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Abstract001

Recent studies indicate that shortcut learning002
behavior exists in language models, and thus003
a number of mitigation methods are proposed,004
such as advanced PLMs and debiasing meth-005
ods. However, few studies have explored how006
different factors affect the robustness of lan-007
guage models. To bridge this gap, we study the008
different PLMs and analyze the effect of repre-009
sentations and classifiers on robustness using010
probing techniques on the NLU tasks. First, we011
find that the low robustness of language models012
is not due to the inseparability of representa-013
tions on the challenging dataset. Second, we014
find that a potential reason for the difficulty in015
improving the robustness of language models016
is the significantly high similarity between the017
representations with opposite semantics from018
in-distribution and out-of-distribution. Third,019
we find that debiasing methods are likely to020
distort representations and merely improve per-021
formance by better classifiers in some cases1.022
Finally, we propose a probing tool to measure023
the impact on the robustness of language mod-024
els from representations and classifiers using025
the decoupled training strategy with debiasing026
methods. In addition, we conduct extensive027
experiments on real-world datasets, suggesting028
the effectiveness of the proposed methods.029

1 Introduction030

Pre-trained Language Models (PLMs), such as031

BERT (Devlin et al., 2019), RoBERTa (Liu et al.,032

2019), have achieved state-of-the-art results for033

Natural Language Understanding (NLU) tasks. De-034

spite their successes, recent studies show the phe-035

nomenon that PLMs are prone to learning super-036

ficial surface patterns that are spuriously associ-037

ated with the target label, and to make use of bi-038

ases/artifacts from the dataset as shortcuts for pre-039

diction (Gururangan et al., 2018; McCoy et al.,040

1In this work, we denote the representation as the output
of PLMs and classifier as the several fully connected layers
that are used to serve the classification purpose.

2019; Utama et al., 2020b), which is defined as 041

shortcut learning (Geirhos et al., 2020). For a com- 042

mon NLU task, Natural Language Inference (NLI), 043

the shortcut learning behavior is defined as that 044

the model achieves high accuracy only by using 045

specific words but not understanding the language 046

(Naik et al., 2018; Sanchez et al., 2018; Du et al., 047

2021). As a result, the models perform poorly on 048

out-of-distribution (OOD) examples. 049

The quality of representations is widely consid- 050

ered to be the key reason for the shortcut learning 051

and poor generalization ability of the NLU models. 052

Because of this, there is a large body of literature 053

that analyzes and understands the learned repre- 054

sentation (Perone et al., 2018; Krasnowska-Kieraś 055

and Wróblewska, 2019; Pruksachatkun et al., 2020; 056

Mendelson and Belinkov, 2021). Unlike previous 057

work, we intend to answer the following research 058

questions: 1) Whether the low robustness of lan- 059

guage models is primarily due to representations 060

not being easily separable? 2) What is the relative 061

role of the representation and the classifier in the 062

low robustness of language models? 063

In this work, we apply the t-SNE visualization 064

technique and DIRECTPROBE (Zhou and Srikumar, 065

2021) probing technique to representations that are 066

from five PLMs: BERT, RoBERTa, BART (Lewis 067

et al., 2020), ELECTRA (Clark et al., 2020b), and 068

DeBERTa (He et al., 2021). Meanwhile, we present 069

a new probing strategy based on debiasing methods. 070

Based on the above techniques and strategies, our 071

findings on the robustness of language models are 072

briefly described below. 073

To begin with, we visualize the representations 074

of the above five pre-trained language models. We 075

find that not only [CLS] but also [MEAN] em- 076

beddings form clearer boundaries between repre- 077

sentations of different labels, despite only [CLS] 078

embeddings are fed into the classifiers (§4.1). 079

Then, we investigate the geometric structure of 080

representations. Via DIRECTPROBE probing tech- 081
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nique, we obtain clusters with only the same label082

