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ABSTRACT

Generation of molecules with desired chemical and biological properties such as
high drug-likeness, high binding affinity to target proteins, is critical in drug dis-
covery. In this paper, we propose a probabilistic generative model to capture the
joint distribution of molecules and their properties. Our model assumes an energy-
based model (EBM) in the latent space. Given the latent vector sampled from the
latent space EBM, both molecules and molecular properties are conditionally sam-
pled via a molecule generator model and a property regression model respectively.
The EBM in a low dimensional latent space allows our model to capture complex
chemical rules implicitly but efficiently and effectively. Due to the joint model-
ing with chemical properties, molecule design can be conveniently and naturally
achieved by conditional sampling from our learned model given desired proper-
ties, in both single-objective and multi-objective optimization settings. The latent
space EBM, molecule generator, and property regression model are learned jointly
by approximate maximum likelihood, while optimization of properties is accom-
plished by gradual shifting of the model distribution towards the region supported
by molecules with high property values. Our experiments show that our model
outperforms state-of-the-art models on various molecule design tasks.

1 INTRODUCTION

In drug discovery, it is of vital importance to find or design molecules with desired pharmacologic
or chemical properties such as high drug-likeness and binding affinity to a target protein. It is
challenging to directly optimize or search over the drug-like molecule space since it is discrete and
enormous, with an estimated size is on the order of 1033 (Polishchuk et al., 2013).

Recently, a large body of work attempts to tackle this problem. The first line of work leverages
deep generative models to map the discrete molecule space to a continuous latent space, and op-
timizes molecular properties in the latent space with methods like Bayesian optimization (Gómez-
Bombarelli et al., 2018; Kusner et al., 2017; Jin et al., 2018). The second line of work recruits
reinforcement learning algorithms to optimize properties in the molecular graph space directly (You
et al., 2018; De Cao & Kipf, 2018; Zhou et al., 2019; Shi et al., 2020; Luo et al., 2021). A number
of other efforts have been made to optimize molecular properties with genetic algorithms (Nigam
et al., 2020), particle-swarm algorithms (Winter et al., 2019) specialized MCMC methods (Xie et al.,
2021).

In this work, we propose a method along the first line mentioned above, by learning a probabilistic
latent generative model of molecule distributions and optimizing chemical properties in the latent
space. Given the central role of latent variables in this approach, we emphasize that it is critical to
learn a latent space model that captures the data regularities of the molecules. Thus, instead of as-
suming a simple Gaussian distribution in the latent space as in prior work (Gómez-Bombarelli et al.,
2018; Jin et al., 2018), we assume a flexible and expressive energy-based model (EBM) (LeCun
et al., 2006; Ngiam et al., 2011; Kim & Bengio, 2016; Xie et al., 2016; Kumar et al., 2019; Nijkamp
et al., 2019; Du & Mordatch, 2019; Grathwohl et al., 2019; Finn et al., 2016) in latent space. This
leads to a latent space energy-based model (LSEBM) as studied in Pang et al. (2020); Nie et al.
(2021), where LSEBM has been shown to model the distributions of natural images and text well.
For molecule modeling, without any explicit validity constraints in generation, our model generates
molecules with high validity with simple SMILES representation (Weininger, 1988).
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Given our goal of property optimization, we learn a joint distribution of molecules and their proper-
ties. Our model consists of 1) an EBM in a low-dimensional continuous latent space, 2) a generator
mapping from the latent space to the observed molecule space, and 3) a property regression model
mapping from the latent space to the property values (see Figure 1). We call our model as MolEBM.
All three components in our model are learned jointly by approximate maximum likelihood. A
learned model generates a molecule with a high property value in two steps: 1) given the property
value, sample the latent vector; 2) given the sampled latent vector, generate a molecule (see the top-
to-bottom path in Figure 1a). Since the learned model approximates the data distribution, directly
sampling from the learned model conditional on a high property value does not work well since a
molecule with a high property value is most likely not in the original data distribution. We thus de-
sign a method to gradually shift the learned distribution towards the region supported by molecules
with high property values, and sample molecules with desirable properties from the shifted distribu-
tion.

In drug discovery, most often we need to consider multiple properties simultaneously. Our model
can be extended to this setting straightforwardly. With our method, we only need to add a regression
model for each property, while the learning and sampling methods remain the same. Learning the
model involves inferring the latent vector given both the molecule and the property value, and we
recruits Langevin dynamics instead of amortized inference network for inference computation. This
design makes our approach versatile in dealing with varying number of properties.

We evaluate our method in various settings including single-objective optimization and multi-
objective optimization. Our method outperforms prior methods by significant margins.

In summary, our contributions are as follows:

• We propose to learn a latent space energy-based model for the joint distribution of molecules and
molecular properties.

• We develop a sampling with gradual distribution shifting method, enabling us to extrapolate the
data distribution and sample from the region supported by molecules with high property values.

• Our methods are versatile enough to be extended to optimizing multiple properties together.
• Our model achieves state-of-the-art performances on a wide range of molecule optimization tasks.

