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Abstract

Recent studies indicate that shortcut learning
behavior exists in language models, and thus
a number of mitigation methods are proposed,
such as advanced PLMs and debiasing meth-
ods. However, few studies have explored how
different factors affect the robustness of lan-
guage models. To bridge this gap, we study the
different PLMs and analyze the effect of repre-
sentations and classifiers on robustness using
probing techniques on the NLU tasks. First, we
find that the low robustness of language models
is not due to the inseparability of representa-
tions on the challenging dataset. Second, we
find that a potential reason for the difficulty in
improving the robustness of language models
is the significantly high similarity between the
representations with opposite semantics from
in-distribution and out-of-distribution. Third,
we find that debiasing methods are likely to
distort representations and merely improve per-
formance by better classifiers in some cases'.
Finally, we propose a probing tool to measure
the impact on the robustness of language mod-
els from representations and classifiers using
the decoupled training strategy with debiasing
methods. In addition, we conduct extensive
experiments on real-world datasets, suggesting
the effectiveness of the proposed methods.

1 Introduction

Pre-trained Language Models (PLMs), such as
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), have achieved state-of-the-art results for
Natural Language Understanding (NLU) tasks. De-
spite their successes, recent studies show the phe-
nomenon that PLMs are prone to learning super-
ficial surface patterns that are spuriously associ-
ated with the target label, and to make use of bi-
ases/artifacts from the dataset as shortcuts for pre-
diction (Gururangan et al., 2018; McCoy et al.,

'In this work, we denote the representation as the output

of PLMs and classifier as the several fully connected layers
that are used to serve the classification purpose.

2019; Utama et al., 2020b), which is defined as
shortcut learning (Geirhos et al., 2020). For a com-
mon NLU task, Natural Language Inference (NLI),
the shortcut learning behavior is defined as that
the model achieves high accuracy only by using
specific words but not understanding the language
(Naik et al., 2018; Sanchez et al., 2018; Du et al.,
2021). As aresult, the models perform poorly on
out-of-distribution (OOD) examples.

The quality of representations is widely consid-
ered to be the key reason for the shortcut learning
and poor generalization ability of the NLU models.
Because of this, there is a large body of literature
that analyzes and understands the learned repre-
sentation (Perone et al., 2018; Krasnowska-Kiera$
and Wréblewska, 2019; Pruksachatkun et al., 2020;
Mendelson and Belinkov, 2021). Unlike previous
work, we intend to answer the following research
questions: 1) Whether the low robustness of lan-
guage models is primarily due to representations
not being easily separable? 2) What is the relative
role of the representation and the classifier in the
low robustness of language models?

In this work, we apply the t-SNE visualization
technique and DIRECTPROBE (Zhou and Srikumar,
2021) probing technique to representations that are
from five PLMs: BERT, RoBERTa, BART (Lewis
et al., 2020), ELECTRA (Clark et al., 2020b), and
DeBERTa (He et al., 2021). Meanwhile, we present
anew probing strategy based on debiasing methods.
Based on the above techniques and strategies, our
findings on the robustness of language models are
briefly described below.

To begin with, we visualize the representations
of the above five pre-trained language models. We
find that not only [CLS] but also [MEAN] em-
beddings form clearer boundaries between repre-
sentations of different labels, despite only [CLS]
embeddings are fed into the classifiers (§4.1).

Then, we investigate the geometric structure of
representations. Via DIRECTPROBE probing tech-



nique, we obtain clusters with only the same label
representations in each cluster. We find that the
number of clusters is equal to the number of la-
bel categories in most cases, which means that the
representations are linearly separable (§4.2).

Furthermore, we further study the properties of
representations by computing the similarity be-
tween the clusters with opposite semantics on
MNLI and HANS. We find that a possible reason
why it is not easy to improve the robustness of
models is that the representations with opposite
semantic labels are too similar (§4.3).

Finally, we investigate the effect of encoders and
classifiers on the robustness of language models
respectively. Using debiasing methods as a prob-
ing tool, we find that both the representation and
the classifier of the models play a significant role
in the shortcut learning behavior for the NLI task.
Furthermore, we find that debiasing methods do
not always improve the quality of representations.
Instead, they only improve performance by opti-
mizing the classifiers in some cases (§4.4).

2 Preliminaries

In this work, we probe the representations and clas-
sifiers of PLMs after fine-tuning. To this end, we
briefly introduce two techniques that we use in our
analyses: the probing method and the ensemble-
based debiasing framework.

2.1 Probing Method

Normally, trained classifiers are used as probes to
understand the quality of the information encoded
in the representation, which are trained with the
encoders frozen (Hewitt et al., 2021; Whitney et al.,
2021; Belinkov, 2021). However, the classifier
probes focus only on the performance of the target
task and cannot clarify the representation in detail
(Zhou and Srikumar, 2022). To this end, we apply
a probing technique named DIRECTPROBE (Zhou
and Srikumar, 2021) instead of classifier probes. It
can provide a fine-grained analysis of the represen-
tation from a geometric perspective.

