
Fast White-Box Adversarial Streaming Without a Random Oracle

Ying Feng 1 Aayush Jain 1 David P. Woodruff 1

Abstract
Recently, the question of adversarially robust
streaming, where the stream is allowed to depend
on the randomness of the streaming algorithm,
has gained a lot of attention. In this work, we con-
sider a strong white-box adversarial model (Ajtai
et al. PODS 2022), in which the adversary has
access to all past random coins and the parame-
ters used by the streaming algorithm. We focus
on the sparse recovery problem and extend our
result to other tasks such as distinct element esti-
mation and low-rank approximation of matrices
and tensors. The main drawback of previous work
is that it requires a random oracle, which is espe-
cially problematic in the streaming model since
the amount of randomness is counted in the space
complexity of a streaming algorithm. Also, the
previous work suffers from large update time. We
construct a near-optimal solution for the sparse re-
covery problem in white-box adversarial streams,
based on the subexponentially secure Learning
with Errors assumption. Importantly, our solu-
tion does not require a random oracle and has a
polylogarithmic per item processing time. We
also give results in a related white-box adversari-
ally robust distributed model. Our constructions
are based on homomorphic encryption schemes
satisfying very mild structural properties that are
currently satisfied by most known schemes.

1. Introduction
The streaming model of computation has emerged as an
increasingly popular paradigm for the analysis of massive
datasets, where the overwhelming size of the data places
restrictions on the memory, computation time, and other re-

1Department of Computer Science, Carnegie Mel-
lon University, Pittsburgh, PA, USA. Correspondence
to: Ying Feng <yingfeng@andrew.cmu.edu>, Aayush
Jain <aayushja@andrew.cmu.edu>, David P. Woodruff
<dwoodruf@cs.cmu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

sources available to the algorithm. In the streaming model,
the input data is implicitly defined through a stream of data
elements that sequentially arrive one-by-one. One can also
delete a previous occurrence of an item. An algorithm makes
one pass over the stream and uses limited space to approxi-
mate a desired function of the input. In the formalization of
Alon, Matias, and Szegedy (Alon et al., 1996), the data is
represented as an underlying n-dimensional vector that is
initialized to 0n, and then undergoes a sequence of additive
updates to its coordinates. The algorithm aims to optimize
the space and time to process these updates, while being
able to respond to queries about this underlying vector.

This model captures key resource requirements of algo-
rithms for many practical settings such as Internet routers
and traffic logs (Lall et al., 2006; Zhao et al., 2005;
Sung et al., 2006; Venkataraman et al., 2005; Cormode
& Muthukrishnan, 2005; Cormode & Garofalakis, 2008),
databases (Selinger et al., 1979; Dasu et al., 2002; Flajolet
& Nigel Martin, 1985; Lightstone, 2018; Shukla et al., 1996;
Brown et al., 2005), sensor networks (Hu et al., 2022; Gaber,
2007), financial transaction data (Almeida et al., 2023), and
scientific data streams (Chandrasekaran et al., 2003; Szalay
et al., 2002). See (Muthukrishnan, 2005) for an overview of
streaming algorithms and their applications.

A large body of work on streaming algorithms has been
designed for oblivious streams, for which the sequence of
updates may be chosen adversarially, but it is chosen inde-
pendently of the randomness of the streaming algorithm. Re-
cently, there is a growing body of work on robust streaming
algorithms in the black-box adversarial model (Ben-Eliezer
& Yogev, 2020; Ben-Eliezer et al., 2021; Hassidim et al.,
2020; Woodruff & Zhou, 2021; Alon et al., 2021; Kaplan
et al., 2021; Braverman et al., 2021; Menuhin & Naor, 2021;
Attias et al., 2021; Ben-Eliezer et al., 2022; Chakrabarti
et al., 2022), in which the adversary can monitor the out-
puts of the streaming algorithm and choose future stream
updates based on these outputs. While useful in a number
of applications, there are other settings where the adversary
may also have access to the internal state of the algorithm,
and this necessitates looking at a stronger adversarial model
known as the white-box adversarial streaming model.

1

Fast White-Box Adversarial Streaming Without a Random Oracle

1.1. White-box Adversarial Streaming Model

We consider the white-box adversarial streaming model
introduced in (Ajtai et al., 2022), where a sequence of stream
updates is chosen adaptively by an adversary who sees the
full internal state of the algorithm at all times, including
the parameters and the previous randomness used by the
algorithm. The interaction between an adversary and the
streaming algorithm is informally depicted as the following
game.

Consider a multi-round, two-player game between
StreamAlg, the streaming algorithm, and an adversary
A. Prior to the beginning of the game, fix a query function
f , which asks for a function of an underlying dataset that
will be implicitly defined by the stream. In each round:

1. A computes an update x for the stream, which depends
on all previous stream updates, all previous internal
states, and the randomness used by StreamAlg.

2. StreamAlg acquires a fresh batch of random bits, uses
x to update its data structures, and (if asked) outputs a
response to the query function f .

3. A observes the random bits, the internal state of
StreamAlg, and the response.

The goal of A is to make StreamAlg output an incorrect
query at some round during the game.

The white-box adversarial model captures characteristics of
many real-world attacks, where an adaptive adversary has
access to the entirety of the internal states of the system.
In comparison to the oblivious stream model or the black-
box adversarial model (Ben-Eliezer et al., 2021), this model
allows for richer adversarial scenarios.

For example, consider a distributed setting where a cen-
tralized server collects statistics of a database generated by
remote users. The server may send components of its in-
ternal state S to the remote users in order to optimize the
total communication over the network. The remote users
may use S in some process that generates downstream data.
Thus, future inputs depend on the internal state S of the
algorithm run by the central coordinator. In such settings,
the white-box robustness of the algorithms is crucial for op-
timal selection of query plans (Selinger et al., 1979), online
analytical processing (Shukla et al., 1996), data integra-
tion (Brown et al., 2005), and data warehousing (Dasu et al.,
2002).