2 RELATED WORK

Optimization with Generative Models. Deep generative models approximate the distribution of
molecules with desired biological or non-biological properties. Existing approaches for generating
molecules include applying variational autoencoder (VAE) (Kingma & Welling, 2014) and genera-
tive adversarial network (GAN) (Goodfellow et al., 2014) etc. to molecule data (Gómez-Bombarelli
et al., 2018; Jin et al., 2018; De Cao & Kipf, 2018; Honda et al., 2019; Madhawa et al., 2019; Shi
et al., 2020; Zang & Wang, 2020; Kotsias et al., 2020; Chen et al., 2021; Fu et al., 2020; Liu et al.,
2021; Bagal et al., 2021; Eckmann et al., 2022; Segler et al., 2018). After learning continuous rep-
resentations for molecules, they are further able to optimize using different methods. (Segler et al.,
2018) proposes to optimize by simulating design-synthesis-test cycles. (Gómez-Bombarelli et al.,
2018; Jin et al., 2018; Eckmann et al., 2022) propose to learn a surrogate function to predict prop-
erties, and then use Bayesian optimization to optimize the latent vectors. However, the performance
of this latent optimization is not satisfactory due to three major issues. First, it is difficult to train
an accurate surrogate predictor especially for those novel molecules with high properties along the
design trajectories. Second, as the learned latent space tries to cover the fixed data space, its abil-
ity to explore the targets out of the distribution is limited (Brown et al., 2019; Huang et al., 2021).
Third, those methods are heavily dependent on the quality of learned latent space, which requires
non-trivial efforts to design encoders when dealing with multiple properties. To address above is-
sues, (Eckmann et al., 2022) use VAE to learn the latent space and train predictors separately using
generated molecules, and then leverage latent inceptionism, which involves the decoder solely, to
optimize the latent vector with multiple predictors. In this paper, we propose an encoder-free model
in both training and optimization to learn the joint distribution of molecules and properties, and
make it possible to obtain several adequate predictors. We then design an efficient algorithm to shift
the learned distribution iteratively.
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Figure 1: An illustration of MolEBM. x represents a molecule, z is the latent vector, y is a molecular
property of interest, {yj}mj=1 indicates m properties.

Optimization with Reinforcement Learning and Evolutionary Algorithms. Reinforcement
learning (RL) based methods directly optimize and generate molecules in an explicit data space (You
et al., 2018; Zhou et al., 2019; Jin et al., 2020; Gottipati et al., 2020). By formulating the property
design as a discrete optimization task, they can modify the molecular substructures guided by an or-
acle reward function. However, the training of those RL-based methods can be viewed as rejection
sampling which is difficult and inefficient due to the random-walk search behavior in the discrete
space. Evolutionary algorithms (EA) also formulate the optimization in a discrete manner (Nigam
et al., 2020; Jensen, 2019; Xie et al., 2021; Fu et al., 2021a;b). By leveraging carefully-crafted
combinatorial algorithms, they can search the molecule graph space in a flexible and efficient way.
However, the design of those algorithms is non-trivial and domain specific.

3 METHODS

3.1 PROBLEM SETUP AND OVERVIEW

We use the SELFIES representation for molecules (Krenn et al., 2020). It encodes each molecule as
a string of characters and ensures validity of all SELFIES strings. Let x = (x(1), ..., x(t), ..., x(T )) be
a molecule string encoded in SELFIES, where x(t) ∈ V is the t-th character and V is the vocabulary.
Suppose y ∈ R represents a molecular property of interest. Then the problem we attempt to tackle
is to optimize x such that its property y = y∗ where y∗ is some desirable value for y. We take a
probabilistic approach and treat the optimization problem as a sampling problem, that is,

x∗ ∼ p(x|y = y∗). (1)

This is a single-objective optimization problem since only one property is targeted. In real-world
drug design settings, we are more likely to need to optimize multiple properties simultaneously, that
is, multi-objective optimization. Suppose we optimize for {yj ∈ R}mj=1, then our task is to sample,

x∗ ∼ p(x|y1 = y∗1 , ..., ym = y∗m). (2)

To address these problems, we propose a solution under a unified probabilistic framework. As a
first step, we need to model the data distribution of molecules, pdata(x). To this end, we recruit
latent space energy-based model (Pang et al., 2020; Nie et al., 2021) for its expressiveness. LSEBM
assumes latent vector z ∈ Rd in a low dimensional latent space follows an energy-based model,
while the observed x is generated by a generator conditional z, that is, p(x, z) = p(x|z)p(z). We
introduce LSEBM within the context of molecule data in §3.2.

For the purpose of property optimization, we propose to model the joint distribution of molecules
and molecular properties (§3.3). We first consider the single-objective optimization problem (eq. 1).
Given the expressiveness of LSEBM, we assume that the latent vector z captures data regularities
in x (evaluated in §4.2 and §A.4). Thus, we can learn a simple regression model from the low-
dimensional latent space, that is, p(y|z), and the joint distribution is p(x, y, z) = p(z)p(x|z)p(y|z).
The model is learned with maximum likelihood (see §3.4 and Algorithm 1).

With the learned model, we can optimize x given y = y∗ by ancestral sampling z∗ ∼ p(z|y = y∗)
and x∗ ∼ p(x|z = z∗). However, if y∗ deviates from the observed data distribution of y, this naive
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solution involves sampling in an extrapolated regime (or out of distribution regime) where y∗ is not
in the effective support of the learned distribution. We propose a Sampling with Gradual Distribution
Shifting (SGDS) approach where we 1) sample on the boundary of the effective support of the
learned distribution, and 2) gradually shift the learned distribution with these boundary samples to a
region where it is supported by high property values (see §3.5 and Algorithm 2).

Our model is designed to be versatile such that it admits straightforward extension to multi-objective
optimization. To optimize x given {yj = y∗j }mj=1, we can simply augment the joint distribution with
more regression models, i.e., p(x, z, y1, ..., ym) = p(z)p(x|z)

∏m
j=1 p(yj |z). The sampling proce-

dure follows the same SGDS approach. See §3.6 for more details on multi-objective optimization.

3.2 LATENT SPACE ENERGY-BASED MODEL

Suppose x = (x(1), ..., x(t), ..., x(T )) is a molecule string in SELFIES and z ∈ Rd is the latent
vector. Consider the following model,

z ∼ pα(z), x ∼ pβ(x|z), (3)
where pα(z) is a prior model with parameters α, and pβ(x|z) is a generation model with parameters
β. In VAE (Kingma & Welling, 2014), the prior is simply assumed to be an isotropic Gaussian
distribution. In our model, pα(z) is formulated as an energy-based model,

pα(z) =
1

Z(α)
exp(fα(z))p0(z), (4)

where p0(z) is a reference distribution, assumed to be isotropic Gaussian as in VAE. fα : Rd → R
is the scalar-valued negative energy function and is parameterized by a small multi-layer percep-
tron (MLP) with parameters α. Z(α) =

∫
exp(fα(z))p0(z)dz = Ep0 [exp(fα(z))] is the partition

function.

