gradient descent and nested gra-
dient descent ascent, to an e-Stackelberg equilibrium in
O(1/<?) in average iterates.

* We introduce a new simultaneous GDA-like algorithm
and prove that its average iterates converge to an e-
Stackelberg equilibrium in O(1/<2) iterations.

* We prove that max-oracle gradient descent and simulta-
neous GDA are robust to perturbations in a large class of
min-max games (with independent strategy sets).

* We run experiments with Fisher markets which suggest
that max-oracle gradient descent and simultaneous GDA
are robust to perturbations in these min-max Stackelberg
games (with dependent strategy sets).

We provide a review of related work in Appendix BThis
paper is organized as follows. In the next section, we present
the requisite mathematical preliminaries. In Section 3, we
present no-regret learning dynamics that converge in a large
class of min-max Stackelberg games. In Section 4, we study
the convergence and robustness properties of a particular no-
regret learning algorithm, namely online mirror descent, in
min-max Stackelberg games.

2 Mathematical Preliminaries
Our notational conventions can be found in Appendix A.

Game Definitions A min-max Stackelberg game,
(X,Y, f,g), is a two-player, zero-sum game, where one
player, who we call the outer, or -, player (resp. the
inner, or y-, player), is trying to minimize their loss (resp.
maximize their gain), defined by a continuous objective
function f : X x Y — R, by taking an action from
their strategy set X C R", and (resp. ¥ C R™) s.t.

g(x,y) > 0 where g(z,y) = (01(x,y),...,9x(x,y))"
with g : X x Y — R continuous. A strategy profile
(z,y) € X x Y is said to be feasible iff for all k € [K],
gr(x,y) > 0. The function f maps a pair of actions
taken by the players (x,y) € X x Y to a real value
(i.e., a payoff), which represents the loss (resp. the gain)
of the x-player (resp. the y-player). A min-max game is
said to be convex-concave if the objective function f is
convex-concave.

One way to see this game is as a Stackelberg game,
i.e., a sequential game with two players, where WLOG,
we assume that the minimizing player moves first and
the maximizing player moves second. The relevant so-
Iution concept for Stackelberg games is the Stackelberg
equilibrium: A strategy profile (xz*,y*) € X x Y s.t
g(x*,y*) > 0 is an (e, 0)-Stackelberg equilibrium if



MaXycy:g(z*,y)>0 f (w*a y) =9 < f (13*, y*)

< mingex MaXyey.g(zy)>o0 f (T,y) + . Intuitively, a
(e, 9)-Stackelberg equilibrium is a point at which the x-
player’s (resp. y-player’s) payoff is no more than ¢ (resp.
) away from its optimum. A (0, 0)-Stackelberg equilibrium
is guaranteed to exist in min-max Stackelberg games (Gok-
tas and Greenwald 2021). Note that when g(x,y) > 0, for
allz € X and y € Y, the game reduces to a min-max game
(with independent strategy sets), for which, by the min-max
theorem, a Nash equilibrium is guaranteed to exist (Neu-
mann 1928).

In a min-max Stackelberg game, the outer
player’s best-response set BRx <C X, defined as
BRx = argming .y Vx(x), is independent of the
inner player’s strategy, while the inner player’s best-
response correspondence BRy : X = Y, defined as
BRy (z) = argmaxXycy.g(zy)>0 Vy (¥; ), depends on
the outer player’s strategy. A (0, 0)-Stackelberg equilibrium
(x*,y*) € X x Y is then a tuple of strategies such that
(z*,y*) € BRx x BRy(x*).

A dynamic min-max Stackelberg game,
{(X,Y,f(t),g(t))}tTfl, is a sequence of min-max Stack-
elberg games played for T time periods. We define the
players’ value functions at time ¢ in a dynamic min-max
Stackelberg game in the obvious way. Note that when
gW(x,y) > 0forall z € X,y € Y and all time
periods t € [T, the game reduces to a dynamic min-
max game (with independent strategy sets). Moreover, if
Vi, t' e [T], f® = £ and g = g(*), then the game
reduces to a (static) min-max Stackelberg game, which we
denote simply by (X, Y, f, g).

Mathematical Preliminaries Given A C R", the function
f + A — Ris said to be {;-Lipschitz-continuous iff
Vi, xo € X,

I f(x1) — f(z2)|] < €fl|l@1 — 2||. If the gradient of f,
V f, is €y s-Lipschitz-continuous, we refer to f as fy -
Lipschitz-smooth. We provide a review of online convex
optimization in Appendix A.

3 No-Regret Learning Dynamics

In this section we explore no-regret learning dynamics in
min-max Stackelberg games, and prove the convergence of
no-regret learning dynamics in two settings: a pessimistic
setting in which the outer player is a no-regret learner while
the inner player best-responds, and an optimistic setting in
which both players are no-regret learners. All the results in
this paper rely on the following assumptions:

Assumption 1. /. (Slater’s condition (Slater 1959,
2014)) Vx € X,y € Y st gi(x,y) > 0, for all
k=1,....K; 2. f,q1,...,9K are continuous and convex-
concave; and 3. N o f,V ¢ g1, . . ., Ve gi are well-defined for
all (x,y) € X x Y and continuous in (x,y).

We note that these assumptions are in line with pre-
vious work geared towards solving min-max Stackelberg
games (Goktas and Greenwald 2021). Part 1 of Assump-
tion 1, Slater’s condition, is a standard constraint quali-
fication condition (Boyd, Boyd, and Vandenberghe 2004),

which is needed to derive the optimality conditions for the
inner player’s maximization problem; without it the prob-
lem becomes analytically intractable. Part 2 of Assumption 1
is is required for the value function of the outer player to
be continuous and convex ((Goktas and Greenwald 2021),
Proposition A1) so that the problem is solvable efficiently.
Finally, we note that Part 3 of Assumption 1 can be replaced
by a subgradient boundedness assumption instead; however,
for simplicity, we assume this stronger condition.

Pessimistic Learning Setting

In Stackelberg games, the leader decides their strategy as-
suming that the inner player will best respond which leads
us to first consider a repeated game setting in which the in-
ner player always best responds to the strategy picked by
the outer player. Such a setting also makes sense as in zero-
sum Stackelberg games the outer player and inner player
are adversaries, and in most applications of interest we are
concerned by optimal strategies for the outer player; hence,
assuming a strong adversary which always best-responds
allows us to consider more robust strategies for the outer
player.

For any € X, denote y*(x) € BRy (), in such a
setting, intuitively, the regret should be equal to the differ-
ence between the cumulative loss of the outer player w.r.t. to
their sequence of actions to which the inner player best re-
sponds, and the smallest cuamulative loss that the outer player
can achieve by picking a fixed strategy to which the in-

ner player best responds, i.e., 7 ZtT:l fOE® gy (x®))—
Z;‘FZI % f® (@, y*(z)). We call this regret the pessimistic
regret which can be more conveniently defined as the re-
gret incurred by an action € X of the outer player w.r.t.

a sequence of actions { (X, Y, f®, g(t))}tT:1 and a dynamic
min-max Stackelberg game {G}+cr W.r.t. to the loss given
by their value function {V)((t) W Lies

v (=)

)

That is, the pessimistic regret of the outer player compares
the outer player’s play history to the smallest cumulative loss
the outer player could achieve by picking a fixed strategy as-
suming that the inner player best-responds. It is pessimistic
in the sense that the outer player assumes the worst possible
outcome for themself.