The representation in the form of embeddings is
fed into DIRECTPROBE, and the number of clusters
is returned. These clusters satisfy the condition
that the example points contained in a cluster must
have the same label and that there are no overlaps
between any two clusters (that is, there exists a
separator between the two sets of example points).
We can learn about various linguistic attributes of

the representation by measuring the properties of
the corresponding clusters. In this work, we focus
on an important property: the number of clusters.

Number of Clusters The number of clusters can
quantify the linear separability of the representation
for a special task. In particular, when the number of
clusters equals the number of label categories, the
embeddings of examples with the same label are
close enough in the semantic representation space.
In this ideal case, the models can achieve perfect
performance with a simple linear classifier. In con-
trast, when the number of clusters is more than
the number of label categories, the example points
with the same label are grouped into at least two
clusters. This suggests a complex geometric struc-
ture of representations, and a complex classifier is
needed to achieve desirable performance.

2.2 Ensemble-based Debiasing Framework

The ensemble-based debiasing framework (EBD)
(Xiong et al., 2021) is generally used to mitigate
the shortcut learning behavior of the NLU mod-
els. This framework has the advantage that it is a
model-agnostic debiasing framework, which makes
it possible to debias models adaptively. EBD frame-
work consists of bias-only models and debiasing
methods. Bias-only models are used to make the
main models perform debiasing training by adjust-
ing the learning target. Debiasing methods provide
strategies on how to debias the main models in prac-
tice. The EBD framework is commonly formalized
as a two-stage method (Clark et al., 2019; Sanh
et al., 2021). In the first stage, the bias-only model
is trained to recognize simple and hard examples.
In the second stage, the main models are trained as
an ensemble with the bias-only model according to
the selected debiasing methods.

2.2.1 Bias-only Model

Recently, several works in the literature have pro-
posed exploring bias-only models to improve the
performance of the EBD framework. For exam-
ple, Utama et al., 2020b, Sanh et al., 2021, and
Clark et al., 2020a try to reduce the need for a prior
knowledge on bias or shortcut. In these works, they
obtain bias-only models with two different strate-
gies: 1) training a copy of the main model with
a small random subset of training examples for a
few epochs; and ii) using a shallow or small model
with limited capacity. In our work, we take the first
strategy, and more details are given in Appendix A.



In the following, we describe the workflow of
bias-only models. For clarity, we denote the bias-
only model by f;. Given an example (¢, y") in
the training dataset, we denote the output of f;
as fp (:ﬂ) = p,'. Probability p,° can quantify
how much the model learns about shortcut features
from example (z*, ) (i.e., how likely this example
contains biases). Specifically, the extent to which
models learn shortcut features can be evaluated by
pp(“©) which denotes the probability of p;’ on the
label 4/, where c is the index of the correct category
in the label y'. For example, when ("9 is closer
to 1 (i.e., the bias-only model is more confident
about the example z' on the label %), the model
learns more potentially shortcut features. Instead,
when p;,(“) is closer to 0, the bias-only model is
more unconfident about the example 2° on the label
y'. As such, the example 2 is likely to be a hard
example to which the model is supposed to pay
more attention during training.

2.2.2 Debiasing Method

We first denote the main model by f; parameter-
ized by 6,4, and then use the bias-only model f;
obtained in §2.2.1 to perform debiasing training on
fa- In this work, we mainly investigate two com-
mon model-agnostic debiasing methods: sample
re-weighting (Schuster et al., 2019) and product-
of-experts (Clark et al., 2019; Karimi Mahabadi
et al., 2020). In the following, we describe the
implementation details of these two methods.

Example Re-weighting Example re-weighting
is a simple yet effective debiasing method. It can
be briefly summarized as re-weighting the impor-
tance of a given training example (z°,y’) by di-
rectly assigning a weight to the example (', 3/%).
The weight is formalized as 1 — pl()l’c). Thus, the
individual loss of the example (2%, 4*) for the pa-
rameters 6, is defined as follows:

L(0q) = — <1 - Pb(i’c)> y" - 1og pa,

where py is the softmax output of the main
model f;. Here, we regard training samples with
high probability by the bias-only model as bi-
ased/shortcut samples. When the bias-only model
assigns a high probability to p, (), the contribution
of a training example to £ (64) is reduced.

Product-of-Experts In this method, the main
model (i.e., a debiased model) is trained in an en-
semble with a bias-only model. Specifically, the

softmax outputs of the main model f; and the
bias-only model f;, are combined to form new pre-
dictions. Then they are used to calculate the new
loss while optimizing the parameters ;. The indi-
vidual loss of the example (2%, y*) for the parame-
ters 0, is defined as follows:

L (0y) = —y' - log softmaz (log pg + log py).

During training with debiasing methods, the pa-
rameters of the bias-only model f; are frozen to
lower the importance of biased examples in train-
ing loss, and only the parameters of the main model
fa are optimized. During the inference time, only
the prediction probability of f; is used.