representations in each cluster. We find that the083

number of clusters is equal to the number of la-084

bel categories in most cases, which means that the085

representations are linearly separable (§4.2).086

Furthermore, we further study the properties of087

representations by computing the similarity be-088

tween the clusters with opposite semantics on089

MNLI and HANS. We find that a possible reason090

why it is not easy to improve the robustness of091

models is that the representations with opposite092

semantic labels are too similar (§4.3).093

Finally, we investigate the effect of encoders and094

classifiers on the robustness of language models095

respectively. Using debiasing methods as a prob-096

ing tool, we find that both the representation and097

the classifier of the models play a significant role098

in the shortcut learning behavior for the NLI task.099

Furthermore, we find that debiasing methods do100

not always improve the quality of representations.101

Instead, they only improve performance by opti-102

mizing the classifiers in some cases (§4.4).103

2 Preliminaries104

In this work, we probe the representations and clas-105

sifiers of PLMs after fine-tuning. To this end, we106

briefly introduce two techniques that we use in our107

analyses: the probing method and the ensemble-108

based debiasing framework.109

2.1 Probing Method110

Normally, trained classifiers are used as probes to111

understand the quality of the information encoded112

in the representation, which are trained with the113

encoders frozen (Hewitt et al., 2021; Whitney et al.,114

2021; Belinkov, 2021). However, the classifier115

probes focus only on the performance of the target116

task and cannot clarify the representation in detail117

(Zhou and Srikumar, 2022). To this end, we apply118

a probing technique named DIRECTPROBE (Zhou119

and Srikumar, 2021) instead of classifier probes. It120

can provide a fine-grained analysis of the represen-121

tation from a geometric perspective.122

The representation in the form of embeddings is123

fed into DIRECTPROBE, and the number of clusters124

is returned. These clusters satisfy the condition125

that the example points contained in a cluster must126

have the same label and that there are no overlaps127

between any two clusters (that is, there exists a128

separator between the two sets of example points).129

We can learn about various linguistic attributes of130

the representation by measuring the properties of 131

the corresponding clusters. In this work, we focus 132

on an important property: the number of clusters. 133

Number of Clusters The number of clusters can 134

quantify the linear separability of the representation 135

for a special task. In particular, when the number of 136

clusters equals the number of label categories, the 137

embeddings of examples with the same label are 138

close enough in the semantic representation space. 139

In this ideal case, the models can achieve perfect 140

performance with a simple linear classifier. In con- 141

trast, when the number of clusters is more than 142

the number of label categories, the example points 143

with the same label are grouped into at least two 144

clusters. This suggests a complex geometric struc- 145

ture of representations, and a complex classifier is 146

needed to achieve desirable performance. 147

2.2 Ensemble-based Debiasing Framework 148

The ensemble-based debiasing framework (EBD) 149

(Xiong et al., 2021) is generally used to mitigate 150

the shortcut learning behavior of the NLU mod- 151

els. This framework has the advantage that it is a 152

model-agnostic debiasing framework, which makes 153

it possible to debias models adaptively. EBD frame- 154

work consists of bias-only models and debiasing 155

methods. Bias-only models are used to make the 156

main models perform debiasing training by adjust- 157

ing the learning target. Debiasing methods provide 158

strategies on how to debias the main models in prac- 159

tice. The EBD framework is commonly formalized 160

as a two-stage method (Clark et al., 2019; Sanh 161

et al., 2021). In the first stage, the bias-only model 162

is trained to recognize simple and hard examples. 163

In the second stage, the main models are trained as 164

an ensemble with the bias-only model according to 165

the selected debiasing methods. 166

2.2.1 Bias-only Model 167

Recently, several works in the literature have pro- 168

posed exploring bias-only models to improve the 169

performance of the EBD framework. For exam- 170

ple, Utama et al., 2020b, Sanh et al., 2021, and 171

Clark et al., 2020a try to reduce the need for a prior 172

knowledge on bias or shortcut. In these works, they 173

obtain bias-only models with two different strate- 174

gies: i) training a copy of the main model with 175

a small random subset of training examples for a 176

few epochs; and ii) using a shallow or small model 177

with limited capacity. In our work, we take the first 178

strategy, and more details are given in Appendix A. 179
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In the following, we describe the workflow of180

bias-only models. For clarity, we denote the bias-181

only model by fb. Given an example (xi, yi) in182

the training dataset, we denote the output of fb183

as fb
(
xi
)