The main theorem in this section states the following: as-
suming the inner player best responds to the actions of the
outer player, if the outer player employs a no-regret algo-
rithm, then the outer player’s average strategy converges to
a Stackelberg equilibrium. Before presenting this theorem,?
we recall the following property of the outer player’s value
function.

Nl =

T
1
PesRegretg(T)(m) =7 E V)((t)(a:(t)) _ § '
t=1

t=1

Proposition 2 ((Goktas and Greenwald 2021), Proposition
A.1). In a min-max Stackelberg game (X,Y, f, g), the outer

The proofs of all mathematical claims in this section can be
found in Appendix C.



player’s value function, V(x)
is continuous and convex.

= MaXycy:g(z,y)>0 f (T, Y),

Theorem 3. Consider a min-max Stackelberg game
(X,Y, f,g), and suppose the outer player plays a sequence
of actions {xMW}L_, C X. If, after T iterations, the outer
player’s pessimistic regret is bounded by ¢ for all x € X,
then (a‘c(T),y*(:E(T))) is a (g,0)-Stackelberg equilibrium,
where y*(2(7)) € BRy (7).

We remark that even though the definition of pessimistic
regret looks similar to the standard definition of regret, its
structure is very different. In particular, without Proposi-
tion 2, it is not clear that the value Zthl LfO(z, y*(z))

Zle V®(z) is convex in .

Optimistic Learning Setting
We now turn our attention to a learning setting in which

both players are no-regret learners. The most straightforward
way to define regret is by considering the outer and inner

players “vanilla” regrets, respectively: Regretg)(m)
T

th 1f( t)yt)) %Ztl (‘Ey(

and Regret( )( ) th 1 f(x®,y)

7 Zt f(x®, y®). In convex-concave min-max games
(with 1ndependent strategy sets), when both players min-
imize their vanilla regret, the players’ average strategies
converge to Nash equilibrium. In min-max Stackelberg
games (with dependent strategy sets), however, convergence
to a Stackelberg equilibrium in not guaranteed.

g 5

Example 4. Consider the min-max Stackelberg game
miﬂme[—m]

maxy c[—1,1:0<1—(z+y) 2% + y + 1. The Stackelberg equi-
librium of this game is given by x* = 1/2,y* = 1/2. Sup-
pose both players employ no-regret algorithms that gener-
ate strategies {x ¥,y }icn . Then at time T € N, there
exists € > 0, s.t.

N [m(f)2 +y® 4 1] — Lming e XL, [12 +y® 41
%maxye[fl,l] Ez;l { 2 +y+1] P ;‘F 1 [ (”2+y<”+1
@)
Simplifying yields:
1 T 2 .
T Zt:l ‘r(t) — Mg e —1,1] xz S € (3)
1
maxye(-1,1)Y — 72— ¥ < e
Since both players are no-regret learners, there exists T €
N, large enough s.t.
1T 2 .
T D t—1 2" < mmme% 1 1] — Zt 1z <
maxye[-1,1]Y < 72— L y® 1§T2t:1y(t

“

In other words, the average iterates converge tox =0, y =
1, which is not the Stackelberg equilibrium of this game.

If the inner player minimizes their vanilla regret with-
out regard to the game’s constraints, then their actions are
not guaranteed to be feasible, and thus cannot converge to a

INIA
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m

Stackelberg equilibrium. To remedy this infeasibility, we in-
troduce a new type of regret we call Lagrangian regret, and
show that assuming access to a solution oracle for the opti-
mal KKT multipliers of the game’s constraints, if both play-
ers minimize their Lagrangian regret, then no-regret learning
dynamics converge to a Stackelberg equilibrium.

Define L(y,A) = f(x,y) + Zle Mgk (x,y) to be
the Lagrangian associated with the outer player’s value func-
tion, or equivalently, the inner player’s maximization prob-
lem given the outer player’s strategy * € X. If the op-
timal KKT multipliers A* € R¥, which are guaranteed
to exist by Slater’s condition (Slater 1959), were known
for the problem mingex maxycy.g(a,y)>0 (%, Y)
Mg e x MaXycy MINX>0
La(y, ), then one could plug them back into the La-
grangian to obtain a convex-concave saddle point problem
given by minge x maxycy
L (y, X*). Note that a saddle point of this problem is guar-
anteed to exist by the minimax theorem (Neumann 1928),
since Lz(y,A*) is convex in x and concave in y. The
next lemma states that the Stackelberg equilibria of a min-
max Stackelberg game correspond to the saddle points of

Lax(y, A%).

Lemma 5. Any Stackelberg equilibrium (x*y*) € X X
Y of any min-max Stackelberg game (XY, f,g) corre-
sponds to a saddle point of Ln(y,\*), where A\* €
arg miny s Minge x maxycy Lz (y, A).

This lemma tells us that the function £ (y, A*) repre-
sents a new loss function that enforces the game’s con-
straints. Based on this observation, we assume access to
a Lagrangian solution oracle that provides us with A* &€
arg miny > minge x maxyey Lz (y, X*).

Further, we define a new type of regret which we call La-

. . . T
grangian regret. Given a sequence of actions {a:(t), y® } 1
taken by the outer and inner players in a dynamic min-max

Stackelberg game {(X,Y, f®, g(t))}T:
Lagrangian regret, respectively, as LagrRegret( )( ) =

t X t X
TZt 15()( t))‘) TZt 1£()( (taA)

2(t)

, we define their

and LagrRegret( )(y) = % ZtT 1 CS()t) (y,A")
T Zt 1 <t>( ®,x%).
The saddle point residual of a point (z*,y*) € X x Y

with respect to a convex-concave function f : X x Y — R
is given by maxycy f(x*,y) — mingex f(x,y*). When
the saddle point residual is 0, the saddle point is a (0, 0)-
Stackelberg equilibrium.

The main theorem of this section now follows: if both
players play so as to minimize their Lagrangian regret, then
their average strategies converge to a Stackelberg equilib-
rium. The bound is given in terms of the saddle point resid-
ual of L (y, A*).

Theorem 6. Consider a min-max Stackelberg game
(X,Y, f,9), and suppose the outer and the players gener-
ate sequences of actions {(x™, y®)}Y_, C X using a
no-Lagrangian-regret algorithm. If after T iterations, the
Lagrangian regret of both players is bounded by ¢ for all



x € X, the following convergence bound holds on the
saddle point residual of (27, y™)) w.r.t. the Lagrangian:
0 <maxyey Lz (Y, A*) — mingex EE(Q(T), A*) < 2e.

Having provided convergence to Stackelberg equilibrium
of general no-regret learning dynamics in min-max Stack-
elberg games, we now proceed to investigate the conver-
gence and robustness properties of a specific example of a
no-regret learning dynamic, namely online mirror descent
(OMD) dynamics.

4 Online Mirror Descent

In this section, we apply the results we have derived
for no-regret learning dynamics to Online Mirror Descent
(OMD) (Zinkevich 2003; Shalev-Shwartz et al. 2011). We
apply the theorems we derived above to OMD, and then we
study the robustness properties of OMD in min-max Stack-
elberg games.