3 Experimental Setup
3.1 Tasks & Datasets

In this work, we focus on a common NLU task:
Natural Language Inference (NLI), the model of
which is presented with a pair of sentences and
asked to return the relationship between their mean-
ings (Williams et al., 2018). A pair of sentences
contains a premise sentence and a hypothesis sen-
tence. The relationship between their meanings is
one label of entailment, neutral, and contradiction.

MNLI MNLI (Williams et al., 2018) is divided
into training dataset, matched development dataset,
and mismatched development set. The training
dataset and the matched development dataset are
derived from the same five genres, and the mis-
matched development dataset are derived from the
other five genres. Typically, we first use the train-
ing dataset to train an NLU model, which consists
of 392,702 instances. Then, we use the matched
development dataset to choose an optimal NLU
model, which consists of 9,815 instances.

HANS HANS (McCoy et al., 2019) has been
proposed to evaluate whether models have learned
statistical patterns or semantic understanding and
reasoning. It focuses on three heuristics: the lexical
overlap heuristic, the subsequence heuristic, and
the constituent heuristic. HANS consists of 30,000
synthetic instances, and distributes 10,000 ones to
each of the heuristics. Note that HANS is only used
to evaluate the models and not to train the models
or adjust the hyperparameters.

3.2 NLU Models

We conduct the empirical study on five differ-
ent kinds of pre-trained model: BERT, RoBERTa,
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Figure 1: The t-SNE visualization result of [CLS] embeddings from different pre-trained language models on MNLI
and HANS. The words above figures are the selected model and corresponding accuracy.

BART, ELECTRA, and DeBERTa. These mod-
els are used as encoders for the NLU models,
which can provide contextual word embeddings.
We use the corresponding pre-trained models and
fine-tuned models from Huggingface Transform-
ers”. The input fed into the encoders of the NLU
models is a pair of concatenated premise sentences
and hypothesis sentences, which are separated by
a special [SEP] token. Then, we obtain sentence
pair representations through these models, which
are the [CLS] embeddings from encoders. These
representations are fed into the classification head
(that is, the classifier) of the NLU models. Here,
the classification head takes a simple architecture,
two linear layers with the activation function.

3.3 Implementation Details

For all pre-trained models, we fine-tune the models
without debiasing methods and with the example
re-weighting debiasing method for 3 epochs. We
find that the models converge slowly when fine-
tuning the models with the product-of-experts de-
biasing method. Thus, we follow He et al. (2019)
to fine-tune longer, i.e., 6 epochs. We use AdamW
optimizer (Loshchilov and Hutter, 2019) with the
default learning rate 5 * 10~°, where the betas are
set as [0.9, 0.999] and the L2 weight decay is set
to 0.01. We set the batch size to 32 and warmup
ratio to 0.1. All experiments are run with 3 random
seeds and the average values are reported, which
are completed on the work station with 2 Nvidia
2080Ti GPUs.

Zhttps://huggingface.co/models

4 Experimental Analysis

In this section, we first use the visualization tech-
nique to investigate the separability of representa-
tions (§4.1). Then we investigate the linear sep-
arability of representations using DIRECTPROBE
(§4.2). Furthermore, we propose an explanation
for the difficulty in improving robustness by com-
puting the similarity of representations (§4.3). Fi-
nally, we analyze the effect of representations and
classifiers on robustness by considering debiasing
methods as a probing tool (§4.4).

4.1 Visualization of Representations

To investigate the semantic representation space
learned by the model, we extract embeddings
of the special classification token [CLS] in the
final hidden state and visualize them using t-
SNE (Van der Maaten and Hinton, 2008). Fig-
ures 1(a) and 1(b) show the visualization results
for MNLI and HANS, respectively. We show
only the results of BERT;ge, ROBERTa g6,
DeBERTay,,5e and ELECTRA 54¢. Appendix B
includes the results for more models. Based on
the results, we find that the better performance the
model achieves, the clearer the boundaries the rep-
resentation forms. We believe that this is the reason
why high performance is achieved with only a sim-
ple two-layer MLP network as the classifier.

In addition, we visualize the mean embeddings
of all tokens in the final hidden state, which are
abbreviated as [MEAN]. Note that the models are
not trained with [MEAN]. The results of MNLI and
HANS are shown in Figures 2(a) and 2(b), respec-
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Figure 2: The t-SNE visualization result of [MEAN] embeddings from different pre-trained language models on
MNLI and HANS. The words above figures are the selected model and corresponding accuracy with [MEAN].

tively. Similarly, we show the results for more mod-
els in Appendix B. We observe that the [MEAN]
embeddings can also form clearer boundaries as
the models achieve better performance, despite the
[CLS] embeddings are fed into classifiers. Mean-
while, we freeze the encoders of the models trained
with [CLS] and feed [MEAN] into the classifiers,
the performance of which is close to the original
one. Finally, we show the similarity between [CLS]
and [MEAN] in Appendix C.