= pb
i. Probability pb

i can quantify184

how much the model learns about shortcut features185

from example (xi, yi) (i.e., how likely this example186

contains biases). Specifically, the extent to which187

models learn shortcut features can be evaluated by188

pb
(i,c) which denotes the probability of pbi on the189

label yi, where c is the index of the correct category190

in the label yi. For example, when pb
(i,c) is closer191

to 1 (i.e., the bias-only model is more confident192

about the example xi on the label yi), the model193

learns more potentially shortcut features. Instead,194

when pb
(i,c) is closer to 0, the bias-only model is195

more unconfident about the example xi on the label196

yi. As such, the example xi is likely to be a hard197

example to which the model is supposed to pay198

more attention during training.199

2.2.2 Debiasing Method200

We first denote the main model by fd parameter-201

ized by θd, and then use the bias-only model fb202

obtained in §2.2.1 to perform debiasing training on203

fd. In this work, we mainly investigate two com-204

mon model-agnostic debiasing methods: sample205

re-weighting (Schuster et al., 2019) and product-206

of-experts (Clark et al., 2019; Karimi Mahabadi207

et al., 2020). In the following, we describe the208

implementation details of these two methods.209

Example Re-weighting Example re-weighting210

is a simple yet effective debiasing method. It can211

be briefly summarized as re-weighting the impor-212

tance of a given training example (xi, yi) by di-213

rectly assigning a weight to the example (xi, yi).214

The weight is formalized as 1 − p
(i,c)
b . Thus, the215

individual loss of the example (xi, yi) for the pa-216

rameters θd is defined as follows:217

L (θd) = −
(
1− pb

(i,c)
)
yi · log pd,218

where pd is the softmax output of the main219

model fd. Here, we regard training samples with220

high probability by the bias-only model as bi-221

ased/shortcut samples. When the bias-only model222

assigns a high probability to pb(i,c), the contribution223

of a training example to L (θd) is reduced.224

Product-of-Experts In this method, the main225

model (i.e., a debiased model) is trained in an en-226

semble with a bias-only model. Specifically, the227

softmax outputs of the main model fd and the 228

bias-only model fb are combined to form new pre- 229

dictions. Then they are used to calculate the new 230

loss while optimizing the parameters θd. The indi- 231

vidual loss of the example (xi, yi) for the parame- 232

ters θd is defined as follows: 233

L (θd) = −yi · log softmax (log pd + log pb). 234

During training with debiasing methods, the pa- 235

rameters of the bias-only model fb are frozen to 236

lower the importance of biased examples in train- 237

ing loss, and only the parameters of the main model 238

fd are optimized. During the inference time, only 239

the prediction probability of fd is used. 240

3 Experimental Setup 241

3.1 Tasks & Datasets 242

In this work, we focus on a common NLU task: 243

Natural Language Inference (NLI), the model of 244

which is presented with a pair of sentences and 245

asked to return the relationship between their mean- 246

ings (Williams et al., 2018). A pair of sentences 247

contains a premise sentence and a hypothesis sen- 248

tence. The relationship between their meanings is 249

one label of entailment, neutral, and contradiction. 250

MNLI MNLI (Williams et al., 2018) is divided 251

into training dataset, matched development dataset, 252

and mismatched development set. The training 253

dataset and the matched development dataset are 254

derived from the same five genres, and the mis- 255

matched development dataset are derived from the 256

other five genres. Typically, we first use the train- 257

ing dataset to train an NLU model, which consists 258

of 392,702 instances. Then, we use the matched 259

development dataset to choose an optimal NLU 260

model, which consists of 9,815 instances. 261

HANS HANS (McCoy et al., 2019) has been 262

proposed to evaluate whether models have learned 263

statistical patterns or semantic understanding and 264

reasoning. It focuses on three heuristics: the lexical 265

overlap heuristic, the subsequence heuristic, and 266

the constituent heuristic. HANS consists of 30,000 267

synthetic instances, and distributes 10,000 ones to 268

each of the heuristics. Note that HANS is only used 269

to evaluate the models and not to train the models 270

or adjust the hyperparameters. 271

3.2 NLU Models 272

We conduct the empirical study on five differ- 273

ent kinds of pre-trained model: BERT, RoBERTa, 274
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(a) [CLS] in MNLI (b) [CLS] in HANS

Figure 1: The t-SNE visualization result of [CLS] embeddings from different pre-trained language models on MNLI
and HANS. The words above figures are the selected model and corresponding accuracy.

BART, ELECTRA, and DeBERTa. These mod-275

els are used as encoders for the NLU models,276

which can provide contextual word embeddings.277

We use the corresponding pre-trained models and278

fine-tuned models from Huggingface Transform-279

ers2. The input fed into the encoders of the NLU280

models is a pair of concatenated premise sentences281

and hypothesis sentences, which are separated by282

a special [SEP] token. Then, we obtain sentence283

pair representations through these models, which284

are the [CLS] embeddings from encoders. These285

representations are fed into the classification head286

(that is, the classifier) of the NLU models. Here,287

the classification head takes a simple architecture,288

two linear layers with the activation function.289

3.3 Implementation Details290

For all pre-trained models, we fine-tune the models291

without debiasing methods and with the example292

re-weighting debiasing method for 3 epochs. We293

find that the models converge slowly when fine-294

tuning the models with the product-of-experts de-295

biasing method. Thus, we follow He et al. (2019)296

to fine-tune longer, i.e., 6 epochs. We use AdamW297

optimizer (Loshchilov and Hutter, 2019) with the298

default learning rate 5 ∗ 10−5, where the betas are299

set as [0.9, 0.999] and the L2 weight decay is set300

to 0.01. We set the batch size to 32 and warmup301

ratio to 0.1. All experiments are run with 3 random302

seeds and the average values are reported, which303

are completed on the work station with 2 Nvidia304

2080Ti GPUs.305

2https://huggingface.co/models

4 Experimental Analysis 306

In this section, we first use the visualization tech- 307

nique to investigate the separability of representa- 308

tions (§4.1). Then we investigate the linear sep- 309

arability of representations using DIRECTPROBE 310

(§4.2). Furthermore, we propose an explanation 311

for the difficulty in improving robustness by com- 312

puting the similarity of representations (§4.3). Fi- 313

nally, we analyze the effect of representations and 314

classifiers on robustness by considering debiasing 315

methods as a probing tool (§4.4). 316

4.1 Visualization of Representations 317

To investigate the semantic representation space 318

learned by the model, we extract embeddings 319

of the special classification token [CLS] in the 320

final hidden state and visualize them using t- 321

SNE (Van der Maaten and Hinton, 2008). Fig- 322

ures 1(a) and 1(b) show the visualization results 323

for MNLI and HANS, respectively. We show 324

only the results of BERTlarge, RoBERTalarge, 325

DeBERTalarge and ELECTRAlarge. Appendix B 326

includes the results for more models. Based on 327

the results, we find that the better performance the 328

model achieves, the clearer the boundaries the rep- 329

resentation forms. We believe that this is the reason 330

why high performance is achieved with only a sim- 331

ple two-layer MLP network as the classifier. 332

In addition, we visualize the mean embeddings 333

of all tokens in the final hidden state, which are 334

abbreviated as [MEAN]. Note that the models are 335

not trained with [MEAN]. The results of MNLI and 336

HANS are shown in Figures 2(a) and 2(b), respec- 337
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(a) [MEAN] in MNLI (b) [MEAN] in HANS

Figure 2: The t-SNE visualization result of [MEAN] embeddings from different pre-trained language models on
MNLI and HANS. The words above figures are the selected model and corresponding accuracy with [MEAN].