Convergence Analysis

When the outer player is an OMD learner minimizing its
pessimistic regret and the inner player best responds, we ob-
tain the max-oracle gradient descent algorithm (Algorithm 1
- Appendix D) first proposed by Jin, Netrapalli, and Jordan
(2020) for min-max games.

Following Jin, Netrapalli, and Jordan (2020), Goktas and
Greenwald extend the max-oracle gradient descent algo-
rithm to min-max Stackelberg games and prove its conver-
gence of in best iterates. The following corollary of The-
orem 3, which concerns convergence of this algorithm in
average iterates, complements their result: the max-oracle
gradient descent algorithm is guaranteed to converge to an
(e, 0)-Stackelberg equilibrium strategy of the outer player in
average iterates after O(1/<?) iterations, assuming the inner
player best responds.

We note that since Vx is convex, by Proposition 2, Vx is
subdifferentiable. Moreover, for all € X, y € BRy (),
Vo f(Z,9) + Zszl Mg (Z,Y) is an arbitrary subgradi-
ent of the value function at Z by Goktas and Greenwald’s
subdifferential envelope theorem (2021). We add that sim-
ilar to Goktas and Greenwald, we assume that the optimal
KKT multipliers A\*(z(*), (")) associated with a solu-
tion (")) can be computed in constant time.

Corollary 7. Let ¢ = maxgex ||z| and let {; =
MAX(z,g)e X x Y

Ve f(x,y)|. If Algorithm 1 (Appendix D) is run on a min-
max Stackelberg game (XY, f, g) withn, = ﬁfor all

iteration t € [T] and any x(©) € X, then (27), y*(z(1)))
is a (¢tsV2/VT,0)-Stackelberg equilibrium. Furthermore,
for e € (0,1), if we choose T > Nrp(e) € O(1/e?), then
there exists an iteration T* < T s.t. (27, y* (7)) is an
(e, 0)-Stackelberg equilibrium.

Note that we can relax Theorem 3 to instead work with
an approximate best response of the inner player, i.e., given
the strategy of the outer player &, instead of playing an exact
best-response, the inner player computes a g s.t. f(&,y) >
maxXycy.g(z,y)>0 J (&) — €. Combine with results on the

convergence of gradient ascent on smooth functions, the av-
erage iterates computed by Goktas and Greenwald’s nested
GDA algorithm converge to an (g, ¢)-Stackelberg equilib-
rium in O(1/e?) iterations. If additionally, f is strongly
convex in y, then the iteration complexity can reduced to
O(1/e* log(1/2)).

Similarly, we can also consider the optimistic case,
in which both the outer and inner players minimize
their Lagrangian regrets, as OMD learners with access
to a Lagrangian solution oracle that returns A* €
arg miny s, Minge x maxyecy L4(y, A*). In this case, we
obtain the Lagrangian GDA (LGDA) algorithm (Algo-
rithm 2 - Appendix D). The following corollary of Theo-
rem 6 states that LGDA converges in average iterates to an
approximate-Stackelberg equilibrium in O(1/<?) iterations.

Corollary 8. Let b = maxgzex |||, ¢ = maxyecy ||y,
and {; = maxz gyexxy |Valz (Y, X*)|. If Algorithm 2
(Appendix D) is run on a min-max Stackelberg game
(X,Y, f,g) withn® = eﬂ\b/ﬁ andn? = -z for all iter-
ations t € [T] and any (°) € X, then the following conver-

gence bound holds on the saddle point residual (27, (™))
w.r.t. the Lagrangian:

< - ) . —(T) *
0< glggﬁﬁm(y,)\ ) gggﬁm(y ")

< V2,
VT
We remark that in certain rare cases the Lagrangian can
become degenerate in y, in that the y terms in the La-
grangian might cancel out when A* is plugged back into
Lagrangian, leading LGDA to not update the y variables,
as demonstrated by the following example:

max {b,c} ()

Example 9. Consider this min-max Stackelberg game:
ming e[—1,1]

mMax, c[—1,1):0<1— (z+y) 2% 4+ y + 1. When we plug the op-
timal KKT multiplier \* = 1 into the Lagrangian asso-
ciated with the outer player’s value function, we obtain
Lo(yN) =22 +y+1—(z+y) =22—x+1, with

g—ﬁ = 2x — 1 and g—L = 0. It follows that the x iterate
T Y

converges to 1/2, but the y iterate will never be updated, and
hence unless y is initialized to its Stackelberg equilibirium
value, LGDA will not converge to a Stackelberg equilibrium.

In general, this degeneracy issue occurs when Vx €
X, Vyflz,y) = — Zszl A;Vygi(x,y). We can sidestep
the issue by restricting our attention to min-max Stack-
elberg games with convex-strictly-concave objective func-
tions, which is sufficient to ensure that the Lagrangian is not
degenerate in y (Boyd, Boyd, and Vandenberghe 2004).

Robustness Analysis

Although the OMD dynamics we analyzed in the previous
section describe a dynamic behavior in nature, they assume
that the game and its properties, i.e., the objective function
and constraints, are static and thus do not change over time.
In many real-world games, however, the game itself is sub-
ject to perturbations, i.e., dynamic changes, in the sense that



the agents’ objectives and constraints might be perturbed by
external influences. Analyzing and providing dynamics that
are robust to ongoing changes in games is critical, since the
real world is rarely static.

This makes the study of dynamic min-max Stackelberg
games and their associated optimal dynamic strategies for
both players an important goal. Dynamic games bring with
them a series of interesting issues; notably, even though the
environment might change at each time period, in each pe-
riod of time the game still exhibits a Stackelberg equilib-
rium. However, one cannot sensibly expect the players to
play a Stackelberg equilibrium strategy at each time period
since even in the static setting, known game dynamics re-
quire multiple time steps in order for players to reach even an
approximate Stackelberg equilibrium. When players cannot
directly best respond or pick the optimal strategy for them-
selves, they essentially become boundedly rational agents in
that they can only take a step towards their optimal strat-
egy but they cannot reach it in just one time step. Hence,
in dynamic games, equilibria also become dynamic objects,
which can never be reached unless the game stops changing
significantly.

Corollaries 8 and 7 tell us that OMD dynamics are effec-
tive equilibrium finding strategies in min-max Stackelberg
games. However, they do not provide any intuition about the
robustness of OMD dynamics to perturbations in the game.
That is, we would like to know whether or not OMD dynam-
ics are able to track the equilibrium even when the game
changes slowly. Robustness is a desirable property for no-
regret learning dynamics as many real-world applications
of games involve changing environments. In this section,
we provide theoretical guarantees that show that even when
the game changes at each iteration, OMD dynamics closely
track the changing equilibria of the dynamic game. Unfortu-
nately, our theoretical results only concern min-max games
(with independent strategy sets). Nevertheless, we provide
experimental evidence that suggests that the results we prove
may also apply more broadly to min-max Stackelberg games
(with dependent strategy sets).

We first consider the pessimistic setting in which the
outer player is a no-regret learner and the inner player best-
responds. In this setting, we show that when the outer player
follows online projected gradient descent dynamics in a dy-
namic min-max game, i.e., a min-max game in which the ob-
jective function constantly changes, the outer player’s strate-
gies closely track their Stackelberg equilibrium strategy. In-
tuitively, the following result implies that irrespective of the
initial strategy of the outer player, online projected gradi-
ent descent dynamics follow the Nash equilibrium strategy
of the outer player s.t. the strategy determined by the outer
player is always within a 2d/s radius of the outer player’s
Nash equilibrium strategy.