4.2 Linear Separability of Representations

In Figure 1(b), we discover the gap of improve-
ment between the visualization effect and the per-
formance, which may be due to the limitations of
visualization technology. This leads us to introduce
another method to quantify the quality of represen-
tations. Therefore, we apply a probing technique
based on the idea of clustering—DIRECTPROBE to
study the geometric structure of representations.
We select five common pre-trained models to
examine the geometric structure of representations
after fine-tuning. Table 1 shows the results that
contain base and large versions corresponding to
selected models. We discover that the better per-
formance the model achieves, the fewer clusters
the representation is divided into, i.e., the represen-
tation has higher linear separability. In particular,
there are some models whose representations are
divided into two and three clusters on HANS and
MNLLI, respectively (i.e., equaling the number of
label categories), which suggests that all examples
with the same label are in one cluster and there are
no overlaps between each cluster. However, these

MNLI HANS

Models #clusters Acc  #clusters  Acc
BERT}.se 27 84.25 4 65.01
RoBERTay a6 5 88.10 3 69.53
DeBERTap 60 4 88.75 2 76.61
BART gistin 3 89.56 2 67.37
ELECTRApbase 4 88.77 2 76.84
BERT jarge 5 86.69 2 68.77
RoBERTayarge 3 90.60 2 73.73
DeBERTajarge 3 91.28 2 78.07
BART arge 3 90.16 2 72.88
ELECTRA arge 3 90.47 2 78.21

Table 1: The number of clusters and corresponding ac-
curacy from selected pre-trained language models on
MNLI and HANS. There is an around 20% generaliza-
tion gap between MNLI and HANS.

models achieve about 90% accuracy on MNLI but
only no more than 80% accuracy on HANS, which
is not consistent with the linear separability of the
representation. Thus, we assume that the low ro-
bustness of the NLU models is not due to the
inseparability of representations.

4.3 Similarity of Representations

In §4.1 and §4.2, we analyze representations with
the t-SNE and DIRECTPROBE technique, respec-
tively. However, what puzzles us is why the rep-
resentation is linearly separable, while the perfor-
mance of PLMs is not perfect. To study that, we
investigate the cosine similarity of representations
to find the reason for the flawed performance. In
practice, we investigate the similarity between clus-
ter centers within MNLI or HANS and between



Models M-EH-E M-EHN HEHN Acc
BERTpase 0.9376  0.8128  0.8597  65.01
RoBERTaye 09562  0.8714 08131  69.53
DeBERTape 09733 07196  0.6921  76.61
BARTgisin 09138  0.8067  0.9064 67.37
ELECTRApuwe 09656  0.6550  0.6911  76.84
BERT jarge 0.9573 07859  0.8511 68.77
ROBERTaj,ge 09286 07451  0.6810  73.73
DeBERTay,ge 09545 06721 06912 78.07
BART e 09145 07126  0.8467 72.88
ELECTRApe 09560  0.5650  0.5891  78.21

Table 2: The similarity of [CLS] between two centers
of selected embeddings and the accuracy on HANS.
M-E indicates MNLI-Entailment; H-E indicates HANS-
Entailment; H-N indicates HANS-Not-Entailment. It
suggests that the representations with opposite seman-
tics are similar in the semantic representation space.

MNLI and HANS. Each cluster includes all [CLS]
embeddings with the same label on one dataset.
The cluster center is defined as the average of all
[CLS] embeddings in the cluster.

First, we compute the cosine similarity between
MNLI-Entailment and HANS-Entailment/HANS-
Not-Entailment as shown in Table 2. Ideally, the
cosine similarity between MNLI-Entailment and
HANS-Entailment is close to +1, and the cosine
similarity between MNLI-Entailment and HANS-
Not-Entailment is close to -1. However, the lat-
ter is not supported by our experiments, as shown
in Table 2. It is even larger than +0.5, suggest-
ing that the representations of HANS-Entailment
and HANS-Not-Entailment are similar to those
of MNLI-Entailment in the semantic representa-
tion space. Then, we compute the cosine simi-
larity between HANS-Entailment and HANS-Not-
Entailment as Table 2 shows, which should be
close to -1. In fact, it is large than +0.5, suggest-
ing that the representations of HANS-Entailment
and HANS-Not-Entailment are similar, despite the
representations from most of the selected models
are linearly separable as Table 1 shows. These
results mean that the encoders fail to distinguish
Not-Entailment examples where the heuristics fail
from Entailment examples well. In Appendix D,
the gap of performance between Entailment and
Not-Entailment on HANS confirm that.

Motivated by the above finding, we compute
the Spearman correlation coefficient between sim-
ilarity and accuracy and find that the accuracy is
significantly inversely associated with the similar-
ity between MNLI/HANS-Entailment and HANS-
Not-Entailment. The correlation coefficients are

-0.8788 and -0.8909 with a p-value less than 0.05.
We suppose that the significant similarity in se-
mantic representation between MNLI/HANS-
Entailment and HANS-Not-Entailment is the
main reason why it is difficult to improve the per-
formance on HANS. Finally, we show the other
similarity between cluster centers with different
labels in Appendix E.