Many persistent data structures provide the ability to quickly
access previous versions of information stored in a reposi-
tory shared across multiple collaborators. The internal per-
sistent data structures used to provide version control may
be accessible and thus visible to all users of the repository.
These users may then update the persistent data structure in

a manner that is not independent of previous states (Driscoll
et al., 1989; Fiat & Kaplan, 2003; Kaplan, 2004).

Dynamic algorithms often consider an adaptive adversary
who generates the updates upon seeing the entire data struc-
ture maintained by the algorithm during the execution (Chan,
2010; Chan & He, 2021; Roghani et al., 2022). For example,
(Wajc, 2020) assumes the entire state of the algorithm (in-
cluding the set of randomness) is available to the adversary
after each update, i.e., a white-box model.

Moreover, robust algorithms and adversarial attacks are im-
portant topics in machine learning (Szegedy et al., 2014;
Goodfellow et al., 2014), with a large body of recent litera-
ture focusing on adversarial robustness of machine learning
models against white-box attacks (Ilyas et al., 2018; Madry
et al., 2018; Schmidt et al., 2018; Tramèr et al., 2018; Cubuk
et al., 2018; Kurakin et al., 2017; Liu et al., 2017).

1.2. Prior Work in the White-Box Model

We aim to design white-box adversarially robust (WAR)
streaming algorithms with provable correctness guarantees
against such powerful adversaries. In general, it is difficult
to design non-trivial WAR algorithms, due to the fact that
many widely used space-saving techniques are subject to
attacks when all parameters and generated randomness of
the system are immediately revealed to the adversary. In the
streaming community, both (Ajtai et al., 2022) and (Feng &
Woodruff, 2023) explicitly study the white-box model for
data streams and suggest the use of cryptography in design-
ing WAR algorithms (see also (Ben-Eliezer et al., 2021) for
the use of cryptography for black box robustness). A similar
model to the white-box model has also been independently
developed in the cryptography community in the study of
property preserving hashing (Boyle et al., 2019).

In this work, the central problem we consider is k-sparse
recovery as follows:

Sparse Recovery: given an input vector x, if x contains at
most k non-zero entries, recover x. Otherwise, report

invalid input.

A primitive for sparse recovery in the white-box model can
be used for tasks such as distinct element estimation, low
rank approximation of matrices and tensors, and finding a
maximum matching (Ajtai et al., 2022; Feng & Woodruff,
2023). Sparse recovery is also itself a critical data acqui-
sition and processing problem that arises in signal and im-
age processing, machine learning, data networking, and
medicine, see (Ajtai et al., 2022; Feng & Woodruff, 2023)
and the references therein.

We note that a weaker definition of sparse recovery assumes
that the input vector x is promised to be k-sparse, and only
under this promise recovers x. If the input is not k-sparse,

2

Fast White-Box Adversarial Streaming Without a Random Oracle

the algorithm can output any vector. This problem can in
fact be solved deterministically (and thus also in the white-
box model) with low memory (see, e.g., (Berinde et al.,
2008), for a version with fast update time, though other
simpler schemes based on MDS codes exist). The drawback
under this weaker definition though is that, without knowing
the sparsity of the input ahead of time, a user of the algo-
rithm cannot tell whether the output is a correct recovery or
garbage. In the latter case, the client might ignorantly use
the garbage output in subsequent applications and propagate
such an error.

(Feng & Woodruff, 2023) solves this problem based on
the assumed hardness of the Short-Integer-Solution (SIS)
problem, which is a problem that is studied in lattice-based
cryptography. The robust version of the property preserving
hashing (Boyle et al., 2019) can also be applied to solve
the same problem. However, a notable drawback of all
prior solutions proposed is their reliance on either a ran-
dom oracle or a prohibitively long random string. This is
because a key component of these algorithms is a giant,
random matrix A for which it is hard to find a vector x
with small entries for which Ax is sparse. Long random
strings are especially problematic in data streams, where the
resource measure is the total space complexity, including the
randomness, and there is a large body of work on derandom-
izing such algorithms, see, e.g., (Nisan, 1992; Indyk, 2006;
Kane et al., 2010; Kacham et al., 2023). Since it was previ-
ously unknown how to generate A pseudorandomly while
maintaining this hardness property, previous work (Feng &
Woodruff, 2023) relies on a random oracle to heuristically
compress such a matrix A. This assumes that the algorithm
is given read access to a long string of random bits, which is
often implemented with hash-based heuristic functions such
as AES or SHA256. Unfortunately, this heuristic cannot
be proven secure using a standard reduction-style security
proof. This motivates a central question of this work: Do
there exist efficient streaming algorithms in the white-box
model without a random oracle?

1.3. Our Results

Our algorithms make use of the hardness assumptions of the
Learning with Error (LWE) problem and its variant, Ring
LWE. Both problems are popular in cryptography known
for building homomorphic encryption schemes. In this sec-
tion, we state the efficiency of our algorithms under the
sub-exponential hardness assumptions of these problems.
However, we stress that in contrast to (Feng & Woodruff,
2023), our algorithms are robust even under weaker polyno-
mial hardness assumptions. We let n be the dimension of
the underlying input vector, and for notational convenience,
we assume that the entries of the vector are integers bounded
in absolute value by poly(n) at all times during the stream.
We use Õ(f) to denote f · poly(log n).

Our main result is informally stated as follows:
Theorem 1.1 (Informal). Assuming the sub-exponential
hardness1 of the Learning with Errors (LWE) problem, there
is a WAR streaming algorithm for k-sparse recovery, which:

· takes Õ(k) bits of space,

· has Õ(1) update time, and

· has Õ(k1+c) report time for an arbitrarily small con-
stant c > 0.

This matches (up to a poly-logarithmic factor) the optimal
space and update time complexity for the weaker k-sparse
recovery problem under the easier oblivious streaming set-
ting. On the other hand, assuming polynomial security of the
LWE problem, there is a multiplicative overhead of nϵ for
arbitrary constant ϵ > 0 on our space and time complexities.