The generation model pβ(x|z) is a conditional autoregressive model,

pβ(x|z) =
T∏

t=1

pβ(x
(t)|x(1), ..., x(t−1), z) (5)

which is parameterized by a one-layer LSTM with parameters β. Note that the latent vector z
controls every step of the autoregressive model.

3.3 JOINT DISTRIBUTION OF MOLECULE AND MOLECULAR PROPERTY

Given a molecule x, suppose y is the chemical property of interest, such as QED or protein affinity
binding. The property value can be computed from an input x via open-sourced software RD-
Kit (Landrum et al., 2013) or AutoDock-GPU (Santos-Martins et al., 2021). We assume that given
z, x and y are conditionally independent.

pθ(x, y, z) = pα(z)pβ(x|z)pγ(y|z), (6)
where pα(z) is the EBM prior, pβ(x|z) is the generation model, and pγ(y|z) is the property regres-
sion model, and θ = (α, β, γ). We use the model pθ(x, y, z) to approximate the data distribution of
(x, y). See Appendix §A.1 for details.

The property regression model can be written as

pγ(y|z) =
1√
2πσ2

exp

(
− 1

2σ2
(y − sγ(z))

2

)
, (7)

where sγ(z) is a small MLP, with parameters γ, predicting y based on the latent z. The variance σ2

is set as a constant or hyperparameter in our work.

3.4 LEARNING ALGORITHM

Suppose we observe training examples {(xi, yi), i = 1, ..., n}. The log-likelihood function is
L(θ) =

∑n
i=1 log pθ(xi, yi). The learning gradient can be calculated according to
∇θ log pθ(x, y) = Epθ(z|x,y) [∇θ log pθ(x, y, z)] (8)

= Epθ(z|x,y) [∇θ(log pα(z) + log pβ(x|z) + log pγ(y|z))] . (9)
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For the prior model, ∇α log pα(z) = ∇αfα(z)−Epα(z)[∇αfα(z)]. Thus the learning gradient given
an example (x, y) is

δα(x, y) = ∇α log pθ(x, y) = Epθ(z|x,y)[∇αfα(z)]− Epα(z)[∇αfα(z)]. (10)

α is updated based on the difference between z inferred from empirical observation (x, y), and z
sampled from the current prior. For the generation model,

δβ(x, y) = ∇β log pθ(x, y) = Epθ(z|x,y)[∇β log pβ(x|z)]. (11)

Similarly, for the regression model,

δγ(x, y) = ∇γ log pθ(x, y) = Epθ(z|x,y)[∇γ log pγ(y|z)]. (12)

Estimating expectations in equations 17, 18, and 19 requires MCMC sampling of the prior model
pα(z) and the posterior distribution pθ(z|x, y). We recruit Langevin dynamics (Neal, 2011). For a
target distribution π(z), the dynamics iterates

zk+1 = zk + s∇z log π(zk) +
√
2sϵk, (13)

where k indexes the time step of the Langevin dynamics, s is a small step size, and ϵk ∼ N (0, Id)
is the Gaussian white noise. π(z) can be either pα(z) or pθ(z|x, y). In either case, ∇z log π(z) can
be efficiently computed by back-propagation. See Appendix §A.1 for more details.

Algorithm 1: Learning MolEBM.
input : Learning iterations T , learning rates for the prior, generation, and regression model {η0, η1, η2},

initial parameters θ0 = (α0, β0, γ0), observed examples {(xi, yi)}ni=1, batch size m, number of
prior and posterior sampling steps {K0,K1}, and prior and posterior sampling step sizes
{s0, s1}.

output: θT = (αT , βT , γT ).
for t = 0 : T − 1 do

1. Mini-batch: Sample observed examples {(xi, yi)}mi=1.
2. Prior sampling: For each i, sample z−i ∼ pαt(z) using equation (13), where the target distribution
π(z) = pαt(z), and s = s0, K = K0.

3. Posterior sampling: For each (xi, yi), sample z+i ∼ pθt(z|xi, yi) using equation (13), where the
target distribution π(z) = pθt(z|xi, yi), and s = s1, K = K1.

4. Update prior model: αt+1 = αt + η0
1
m

∑m
i=1[∇αfαt(z

+
i )−∇αfαt(z

−
i )].

5. Update generation model: βt+1 = βt + η1
1
m

∑m
i=1 ∇β log pβt(xi|z+i ).

6. Update regression model: γt+1 = γt + η2
1
m

∑m
i=1 ∇γ log pγt(yi|z+i ).

3.5 SAMPLING WITH GRADUAL DISTRIBUTION SHIFTING

To tackle the single-objective optimization problem (eq. 1), one naive approach is to perform ances-
tral sampling with two steps, given some desirable property value y∗,

(1) z∗ ∼ pθ(z|y = y∗) ∝ pα(z)pγ(y = y∗|z) (2) x∗ ∼ pβ(x|z = z∗), (14)

where (1) is an application of Bayes’ rule, with pα(z) as the prior and pγ(y|z) as the likelihood.

Our model pθ(x, y, z) is learned to capture the data distribution. In real-world settings, y∗ might
not be within the support of the data distribution. Therefore, sampling following equation 14 does
not work well since it involves extrapolating the learned distribution. We propose a method called
sampling with gradual distribution shifting (SGDS) to address this issue. In particular, we find
examples from the training data on the boundary of the distribution support by sorting them accord-
ing to the values of y and taking top-k samples, {(x(old)

i , y
(old)
i )}ki=1, with high property values.