4.4 Analysis of Debiasing Methods

Typically, the poor performance of models on OOD
examples is attributed to the fact that models only
capture shortcut features (i.e., spurious features)
but not robustness features (i.e. task-relevant fea-
tures). Consequently, many debiasing methods are
proposed to make models pay more attention to
robustness features to improve the performance on
OQOD examples. In this work, we make detailed
analyses of the impact of debiasing methods on
fine-tuning models. For pre-trained language mod-
els, we select BERT and RoBERTa.

Based on the fact that the NLI task is consid-
ered as a classification task, the models for the NLI
task can be divided into encoders and classifiers.
Generally speaking, the encoder is from PLMs,
and the classifier is the MLP network. Based on
this architecture of the NLI models, we intend to
study how debiasing methods work on encoders
and classifiers, respectively. In practice, we apply
a two-phase training strategy. Specifically, we first
fine-tune models consisting of encoders and classi-
fiers, then fix encoders and only retrain classifiers.

Figures 3 and 4 show the results on MNLI and
HANS for BERT and RoBERTa, respectively. We
take the learning rate from 1 % 1075 to 5 * 107°
to investigate the effect of the learning rate on the
convergence of models. We discover that by fix-
ing the encoder of fine-tuned models without de-
biasing methods (i.e. raw fine-tuned models) and
only retraining the classifier with debiasing meth-
ods, the performance of models is improved on
HANS for BERT and RoBERTa. Especially for
BERT, the retraining strategy with debiasing meth-
ods achieves better performance than fine-tuning
the whole model using debiasing methods both on
MNLI and on HANS. Thus, we assume that debias-
ing methods distort the representation to some
degree for BERT, which is similar to the finding of
Mendelson and Belinkov (2021). Meanwhile, this
strategy mitigates the degradation of performance
on MNLI and further improves the performance
on HANS. Noting that retraining the classifiers of



Learning Rate

Learning Rate

Models le-5 2e-5 3e-5 4e5 5Se-5 Models le-5  2e-5 3e-5 4e5 5Se-5
BERT-ReW 7991 80.54 81.22 81.39 80.79 BERT-ReW 59.04 6245 65.18 65.61 65.19
BERT-ReW-head-self 79.92 80.61 81.29 81.39 80.90 BERT-ReW-head-self 59.35 62770 65.17 65.70 65.31
BERT-PoE 76.80 79.67 80.42 80.46 80.09 BERT-PoE 58.08 60.41 61.05 61.07 60.31
BERT-PoE-head-self 77.06 79.90 80.58 80.61 80.32 BERT-PoE-head-self 58.01 60.12 6095 61.02 60.10
RoBERTa-ReW 85.04 8549 8533 8490 84.52 RoBERTa-ReW 75.66 77.69 77.74 76.40 75.90
RoBERTa-ReW-head-self 85.18 85.41 8529 84.77 84.44 RoBERTa-ReW-head-self 75.75 77.72 77.70 76.39 75.82
RoBERTa-PoE 8420 84.63 84.80 84.66 84.07 RoBERTa-PoE 7729 7850 78.29 77.64 7627
ROBERTa-PoE-head-self 84.21 84.78 84.97 84.60 84.14 RoBERTa-PoE-head-self 77.04 7837 78.17 77.72 76.19

Table 3: The results of the model trained with the debias-
ing method and retraining the classifier of that with the
same debiasing method for MNLI. There is no obvious
change on performance before and after retraining.
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Table 4: The results of the model trained with the debias-
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same debiasing method for HANS. There is no obvious
change on performance before and after retraining.
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Figure 3: (a) and (b) indicate the results of BERT on MNLI and HANS, respectively. The lines with dots: fine-
tune models with or without debiasing methods. The lines with triangles: retrain classifiers using encoders from

fine-tuned models with or without debiasing methods.

raw fine-tuned models without debiasing methods
does not achieve an obvious effect on the perfor-
mance, we find classifiers play a significant role
in the shortcut learning behavior of PLMs. We
design the comparative experiments to further clar-
ify whether the performance improvement derives
from the decoupled training strategy. Tables 3 and
4 show the results for MNLI and HANS, respec-
tively. We discover that the decoupled training
strategy also does not achieve an obvious effect for
fine-tuned models with debiasing methods. This
suggests that the performance improvement is de-
rived from not the decoupled training strategy but
the classifiers optimized by debiasing methods, and
that the models fine-tuned with debiasing methods
are not limited in performance by the classifiers.