Theorem 10. Consider a dynamic min-max game
{(X,Y,f(t))}f:l. Suppose that, for all t € [T), f® is
u-strongly convex in x and strictly concave in y, and f ®)
is {v y-Lipschitz smooth. Suppose that the outer player

generates a sequence of actions {x(t)}tT:l C X by using
an online projected gradient descent algorithm on the loss

functions {VWYL_ | with learning rate n < and

2
— ptHlvy
suppose that the inner player generates a sequence of best-
responses to each iterate of the outer player {y(t) Moy,

For all t € [T), let " ¢ arg ming y V0 (z),

AW = "w(t+1)* - w(t)*H, and § = i”“_zvf, we then have:
vftu

me* _ ””(T)H <(1-6)"

2OF _ w(mH

T
+3 -7 A0 (o

t=1

If additionally, for all t € [T), A®Y) < d, then:

me* _ g,;T)H < (1— 8y 2" _ w(O)H L % 7

We can extend a similar robustness result to the setting in
which the outer and inner players are both OMD learners.
The following theorem implies that irrespective of the ini-
tial strategies of the two players, online projected gradient
descent dynamics follow the Nash equilibrium of the game,
always staying within a 44/5 radius.

Theorem 11. Consider a dynamic min-max game
{GaL, = {(X)Y, f(t))}thl. Suppose that, for all
t € [T), f® is pg-strongly convex in x and fhy-
strongly concave in y, f® is by ¢-Lipschitz smooth. Let
{(2®, yO)NZ | C X XY be the strategies generated by the
outer and inner players assuming that the outer player uses
a online projected gradient descent algorithm on the losses
{FOC,yONV with n, = u—fifw and that the inner
player uses a online projected gradient descent algorithm
on the losses {—fU (x® )Y with Ny = m. For
all t € [T, let £V" € argming.y fO(z,y®), y®~ €
argmingcy FOE® q). AY = |zt ®F

Al = Hy<t+1>*_y<t>*’

5. — 2npylyys
Yy evf—i-/l.y

me* _ ‘”(T)H n Hym* — g™ H

>

2 4
, 5w — NMHhatv f

T v rtie’ and

we then have:

<(1—68,)" 20" = m<o>H F (1= 8,)7 ||y©@F — 4© H
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If additionally, AY < d and A < d for all t € [T), and
0 = min{dy, 0z}, then:

i -

* * 4d
<207 (Jo = o[-0+ 4
€))



The proofs of the above theorems are relegated to Ap-
pendix C. The theorems we have proven in this section es-
tablish the robustness of OMD dynamics for min-max games
in both the pessimistic and optimistic settings by showing
that the dynamics closely track the Stackelberg equilibrium
in a large class of min-max games. As we are not able to
extend these theoretical robustness guarantees to min-max
Stackelberg games (with dependent strategy sets), we in-
stead ran a series of experiments on (dynamic) Fisher mar-
kets, which are canonical examples of min-max Stackel-
berg games (Goktas and Greenwald 2021), to investigate the
empirical robustness guarantees of OMD dynamics for this
class of min-max Stackelberg games.

Dynamic Fisher Markets

The Fisher market model, attributed to Irving Fisher
(Brainard, Scarf et al. 2000), has received a great deal of
attention in the literature, especially by computer scientists,
as it has proven useful in the design of online marketplaces.
We now study OMD dynamics in dynamic Fisher markets,
which are instances of min-max Stackelberg games (Goktas
and Greenwald 2021).

A Fisher market consists of n buyers and m divisible
goods (Brainard, Scarf et al. 2000). Each buyer i € [n] has
a budget b; € R and a utility function u; : R" — R. Each
good j € [m] has supply s; € R.. A Fisher market is thus
given by a tuple (n,m, U, b, s), where U = {uy,...,u,}
is a set of utility functions, one per buyer, b € R is
a vector of buyer budgets, and s € R is a vector of
good supplies. We abbreviate as (U, b, s) when n and m
are clear from context. A dynamic Fisher market is a se-
quence of Fisher markets (U, b(®), s(t))i[j)
tion X = (x1,...,2,)" € R*™ is a map from goods
to buyers, represented as a matrix s.t. z;; > 0 denotes
the amount of good j € [m] allocated to buyer i € [n].
Goods are assigned prices p = (pl,...,pm)T € R
A tuple (p*, X™*) is said to be a competitive (or Wal-
rasian) equilibrium of Fisher market (U, b, s) if 1. buy-
ers are utility maximizing, constrained by their budget, i.e.,
Vi € [n],z] € argmaxg,, ,.<p, wi(x); and 2. the mar-
ket clears, i.e., Vj € [m],p; > 0 = Zie[n] z}; = s;j and
p; =0= Eie[n] zj; < 85

Goktas and Greenwald (2021) observe that any compet-
itive equilibrium (p*, X*) of a Fisher market (U, b) corre-
sponds to a Stackelberg equilibrium of the following min-
max Stackelberg game:?

Y sipi+ Y bilog (ui(w))

Jj€[m] i€[n]
(10)

. An alloca-

min max
PERY X eR*™: Xp<b

Let £ : R x R™*™ — R be the Lagrangian of the outer
player’s value function in Equation (10), i.e.,

ﬁp(X,A) = Zje[m] sip; + Zie[n] bilog (u,(mz)) +

3The first term in this program is slightly different than the first
term in the program presented by Goktas and Greenwald (2021),
since supply is assumed to be 1 their work.

2_ic[n) Ai (bi — ;- p). One can show the existence of a La-
grangian solution oracle for the Lagrangian of Equation (10)
such that A* = 1,,. We then have: 1. by Goktas and
Greenwald’s envelope theorem, the subdifferential of the
outer player’s value function is given by V,V(p) = s —
Zie[n] xf(p), where x}(p) € argmax,, ERM @ p<b; u;(x),
2. the gradient of the Lagrangian w.r.t. the prices, given
the Langrangian solution oracle, is V,Lp(X,A*) = s —
Yiet) @i and Vo, Lp(X, X)) = Vo u; (i) — p,
where \* = 1,,.

We first consider OMD dynamics for Fisher markets in
the pessimistic setting, in which the outer player deter-
mines their strategy via online projected gradient descent
and the inner player best-responds. In this setting, we ob-
tain a dynamic version of a natural price adjustment pro-
cess known as tatonnement (Walras 1969), which was first
studied by Cheung, Hoefer, and Nakhe (2019) (Algorithm 3,
Appendix D).

We then consider OMD dynamics in the optimistic set-
ting, in which case both the outer and inner players em-
ploy online projected gradient descent, which yields myopic
best-response dynamics (Monderer and Shapley 1996) (Al-
gorithm 4, Appendix D). In words, at each time step, the
(fictional Walrasian) auctioneer takes a gradient descent step
to minimize its regret, and then all the buyers take a gradi-
ent ascent step to minimize their Lagrangian regret. These
gradient descent-ascent dynamics can be seen as myopic
best-response dynamics for sellers and buyers who are both
boundedly rational (Camerer 1998).