tively. Similarly, we show the results for more mod-338

els in Appendix B. We observe that the [MEAN]339

embeddings can also form clearer boundaries as340

the models achieve better performance, despite the341

[CLS] embeddings are fed into classifiers. Mean-342

while, we freeze the encoders of the models trained343

with [CLS] and feed [MEAN] into the classifiers,344

the performance of which is close to the original345

one. Finally, we show the similarity between [CLS]346

and [MEAN] in Appendix C.347

4.2 Linear Separability of Representations348

In Figure 1(b), we discover the gap of improve-349

ment between the visualization effect and the per-350

formance, which may be due to the limitations of351

visualization technology. This leads us to introduce352

another method to quantify the quality of represen-353

tations. Therefore, we apply a probing technique354

based on the idea of clustering—DIRECTPROBE to355

study the geometric structure of representations.356

We select five common pre-trained models to357

examine the geometric structure of representations358

after fine-tuning. Table 1 shows the results that359

contain base and large versions corresponding to360

selected models. We discover that the better per-361

formance the model achieves, the fewer clusters362

the representation is divided into, i.e., the represen-363

tation has higher linear separability. In particular,364

there are some models whose representations are365

divided into two and three clusters on HANS and366

MNLI, respectively (i.e., equaling the number of367

label categories), which suggests that all examples368

with the same label are in one cluster and there are369

no overlaps between each cluster. However, these370

MNLI HANS

Models #clusters Acc #clusters Acc

BERTbase 27 84.25 4 65.01
RoBERTabase 5 88.10 3 69.53
DeBERTabase 4 88.75 2 76.61
BARTdistill 3 89.56 2 67.37

ELECTRAbase 4 88.77 2 76.84

BERTlarge 5 86.69 2 68.77
RoBERTalarge 3 90.60 2 73.73
DeBERTalarge 3 91.28 2 78.07
BARTlarge 3 90.16 2 72.88

ELECTRAlarge 3 90.47 2 78.21

Table 1: The number of clusters and corresponding ac-
curacy from selected pre-trained language models on
MNLI and HANS. There is an around 20% generaliza-
tion gap between MNLI and HANS.

models achieve about 90% accuracy on MNLI but 371

only no more than 80% accuracy on HANS, which 372

is not consistent with the linear separability of the 373

representation. Thus, we assume that the low ro- 374

bustness of the NLU models is not due to the 375

inseparability of representations. 376

4.3 Similarity of Representations 377

In §4.1 and §4.2, we analyze representations with 378

the t-SNE and DIRECTPROBE technique, respec- 379

tively. However, what puzzles us is why the rep- 380

resentation is linearly separable, while the perfor- 381

mance of PLMs is not perfect. To study that, we 382

investigate the cosine similarity of representations 383

to find the reason for the flawed performance. In 384

practice, we investigate the similarity between clus- 385

ter centers within MNLI or HANS and between 386
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Models M-E|H-E M-E|H-N H-E|H-N Acc

BERTbase 0.9376 0.8128 0.8597 65.01
RoBERTabase 0.9562 0.8714 0.8131 69.53
DeBERTabase 0.9733 0.7196 0.6921 76.61
BARTdistill 0.9138 0.8067 0.9064 67.37

ELECTRAbase 0.9656 0.6550 0.6911 76.84

BERTlarge 0.9573 0.7859 0.8511 68.77
RoBERTalarge 0.9286 0.7451 0.6810 73.73
DeBERTalarge 0.9545 0.6721 0.6912 78.07
BARTlarge 0.9145 0.7126 0.8467 72.88

ELECTRAlarge 0.9560 0.5650 0.5891 78.21

Table 2: The similarity of [CLS] between two centers
of selected embeddings and the accuracy on HANS.
M-E indicates MNLI-Entailment; H-E indicates HANS-
Entailment; H-N indicates HANS-Not-Entailment. It
suggests that the representations with opposite seman-
tics are similar in the semantic representation space.