Based on the above results, we suppose that a

decoupled retraining strategy with debiasing meth-
ods can be considered as a probing tool, which is
used to measure the shortcut learning behavior of
PLMs from representations or classifiers. The per-
formance gap between the raw fine-tuned model
and the model with the classifier retrained using
the debiasing methods measures the extent of short-
cut learning behavior from classifiers. The gap of
the performance between the model with the classi-
fier retrained using the debiasing methods and the
whole fine-tuned model with the debiasing methods
measures the extent of shortcut learning behavior
from representations. Through this probing tool,
we can better understand how representations and
classifiers affect the robustness of models.
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Figure 4: (a) and (b) indicate the results of ROBERTa on MNLI and HANS, respectively. The lines with dots:
fine-tune models with or without debiasing methods. The lines with triangles: retrain classifiers using encoders
from fine-tuned models with or without debiasing methods.

5 Related Work

Recently, the shortcut learning behavior for the
language task is revealed in previous work (Niven
and Kao, 2019; Mudrakarta et al., 2018; Geirhos
et al., 2020). For the NLI task, the shortcut learn-
ing behavior in models is often investigated using
challenge datasets (Jia and Liang, 2017; Naik et al.,
2018; Glockner et al., 2018; McCoy et al., 2019).
To mitigate this behavior, we can use advanced pre-
trained language models to obtain better represen-
tations (Liu et al., 2019; Lewis et al., 2020; Clark
et al., 2020b; He et al., 2021), or apply debiasing
methods to fine-tune language models (Schuster
et al., 2019; Clark et al., 2019; Utama et al., 2020b;
Utama et al., 2020a).

There are lots of works that analyze and under-
stand learned representations with probing tech-
niques. For instance, Tenney et al. (2019), He-
witt et al. (2021) and Whitney et al. (2021) con-
sider classifiers as probes. Meanwhile, Mimno and
Thompson (2017), Ethayarajh (2019) and Zhou and
Srikumar (2021) inspect the representations from
a geometric perspective. There are also efforts to
understand pre-trained representations (Chen et al.,
2021; Li et al., 2021) and fine-tuned ones (Zhou
and Srikumar, 2022) respectively. In contrast, we
focus our analysis on biased features and classifiers,
and study the role that the quality of representations
and the capability of classifiers play in the robust-
ness of models respectively.

6 Conclusion

In this work, we conduct an empirical study on how
the robustness of language models is affected by
encoders and classifiers, respectively.

On the one hand, we show that the low robust-
ness of language models is not primarily due to
representations not being easily separable. 1) We
find that several excellent models provide linearly
separable representations, which suggests that clas-
sifiers limit the performance of models. ii) We
find that the significantly high similarity between
representations with opposite semantics from in-
distribution and out-of-distribution datasets is a
reason for the low robustness.

On the other hand, we show the relative role of
representations and classifiers in the low robust-
ness of language models. 1) We find that debiasing
methods do not always improve the quality of rep-
resentations but rather improve the performance of
models with optimal classifiers. ii) We find that the
robustness of models depends not only on the low
quality of representations, but also on the capabil-
ity of classifiers, and their ratios vary for different
architectures and fine-tuning processes.

Finally, we hope that the insights obtained from
the empirical analysis will be beneficial to the com-
munity, allowing them to pay more attention to the
important roles of classifiers for models and design
better solutions to alleviate shortcut learning and
improve the robustness of PLMs in NLU tasks.



Limitations

Despite our findings that both representations and
classifiers affect the robustness of models, we are
not successful in making use of that to further im-
prove the understanding of models for the language.
As a result, we plan to further research advanced
methods that are capable of optimizing encoders
and classifiers, respectively. Furthermore, the de-
signed experiments in our analysis focus only on
the NLI task in NLU tasks. Given the similarity
between the NLU tasks, it may be possible to ex-
trapolate the corresponding findings to other NLU
tasks. In the future, we will consider the following
NLU tasks and datasets: IMDB (Maas et al., 2011)
/ Yelp (Zhang et al., 2015) for the sentiment clas-
sification task; QQP (Iyer et al., 2017) / TwitterP-
PDB(TPPDB) (Lan et al., 2017) for the paraphrase
identification task; FEVER (Thorne et al., 2018) /
FeverSymmetric (Schuster et al., 2019) for the fact
verification task.

Ethics Statement

This paper does not raise ethical concerns. This
study does not involve any human subjects, prac-
tices to data set releases, potentially harmful in-
sights, discrimination/bias/fairness concerns and
privacy and security issues.
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A Implementation Details

Only-bias Model The only-bias model is trained
on random 2,000 of examples for 3 epochs. We use
AdamW optimizer with the default learning rate
5% 107°, where the betas are set as [0.9, 0.999] and
the L2 weight decay is set to 0.01. The batch size
is set to 32, and the warmup ratio is set to 0.1.

Main Model The hidden dimension of the clas-
sifiers is the same as the output of encoders (i.e.,
base version: 768; large version: 1024). The acti-
vation functions of the classifiers are the same as
the setup of the Huggingface Transformers (i.e.,
Tanh or GELU (Hendrycks and Gimpel, 2016)):
1) BERT, BART, and RoBERTa are Tanh; ii) De-
BERTa and ELECTRA are GELU. The parameters
of PLMs are shown as Table 5.