Experiments In order to better understand the robustness
properties of Algorithms 3 and 4 in a dynamic min-max
Stackelberg game that is subject to perturbation across time,
we ran a series of experiments with dynamic Fisher Mar-
kets assuming three different classes of utility functions.*
Each utility structure endows Equation (10) with different
smoothness properties, which allows us to compare the effi-
ciency of the algorithms under varying conditions. Let v; €
R™ be a vector of valuation parameters that describes the
utility function of buyer ¢ € [n]. We consider the following
utility function classes: 1. linear: u;(®;) = -,

2. Cobb-Douglas: u;(xi) = [[epm) a;:’; and 3. Leontief:

VijTijs

ui (i) = Minjcpy {f}—lj } To simulate the dynamic Fisher
markets, we fix a range for every market parameter and draw
from that range uniformly at random during each iteration.
Our goal is to understand how closely OMD dynamics track
the Stackelberg equilibria of the game as the latter varies
with time. To do so, we compare the distance between the
iterates (p), X)) computed by the algorithms and the
equilibrium of the game at each iteration ¢. This distance
is measured as |[p)" — p®)||, + [| X®" — X )|, where
(p®", X®7) is the Stackelberg equilibrium of the Fisher
market (U, b®), s(*)) at time ¢ € [T).

In our experiments, we ran Algorithms 3 and 4 on 100 ran-

*Our code can be found at https://anonymous.4open.science/r/
Dynamic-Minmax-Games-8153/.
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domly initialized dynamic Fisher markets. We depict the dis-
tance to equilibrium at each iteration for a randomly chosen
experiment in Figures 1 and 2. In these figures, we observe
that our OMD dynamics are closely tracking the Stackelberg
equilibria as they vary with each iteration. A more detailed
description of our experimental setup can be found in Ap-
pendix E.

We observe from Figures 1 and 2 that for both Algo-
rithms 3 and 4, we obtain an empirical convergence rate rel-
atively close to O(1/vT) under Cobb-Douglas utilities, and a
slightly slower empirical convergence rate under linear util-
ities. Recall that O(1/v/T) is the convergence rate guarantee
we obtained for both algorithms, assuming a fixed learning
rate in a static Fisher market (Corollaries 7 and 8).

Dynamic Fisher markets with Leontief utilities, in which
the objective function is not differentiable, are the hardest
markets of the three for our algorithms to solve. Still, we
only see a slightly slower than O(1/vT) empirical conver-
gence rate for both Algorithms 3 and 4. In these experiments,
the convergence curve generated by Algorithm 4 has a less
erratic behavior than the one generated by Algorithm 3. Due
to the non-differentiability of the objective function, the gra-
dient ascent step in Algorithm 4 for buyers with Leontief
utilities is very small, effectively dampening any potentially
erratic changes it the iterates.

Our experiments suggest that even when the game
changes at each iteration, OMD dynamics (Algorithms 3
and 4 - Appendix D) are robust enough to closely track the
changing Stackelberg equilibria of dynamic Fisher markets.
We note that titonnement dynamics (Algorithm 3) seem to
be more robust than myopic best response dynamics (Al-
gorithm 4), i.e., the distance to equilibrium allocations is
smaller at each iteration of titonnement. This result is not
surprising, as titonnement computes a utility-maximizing
allocation for the buyers at each time step. Even though The-
orems 10 and 11 only provide theoretical guarantees on the
robustness of OMD dynamics in dynamic min-max games
(with independent strategy sets), it seems like similar theo-
retical robustness results may be attainable in dynamic min-

Figure 1: In blue, we depict a trajectory of
distances between computed allocation-
price pairs and equilibrium allocation-
price pairs, when Algorithm 3 is run
on randomly initialized dynamic linear,
Cobb-Douglas, and Leontief Fisher mar-
kets. In red, we plot an arbitrary O(1/vT)
function.

Figure 2: In blue, we depict a trajectory of
distances between computed allocation-
price pairs and equilibrium allocation-
price pairs, when Algorithm 4 is run
on randomly initialized dynamic linear,
Cobb-Douglas, and Leontief Fisher mar-
kets. In red, we plot an arbitrary O(1/vT)
function.

max Stackelberg games (with dependent strategy sets).

5 Conclusion

We began this paper by considering no-regret learning dy-
namics for min-max Stackelberg games in two settings: a
pessimistic setting in which the outer player is a no-regret
learner and the inner player best responds, and an optimistic
setting in which both players are no-regret learners. For both
of these settings, we proved that no-regret learning dynam-
ics converge to a Stackelberg equilibrium of the game. We
then specialized the no-regret algorithm employed by the
players to online mirror descent (OMD), which yielded two
known algorithms, namely max-oracle gradient descent (Jin,
Netrapalli, and Jordan 2020) and nested GDA (Goktas and
Greenwald 2021) in the pessimistic setting, and a new simul-
taneous GDA-like algorithm (Nedic and Ozdaglar 2009),
which we call Lagrangian GDA, in the optimistic setting. As
these algorithms are no-regret learning algorithms, our pre-
vious theorems imply convergence to Stackelberg equilib-
ria in O(1/&?) iterations. Finally, we investigated the robust-
ness of OMD dynamics to perturbations in the parameters
of a min-max Stackelberg game. To do so, we analyzed how
closely OMD dynamics track Stackelberg equilibria in dy-
namic min-max Stackelberg games. We proved that in min-
max games (with independent strategy sets) OMD dynamics
closely track the changing Stackelberg equilibria of a game.
As we were not able to extend these theoretical robustness
guarantees to min-max Stackelberg games (with dependent
strategy sets), we instead ran a series of experiments on
dynamic Fisher markets, which are canonical examples of
min-max Stackelberg games. Our experiments suggest that
OMD dynamics are robust for min-max Stackelberg games
so that perhaps the robustness guarantees we have provided
for OMD dynamics in min-max games can be extended to
min-max Stackelberg games. The theory developed in this
paper opens the door to extending the myriad applications of
Stackelberg games in Al to incorporating dependent strategy
sets.
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A Background

Notation We use Roman uppercase letters to denote sets
(e.g., X), bold uppercase letters to denote matrices (e.g.,
X)), bold lowercase letters to denote vectors (e.g., p), and
Roman lowercase letters to denote scalar quantities, (e.g.,
c). We denote the ith row vector of a matrix (e.g., X) by the
corresponding bold lowercase letter with subscript 7 (e.g.,
x;). Similarly, we denote the jth entry of a vector (e.g., p
or x;) by the corresponding Roman lowercase letter with
subscript j (e.g., p; or x;;). We denote the vector of ones
of size n by 1,,. We denote the set of integers {1,...,n}
by [n], the set of natural numbers by N, the set of posi-
tive natural numbers by N the set of real numbers by R,
the set of non-negative real numbers by R, and the set of
strictly positive real numbers by R, . We denote the or-
thogonal projection operator onto a convex set C by Il¢,
ie, llo(x) = argming.c ||z — y||>. Given a sequence
of iterates {z(t)}t 1 C Z, we denote the average iterate

Z(T) = L Z

Online Convex Optlmization An online convex opti-
mization problem (OCP) is a decision problem in a dy-
namic environment which comprises a finite time horizon
T, a compact, convex feasible set X, and a sequence of
convex differentiable loss functions {¢()}7_,, where ¢(*)
X — Rforallt € [T]. A solution to an OCP is a
sequence {x("}]_, C X. A preferred solution is one
that minimizes average regret given by Regret(T)(a:) =
ZZ;I e (z®) — Zle LeW(z), overall z € X. An
algorithm A X® 5 XT that takes as input a se-
quence of loss functions and outputs decisions such that
Sy FEOA{EYE) - mingex S, 160(@) -
0 as T' — oo is called a no-regret algorithm.