We shift the support slightly by adding some small ∆y to all y’s, and sample x conditional on
shifted y’s, following equation 14. Given the generated x’s, we compute their groundtruth y’s with
RDKit or AutoDock-GPU. We then shift the learned model by finetuning it with the new data,
{(x(new)

i , y
(new)
i )}ki=1, for a few steps (e.g., 10). This completes one iteration of distribution shift.

The molecule with desired high property value is sampled after T shifting iterations. We summarize
the algorithm in Algorithm 2.
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Algorithm 2: Sampling with Gradual Distribution Shifting (SGDS).
input : Shift iterations T , initial parameters θ0 = (α0, β0, γ0), initial examples {(x0

i , y
0
i )}ki=1 from the

data distribution boundary, shift magnitude ∆y , PropertyComputeEngine = RDKit or
AutoDock-GPU, LearningAlgorithm = Algorithm 1.

output: {(xT
i , y

T
i )}ki=1.

for t = 0 : T − 1 do
1. Property shift: For each yt

i , ỹt+1
i = yt

i +∆y .
2. Latent sampling: For each ỹt+1

i , sample zt+1
i ∼ pθt(z|ỹt+1

i ).
3. Molecule sampling: For each zt+1

i , sample xt+1
i ∼ pθt(x|zt+1

i ).
4. Property computation: For each xt+1

i , compute yt+1
i = PropertyComputeEngine(xt+1

i ).
5. Distribution shift: θt+1 = LearningAlgorithm({(xt+1

i , yt+1
i )}ki=1, θt).

For constrained optimization, in step 3, we only keep the sampled molecules that satisfy the given
constraints.

3.6 MULTI-OBJECTIVE OPTIMIZATION

We next consider the multi-objective optimization problem. Suppose we optimize for a set of prop-
erties {yj}mj=1, then we learn a property regression model for each property yj ,

pγj
(yj |z) =

1√
2πσ2

j

exp

(
− 1

2σ2
j

(yj − sγj
(z))2

)
, (15)

where each sγj
is a small MLP with parameters γj . Then the joint distribution is,

pθ(x, z, y1, ..., ym) = pα(z)pβ(x|z)
m∏
j=1

pγj
(yi|z). (16)

Under our framework, the learning algorithm and the sampling algorithm for the single-objective
problem can be straightforwardly extended to the multi-objective setting. In both settings, the same
types of properties are provided in both the initial training stage and the distribution shifting stage.

4 EXPERIMENTS

To demonstrate the effectiveness of our proposed model, we compare our model with previous
SOTA methods for unconditional generation (§4.2) and molecule design including single-objective
optimization (§4.3) and multi-objective optimization (§4.4). In molecule design experiments, we
consider both non-biological and biological properties.

4.1 EXPERIMENTAL SETUP

Datasets. For the unconditional generation task, we report results on ZINC (Irwin et al., 2012) and
MOSES datasets (Polykovskiy et al., 2020). ZINC consists of around 250k molecules, and MOSES
comprises around 2 million molecules. For optimization tasks, we conduct experiments with ZINC.

Training Details. There are three modules in our model, the top-down generation model pβ(x|z),
the EBM prior pα(z), and the regression model pγ(y|z). pβ(x|z) is parameterized by a single-layer
LSTM with 1024 hidden units. The dimension of latent vector z is 100. pα(z) is a 3-layer MLP
with 100 input dimension and 200 hidden units. The property regression model pγ(y|z) is a 3-
layer MLP with 100 input dimension and 100 hidden units. In multi-objective optimization settings,
we recruit one MLP for each property and these MLPs have the same architecture as mentioned
above. It is worth mentioning that compared to most previous models, our model is characterized by
its simplicity without adding inference networks, RL-related modules, and graph neural networks.
Adam (Kingma & Ba, 2015) optimizer is used to train our models with learning rates 0.0001 for
EBM and 0.001 for the rest. We train our models for 30 epochs. 10, 000 (non-biological) and 2, 000
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(biological) boundary examples are selected for distribution shifting. The numbers of shift itera-
tions are 50 (non-biological single-objective), 20 (non-biological single-objective) and 10 (multi-
objective). Within each SGDS iteration, the model is finetuned with only 10 parameter updates. All
experiments are conducted on Nvidia Titan XP GPU. See more details in Appendix §A.6.

4.2 UNCONDITIONAL GENERATION

Three types of encoding systems are used to encode molecules in prior work: SMILES (Weininger,
1988), SELFIES (Krenn et al., 2020), and graph. SMILES and SELFIES linearize a molecule graph
into a string of characters. Most previous models using SMILES struggle to generate molecules
with high validity, which is the percentage of molecules that satisfy the chemical valency rule. Thus
graph representations become popular since explicit valency constraints can be imposed. However,
perfect validity in this approach does not imply that the model captures the chemical rules since
it is achieved with external constraints. Recently, SELFIES is developed where every SELFIES
string corresponds to a valid molecule due to the nature of the encoding system. Thus, validity
for generated SMILES strings is a good indicator on how well a learned model captures the basic
chemical rules implicitly. Besides validity, we also compare models on uniqueness (the percentage
of unique molecules in all generated samples) and novelty (the percentage of generated molecules
that are not in the training set).

Following previous work, we randomly sample 10k molecules for ZINC and 30k for MOSES, and
compare on the three aforementioned metrics. Generations results on ZINC and MOSES are shown
in Table 1 and Table 2 respectively. str-smi denotes string-based SMILES representations and
str-sfi denotes string-based SELFIES representations. In Table 1, we show generation results
for both SMILES and SELFIES. SMILES does not have a validity constraint during generation.
However, our model, MolEBM, still achieves 95.5% validity, which outperforms other SMILES-
based methods and is also comparable to those with valency check. This result demonstrates that
our model can capture those valency rules effectively and implicitly (also see Appendix §A.4.).
Samples from our model also achieve perfect uniqueness and novelty.