Retrain Classifiers with or without Debiasing
Methods The parameters of the classifier are ini-
tialized by a normal distribution with the mean of
0.0 and the variance of 0.02. We use AdamW opti-
mizer with the default learning rate 5% 1075, where
the betas are set to [0.9, 0.999] and the L2 weight
decay is set to 0.01. The batch size is set to 32
and the warmup ratio is set to 0.1. We retrain the
classifiers for 3 epochs.

Models Parameters
BERT} 66 110M
BERT arge 340M

RoBERTay ¢ 125M
RoBERTayarge 355M
DeBERTay 6 134M
DeBERTa,rge 390M
BART gistinn 356M
BARTarge 406M
ELECTRA 6¢ 110M
ELECTRA arge 335M

Table 5: The parameters of pre-trained language models.

B Other Results of Visualization

Figures 5 and 6 show the other visualization results
for [CLS] and [MEAN], respectively.

C Similarity between [CLS] and [MEAN]

To explore how [CLS] and [MEAN] are related in
terms of robustness, we compute the cosine simi-

larity between [CLS] and [MEAN] on MNLI and
HANS, respectively. Table 6 summarizes the re-
sults. We compare the change in similarity from
base models to large ones and discover that the
changes in similarity have different trends. When
the trend of the change in similarity increases, we
suppose that the model is likely to learn similar
information. On the contrary, the model is likely
to learn different information. Based on this obser-
vation, we conjecture that it is possible to improve
the robustness of models by figuring out how the
amount of information learned affects performance
and introducing the information from [MEAN] as
supervised signals while fine-tuning. Verifying or
rejecting this conjecture requires further study.

MNLI HANS

Models Similarity Acc  Similarity  Acc
BERThase 0.7683  84.25  0.7441 65.01
BERTarge 0.6364  86.69 0.6146  68.77
RoBERTapage 0.8224  88.10 0.7663  69.53
RoBERTajarge 09845  90.60 0.9914  73.73
DeBERTapse 0.5718  88.75 0.5690  76.61
DeBERTajarge 0.3362 91.28 0.2371  78.07
BART gistin 0.6375  89.56  0.6903  67.37
BART jarge 0.5989  90.16  0.6433  72.88
ELECTRAyp,e 05188  88.77  0.6048  76.84
ELECTRA,ge 08461 9047 09317  78.21

Table 6: The cosine similarity between [CLS] and
[MEAN] and corresponding accuracy from selected pre-
trained language models on MNLI and HANS.

MNLI HANS

Models [CLS] [MEAN] [CLS] [MEAN]
BERT}ase 8425 8417 6501 6520
RoBERTap.e  88.10  87.94  69.53  70.89
DeBERTan.e 88.75  88.89  76.61  78.12
BARTuin  89.56  88.86  67.37  63.20
ELECTRAp.. 8877 8847 7684 7621
BERT},;e 8669 8535 6877  67.57
ROBERTaj,ee  90.60  90.52 7373 74.82
DeBERTaj,,e 9128 9134 7807  78.54
BARTjge  90.16 8895 7188 7134
ELECTRApe 9047 9050 7821  78.16

Table 7: The results of [CLS] and [MEAN] for MNLI
and HANS.

D Results of HANS in detail

Table 10 shows the results of HANS in detail.
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Figure 5: The t-SNE visualization result of [CLS] embeddings from different pre-trained language models on MNLI
and HANS. The words above figures are the selected model and corresponding accuracy.

Learning Rate

Models le-5 2e-5 3e-5 4e5 5Se-5
BERT 84.19 84.40 8454 8425 84.08
BERT-ReW 79.91 80.54 8122 8139 80.79
BERT-PoE 76.80 79.67 8042 80.46 80.09
BERT-head 84.17 8432 8444 8412 83.96
BERT-ReW-head 83.35 8379 8391 83.81 83.68
BERT-PoE-head 81.79 8298 8351 8356 83.51 Learning Rate
BERT-ReW-head-self ~ 79.92 80.61 8129 81.39 80.90 Models le-5 2e5 3e5 4e5  Se-5
BERT-PoE-head-self 77.06 7990 80.58 80.61 80.32 BERT 5329 5926 6252 63.75 64.87
RoBERTa 87.64 8772 87.68 87.57 87.13 BERT-ReW 59.04 6245 65.18 65.61 65.19
ROBERTa-ReW 8504 8549 8533 8490 8452 BERT-PoE 58.08 60.41 61.05 61.07 60.31
RoBERTa-PoE 84.20 84.63 84.80 84.66 84.07 BERT-head 33.62 60.68 63.52 64.88 65.88
RoBERTa-head 87.61 8772 87.69 87.59 87.21 BERT-ReW-head 60.25 66.67 6848 68.16 69.10
ROBERTa-ReW-head ~ 87.34 87.58 87.60 87.50 87.17 BERT-PoE-head 64.19 68.97 7030 69.68 7056
RoBERTa-PoE-head ~ 86.83 87.41 87.63 8759 87.13 BERT-ReW-head-self ~ 59.35 62.70 65.17 65.70 65.31
RoBERTa-ReW-head-self 85.18 8541 8529 8477 84.44 BERT-PoE-head-self  58.01 60.12 60.95 61.02 60.10
RoBERTa-PoE-head-self 84.21 84.78 84.97 84.60 84.14 ROBERTa 7228 7291 7448 73.69 72.47
ROBERTa-ReW 75.66 77.69 7774 76.40 75.90
Table 8: The complete results for MNLI. RoBERTa-PoE 7729 78.50 7829 7164 7627
RoBERTa-head 7276 7325 7444 7373 7251