Adversarial Model in the Distributed Setting. We in-
troduce and formalize the white-box adversarial model for
distributed data processing as a means of modeling the ex-
istence of one or more malicious parties in a distributed
system. We also study the sparse recovery problem in a
white-box distributed model. A WAR streaming algorithm
can be naively converted to a WAR distributed algorithm
under certain conditions, yet the resulting processing time of
the servers is O(n) times that of the streaming update time.
In contrast to this suboptimal time implied by the naive
conversion, we show that we can achieve a near-optimal
processing time in a white-box distributed model assuming
the polynomial hardness of Ring-LWE, which is a variant
of the LWE problem defined over a polynomial ring. This
is because Ring-LWE supports SIMD (Single-Instruction
Multiple-Data) style operations that have been exploited in
the design of efficient homomorphic encryption schemes in
cryptography. We informally state our result as follows:
Theorem 1.2 (Informal). Assuming the hardness of Ring-
LWE, there exists a WAR distributed protocol for k-sparse
recovery, which:

· uses Õ(k) bits of communication between each server
and the coordinator,

· has Õ(n) processing time on each server, and

· the coordinator spends Õ(max(n, k1+c)) time to out-
put the solution given the messages from the servers,
for an arbitrarily small constant c > 0.

We summarize the complexities of our sparse recovery al-
gorithms in Table 1, as compared to the best-known up-
per bounds for these problems in the white-box adversarial
model.

1Sub-exponential hardness means that we assume that for ad-
versaries of size 2λ

β

, where λ is the security parameter and β > 0
is some constant, a sample from an LWE distribution is indistin-
guishable from a uniformly random sample.

3

Fast White-Box Adversarial Streaming Without a Random Oracle

Table 1. A summary of the bit complexities and runtime of our k-sparse recovery algorithm, as compared to the best-known upper bounds
for these problems in the white-box adversarial model (Feng & Woodruff, 2023). The SIS assumption used in the previous work is proven
to be equivalently hard to the LWE assumption we use, up to different parameters. The TIME columns refer to the update time in the
streaming model and processing time in the distributed model. c denotes an arbitrarily small positive constant.

MODEL ASSUMPTION SPACE TIME RAND. ORACLE?

PREV. STREAMING SUBEXP SIS Õ(k) Õ(k) ✓
DISTRIBUTED SUBEXP SIS Õ(k) Õ(nk) ✓

OURS

STREAMING SUBEXP LWE Õ(k) Õ(1)

STREAMING POLY LWE Õ(nc + k) Õ(nc)

DISTRIBUTED SUBEXP LWE Õ(k) Õ(n)

DISTRIBUTED POLY LWE Õ(nc + k) Õ(n1+c)

DISTRIBUTED POLY RING-LWE Õ(nc + k) Õ(n)

Extensions to matrix and tensor recoveries. Similar to
(Feng & Woodruff, 2023), generalizing our construction
produces low-rank matrix and tensor recovery algorithms,
again with the crucial property that they do not assume a
random oracle or store a large random seed. These results
are given in Appendix G due to the page limit.

Consider a data stream updating the entries of an underlying
matrix or tensor, which can be represented as its vector-
ization in a stream. Let n ≥ m be the dimensions of an
underlying input matrix, and let n be the dimension parame-
ter of an underlying data tensor in Rnd

for some d ∈ O(1)
(we assume all dimensions of the tensor are the same only
for ease of notation). We have the following results in the
streaming model:
Theorem 1.3 (Informal). Assuming the sub-exponential
hardness of the Learning with Errors (LWE) problem, there
is a WAR streaming algorithm for rank-k matrix recovery,
which takes Õ(nk) bits of space. There is also a WAR
streaming algorithm for rank-k tensor recovery, which takes
Õ(nk⌈log d⌉) bits of space.

We remark that the above matrix recovery algorithm per-
forms Õ(nk) measurements using n-sparse matrices, which
can be converted into a distributed protocol with Õ(n2k)
processing time. This improves upon the matrix recovery
algorithm in the previous work (Feng & Woodruff, 2023)
which, if implemented in a distributed setting, would require
Õ(n3k) processing time at each server.

Additional Applications. Our k-sparse recovery algo-
rithm can be used to construct an L0-norm estimation al-
gorithm following the same recipe in (Feng & Woodruff,
2023). In short, by running our k-sparse recovery algorithm
with the sparsity parameter k set to n1−α for some constant
α, we can get an nα-approximation to the L0 norm of a
vector. In comparison to (Feng & Woodruff, 2023), our
construction again removes the need for a random oracle or
the need to store a lot of randomness.

1.4. Technical Overview

We leverage structural properties of lattice-based assump-
tion to address all drawbacks listed above. In particular, de-
parting from the previous construction of (Feng & Woodruff,
2023), we work with a suitable fully homomorphic encryp-
tion (FHE) scheme to achieve the desired property. We start
with an intuitive explanation of the previous construction in
(Feng & Woodruff, 2023).

Previous Construction One general framework for solv-
ing the sparse recovery problem is to run a weak recovery
algorithm as a black-box subroutine, which potentially pro-
vides a garbage output, in addition to an additional “tester”
scheme to verify whether the recovery output matches the
original input (i.e., is a correct recovery) or is garbage. In the
oblivious streaming setting, such a “tester” can be efficiently
implemented using, e.g., a random polynomial “fingerprint”
(Cormode & Jowhari, 2019). However, this approach is not
WAR as the randomness of the sampler is revealed and thus
not independent of the stream.

Instead, (Feng & Woodruff, 2023) uses a random matrix A
to implement a WAR tester, which is assumed to be heuristi-
cally compressed by an idealized hash function. During the
stream, (Feng & Woodruff, 2023) maintains a hash h = Ax,
where x is the data vector implicitly defined by the stream.
In the testing stage, it acknowledges an output x′ to be
a correct recovery if and only if x′ is k-sparse and Ax′

equals the hash h. The idea is that if there exists a k-sparse
collision x′ satisfying A(x − x′) = 0 and x′ ̸= x, then
an adversary can brute-force over all k-sparse vectors to
find such x − x′, which is a solution to the SIS problem.
To spawn n matrix columns and support the brute-force re-
duction, the security parameter (i.e., the number of rows of
A) needs to be in ω(k log n), assuming the sub-exponential
security of SIS.