MNLI and HANS. Each cluster includes all [CLS]387

embeddings with the same label on one dataset.388

The cluster center is defined as the average of all389

[CLS] embeddings in the cluster.390

First, we compute the cosine similarity between391

MNLI-Entailment and HANS-Entailment/HANS-392

Not-Entailment as shown in Table 2. Ideally, the393

cosine similarity between MNLI-Entailment and394

HANS-Entailment is close to +1, and the cosine395

similarity between MNLI-Entailment and HANS-396

Not-Entailment is close to -1. However, the lat-397

ter is not supported by our experiments, as shown398

in Table 2. It is even larger than +0.5, suggest-399

ing that the representations of HANS-Entailment400

and HANS-Not-Entailment are similar to those401

of MNLI-Entailment in the semantic representa-402

tion space. Then, we compute the cosine simi-403

larity between HANS-Entailment and HANS-Not-404

Entailment as Table 2 shows, which should be405

close to -1. In fact, it is large than +0.5, suggest-406

ing that the representations of HANS-Entailment407

and HANS-Not-Entailment are similar, despite the408

representations from most of the selected models409

are linearly separable as Table 1 shows. These410

results mean that the encoders fail to distinguish411

Not-Entailment examples where the heuristics fail412

from Entailment examples well. In Appendix D,413

the gap of performance between Entailment and414

Not-Entailment on HANS confirm that.415

Motivated by the above finding, we compute416

the Spearman correlation coefficient between sim-417

ilarity and accuracy and find that the accuracy is418

significantly inversely associated with the similar-419

ity between MNLI/HANS-Entailment and HANS-420

Not-Entailment. The correlation coefficients are421

-0.8788 and -0.8909 with a p-value less than 0.05. 422

We suppose that the significant similarity in se- 423

mantic representation between MNLI/HANS- 424

Entailment and HANS-Not-Entailment is the 425

main reason why it is difficult to improve the per- 426

formance on HANS. Finally, we show the other 427

similarity between cluster centers with different 428

labels in Appendix E. 429

4.4 Analysis of Debiasing Methods 430

Typically, the poor performance of models on OOD 431

examples is attributed to the fact that models only 432

capture shortcut features (i.e., spurious features) 433

but not robustness features (i.e. task-relevant fea- 434

tures). Consequently, many debiasing methods are 435

proposed to make models pay more attention to 436

robustness features to improve the performance on 437

OOD examples. In this work, we make detailed 438

analyses of the impact of debiasing methods on 439

fine-tuning models. For pre-trained language mod- 440

els, we select BERT and RoBERTa. 441

Based on the fact that the NLI task is consid- 442

ered as a classification task, the models for the NLI 443

task can be divided into encoders and classifiers. 444

Generally speaking, the encoder is from PLMs, 445

and the classifier is the MLP network. Based on 446

this architecture of the NLI models, we intend to 447

study how debiasing methods work on encoders 448

and classifiers, respectively. In practice, we apply 449

a two-phase training strategy. Specifically, we first 450

fine-tune models consisting of encoders and classi- 451

fiers, then fix encoders and only retrain classifiers. 452

Figures 3 and 4 show the results on MNLI and 453

HANS for BERT and RoBERTa, respectively. We 454

take the learning rate from 1 ∗ 10−5 to 5 ∗ 10−5 455

to investigate the effect of the learning rate on the 456

convergence of models. We discover that by fix- 457

ing the encoder of fine-tuned models without de- 458

biasing methods (i.e. raw fine-tuned models) and 459

only retraining the classifier with debiasing meth- 460

ods, the performance of models is improved on 461

HANS for BERT and RoBERTa. Especially for 462

BERT, the retraining strategy with debiasing meth- 463

ods achieves better performance than fine-tuning 464

the whole model using debiasing methods both on 465

MNLI and on HANS. Thus, we assume that debias- 466

ing methods distort the representation to some 467

degree for BERT, which is similar to the finding of 468

Mendelson and Belinkov (2021). Meanwhile, this 469

strategy mitigates the degradation of performance 470

on MNLI and further improves the performance 471

on HANS. Noting that retraining the classifiers of 472
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Learning Rate

Models 1e-5 2e-5 3e-5 4e-5 5e-5

BERT-ReW 79.91 80.54 81.22 81.39 80.79
BERT-ReW-head-self 79.92 80.61 81.29 81.39 80.90

BERT-PoE 76.80 79.67 80.42 80.46 80.09
BERT-PoE-head-self 77.06 79.90 80.58 80.61 80.32

RoBERTa-ReW 85.04 85.49 85.33 84.90 84.52
RoBERTa-ReW-head-self 85.18 85.41 85.29 84.77 84.44

RoBERTa-PoE 84.20 84.63 84.80 84.66 84.07
RoBERTa-PoE-head-self 84.21 84.78 84.97 84.60 84.14

Table 3: The results of the model trained with the debias-
ing method and retraining the classifier of that with the
same debiasing method for MNLI. There is no obvious
change on performance before and after retraining.

Learning Rate

Models 1e-5 2e-5 3e-5 4e-5 5e-5

BERT-ReW 59.04 62.45 65.18 65.61 65.19
BERT-ReW-head-self 59.35 62.70 65.17 65.70 65.31

BERT-PoE 58.08 60.41 61.05 61.07 60.31
BERT-PoE-head-self 58.01 60.12 60.95 61.02 60.10

RoBERTa-ReW 75.66 77.69 77.74 76.40 75.90
RoBERTa-ReW-head-self 75.75 77.72 77.70 76.39 75.82

RoBERTa-PoE 77.29 78.50 78.29 77.64 76.27
RoBERTa-PoE-head-self 77.04 78.37 78.17 77.72 76.19

Table 4: The results of the model trained with the debias-
ing method and retraining the classifier of that with the
same debiasing method for HANS. There is no obvious
change on performance before and after retraining.
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Figure 3: (a) and (b) indicate the results of BERT on MNLI and HANS, respectively. The lines with dots: fine-
tune models with or without debiasing methods. The lines with triangles: retrain classifiers using encoders from
fine-tuned models with or without debiasing methods.