A first-order method that solves OCPs is Online Mir-
ror Descent (OMD). For some initial iterates u(®) =
0 and (¥ € X, OMD performs the following update
in the dual space X* at each time step t: u(!t) =

Y — nVul®(x®), and then projects the iterate com-
puted in the dual space X* back to the primal space
X: 2D = argminge x {R(z) — (w1 x)}, where
R : X — Ris a strongly-convex differentiable function.
When R(z) = 1|z|5, OMD reduces to projected on-

line gradient descent, given by the update rule: (!t =
Iy (2 — nV,¢® (z®)). The following theorem bounds
the average regret of OMD (Kakade, Shalev-Shwartz, and
Tewari 2012):

Theorem 12. Let ¢ = maxgcx |||, and let {{M}, be
a sequence of {-Lipschitz loss functions s.t. for all t €
N, (@ . R 5 R with respect to the dual norm
Il Then, if n = e\/‘i, online projected gradient de-

scent achieves bounded average regret bounded as follows:

S O@O) — mingex I, 00 (@) < e /2.

B Additional Related Work

Related Work Stackelberg games (Von Stackelberg 1934)
have found important applications in the domain of security
(e.g., (Nguyen et al. 2016; Sinha et al. 2018)) and environ-
mental protection (e.g., (Fang and Nguyen 2016)). These ap-
plications have thus far been modelled as Stackelberg games
with independent strategy sets. Yet, the increased expres-
siveness of Stackelberg games with dependent strategy sets
may make them a better model of the real world, as they pro-
vide the leader with more power to achieve a better outcome
by constraining the follower’s choices.

The study of algorithms that compute competitive equi-
libria in Fisher markets was initiated by Devanur et al.
(Devanur et al. 2002), who provided a polynomial-time
method for solving these markets assuming linear utilities.
More recently, Cheung, Hoefer, and Nakhe (Cheung, Hoe-
fer, and Nakhe 2019) studied two price adjustment pro-
cesses, tatonnement and proportional response dynamics, in
dynamic Fisher markets and showed that these price ad-
justment processes track the equilibrium of Fisher markets
closely even when the market is subject to change.

Additional Related Work Much progress has been made
recently in solving min-max games with independent strat-
egy sets, both in the convex-concave case and in non-
convex-concave case. We provide a survey of the litera-
ture as presented by Goktas and Greenwald in what fol-
lows. For the former case, when f is p,-strongly-convex
in  and p-strongly-concave in y, Tseng (Tseng 1995),
Yurii Nesterov (Yurii Nesterov 2011), and Gidel et al. (Gidel
et al. 2020) proposed variational inequality methods, and
Mokhtari, Ozdaglar, and Pattathil (Mokhtari, Ozdaglar, and
Pattathil 2020), gradient-descent-ascent (GDA)-based meth-
ods, all of which compute a solution in O(py + fi5) itera-
tions. These upper bounds were recently complemented by
the lower bound of Q(,/fiyfiz), shown by Ibrahim et al.
(Ibrahim et al. 2019) and Zhang, Hong, and Zhang (Zhang,
Hong, and Zhang 2020). Subsequently, Lin, Jin, and Jor-
dan (Lin, Jin, and Jordan 2020b) and Alkousa et al. (Alk-
ousa et al. 2020) analyzed algorithms that converge in
O(\/fiyliz) and O(min { piq\/Iiy, 1ty \/Fiz }) iterations, re-
spectively.

For the special case where f is jiq-strongly convex in «
and linear in vy, Juditsky, Nemirovski et al. (Juditsky, Ne-
mirovski et al. 2011), Hamedani and Aybat (Hamedani and
Aybat 2018), and Zhao (Zhao 2019) all present methods that
converge to an e-approximate solution in O(y/#=/c) itera-
tions. When the strong concavity or linearity assumptions of
f on y are dropped, and f is assumed to be pi,-strongly-
convex in & but only concave in y, Thekumparampil et al.
(Thekumparampil et al. 2019) provide an algorithm that con-
verges to an ¢-approximate solution in O(#=/e) iterations,
and Ouyang and Xu (Ouyang and Xu 2018) provide a lower

bound of Q (\//?/e) iterations on this same computation.
Lin, Jin, and Jordan then went on to develop a faster algo-
rithm, with iteration complexity of o) (M), under the
same conditions.



When f is simply assumed to be convex-concave, Ne-
mirovski (Nemirovski 2004), Nesterov (Nesterov 2007), and
Tseng (Tseng 2008) describe algorithms that solve for an
g-approximate solution with O (5_1) iteration complexity,
and Ouyang and Xu (Ouyang and Xu 2018) prove a corre-
sponding lower bound of Q(e~1).

When f is assumed to be non-convex-p,-strongly-
concave, and the goal is to compute a first-order Nash, San-
jabi et al. (Sanjabi et al. 2018b) provide an algorithm that
converges to e-an approximate solution in O(e~2) itera-
tions. Jin, Netrapalli, and Jordan (Jin, Netrapalli, and Jor-
dan 2020), Rafique et al. (Rafique et al. 2019), Lin, Jin, and
Jordan (Lin, Jin, and Jordan 2020a), and Lu, Tsaknakis, and
Hong (Lu, Tsaknakis, and Hong 2019) provide algorithms
that converge in O (p2e~?) iterations, while Lin, Jin, and
Jordan (Lin, Jin, and Jordan 2020b) provide an even faster
algorithm, with an iteration complexity of O (,/fiye~2).

When f is non-convex-non-concave and the goal to com-
pute is an approximate first-order Nash equilibrium, Lu,
Tsaknakis, and Hong (Lu, Tsaknakis, and Hong 2019) pro-
vide an algorithm with iteration complexity O(e~*), while
Nouiehed et al. (Nouiehed et al. 2019) provide an algorithm
with iteration complexity O(s3-%). More recently, Ostro-
vskii, Lowy, and Razaviyayn (Ostrovskii, Lowy, and Raza-
viyayn 2020) and Lin, Jin, and Jordan (Lin, Jin, and Jor-
dan 2020b) proposed an algorithm with iteration complexity
O (e725).

When f is non-convex-non-concave and the desired so-
lution concept is a “local” Stackelberg equilibrium, Jin,
Netrapalli, and Jordan (Jin, Netrapalli, and Jordan 2020),
Rafique et al. (Rafique et al. 2019), and Lin, Jin, and Jor-
dan (Lin, Jin, and Jordan 2020a) provide algorithms with a
O (£75) complexity. More recently, Thekumparampil et al.
(Thekumparampil et al. 2019), Zhao (Zhao 2020), and Lin,
Jin, and Jordan (Lin, Jin, and Jordan 2020b) have proposed
algorithms that converge to an e-approximate solution in
O (673) iterations.