4

Fast White-Box Adversarial Streaming Without a Random Oracle

Efficient Reduction. The number of matrix rows in the
previous construction depends on the sparsity parameter
k due to a brute-forcing step in the reduction. To grant
enough time for iterating through all k-sparse vectors (with
poly(n)-bounded entries), the security parameter has to be
greater than k log n, which results in Õ(k) time to process
every single update. Our first idea is to construct a poly-
time reduction in order to remove such a dependency on k.
This allows us to achieve better space and time efficiency, in
addition to basing the construction on a polynomial hardness
assumption.

The observation is that the non-existence of a sparse colli-
sion is an overly strong condition. Instead, for our purpose,
we only need to ensure that such a collision, if it exists,
cannot be found by the poly-time weak recovery scheme
that the algorithm runs. Thus, in the reduction, instead of
brute-forcing over all k-sparse vectors, we let the adversary
run the same poly-time weak recovery scheme that the al-
gorithm does. If a collision x′ satisfying Ax = Ax′ is
output by the scheme, then the adversary can still break the
security assumption.

Reducing the Amount of Randomness. The rest of our
effort will be attributed to reducing the size of the state of the
algorithm. Rather than using a truly random giant matrix to
hash the data as in the previous construction, we would like
to design a short digest (ideally linear-sized in the security
parameter) and generate the columns of the hash matrix on
the fly. This naturally yields correlated columns as opposed
to the truly random columns in an SIS matrix. We aim to
show that in this setting, the chance of finding a collision is
still negligible.

Streaming Friendly Collision-Resistant Hash Our main
insight from cryptography to address the issue above is that
we could construct a hash function familyH, with special
properties to help solve our streaming problem:

• The hash key h← H is small in size, ideally polyno-
mial in the security parameter λ (or even polylogarith-
mic assuming subexponential time assumptions).

• The hash should be computable in a streaming fashion
and it should be updatable where each update takes
polynomial time in the security parameter λ (or even
polylogarithmic time assuming subexponential time
assumptions).

• The hash key should be pseudorandom. In other words,
in our real-world implementation, the white-box adver-
sarial streaming model does not allow us to use any
structured randomness (such as with hidden planted se-
crets). In the proof, however, we could introduce these
secrets which will be important for our construction.

• The hash should satisfy collision-resistance.

Constructing Streaming Friendly Hashing from FHE.
How could we build such a hash function? The SIS based
hash function does have a fast update time. On the other
hand, we could take an arbitrary collision resistant function
that compresses the number of bits by a factor of 1/2 and
use it to perform a Merkle tree style hashing to hash strings
of arbitrary length. Such a hash will have poly(λ)-sized
hashing keys. Unfortunately, the first idea suffers from a
large hashing key size, which could be shortened in the
random oracle (RO) model by using the RO to store the
SIS matrix. Moreover, the second proposal will not support
positive and negative stream updates to the coordinates of
the underlying vector.

Our main idea is to leverage a suitably chosen Fully Homo-
morphic Encryption (FHE) scheme satisfying mild struc-
tural properties (that are satisfied currently by most schemes
based on LWE and Ring-LWE) to build such a hash function.
Our construction bears a resemblance to the construction
of a collision resistant function from a private information
retrieval scheme, where the private information retrieval
scheme is implemented by a fully homomorphic encryption
scheme.

We directly explain the idea in the context of our con-
struction. In our hash function, the hash key consists of
L = O(log n) ciphertexts ct1, . . . , ctL. We assume that our
FHE scheme has pseudorandom ciphertexts and pseudoran-
dom public keys. In our actual scheme, these ciphertexts
will be generated as random strings. It is only in the proof
that they will correspond to encryptions of carefully chosen
values.

The idea is that from these L ciphertexts, we will derive
n evaluated ciphertexts ĉtj for j ∈ [n] by evaluating L ci-
phertexts on simple functions C1, . . . , Cn (described later).
These n ciphertexts will correspond to columns of the SIS
type hashing. The hash of a vector x is computed as the lin-
ear combination

∑
i∈[n] ĉtixi where xi is the ithcoordinate.

Here the sum is done over the field on which the FHE ci-
phertexts live.

The circuits C1, . . . , Cn are chosen keeping the security
proof in mind. The ciphertexts ct1, . . . , ctL are “thought”
to encrypt a value m ∈ {0, 1}L that will be chosen in the
proof, and each Ci(·) on input m outputs 1 if i = m and
0 otherwise. Observe that these circuits are polynomial
in L = O(log n) sized and therefore can be evaluated on
ct1, . . . , ctL in polynomial in (λ, log n) time guaranteeing
fast updates.

How do we prove security? The idea is that if an adver-
sary breaks collision-resistance it will produce two vectors
x ̸= x′, so that the corresponding hashes

∑
i∈[n] ĉtixi =

5

Fast White-Box Adversarial Streaming Without a Random Oracle∑
i∈[n] ĉtix

′
i. Suppose one could know exactly one coordi-

nate v ∈ [n] so that xv ̸= x′v. Then we could set m = v.
In this case ĉtv encrypts 1 and the other ciphertexts encrypt
0. In this case,

∑
i∈[n] ĉtixi =

∑
i∈[n] ĉtix

′
i would lead to

a contradiction if our FHE scheme has a special property
(that is satisfied by common FHE schemes). The property
is that if ĉti encrypts bit µi ∈ {0, 1} and xi are small norm
then there is a decryption algorithm that uniquely binds∑

i∈[n] ĉtixi to
∑

i∈[n] µixi. If this holds, then the equality∑
i∈[n] ĉtixi =

∑
i∈[n] ĉtix

′
i would imply xv = x′v which

is a contradiction.

This leads us to two remaining problems:

1. Given that we do not know x and x′ ahead of time,
how do we decide which index m to encrypt such that
it will help identify whether x = x′?