raw fine-tuned models without debiasing methods473

does not achieve an obvious effect on the perfor-474

mance, we find classifiers play a significant role475

in the shortcut learning behavior of PLMs. We476

design the comparative experiments to further clar-477

ify whether the performance improvement derives478

from the decoupled training strategy. Tables 3 and479

4 show the results for MNLI and HANS, respec-480

tively. We discover that the decoupled training481

strategy also does not achieve an obvious effect for482

fine-tuned models with debiasing methods. This483

suggests that the performance improvement is de-484

rived from not the decoupled training strategy but485

the classifiers optimized by debiasing methods, and486

that the models fine-tuned with debiasing methods487

are not limited in performance by the classifiers.488

Based on the above results, we suppose that a489

decoupled retraining strategy with debiasing meth- 490

ods can be considered as a probing tool, which is 491

used to measure the shortcut learning behavior of 492

PLMs from representations or classifiers. The per- 493

formance gap between the raw fine-tuned model 494

and the model with the classifier retrained using 495

the debiasing methods measures the extent of short- 496

cut learning behavior from classifiers. The gap of 497

the performance between the model with the classi- 498

fier retrained using the debiasing methods and the 499

whole fine-tuned model with the debiasing methods 500

measures the extent of shortcut learning behavior 501

from representations. Through this probing tool, 502

we can better understand how representations and 503

classifiers affect the robustness of models. 504
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Figure 4: (a) and (b) indicate the results of RoBERTa on MNLI and HANS, respectively. The lines with dots:
fine-tune models with or without debiasing methods. The lines with triangles: retrain classifiers using encoders
from fine-tuned models with or without debiasing methods.

5 Related Work505

Recently, the shortcut learning behavior for the506

language task is revealed in previous work (Niven507

and Kao, 2019; Mudrakarta et al., 2018; Geirhos508

et al., 2020). For the NLI task, the shortcut learn-509

ing behavior in models is often investigated using510

challenge datasets (Jia and Liang, 2017; Naik et al.,511

2018; Glockner et al., 2018; McCoy et al., 2019).512

To mitigate this behavior, we can use advanced pre-513

trained language models to obtain better represen-514

tations (Liu et al., 2019; Lewis et al., 2020; Clark515

et al., 2020b; He et al., 2021), or apply debiasing516

methods to fine-tune language models (Schuster517

et al., 2019; Clark et al., 2019; Utama et al., 2020b;518

Utama et al., 2020a).519

There are lots of works that analyze and under-520

stand learned representations with probing tech-521

niques. For instance, Tenney et al. (2019), He-522

witt et al. (2021) and Whitney et al. (2021) con-523

sider classifiers as probes. Meanwhile, Mimno and524

Thompson (2017), Ethayarajh (2019) and Zhou and525

Srikumar (2021) inspect the representations from526

a geometric perspective. There are also efforts to527

understand pre-trained representations (Chen et al.,528

2021; Li et al., 2021) and fine-tuned ones (Zhou529

and Srikumar, 2022) respectively. In contrast, we530

focus our analysis on biased features and classifiers,531

and study the role that the quality of representations532

and the capability of classifiers play in the robust-533

ness of models respectively.534

6 Conclusion 535

In this work, we conduct an empirical study on how 536

the robustness of language models is affected by 537

encoders and classifiers, respectively. 538

On the one hand, we show that the low robust- 539

ness of language models is not primarily due to 540

representations not being easily separable. i) We 541

find that several excellent models provide linearly 542

separable representations, which suggests that clas- 543

sifiers limit the performance of models. ii) We 544

find that the significantly high similarity between 545

representations with opposite semantics from in- 546

distribution and out-of-distribution datasets is a 547

reason for the low robustness. 548

On the other hand, we show the relative role of 549

representations and classifiers in the low robust- 550

ness of language models. i) We find that debiasing 551

methods do not always improve the quality of rep- 552

resentations but rather improve the performance of 553

models with optimal classifiers. ii) We find that the 554

robustness of models depends not only on the low 555

quality of representations, but also on the capabil- 556

ity of classifiers, and their ratios vary for different 557

architectures and fine-tuning processes. 558

Finally, we hope that the insights obtained from 559

the empirical analysis will be beneficial to the com- 560

munity, allowing them to pay more attention to the 561

important roles of classifiers for models and design 562

better solutions to alleviate shortcut learning and 563

improve the robustness of PLMs in NLU tasks. 564
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Limitations565

Despite our findings that both representations and566

classifiers affect the robustness of models, we are567

not successful in making use of that to further im-568

prove the understanding of models for the language.569

As a result, we plan to further research advanced570

methods that are capable of optimizing encoders571

and classifiers, respectively. Furthermore, the de-572

signed experiments in our analysis focus only on573

the NLI task in NLU tasks. Given the similarity574

between the NLU tasks, it may be possible to ex-575

trapolate the corresponding findings to other NLU576

tasks. In the future, we will consider the following577

NLU tasks and datasets: IMDB (Maas et al., 2011)578

/ Yelp (Zhang et al., 2015) for the sentiment clas-579

sification task; QQP (Iyer et al., 2017) / TwitterP-580

PDB(TPPDB) (Lan et al., 2017) for the paraphrase581

identification task; FEVER (Thorne et al., 2018) /582

FeverSymmetric (Schuster et al., 2019) for the fact583

verification task.584

Ethics Statement585

This paper does not raise ethical concerns. This586

study does not involve any human subjects, prac-587

tices to data set releases, potentially harmful in-588

sights, discrimination/bias/fairness concerns and589

privacy and security issues.590
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A Implementation Details889