Model Representation Validity Novelty Uniqueness

JT-VAE (Jin et al., 2018) Graph 1.000⋆ 1.000 1.000
GCPN (You et al., 2018) Graph 1.000⋆ 1.000 1.000
GraphNVP (Madhawa et al., 2019) Graph 0.426 1.000 0.948
GraphAF (Shi et al., 2020) Graph 1.000⋆ 1.000 0.991
GraphDF (Luo et al., 2021) Graph 1.000⋆ 1.000 1.000

ChemVAE (Gómez-Bombarelli et al., 2018) str-smi 0.170 0.980 0.310
GrammarVAE (Kusner et al., 2017) str-smi 0.310 1.000 0.108
SDVAE (Dai et al., 2018) str-smi 0.435 - -
MolEBM str-smi 0.955 1.000 1.000
MolEBM str-sfi 1.000 1.000 1.000

Table 1: Unconditional generation on ZINC. ⋆ denotes valency check.

Model Representation Validity Novelty Uniqueness
JT-VAE (Jin et al., 2018) Graph 1.000⋆ 0.914 1.000
GraphAF (Shi et al., 2020) Graph 1.000⋆ 1.000 0.991
GraphDF (Luo et al., 2021) Graph 1.000⋆ 1.000 1.000
LIMO (Eckmann et al., 2022) str-sfi 1.000 1.000 0.976
MolEBM str-sfi 1.000 1.000 1.000

Table 2: Unconditional generation on MOSES. ⋆ denotes valency check. Results obtained from (Polykovskiy
et al., 2020; Eckmann et al., 2022).

4.3 SINGLE-OBJECTIVE OPTIMIZATION

Non-Biological Property Optimization. For non-biological properties, we are interested in Penal-
ized logP and QED, both of which can be calculated by RDKit (Landrum et al., 2013). Since we
know the Penalized logP scores have a positive relationship with the length of the molecules, we
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Figure 2: Generated molecules with high binding affinities. Left: Top-3 single-objective optimized molecules.
The number denotes KD in nmol/L. Right: Top-2 multi-objective optimized molecules. Numbers denote KD

in nmol/L, QED and SA respectively.

maximize Penalized logP either with or without maximum length limit. Following (Eckmann et al.,
2022), the maximum length is set to be the maximum length of molecules in ZINC using SELFIES.
From Table 9, we can see that with length limit, MolEBM outperforms previous methods by a large
margin. Maximizing penalized logP without length limit leads to the highest Penalized logP, 158.0.
We also achieve the highest QED with/without length limit. These observations demonstrate the
effectiveness of our method. We also illustrate our distribution shifting method in Appendix §A.3.

Method LL Penalized logP (↑) QED (↑)
1st 2rd 3rd 1st 2rd 3rd

JT-VAE ✗ 5.30 4.93 4.49 0.925 0.911 0.910
GCPN ✓ 7.98 7.85 7.80 0.948 0.947 0.946
MolDQN ✓ 11.8 11.8 11.8 0.948 0.943 0.943
MARS ✗ 45.0 44.3 43.8 0.948 0.948 0.948
GraphDF ✗ 13.7 13.2 13.2 0.948 0.948 0.948
LIMO ✓ 10.5 9.69 9.60 0.947 0.946 0.945
MolEBM ✓ 26.4 25.1 24.4 0.948 0.948 0.948
MolEBM ✗ 158.0 157.8 157.5 0.948 0.948 0.948

Table 3: Non-biological single-objective optimization. Report top-3 highest scores found by each model.
LL (Length Limit) denotes whether the model has the limit of maximum length. Baseline results obtained
from (Eckmann et al., 2022; You et al., 2018; Luo et al., 2021; Xie et al., 2021).

Biological Property Optimization. ESR1 and ACAA1 are two human proteins. We aim to design
ligands (molecules) that have the maximum binding affinities towards those target proteins. ESR1
is well-studied, which has many existing binders, while ACAA1 does not. However, we did not use
any binder-related information in the design process. Binding affinity is measured by the estimated
dissociation constants KD, which can be computed with AutoDock-GPU (Santos-Martins et al.,
2021) given a molecule. Large binding affinities corresponds to small KD. That is, we aim to
minimize KD. Table 4 shows that our model outperforms previous methods on both ESR1 and
ACAA1 binding affinity maximization tasks. Producing those ligands with high binding affinity
plays a vital role in the early stage of drug discovery.

Method ESR1 KD (↓) ACAA1 KD (↓)
1st 2rd 3rd 1st 2rd 3rd

GCPN 6.4 6.6 8.5 75 83 84
MolDQN 373 588 1062 240 337 608
MARS 25 47 51 370 520 590
GraphDF 17 64 69 163 203 236
LIMO 0.72 0.89 1.4 37 37 41
MolEBM 0.52 0.54 0.54 6.71 6.94 8.50

Table 4: Biological single-objective optimization. Report top-3 lowest KD (in nanomoles/liter) found by each
model. Baseline results obtained from (Eckmann et al., 2022).
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4.4 MULTI-OBJECTIVE OPTIMIZATION

We next consider optimizing binding affinity, QED and SAS simultaneously for multi-objective
optimization. Following Eckmann et al. (2022), we exclude molecules with abnormal behaviors 1

in the generation process to make sure the learned distribution shifts towards a desirable region in
terms of pharmacologic and synthetic properties.