2. Moreover, a WAR algorithm cannot actually encrypt
FHE ciphertexts, since all randomness and parameters
used by the algorithm will be exposed to the adversary.
Instead, we want our digest to be unstructured and truly
random.

FHE with a Pseudorandom Property. We solve both is-
sues above by considering a pseudorandom property of the
FHE scheme and show that a random guess of the index m
actually suffices. We assume that the distributions of public
keys and ciphertexts of the FHE scheme are indistinguish-
able, respectively, from some truly random distributions
from the perspective of the adversary.

We sample truly random digests in our construction, and
perform a random guess of m ∈ [n] in the proof. If an
adversary finds a collision pair x ̸= x′ with probability
γ, then with probability p ≥ γ/n, our guess pins down a
coordinate of disagreement xm ̸= x′

m. In the proof, we then
switch the ciphertexts to encrypt m. The chance of guessing
the disagreement is still p, as otherwise one can distinguish
the pseudorandom ciphertext. However, as argued earlier,
xm ̸= x′

m roughly implies
∑

i∈[n] ĉtixi ̸=
∑

i∈[n] ĉtix
′
i,

and thus two distinct vectors cannot form a hash collision
that fools our “tester”.

In our complexity analysis, we instantiate the FHE scheme
using GSW (Gentry et al., 2013), which satisfies the addi-
tional properties required by our construction. We remark
that in addition to GSW, most current FHE schemes based
on LWE and Ring-LWE also exhibit these properties, and
thus they are not an artifact obtained from a particular FHE
scheme.

Ring-LWE for the Distributed Setting. In the distributed
model, each remote server receives as input a length-n vec-
tor. The goal is to design a protocol such that each server

can efficiently compute a short summary of their partition
of data. Adapting the above streaming algorithm to this
setting, each server needs to evaluate n ciphertexts in order
to compute a linear combination

∑
i∈[n] ĉtixi.

Using a polynomially secure LWE-based FHE scheme, it is
unclear how to speed up such n-many individual evaluations
as each computation takes poly(λ) operations, resulting in
a total complexity of n poly(λ), where λ is the security pa-
rameter. Therefore, we appeal to the Ring-LWE assumption,
which is an algebraic variant of LWE that works over the
ring Zp[x]/(x

N + 1). Over this ring, we can exploit the
SIMD property of Ring-LWE by packing the data as ring
elements, i.e., we represent the input vectors as partitioned
segments of length proportional to the security parameter
(rather than the vector length n), and efficiently operate on
them segment-by-segment using the Fast Fourier Transform.
This improves the processing time of each server to be al-
most linear in the dimension of the data. We refer the reader
to Section F for more details.

Summary. Leveraging FHE or lattice-based assumptions
in algorithm design are relatively new techniques. We think
it would be good to explore their applications more broadly
in robust algorithms, beyond the recovery problems or even
the adversarial settings considered here.

2. Preliminaries

Basic Notations. For a finite set S, we write x
$←− S to

denote a uniform sample x from S. Our logarithms are in
base 2. For n ∈ R, we use ⌈n⌉ to denote rounding n up
to the nearest integer. For a vector x, ∥x∥0 denotes the
ℓ0 norm of x, which is the number of its non-zero entries.
We abbreviate PPT for probabilistic polynomial-time. A
function negl : N → R is negligible if for every constant
c > 0 there exists an integer Nc such that negl(x) < x−c

for all x > Nc.

2.1. Lattice Preliminaries

We define the Learning with Errors problem LWE.
Definition 2.1 (Learning with Errors). Suppose we are given
an integer dimension g ∈ N, a modulus q ∈ N, a sample
complexity h ≥ Ω(g · log q) and a parameter σ ∈ R≥0.
Define an error distribution as the discrete Gaussian χh

σ :=
Gσ,Zh . We define LWEg,h,q,χh

σ
as follows: sample a matrix

A← Zg×h
q and a secret s ∈ Z1×g

q . Sample an error vector
e← χh

σ . The problem is to distinguish (A, sA+e mod q)
from (A, r) where r is random in Z1×h

q .

Under quantum and classical reductions it can be shown
that LWEg,h,q,χσ

is harder to solve than Gap-SVPγ with
γ = g q

σ , which is a worst-case problem over lattices. We
discuss more about the lattice problems in Appendix A.

6

Fast White-Box Adversarial Streaming Without a Random Oracle

We also consider the Ring-LWE problem, which is an
average-case lattice problems over ideal lattices.

Definition 2.2 (Ring-LWE). Let q ≥ 1 be a prime number,
and let g be a power of 2. Let g, σ be positive integers.
The Ring-LWEg,h,q,χσ

problem is defined as follows: Con-

sider R =
Zq [x]
xg+1 . Sample at random a1, · · · ,ah ← R and

a secret polynomial s ← R. Sample h error polynomi-
als e1, · · · , eh such that each ei is a g-dimensional vector
ei ← χσ = Gσ,Zg . The problem is to distinguish the tuple
(a1, · · · ,ah, {sai+ei}i∈[h]) from (a1, · · · ,ah, {ri}i∈[h])
where r1, · · · , rh are random polynomials in R.

The Ring-LWE problem is as hard as worst-case problems
over ideal lattices (Lyubashevsky et al., 2010). Ring LWE is
sometimes advantageous to use over LWE because of shorter
parameters. One ring LWE element is of dimension g, and
requires only one ring element as a coefficient, as opposed to
g vectors in the case of LWE. Moreover, ring multiplication
can be sped up using number-theoretic transforms (Smart &
Vercauteren, 2011).

2.2. Fully Homomorphic Encryption

Notation. We denote the security parameter of a crypto-
graphic scheme by λ. We write PPTλ to denote probabilis-
tic poly-time in λ. We say two ensembles of distributions
{Dλ}λ∈N and {D′λ}λ∈N are computationally indistinguish-
able, denoted by ≈c, if for any non-uniform PPT adversary
A there exists a negligible function negl such that A can
distinguish between the two distributions with probability
at most negl(λ).