Only-bias Model The only-bias model is trained890

on random 2,000 of examples for 3 epochs. We use891

AdamW optimizer with the default learning rate892

5∗10−5, where the betas are set as [0.9, 0.999] and893

the L2 weight decay is set to 0.01. The batch size894

is set to 32, and the warmup ratio is set to 0.1.895

Main Model The hidden dimension of the clas-896

sifiers is the same as the output of encoders (i.e.,897

base version: 768; large version: 1024). The acti-898

vation functions of the classifiers are the same as899

the setup of the Huggingface Transformers (i.e.,900

Tanh or GELU (Hendrycks and Gimpel, 2016)):901

i) BERT, BART, and RoBERTa are Tanh; ii) De-902

BERTa and ELECTRA are GELU. The parameters903

of PLMs are shown as Table 5.904

Retrain Classifiers with or without Debiasing905

Methods The parameters of the classifier are ini-906

tialized by a normal distribution with the mean of907

0.0 and the variance of 0.02. We use AdamW opti-908

mizer with the default learning rate 5∗10−5, where909

the betas are set to [0.9, 0.999] and the L2 weight910

decay is set to 0.01. The batch size is set to 32911

and the warmup ratio is set to 0.1. We retrain the912

classifiers for 3 epochs.913

Models Parameters

BERTbase 110M
BERTlarge 340M

RoBERTabase 125M
RoBERTalarge 355M

DeBERTabase 134M
DeBERTalarge 390M

BARTdistill 356M
BARTlarge 406M

ELECTRAbase 110M
ELECTRAlarge 335M

Table 5: The parameters of pre-trained language models.

B Other Results of Visualization914

Figures 5 and 6 show the other visualization results915

for [CLS] and [MEAN], respectively.916

C Similarity between [CLS] and [MEAN]917

To explore how [CLS] and [MEAN] are related in918

terms of robustness, we compute the cosine simi-919

larity between [CLS] and [MEAN] on MNLI and 920

HANS, respectively. Table 6 summarizes the re- 921

sults. We compare the change in similarity from 922

base models to large ones and discover that the 923

changes in similarity have different trends. When 924

the trend of the change in similarity increases, we 925

suppose that the model is likely to learn similar 926

information. On the contrary, the model is likely 927

to learn different information. Based on this obser- 928

vation, we conjecture that it is possible to improve 929

the robustness of models by figuring out how the 930

amount of information learned affects performance 931

and introducing the information from [MEAN] as 932

supervised signals while fine-tuning. Verifying or 933

rejecting this conjecture requires further study. 934

MNLI HANS

Models Similarity Acc Similarity Acc

BERTbase 0.7683 84.25 0.7441 65.01
BERTlarge 0.6364 86.69 0.6146 68.77

RoBERTabase 0.8224 88.10 0.7663 69.53
RoBERTalarge 0.9845 90.60 0.9914 73.73

DeBERTabase 0.5718 88.75 0.5690 76.61
DeBERTalarge 0.3362 91.28 0.2371 78.07

BARTdistill 0.6375 89.56 0.6903 67.37
BARTlarge 0.5989 90.16 0.6433 72.88

ELECTRAbase 0.5188 88.77 0.6048 76.84
ELECTRAlarge 0.8461 90.47 0.9317 78.21

Table 6: The cosine similarity between [CLS] and
[MEAN] and corresponding accuracy from selected pre-
trained language models on MNLI and HANS.

MNLI HANS

Models [CLS] [MEAN] [CLS] [MEAN]

BERTbase 84.25 84.17 65.01 65.20
RoBERTabase 88.10 87.94 69.53 70.89
DeBERTabase 88.75 88.89 76.61 78.12
BARTdistill 89.56 88.86 67.37 63.20

ELECTRAbase 88.77 88.47 76.84 76.21

BERTlarge 86.69 85.35 68.77 67.57
RoBERTalarge 90.60 90.52 73.73 74.82
DeBERTalarge 91.28 91.34 78.07 78.54
BARTlarge 90.16 88.95 71.88 71.34

ELECTRAlarge 90.47 90.50 78.21 78.16

Table 7: The results of [CLS] and [MEAN] for MNLI
and HANS.

D Results of HANS in detail 935

Table 10 shows the results of HANS in detail. 936
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(a) [CLS] in MNLI (b) [CLS] in HANS

Figure 5: The t-SNE visualization result of [CLS] embeddings from different pre-trained language models on MNLI
and HANS. The words above figures are the selected model and corresponding accuracy.

Learning Rate

Models 1e-5 2e-5 3e-5 4e-5 5e-5

BERT 84.19 84.40 84.54 84.25 84.08
BERT-ReW 79.91 80.54 81.22 81.39 80.79
BERT-PoE 76.80 79.67 80.42 80.46 80.09

BERT-head 84.17 84.32 84.44 84.12 83.96
BERT-ReW-head 83.35 83.79 83.91 83.81 83.68
BERT-PoE-head 81.79 82.98 83.51 83.56 83.51

BERT-ReW-head-self 79.92 80.61 81.29 81.39 80.90
BERT-PoE-head-self 77.06 79.90 80.58 80.61 80.32

RoBERTa 87.64 87.72 87.68 87.57 87.13
RoBERTa-ReW 85.04 85.49 85.33 84.90 84.52
RoBERTa-PoE 84.20 84.63 84.80 84.66 84.07

RoBERTa-head 87.61 87.72 87.69 87.59 87.21
RoBERTa-ReW-head 87.34 87.58 87.60 87.50 87.17
RoBERTa-PoE-head 86.83 87.41 87.63 87.59 87.13

RoBERTa-ReW-head-self 85.18 85.41 85.29 84.77 84.44
RoBERTa-PoE-head-self 84.21 84.78 84.97 84.60 84.14

Table 8: The complete results for MNLI.