Table 5 shows our multi-objective binding affinity maximization results comparing to LIMO (Eck-
mann et al., 2022) and GCPN (You et al., 2018). From the results, we can see that MolEBM is able
to find the ligands with desired properties while keeping the pharmacologic structures. For ESR1,
we have two existing binders on the market, Tamoxifen and Raloxifene. Our designed ligands have
similar QED and SA, with rather low KD. Compared to existing methods, MolEBM obtains bet-
ter results in overall adjustments. For ACAA1, we do not have any existing binders. Compared
with prior SOTA methods, our optimized ligands outperform those by a large margin. When com-
paring ACAA1 multi-objective setting with its corresponding single-objective one, we find multi-
objective results even outperforms the single-objective one, which may be counter-intuitive since
multi-objective optimization is assumed to be a harder task than single-objective optimization. How-
ever, our current results indicate that with proper prior knowledge (e.g. multiple objectives are
positively aligned), multi-objective settings could be more plausible in de novo design, and those
complicated prior knowledge can indeed be captured by our expressive latent space EBM. While we
still need domain expertise to determine the effectiveness of those ligands discovered by MolEBM,
we believe our model could shed light on the optimization procedure in the early drug discovery.

Ligand ESR1 ACAA1
KD (↓) QED (↑) SA (↓) KD (↓) QED (↑) SA (↓)

GCPN 1st 810 0.43 4.2 8500 0.69 4.2
GCPN 2nd 2.7× 104 0.80 3.7 8500 0.54 4.3
LIMO 1st 4.6 0.43 4.8 28 0.57 5.5
LIMO 2nd 2.8 0.64 4.9 31 0.44 4.9
Tamoxifen 87 0.45 2.0 − − −
Raloxifene 7.9× 106 0.32 2.4 − − −
MolEBM 1st 1.71 0.42 3.85 5.67 0.60 4.58
MolEBM 2nd 2.28 0.56 2.56 6.60 0.56 4.07

Table 5: Muli-Objective Binding Affinity Maximization for both ESR1 and ACAA1. Report Top-2 average
scores related to KD (in nmol/L), QED and SA. Baseline results obtained from (Eckmann et al., 2022).

Figure 2 shows generated molecules with high binding affinities. See Appendix for more examples.

5 CONCLUSION AND DISCUSSION

We propose a deep generative model, MolEBM, which models the joint distribution of molecules
and molecular properties. It assumes an energy-based prior for a low-dimensional continuous latent
space, which effectively captures data regularities of the discrete molecule data. We then design a
distribution shifting method (SGDS) to shift the learned distribution to a region with high property
values. Molecule design can then be achieved by conditional sampling. Our experiments demon-
strate that our method outperforms previous SOTA methods by a significant margin.

A limiting factor is that the sampling with gradual distribution shifting (SGDS) requires that the
properties of interest can be easily computed. In our future work, we shall explore semi-supervised
learning methods using our model where the properties are available only for a small sample of
molecules.

Another limitation is that, for our optimization method, good property scores may not translate to
useful molecules for drug design. This problem may be partially addressed by multi-objective opti-
mization as studied in this paper. In our work, we focus on optimizing given objectives. Designing
good objectives or metrics is an equally or perhaps even more important problem that deserves
careful investigation.

1In particular, we exclude molecules with QED (↑) smaller than 0.4, SA (↓) larger than 5.5, and too small
(less than 5 atoms) or too large (more than 6 atoms) chemical rings.
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A APPENDIX

A.1 DETAILS ABOUT MODEL AND LEARNING

Our model is of the form pα(z)pβ(x|z)pγ(y|z). The marginal distribution of (x, y) is

pθ(x, y) =

∫
pθ(x, y, z)dz =

∫
pα(z)pβ(x|z)pγ(y|z)dz.

We use pθ(x, y) to approximate the data distribution of (x, y).

For the data distribution of (x, y), y is a deterministic function of x. However, a machine learning
method usually cannot learn the deterministic function exactly. Instead, we can only learn a proba-
bilistic pθ(y|z). Our model pθ(x, y) seeks to approximate the data distribution p(x, y) by maximum
likelihood. A learnable and flexible prior model pα(z) helps to make the approximate more accurate
than a fixed prior model such as that in VAE.

Let the training data be {(xi, yi), i = 1, ..., n}. The log-likelihood function is L(θ) =∑n
i=1 log pθ(xi, yi). The learning gradient is L′(θ) =

∑n
i=1 ∇θ log pθ(xi, yi). In the following, we

provide details for calculating ∇θ log pθ(x, y) for a single generic training example (x, y) (where
we drop the subscript i for notation simplicity).

∇θ log pθ(x, y) =
1

pθ(x, y)
∇θpθ(x, y)

=
1

pθ(x, y)

∫
∇θpθ(x, y, z)dz

=
1

pθ(x, y)

∫
pθ(x, y, z)∇θ log pθ(x, y, z)dz

=

∫
pθ(x, y, z)

pθ(x, y)
∇θ log pθ(x, y, z)dz

=

∫
pθ(z | x, y)∇θ log pθ(x, y, z)dz

= Epθ(z|x,y) [∇θ log pθ(x, y, z)]

= Epθ(z|x,y) [∇θ(log pα(z) + log pβ(x|z) + log pγ(y|z))] .

For the prior model,

∇α log pα(z) = ∇αfα(z)−∇α logZ(α)

= ∇αfα(z)−
1

Z(α)
∇αZ(α)

= ∇αfα(z)−
1

Z(α)

∫
∇α exp(fα(z))p0(z)dz

= ∇αfα(z)−
∫

∇αfα(z)
1

Z(α)
exp(fα(z))p0(z)dz

= ∇αfα(z)− Epα(z)[∇αfα(z)].