Remark 2.1. We also define (T , ϵ)-indistinguishability,
where T and ϵ are two functions in λ. We say that two
distribution ensembles {Dλ}λ∈N and {D′λ}λ∈N are (T , ϵ)-
indistinguishable, denoted by ≈(T ,ϵ), if there exists an inte-
ger λ0 such that for all λ > λ0, for every adversary A, A
can distinguish between the two distributions with probabil-
ity at most ϵ(λ).

Definition 2.3 (FHE). A fully homomorphic encryption
FHE scheme is a tuple of PPTλ algorithms FHE =
(FHE.Setup,FHE.Enc,FHE.Eval,FHE.Dec) with the fol-
lowing properties:

• FHE.Setup(1λ)→ (sk, pk) : On input a security param-
eter λ, the setup algorithm outputs a key pair (pk, sk).

• FHE.Enc(pk, µ) → ct : On input a public key pk and a
message µ ∈ {0, 1}, the encryption algorithm outputs a
ciphertext ct.

• FHE.Eval(pk, C, ct1, · · · , ctℓ) → ĉt : On input a pub-
lic key pk, a circuit C : {0, 1}ℓ → {0, 1} of depth at

most poly(λ), and a tuple of ciphertexts ct1, · · · , ctℓ, the
evaluation algorithm outputs an evaluated ciphertext ĉt.

• FHE.Dec(pk, sk, ĉt) → µ̂ : On input a public key pk, a
secret key sk, and a ciphertext ĉt , the decryption algo-
rithm outputs a message µ̂ ∈ {0, 1,⊥}.

We also require an FHE scheme to satisfy compactness,
correctness, and security properties, which are elaborated in
Appendix B.

Additional properties. Our construction of robust stream-
ing algorithms will be based on an FHE scheme satisfying
a few additional properties. We refer to this type of FHE
scheme as a pseudorandom FHE (PFHE) scheme.

Definition 2.4 (Pseudorandom FHE (PFHE)). Let FHE be
a fully homomorphic encryption scheme (Definition 2.3).
We call FHE a (T , ϵ)-pseudorandom FHE scheme if for all
security parameters λ, it satisfies the following additional
properties:

• FHE.Eval is deterministic.

• (Pseudorandom pk). There exists an explicit distribu-
tion Dp̃k(λ), such that the following two distributions are
(T , ϵ)-indistinguishable:

{pk : (pk, sk)← FHE.Setup(1λ)} ≈(T ,ϵ) Dp̃k(λ).

• (Pseudorandom ct). There exists an explicitly distribu-
tion Dc̃t(λ), such that the following two distributions are
(T , ϵ)-indistinguishable:ct :

(pk, sk)← FHE.Setup(1λ)

µ ∈ {0, 1}
ct← FHE.Enc(pk, µ)

 ≈(T ,ϵ) Dc̃t(λ)

• (Z Linear Homomorphism). Given (pk, sk) ←
FHE.Setup(1λ), the set of all ciphertexts is a subset of
a vector space over Zq for some q = q(λ). Let M =∑

i∈[k] xi · cti mod q be an arbitrary linear combina-
tion of ciphertexts. Denote µi ← FHE.Dec(pk, sk, cti).
SupposeM satisfies:

1. xi ∈ Z for all i ∈ [k]

2. k ·maxi∈[k] xi ≪ q

then we have the following: |M| ≤ poly(λ). Also, there
exists a poly(λ)-time decoding algorithm LinearDec,
such that Pr[LinearDec(pk, sk,M) =

∑
i∈[k] xi · µi] =

1.

As in a standard FHE scheme, we also require PFHE to
satisfy compactness, correctness, and security.

7

Fast White-Box Adversarial Streaming Without a Random Oracle

There exist FHE schemes based on LWE and Ring-LWE
(Gentry et al., 2013; Brakerski et al., 2012; Brakerski &
Vaikuntanathan, 2011) assumptions. We will focus on the
GSW scheme in our streaming construction and the BV
scheme in the distributed setting. Both of them satisfy the
above definition (or a slight variant) of PFHE.

3. Streaming K-Sparse Recovery
Sparse Recovery Problem We study the sparse recov-
ery problem for vectors in white-box adversarial streaming
settings. There exist deterministic (thus WAR) streaming
algorithms that recover k-sparse vectors assuming that the
input vector is k-sparse . However, their outputs can be
arbitrary when the input violates such an assumption. In
contrast, our algorithm has the crucial property that it can de-
tect if the input violates the sparsity constraint. We describe
the problem as follows:

Definition 3.1 (k-Sparse Recovery). Given a sparsity pa-
rameter k and an input vector x ∈ Zn, output x if
∥x∥0 ≤ k and report ⊥ otherwise.

Here and throughout, for the sparsity to make sense we
always assume k ≤ n, though k can be a function in n.
Before tackling this problem, we first consider a relaxation
for it, which only guarantees correct recovery when the input
vector x is k-sparse. In other words, we have no constraint
on the function output when ∥x∥0 > k.

Definition 3.2 (Relaxed k-Sparse Recovery). Given a spar-
sity parameter k and an input vector x ∈ Zn, output
x ∈ Zn if ∥x∥0 ≤ k.

As mentioned earlier, there exists a space- and time-efficient,
deterministic streaming algorithm that solves the relaxed
k-sparse recovery problem, which we will refer to as
StreamAlg0 in our algorithm.

With StreamAlg0 and a PFHE, we are now ready to con-
struct a WAR streaming algorithm for the k-sparse recovery
problem.

Construction 3.1. Let StreamAlg0 be an algorithm for the
Relaxed k-Sparse Recovery problem. Let PFHE be a pseu-
dorandom FHE. Let λ = S(n) be the security parameter of
PFHE, for some function S in n that we will specify later.
Choose q ∈ poly(n) with q ≫ n ·N to be the modulus of
PFHE ciphertexts, where N ∈ poly(n) is a bound on the
stream length. All computations will be modulo q. Our
construction is as follows:

• StreamAlg.Setup(n):

Run StreamAlg0.Setup(n). Define ℓ = ⌈log n⌉.
For each i ∈ [n], define a circuit Ci :
{0, 1}ℓ → {0, 1}, such that: Ci(µ1, µ2, · · · , µℓ) =

{
1 if (µ1, µ2, · · · , µℓ) is the bit representation of i
0 otherwise.