We summarize the literature pertaining to the convex-
concave and the non-convex-concave settings in Tables 1
and 2 respectively.

Table 1: Iteration complexities for min-max games with in-
dependent strategy sets in convex-concave settings. Note
that these results assume that the objective function is

Lipschitz-smooth.

Setting

Reference

Iteration Com-
plexity

Haz-Strongly-Convex-
1y-Strongly-Concave

(Tseng 1995)

(Yurii Nesterov | -
2011) O (e + fiy)
(Gidel et al. 2020)
(Mokhtari,
Ozdaglar, and
Pattathil 2020)

O(min { pip /Tty
(Alkousa et al. Liy\/Ta)) }
2020)
(Lin, Jin, and Jor- O(\/m)
dan 2020b)
(Ibrahim et al. | Q(\/fiziiy)

2019)

(Zhang, Hong, and
Zhang 2020)

e-Strongly-Convex
-Linear

(Juditsky, Ne-
mirovski et al.
2011)

(Hamedani and

0 (Viere)

Aybat 2018)
(Zhao 2019)
(Thekumparampil | O (1=/\/z)

pa-Strongly-Convex | et al. 2019)

-C =
oneave (Lin, Jin, and Jor- | O(y//=/c)

dan 2020b)
(Ouyang and Xu | Q <\/Nw/5)
2018)
Nemirovski 2004
( S o)
(Nesterov 2007)

Convex

-Concave (Tseng 2008)
(Lin, Jin, and Jor- | O (e7h)
dan 2020b)
(Ouyang and Xu | Q(¢71)

2018)




Table 2: Iteration complexities for min-max games with
independent strategy sets in non-convex-concave settings.
Note that although all these results assume that the objective
function is Lipschitz-smooth, some authors make additional
assumptions: e.g., (Nouiehed et al. 2019) obtain their result
for objective functions that satisfy the Lojasiwicz condition.

Setting Reference Iteration
Complexity
(Jin, Netrapalli, and Jor-
. dan 2020)
ONCONVEX- -
rongly- oncg/e, O 2.2
Swongh-Coneave, | (Rafique et al. 2019) (ze™?)
UrL(éi,ﬂiﬁﬁﬁibﬂg (Lin, Jin, and Jordan
2020a)
(Lu, Tsaknakis, and
Hong 2019)
(Lin, Jin, and Jordan 0) (\/@572)
2020b)
(Lu, Tsaknakis, and O (5’4)
Nonconvex- Hong 2019)
Concave, ~ Q=
First Order (Nouiehed et al. 2019) | O (e7*7)

Nash Equilibrium

(Ostrovskii, Lowy, and

Razaviyayn 2020) 0 (5 72'5)
(Lin, Jin, and Jordan
2020b)
(Jin, Netrapalli, and Jor-
dan 2020) 0(5_6)

Nonconvex- (Nouiehed et al. 2019)

Concave,
Local Stackelberg (Lin, Jin, and Jordan

Equilibrium 2020b)
(Thekumparampil et al.
2019) O (6— 3)
(Zhao 2020)
(Lin, Jin, and Jordan
2020b)

C Onmitted Proofs

Proof of Theorem 3. Since pessimistic regret is bounded by
¢ after T iterations, it holds that:

maxPesRegret( )( )<e (11)
zeX

1 T T
Z Vx t) x) — min V(t)( )<e (12)
r=

rzeX T
t=1

Since the game is static, and it further holds that:

T
1
TZV)((:B arc%l%Z —Vx(xz)<e (13)

t=1

T
Z )—minVx(z)<e (14

Thus, by the convexity of Vx (see Proposition 2),
Vx (™)) — minge x Vx (x) < e. Now replacing V by its
definition, and setting y*(£(")) € BRy (2(™)), we obtain
that (27, y* (1)) is (e, 0)-Stackelberg equilibrium:

VX(:E(T)) < f(:E(T),

Y
< 1
mmem Vx (z )—|—5 (15)
( ) _( ) * _( )
max ! 2"y (2"
er:g(a‘ﬂT%y)f( v) </ vl )

< min max x,Y)+¢ (16)
zeEX yeY:g(z,y) f( y)

Proof of Lemma 5. We can relax the inner player’s payoff
maximization problem via the problem’s Lagrangian and
since by assumption 1, Slater’s condition is satisfied, strong
duality holds, giving us for all x € X:

maXycy:g(x,y)>0 f(ma y) = MaXyey mil’lAZO ‘Cfl?(yv >‘)

= minx>o maxyey Lz(y, A). We can then re-express the
min-max game as: MiNgex MaAXycy.g(a,y)>0 (T, Y) =
miny>o Minge x MaXyecy

Lo(y, N). Letting A* €
arg miny s.o Minge x maxyey Lq(y, A), we have minge x
MaXycy ig(a,y)>0 (€, Y) = mingex maxyey La(y,A").
Note that £, (y, A*) is convex-concave in («,y). Hence,
any Stackelberg equilibrium (z*,y*) € X X Y of
(X,Y, f,g) is a saddle point of Lz(y,A*), ie., V& €
X,y €V, Lo (y,A) < Low (" A) < La(y* ). O

Proof of Theorem 6. Since the Lagrangian regret is bounded



for both players we have:

{ maxXge x LagrRegretg(T)(zc) <e (17

maxXyecy LagrRegretg,T) (y) <e

« . T t *
T £ (0, A7) — mingex £ 50, £5) (0, A < e =" -
t *
TZt 1 £ () (y(t))\ )<e

t *
maXyey T Zt:l (z<)t) (Y, A") —

(13)

. 1 T
—Milgex 72 ;4

{ S Lo (D, %)

maXycy % 23:1 ‘Cm<t) (ya )‘*) -
(19)

The last line follows because the min-max Stackelberg game
is static.
Summing the final two inequalities yields:

mm — Zﬁ

max— Zﬁw(t) y, ®) )\* < 2¢

yey T
(20)

M X*) < 2

2n

where the second inequality was obtained by an application
of Jensen’s inequality on the first and second terms.

Since £ is convex in x and concave in y, we have that
maXycy
L, (y,\*) is convex in & and minge x Lo (y®, ") is
convex in y, which implies that maxycy Lz (y, A*) —
mingex Lo(gT),A*) < 2. By the max-min in-
equality ((Boyd, Boyd, and Vandenberghe 2004) Equa-

T T
1 o 1 .
T2 Lo (0:X) = 7.3 i Loy

tion 5.46), it also holds that mingecx Lz(g™),A*) <
maxyey Lz (y, A*). Combining these two mequality
yields the desired result. O

Proof of Theorem 10. The value function of the outer player
in the game {(X,Y, f (t))} ,_, atiteration ¢ € [T, is given
by V¥ (z) = maxyey f® (:c,y) Hence, for all t € [T7,
as f®) is p-strongly-convex, V(*) is also strongly concave
since the maximum preserves strong-convexity.
Additionally, since for all ¢ € [T], f% is strictly
concave in y, by Danskin’s theorem (Danskin 1966),
for all t € [T], V(*) is differentiable and its deriva-
tive is given by VoV (x) = V,f(x,y*(x)) where
y*(x) € maxyey f(x,y). Thus, as V f(x, y*(z)) is
(v ¢-lipschitz continuous, so is V.V ®)(z). The result fol-
lows from Cheung, Hoefer, and Nakhe’s bound for gradi-
ent descent on shifting strongly convex functions ((Cheung,
Hoefer, and Nakhe 2019), Proposition 12).
O