Thus the learning gradient for α given an example (x, y) is

δα(x, y) = ∇α log pθ(x, y) = Epθ(z|x,y)[∇αfα(z)]− Epα(z)[∇αfα(z)]. (17)

The above equation has an empirical Bayes nature. pθ(z|x, y) is based on the empirical observation
(x, y), while pα is the prior model. For the generation model,

δβ(x, y) = ∇β log pθ(x, y) = Epθ(z|x,y)[∇β log pβ(x|z)]. (18)

Similarly, for the regression model,

δγ(x, y) = ∇γ log pθ(x, y) = Epθ(z|x,y)[∇γ log pγ(y|z)]. (19)
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Estimating expectations in the above equations requires Monte Carlo sampling of the prior model
pα(z) and the posterior distribution pθ(z|x, y). If we can draw fair samples from the two dis-
tributions, and use these Monte Carlo samples to approximate the expectations, the the gradient
ascent algorithm based on the Monte Carlo samples is the stochastic gradient ascent algorithm or
the stochastic approximation algorithm of Robbins and Monro (Robbins & Monro, 1951), who es-
tablished the convergence of such an algorithm to a local maximum of the log-likelihood.

For MCMC sampling using Langevin dynamics, the finite step or short run Langevin dynamics may
cause bias in Monte Carlo sampling. The bias was analyzed in Pang et al. (2020). The resulting
algorithm is an approximate maximum likelihood learning algorithm.

A.2 ABLATION STUDIES

We conduct ablations on the key components of our method: 1) EBM Prior (EBM vs. standard
Gaussian N (0, I)), (2) SGDS (shift distributions with SGDS vs. no shift), and (3) joint training
(joint training of molecule and molecular property distribution vs. train molecule with LSEBM and
learn property regression model in a second step). The ablation results are displayed in Table 6. It
is clear that all the proposed components contribute significantly to the good performance of our
method.

EBM Prior SGDS Joint Training Penalized logP
1st 2nd 3rd

✗ ✓ ✓ 13.81 13.78 13.75
✓ ✗ ✓ 12.27 12.02 11.93
✓ ✓ ✗ 12.79 12.70 12.41
✓ ✓ ✓ 26.37 25.05 24.38

Table 6: Ablation studies.

A.3 ILLUSTRATION OF SAMPLING WITH GRADUAL DISTRIBUTION SHIFTING (SGDS)

Figure 3 shows property score densities of sampled molecules from our MolEBM in the distribution
shifting process. We can see the model distribution is gradually shifting towards the region supported
by molecules with high property values.
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Figure 3: Illustration of SGDS in a single-objective penalized logP optimization experiment.

A.4 UNCONDITIONAL GENERATION

For unconditional generation task, we use uniqueness, novelty and validity to compare our gen-
eration results with existing methods. Meanwhile, for SELFIES-based ZINC dataset, we split this
dataset into train split ( 240k) and test split (10k samples). Here, we randomly sample 10k molecules
from the learned latent EBM and calculate their logP, QED and SA scores using RDKit. We com-
pare these property densities with molecule property densities in test split. The results are shown
in Figure 4. We can see that the marginal distributions (property score densities) of the learned
model match those of the data quite well, implying that our model indeed captures the chemical
rules implicitly.

Figure 4: Property score distributions.
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A.5 GENERATION WITH DIFFERENT LENGTH OF MARKOV CHAIN

In our experiments, we use short-run MCMC (i.e. s = 20) in Equation 13 for all experiments. From
Figure 5, we can see with the increasing length of Markov chains, the molecules change accordingly,
showing that Markov chain doesn’t get stuck in the local mode.

Figure 5: Sampled molecules with the different length of Markov chain.

A.6 TRAINING TIME

The joint training of MolEBM takes 4 hours with 30 iterations on a single Nvidia Titan XP GPU
with batch size 2048. For non-biological single-objective property optimization, it takes around 0.5
hours to do 50 distribution shifting (SGDS) iterations. For biological binding affinity maximization,
the optimization time is mainly dependent on the number of queries of AutoDock-GPU. We do 20
and 10 SGDS iterations for the single-objective and multi-objective tasks, respectively, which cost
10 hours and 5 hours. For biological property optimization tasks, we use two Nvidia Titan XP GPUs,
one for running our code and another one for running AutoDock-GPU. We have added a table to
compare with previous methods.

Model Penalized-logP/QED
JT-VAE 24
GCPN 8
MolDQN 24
GraphDF 8
Mars 12
LIMO 1
MolEBM 4.5

Table 7: Comparison of molecule generation time in (hrs). Results obtained from (Eckmann et al., 2022).

Even if we intensively use MCMC sampling-based methods, our training speed is affordable com-
paring to existing methods. That’s due to our designed latent space EBM is low-dimensional (i.e.
dim(z)=100) and we use short-run MCMC (i.e. with fixed iteration steps s = 20) in our experi-
ments. The sampling results with respect to the length of Markov chain is discussed in previous
section.

A.7 OPTIMIZATION WITH CONSTRAINTS

In unconditional generation task, even with SMILES representation, our model can capture the
valency constraints in chemical space. This idea can further be extended to constrained optimiza-
tions, and those constraints in the chemical space can be directly imposed by keeping the sampled
molecules that satisfy the constraints during the SGDS molecule sampling step in Algorithm 2. We
include logP targeting and similarity-constrained optimization experiments in the following.

For example, in logP targeting experiments, during each iteration, we only keep the molecules within
the target logP range; in similarity-constrained experiments, we use those molecules which satisfy
similarity constraints to update the model. By iteratively updating the model with those selected
molecules, we shift the joint distribution towards the region that satisfies the constraints.
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A.7.1 LOGP TARGETING

Comparing to previous methods, MolEBM is able to get competitive diversity scores with signifi-
cantly better success rate in both ranges. That’s because after SGDS, our model is shifted towards
the region that is supported by molecules satisfying the logP constraints. Due to the flexibility of
our EBM prior, MolEBM achieves rather high diversity scores while keeping most of the sampled
molecules within the logP range.

Method −2.5 ≤ logP ≤ −2 5 ≤ logP ≤ 5.5
Success Diversity Success Diversity

ZINC 0.4% 0.919 1.3% 0.901

JT-VAE 11.3% 0.846 7.6% 0.907
ORGAN 0 − 0.2% 0.909
GCPN 85.5% 0.392 54.7% 0.855
LIMO 10.4% 0.914 − −
MolEBM 86.0% 0.874 62.2% 0.858

Table 8: logP targeting to a certain range (Eckmann et al., 2022; You et al., 2018; Luo et al., 2021; Xie et al.,
2021).