Take Dp̃k(λ) to be the distribution of pseudo-public key

in Definition 2.4. Sample p̃k ← Dp̃k(λ). Similarly, take
Dc̃t(λ) to be the distribution of pseudo-ciphertext in Def-
inition 2.4. Sample c̃t1, c̃t2, · · · , c̃tℓ ← Dc̃t(λ). Store

(p̃k, c̃t1, · · · , c̃tℓ) and sketch := 0.

• StreamAlg.Update(it,∆t):

Run StreamAlg0.Update(it,∆t). Evaluate ĉtit ←
PFHE.Eval(p̃k, Cit , c̃t1, c̃t2, · · · , c̃tℓ). Then update
sketch← sketch+∆t · ĉtit .

• StreamAlg.Report():

Let x′ ← StreamAlg0.Report(). If ∥x′∥0 > k,
output ⊥. Otherwise, evaluate ĉti ←
PFHE.Eval(p̃k, Ci, c̃t1, c̃t2, · · · , c̃tℓ) for all i ∈ [n].
Then compute hash ←

∑
i∈[n] ĉti · x′

i. Output x′ if
hash = sketch, and output ⊥ otherwise.

We state the white-box robustness of our construction as
follows. We delay the proof to Appendix D.

Theorem 3.1 (WAR of Construction 3.1). Suppose
StreamAlg0 is a streaming algorithm for Relaxed k-Sparse
Recovery, and PFHE is a pseudorandom FHE scheme with
(T , ϵ)-security. Let λ = S(n) be the PFHE security param-
eter for some function S.

If for all n ∈ N, functions T , ϵ, and S satisfy:

· T (S(n)) = Ω(poly n)

· ϵ(S(n)) ≤ negl(n) for some negligible function negl.

then the StreamAlg scheme in Construction 3.1 is a WAR
streaming algorithm for the k-Sparse Recovery problem.

4. Efficiency
In this section, we discuss the space and time complexity of
Construction 3.1. We start by instantiating StreamAlg0 and
PFHE used in our construction.

Deterministic Relaxed Sparse Recovery. There exist
space- and time-efficient streaming algorithms for the re-
laxed k-sparse recovery problems. Given a sparse vector
x ∈ Zn, many of these algorithms perform some linear
measurement Φ : Zn → Zr on x with r ≪ n to get a com-
pressed representation Φ(x), which is often referred to as a
sketch of x. This sketch is later used to reconstruct x. The
linearity property is useful for incrementally maintaining
the sketch during the stream. Many algorithms implement
the above specification using a random measurement matrix

8

Fast White-Box Adversarial Streaming Without a Random Oracle

Φ. However, in our attempt to remove the random oracle
assumption within sub-linear total space, we cannot afford
to store an n-column random matrix during the stream. In-
stead, we use algorithms which are deterministic, such that
the measurements themselves incur no space overhead.

Theorem 4.1 ((Gilbert et al., 2017)). There exists a stream-
ing algorithm StreamAlg0 for the Relaxed k-Sparse Recov-
ery problem, such that given an input parameter n, for an
integer stream with entries bounded by poly(n):

· StreamAlg0.Setup,Update, and Report are all deter-
ministic.

· StreamAlg0 takes Õ(k) bits of space.

· StreamAlg0.Update runs in Õ(1).

· StreamAlg0.Report runs in Õ(k1+c) for an arbitrarily
small constant c > 0.

Pseudorandom FHE. We focus on GSW (Gentry et al.,
2013), a standard LWE based fully homomorphic encryption
scheme, for our instantiation. To start with, we briefly
review the construction of GSW. We omit Dec since it is not
involved in our scheme. Instead, we will describe a decoding
algorithm LinearDec for linear combinations of ciphertexts
(which largely resembles the original Dec of GSW) when
showing the Z Linear Homomorphism property of GSW.

• Setup(1λ): Choose a modulus q, a lattice dimension pa-
rameter g, and error distribution χ parametrized by λ.
Also, choose some h = Θ(g log q). Let params =
(g, h, q, χ) be parameters for LWEg,h,q,χ .

• SecretKeyGen(params): Sample s← Zg
q . Output sk =

s⊤ = [−s⊤ | 1].

• PublicKeyGen(params, sk): Sample a matrix A ←
Zg×h
q uniformly and an error vector e ← χh. Let

α = s⊤ · A + e⊤. Set pk = A to be the (g + 1)-row
matrix consisting of g rows of A followed by α.

• Enc(params, pk, µ): Sample a uniform matrix R ←
{0, 1}h×h. For pk = A, output A ·R+ µ ·G where G
is a gadget matrix.

We assume that our set of LWE parameters params is
(T , ϵ)-secure, such that for any T (λ) time adversary, the ad-
vantage of distinguishing an LWE sample from a uniformly
random sample is at most ϵ(λ). We verify in Appendix
E that GSW satisfies the additional properties required by
PFHE.

Efficiency Based on Subexponential LWE. We choose
the lattice dimension parameter g = λ, the modulus q and
the noise σ with subexponential modulus-to-noise ratio, and

the sample complexity h ∈ Θ(g · log q). The subexponen-
tial hardness of LWE requires the below indistinguishability
to hold for adversaries of size T (λ) = 2λ

β

for some con-
stant β > 0, with subexponentially small distinguishing
advantage ϵ(λ) = 2−λ

c

for some constant c > 0 denoted
by ≈ϵ:
(A, s ·A+ e) mod q :

A← Zg×h
q

s← Z1×g
q

e← χ1×h
σ

 ≈ϵ

{
(A,u) :

A← Zg×h
q

u← Z1×g
q

}

We set the security parameter be λ = logr n for some
constant r > 1/β and r > 1/c. This satisfies the re-
lationship between functions required by the Robustness
Theorem 3.1: T (logr n) = 2(logn)rβ = Ω(poly n) and
ϵ(logr n) = 2−(logn)rc ≤ negl(n) for some negligible func-
tions negl.