RoBERTa-ReW-head 76.65 7641 76.00 74.74 73.35
RoBERTa-PoE-head 77.17 77.04 7595 7449 73.03

RoBERTa-ReW-head-self 75.75 77.72 77.70 7639 7582
Table 11 shows the complete similarity between ROBERTa-PoE-head-self ~ 77.04 7837 78.17 77.72 76.19

cluster centers within MNLI or HANS and between
MNLI and HANS.

E Similarity between Cluster Centers

Table 9: The complete results for HANS.

F Complete Results

Tables 8 and 9 show the complete results of BERT
and RoBERTa for MNLI and HANS, respectively.
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Figure 6: The t-SNE visualization result of [MEAN] embeddings from different pre-trained language models on
MNLI and HANS. The words above figures are the selected model and corresponding accuracy.

Entailment Category Non-Entailment Category
Models HANS HANS-Entailment HANS-Not-Entailment Overlap Subsequence Constituent Overlap Subsequence Constituent
BERThase 65.01 98.97 31.05 97.54 99.64 99.74 59.10 12.12 21.94
RoBERTapase  69.53 99.39 39.66 98.96 99.98 99.24 66.02 19.72 33.24
DeBERTap,se  76.61 99.21 54.01 97.82 100.0 99.80 95.60 30.70 35.72
BART gistint 67.37 99.25 35.49 98.32 99.72 99.70 69.18 16.36 20.94
ELECTRAp.e 76.84 99.59 54.09 98.90 99.94 99.94 95.92 27.98 38.38
BERT arge 68.77 94.85 42.69 88.22 97.60 98.74 74.90 22.62 30.56
RoBERTajage  73.73 99.63 47.83 99.98 100.00 98.92 90.52 34.82 18.14
DeBERTajge — 78.07 99.86 56.27 99.74 100.00 99.84 95.00 33.28 40.54
BARTarge 71.88 99.53 44.24 99.02 99.76 99.80 80.76 27.32 24.64
ELECTRAge 78.21 99.84 56.58 99.52 100.00 100.00 93.04 37.24 39.46

Table 10: The results of HANS in detail.

Models M-EH-E M-EH-N M-NH-E M-NH-N M-CH-E M-CH-N M-EIM-N M-EIM-C M-NIM-C H-EH-N  Acc

BERT}ase 0.9376 0.8128 -0.0725 0.0470 -0.1906 0.2225 0.1744 -0.2330 0.1160 0.8597  65.01
RoBERTap,ge 0.9562 0.8714 0.1196 0.3833 -0.1000 0.3951 0.3640 -0.0354 0.2031 0.8131  69.53
DeBERTap s 0.9733 0.7196 0.1833 0.4205 -0.1263 0.4709 0.2963 -0.1289 0.1063 0.6921  76.61

BARTgistin 0.9138 0.8067 0.1695 0.2850 0.1791 0.4585 0.3210 0.1178 0.2796 0.9064  67.37
ELECTRApze  0.9656 0.6550 -0.1790 -0.0977 -0.3068 0.3648 0.0150 -0.3798 -0.1271 0.6911  76.84

BERT 1arge 0.9573 0.7859 0.0926 0.3132 0.1037 0.4651 0.2327 0.0019 0.2867 0.8511  68.77
RoBERTay,ge 0.9286 0.7451 -0.1081 0.0972 -0.0796 0.4204 0.1048 -0.1673 -0.1164 0.6810  73.73
DeBERTaarge 0.9545 0.6721 0.1204 0.3466 -0.0546 0.5147 0.2880 -0.1025 0.0611 0.6912  78.07

BART arge 0.9145 0.7126 0.0698 0.1178 0.1050 0.4824 0.1828 -0.0084 0.0782 0.8467  72.88

ELECTRA|yg.  0.9560 0.5650 -0.3017 -0.1654 -0.1751 0.5167 -0.1574 -0.2974 -0.2505 0.5891  78.21

Table 11: The similarity of [CLS] between two centers of selected embeddings and the accuracy on HANS. M-E
indicates MNLI-Entailment; M-N indicates MNLI-Neutral; M-C indicates MNLI-Contradiction; H-E indicates
HANS-Entailment; H-N indicates HANS-Not-Entailment.
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