Proof of Theorem 11. By the assumptions of the theorem,
the loss functions of the outer player {f®(-,y®)}
are [ip-strongly-convex and {y ¢-Lipschitz continuous

La(y®, A7) <e
% 23:1 [’m(t) (y(t)’ A*) <e

functions. Similarly the loss functions of the inner
player {—f® (x® .)}I_, are y1,-strongly-convex and £y ;-
Lipschitz continuous functions. Using Cheung, Hoefer, and
Nakhe’s Proposition 12 (Cheung, Hoefer, and Nakhe 2019),
we then obtain the following bounds:

2| < (1= 6)"7 &0 — 2|

+3(1-8) T AP @)

v <00

T
+31-6,)7 AP (23
Combining the two inequalities, we obtain:
o = |
<(1-62)""
T
Y-
t=1

The second part of the theorem follows by taking the sum
of the geometric series. O

20F _ $<0>H +(1-6,)7

y @ _4© H

T
o) T AV Y (1-5y) 7 AP @24)



D Pseudo-Code for Algorithms

Algorithm 1: Max-Oracle Gradient Descent

Inputs: XY, f,g,n, T,z
Output: (x*, y*)

Set y* ( 1)y ¢ BRy(m(T))
return (z(7), y*(z(7)))

Algorithm 2: Lagrangian Gradient Descent Ascent (LGDA)
Inputs: \*, X, Y, f,g,n* 0¥, T, z("),y©
Output: =*, y*
fort=1,..., T —1do
Set £t =TI (:):(t) —NEVLL <t>(y(t) %))
Set y(t+1) HY (y(t + ¢ V Lm(t)( ®) )\*))
end for
return {(2(*), y")}7_,

Dhw N

Algorithm 3: Dynamic tatonnement

Inputs: 7, {(U®, p®) sONT | n p@ 5
Output: x*, y*

1: fort=1,...,T —1do
2: For all i € [n], find a:l(t) S
Arg MAX, cpm g, plt—1) <p(V ui(x;)

> Set p'*) = gy (p(til) — (s — Z?‘E[n] wz(‘t)))
4: end for
5: return (p(), X ()T |

Algorithm 4: Dynamic Myopic Best-Response Dynamics

Inputs: {( 0 M sONT_  pp X T, X0 p©)
Output: x*, y*
1: fort=1,. —1do
2: Setp<t+1> = Iz (p<t> —pP(s®) — )
3: For all i € [n], set H'l =
(®) b <t>
HRT <wl +'I7£X (um(mm)vmluz >)
4: end for

5: return (p®, XHT_,

1: fort=1,...,7 do

2 Find y*(z*~ ) € BRy (1)

3: Set y(t=1) = y* (=1

40 Set AE=D = \*(g(t=1) 4(i=1))

5: Setx® =TIy [:c(t—l) — 0, VaLlyi-1 (y(t—1)7)‘(t_1))]
6: end for

7: Set &(T =z Zt . P

8:

9:

E An Economic Application: Details

Our experimental goal was to understand if Algorithm 3
and Algorithm 4 converges in terms of distance to equilib-
rium and if so how the rate of convergences changes under
different utility structures, i.e. different smoothness and con-
vexity properties of the value functions.

To answer these questions, we ran multiple experiments,
each time recording the prices and allocations computed by
Algorithm 3, in pessimistic learning setting, and by Algo-
rithm 4, in optimistic learning setting, during each iteration
t of the loop. Moreover, at each iteration ¢, we solve the
competitive equilibrium (p®", X ") for the Fisher mar-
ket (U® b)), Finally, for each run of the algorithm on
each market, we then computed distance between the com-
puted prices, allocations and the equilibrium prices, alloca-
tions, which we plot in Figure 1 and Figure 2.

Hyperparameters We set up 100 different linear, Cobb-
Douglas, Leontief dynamic Fisher markets with random
changing market parameters across time, each with 5 buyers
and 8 goods, and we randomly pick one of these experiments
to graph.

In our execution of Algorithm 3, buyer ¢’s budget at itera-
tion ¢, b\, was drawn randomly from a uniform distribution

s Vi

ranging from 10 to 20 (i.e., U[10, 20]), each buyer i’s val-

uation for good j at iteration ¢, v(t‘) was drawn randomly

from U5, 15], while each good j’s supply at iteration ¢, s( 2
was drawn randomly from U[100, 110]. In our executlon of

Algorithm 4, buyer ¢’s budget at iteration ¢, bl(»t), was drawn
randomly from a uniform distribution ranging from 10 to 15
(ie., U [10 15]), each buyer i’s valuation for good j at itera-

tion ¢, v\, was drawn randomly from U[10, 20], while each

Zj 4
good j’s supply at iteration ¢, sy)

U[10,15].

We ran both Algorithm 3 and Algorithm 4 for 1000 itera-
tions on linear, Cobb-Douglas, and Leontief Fisher markets.
We started the algorithm with initial prices drawn randomly
from U|[5, 55]. Our theoretical results assume fixed learning
rates, but since those results apply to static games while our
experiments apply to dynamic Fisher markets, we selected
variable learning rates. After manual hyper-parameter tun-
ing, for Algorithm 3, we chose a dynamic learning rate of

\/, while for Algorithm 4, we chose learning rates of

nf = - andnf = %2 forall t € [T]. For these choices of
learning rates, we obtain empirical convergence rates close
to what the theory predicts.

, was drawn randomly from

Programming Languages, Packages, and Licensing We
ran our experiments in Python 3.7 (Van Rossum and
Drake Jr 1995), using NumPy (Harris et al. 2020), Pandas
(pandas development team 2020), and CVXPY (Diamond
and Boyd 2016). Figure 1 and Figure 2 were graphed using
Matplotlib (Hunter 2007).

Python software and documentation are licensed under
the PSF License Agreement. Numpy is distributed under a
liberal BSD license. Pandas is distributed under a new BSD
license. Matplotlib only uses BSD compatible code, and its



license is based on the PSF license. CVXPY is licensed un-
der an APACHE license.

Implementation Details In order to project each alloca-
tion computed onto the budget set of the consumers, i.e.,
{X € R}*™ | Xp < b}, we used the alternating projec-
tion algorithm for convex sets, and alternatively projected
onto the sets R7*™ and {X € R"*™ | Xp < b}.

To compute the best-response for the inner play in Algo-
rithm 3, we used the ECOS solver, a CVXPY’s first-order
convex-program solvers, but if ever a runtime exception oc-
curred, we ran the SCS solver.

When computing the distance from the demands X (*)
computed by our algorithms to the equilibrium demands
X (t)*, we normalize both demands to satisfy Vj €
[m], > e %ij = Lim to reduce the noise caused by chang-
ing supplies.

Computational Resources Our experiments were run on
MacOS machine with 8GB RAM and an Apple M1 chip,
and took about 2 hours to run. Only CPU resources were
used.

Code Repository The data our experiments gen-
erated, as well as the code used to produce our vi-
sualizations, can be found in our code repository
(https://anonymous.4open.science/r/Dynamic-Minmax-
Games-8153/).