E Similarity between Cluster Centers937

Table 11 shows the complete similarity between938

cluster centers within MNLI or HANS and between939

MNLI and HANS.940

F Complete Results941

Tables 8 and 9 show the complete results of BERT942

and RoBERTa for MNLI and HANS, respectively.943

Learning Rate

Models 1e-5 2e-5 3e-5 4e-5 5e-5

BERT 53.29 59.26 62.52 63.75 64.87
BERT-ReW 59.04 62.45 65.18 65.61 65.19
BERT-PoE 58.08 60.41 61.05 61.07 60.31

BERT-head 53.62 60.68 63.52 64.88 65.88
BERT-ReW-head 60.25 66.67 68.48 68.16 69.10
BERT-PoE-head 64.19 68.97 70.30 69.68 70.56

BERT-ReW-head-self 59.35 62.70 65.17 65.70 65.31
BERT-PoE-head-self 58.01 60.12 60.95 61.02 60.10

RoBERTa 72.28 72.91 74.48 73.69 72.47
RoBERTa-ReW 75.66 77.69 77.74 76.40 75.90
RoBERTa-PoE 77.29 78.50 78.29 77.64 76.27

RoBERTa-head 72.76 73.25 74.44 73.73 72.51
RoBERTa-ReW-head 76.65 76.41 76.00 74.74 73.35
RoBERTa-PoE-head 77.17 77.04 75.95 74.49 73.03

RoBERTa-ReW-head-self 75.75 77.72 77.70 76.39 75.82
RoBERTa-PoE-head-self 77.04 78.37 78.17 77.72 76.19

Table 9: The complete results for HANS.
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(a) [MEAN] in MNLI (b) [MEAN] in HANS

Figure 6: The t-SNE visualization result of [MEAN] embeddings from different pre-trained language models on
MNLI and HANS. The words above figures are the selected model and corresponding accuracy.

Entailment Category Non-Entailment Category

Models HANS HANS-Entailment HANS-Not-Entailment Overlap Subsequence Constituent Overlap Subsequence Constituent

BERTbase 65.01 98.97 31.05 97.54 99.64 99.74 59.10 12.12 21.94
RoBERTabase 69.53 99.39 39.66 98.96 99.98 99.24 66.02 19.72 33.24
DeBERTabase 76.61 99.21 54.01 97.82 100.0 99.80 95.60 30.70 35.72
BARTdistill 67.37 99.25 35.49 98.32 99.72 99.70 69.18 16.36 20.94

ELECTRAbase 76.84 99.59 54.09 98.90 99.94 99.94 95.92 27.98 38.38

BERTlarge 68.77 94.85 42.69 88.22 97.60 98.74 74.90 22.62 30.56
RoBERTalarge 73.73 99.63 47.83 99.98 100.00 98.92 90.52 34.82 18.14
DeBERTalarge 78.07 99.86 56.27 99.74 100.00 99.84 95.00 33.28 40.54
BARTlarge 71.88 99.53 44.24 99.02 99.76 99.80 80.76 27.32 24.64

ELECTRAlarge 78.21 99.84 56.58 99.52 100.00 100.00 93.04 37.24 39.46

Table 10: The results of HANS in detail.

Models M-E|H-E M-E|H-N M-N|H-E M-N|H-N M-C|H-E M-C|H-N M-E|M-N M-E|M-C M-N|M-C H-E|H-N Acc

BERTbase 0.9376 0.8128 -0.0725 0.0470 -0.1906 0.2225 0.1744 -0.2330 0.1160 0.8597 65.01
RoBERTabase 0.9562 0.8714 0.1196 0.3833 -0.1000 0.3951 0.3640 -0.0354 0.2031 0.8131 69.53
DeBERTabase 0.9733 0.7196 0.1833 0.4205 -0.1263 0.4709 0.2963 -0.1289 0.1063 0.6921 76.61
BARTdistill 0.9138 0.8067 0.1695 0.2850 0.1791 0.4585 0.3210 0.1178 0.2796 0.9064 67.37

ELECTRAbase 0.9656 0.6550 -0.1790 -0.0977 -0.3068 0.3648 0.0150 -0.3798 -0.1271 0.6911 76.84
BERTlarge 0.9573 0.7859 0.0926 0.3132 0.1037 0.4651 0.2327 0.0019 0.2867 0.8511 68.77

RoBERTalarge 0.9286 0.7451 -0.1081 0.0972 -0.0796 0.4204 0.1048 -0.1673 -0.1164 0.6810 73.73
DeBERTalarge 0.9545 0.6721 0.1204 0.3466 -0.0546 0.5147 0.2880 -0.1025 0.0611 0.6912 78.07
BARTlarge 0.9145 0.7126 0.0698 0.1178 0.1050 0.4824 0.1828 -0.0084 0.0782 0.8467 72.88

ELECTRAlarge 0.9560 0.5650 -0.3017 -0.1654 -0.1751 0.5167 -0.1574 -0.2974 -0.2505 0.5891 78.21

Table 11: The similarity of [CLS] between two centers of selected embeddings and the accuracy on HANS. M-E
indicates MNLI-Entailment; M-N indicates MNLI-Neutral; M-C indicates MNLI-Contradiction; H-E indicates
HANS-Entailment; H-N indicates HANS-Not-Entailment.
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