A.7.2 SIMILARITY-CONSTRAINED OPTIMIZATION

Following previous procedures in JT-VAE (Jin et al., 2018), we select 800 molecules with the lowest
penalized-logP scores in ZINC250k dataset. This experiment aims to generate novel molecules with
high penalized-log while similarity to the target molecules. We first randomly select one molecule
as the target, and then optimize the p-logP. For each SGDS step, we only keep the molecules that
have similarity score greater than minimum value δ.

δ
GCPN GraphDF LIMO MolEBM

Improv. % Succ. Improv. % Succ. Improv. % Succ. Improv. % Succ.

0.0 4.2± 1.3 100 5.9± 2.0 100 10.1± 2.3 100 19.11± 2.12 100
0.2 4.1± 1.2 100 5.6± 1.7 100 5.8± 2.6 99.0 7.41± 1.89 100
0.4 2.5± 1.3 100 4.1± 1.4 100 3.6± 2.3 93.7 3.80± 1.44 97.5

Table 9: Similarity-constrained optimization results. Baseline results obtained from (Eckmann et al., 2022;
Luo et al., 2021).

A.8 ADDITIONAL EXPERIMENTS ON GUACAMOL BENCHMARKS

We further evaluate our MolEBM on several distribution learning and goal-directed optimization
tasks in GuacaMol benchmark (Brown et al., 2019).

To be specific, for distribution learning, we use the validity, uniqueness and novelty to evaluate our
model. The results are shown in Table 10. Comparing to existing methods, our MolEBM trained
using SELFIES representations achieves highest scores among all three tasks.

For goal-directed benchmarks, we select five multiple property optimization tasks (MPO). Due to
the time limit, we did not have time to tune our code for the new experiments. We expect to obtain
improved results with fine-tuning. However, our MolEBM is still able to achieve comparable results
to the strong baseline as Graph GA.

Again, GuacaMol is an extremely useful benchmark since it provides the normalized scoring func-
tions which are weighed sum of multiple diverse properties of interest. The normalized scoring
functions enable the fast convergence of MolEBM. With GuacaMol, we can also investigate the
design choice between single property regression network to predict the pre-defined scores and mul-
tiple property regression networks to predict original chemical properties individually. We leave this
question for future studies.
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A.8.1 DISTRIBUTION-LEARNING BENCHMARKS

Benchmark AAE Graph MCTS Random Sampler SMILES LSTM VAE MolEBM
Validity 0.822 1.000 1.000 1.000 0.959 1.000
Uniqueness 1.000 1.000 0.997 1.000 0.999 1.000
Novelty 0.998 0.994 0.000 0.912 0.971 0.999

Table 10: Distribution learning results on GuacaMol benchmarks (Brown et al., 2019).

A.8.2 GOAL-DIRECTED BENCHMARKS

Benchmark Best of Dataset SMILES GA Graph MCTS Graph GA SMILES LSTM MolEBM
Osimertinib MPO 0.839 0.886 0.784 0.953 0.907 0.933
Fexofenadine MPO 0.817 0.931 0.695 0.998 0.959 0.971
Ranolazine MPO 0.792 0.881 0.616 0.920 0.855 0.924
Sitagliptin MPO 0.509 0.689 0.458 0.891 0.545 0.829

Table 11: Goal-directed optimization results on GuacaMol benchmarks (Brown et al., 2019). Top-2 results are
highlighted as bold and italic respectively.

A.9 GENERATED SAMPLES

Figure 6 and figure 7 show generated molecules with high binding affinities towards ESR1 and
ACAA1 respectively in single-objective property design experiments.

Figure 8 and Figure 9 show generated molecules with high binding affinities towards ESR1 and
ACAA1 respectively in multi-objective property design.

Comparing to the previous state-of-the-art methods, our MolEBM is able to produce more high
quality molecules than top-3 molecules because after sampling with gradual distribution shifting
(SGDS), MolEBM locates at the area supported by molecules with high binding affinities.

In single-objective design, we find that few generated molecules may be of less practical use due
to undesired properties (e.g. the first one in Figure 7 has a large circle). This observation is in
accordance with (Eckmann et al., 2022), which is the case where the single-objective optimization
is not sufficient. Thus we need multi-objective binding affinities design settings because in contrast
to non-biological properties, binding affinities are hard to compute and optimize.

In multi-objective design settings, we find that those issues mentioned above can be partially ad-
dressed by optimizing binding affinities, QED and SA at the same time.

Meanwhile, compared to previous generative model based methods, we use Langevin dynamics
to infer the posterior distribution p(z|x, y1, . . . , yn) without bothering to design different encoders
when facing different combination of properties.
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Figure 6: Generated molecules in singe-objective esr1 binding affinity maximization experiments with corre-
sponding KD(↓) in nmol/L.

Figure 7: Generated molecules in singe-objective acaa1 binding affinity maximization experiments with cor-
responding KD(↓) in nmol/L.
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Figure 8: Generated molecules in multi-objective esr1 binding affinity maximization experiments with cor-
responding KD(↓) in nmol/L.

Figure 9: Generated molecules in multi-objective acaa1 binding affinity maximization experiments with
corresponding KD(↓) in nmol/L.
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A.10 TOP-3 MOLECULES IN P-LOGP AND QED OPTIMIZATION

Figure 10: Top-3 molecules in single-objective QED maximization.

Figure 11: Top-3 molecules in single-objective p-logP maximization.

A.11 REPRODUCIBILITY

Our code and saved checkpoints can be found here 2.

2https://drive.google.com/drive/folders/1UQcXrLWo20wuBocCIEIq7RRm1p2-bb8H?usp=sharing
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