Given these parameters, using GSW to implement PFHE
and Theorem 4.1 to implement StreamAlg0, we get the
claimed result.

Corollary 4.1. Assuming the subexponential hardness of
LWE, the StreamAlg scheme in Construction 3.1 has the
following complexity:

· StreamAlg takes Õ(k) bits of space.

· StreamAlg.Update runs in time Õ(1).

· StreamAlg.Report runs in time Õ(k1+c) for an arbi-
trarily small constant c > 0.

In Appendix E, we prove the above corollary and show the
complexity of our algorithm under different implementa-
tions of StreamAlg0 and hardness assumptions.

Impact statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements
David P. Woodruff was supported by a Simons Investigator
Award and NSF Grant No. CCF-2335412.

References
Aharonov, D. and Regev, O. Lattice problems in np conp.

J. ACM, 52:749–765, 2005.

Ajtai, M., Braverman, V., Jayram, T., Silwal, S., Sun,

9

Fast White-Box Adversarial Streaming Without a Random Oracle

A., Woodruff, D. P., and Zhou, S. The white-box ad-
versarial data stream model. In Proceedings of the
41st ACM SIGMOD-SIGACT-SIGAI Symposium on Prin-
ciples of Database Systems, PODS ’22, pp. 15–27,
New York, NY, USA, 2022. Association for Comput-
ing Machinery. ISBN 9781450392600. doi: 10.1145/
3517804.3526228. URL https://doi.org/10.
1145/3517804.3526228.

Almeida, A., Brás, S., and Sargento, S., e. a. Time series
big data: a survey on data stream frameworks, analysis
and algorithms. J Big Data, 2023. doi: https://doi.org/10.
1186/s40537-023-00760-1.

Alon, N., Matias, Y., and Szegedy, M. The space complexity
of approximating the frequency moments. In Proceed-
ings of the Twenty-Eighth Annual ACM Symposium on
Theory of Computing, STOC ’96, pp. 20–29, New York,
NY, USA, 1996. Association for Computing Machinery.
ISBN 0897917855. doi: 10.1145/237814.237823. URL
https://doi.org/10.1145/237814.237823.

Alon, N., Ben-Eliezer, O., Dagan, Y., Moran, S., Naor,
M., and Yogev, E. Adversarial laws of large numbers
and optimal regret in online classification. In STOC ’21:
53rd Annual ACM SIGACT Symposium on Theory of
Computing, pp. 447–455, 2021.

Attias, I., Cohen, E., Shechner, M., and Stemmer, U. A
framework for adversarial streaming via differential pri-
vacy and difference estimators. CoRR, abs/2107.14527,
2021.

Ben-Eliezer, O. and Yogev, E. The adversarial robustness
of sampling. In Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS, pp. 49–62, 2020.

Ben-Eliezer, O., Jayaram, R., Woodruff, D. P., and Yogev,
E. A framework for adversarially robust streaming algo-
rithms. SIGMOD Rec., 50(1):6–13, 2021.

Ben-Eliezer, O., Eden, T., and Onak, K. Adversarially robust
streaming via dense-sparse trade-offs. In 5th Symposium
on Simplicity in Algorithms, SOSA, 2022. (to appear).

Berinde, R., Indyk, P., and Ruzic, M. Practical near-optimal
sparse recovery in the l1 norm. In 2008 46th Annual Aller-
ton Conference on Communication, Control, and Com-
puting, pp. 198–205, 2008. doi: 10.1109/ALLERTON.
2008.4797556.

Boyle, E., LaVigne, R., and Vaikuntanathan, V. Adver-
sarially robust property-preserving hash functions. In
Blum, A. (ed.), 10th Innovations in Theoretical Com-
puter Science Conference, ITCS 2019, January 10-12,
2019, San Diego, California, USA, volume 124 of LIPIcs,

pp. 16:1–16:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019.

Brakerski, Z. and Vaikuntanathan, V. Fully homomorphic
encryption from ring-lwe and security for key dependent
messages. In Rogaway, P. (ed.), Advances in Cryptology
– CRYPTO 2011, pp. 505–524, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg. ISBN 978-3-642-22792-9.

Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (lev-
eled) fully homomorphic encryption without bootstrap-
ping. In Innovations in Theoretical Computer Science
2012, Cambridge, MA, USA, January 8-10, 2012, pp.
309–325, 2012.

Braverman, V., Hassidim, A., Matias, Y., Schain, M., Silwal,
S., and Zhou, S. Adversarial robustness of streaming
algorithms through importance sampling. In Advances
in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems,
NeurIPS, 2021. (to appear).

Brown, P., Haas, P. J., Myllymaki, J., Pirahesh, H., Rein-
wald, B., and Sismanis, Y. Toward automated large-scale
information integration and discovery. In Data Manage-
ment in a Connected World, Essays Dedicated to Hartmut
Wedekind on the Occasion of His 70th Birthday, pp. 161–
180, 2005.

Chakrabarti, A., Ghosh, P., and Stoeckl, M. Adversarially
robust coloring for graph streams. In 13th Innovations in
Theoretical Computer Science Conference, ITCS, 2022.
(to appear).

Chan, T. M. A dynamic data structure for 3-d convex hulls
and 2-d nearest neighbor queries. J. ACM, 57(3):16:1–
16:15, 2010.

Chan, T. M. and He, Q. More dynamic data structures for
geometric set cover with sublinear update time. In 37th
International Symposium on Computational Geometry,
SoCG, pp. 25:1–25:14, 2021.

Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin,
M. J., Hellerstein, J. M., Hong, W., Krishnamurthy, S.,
Madden, S. R., Reiss, F., and Shah, M. A. Telegraphcq:
Continuous dataflow processing. In Proceedings of the
2003 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’03, pp. 668, New York,
NY, USA, 2003. Association for Computing Machinery.
ISBN 158113634X. doi: 10.1145/872757.872857. URL
https://doi.org/10.1145/872757.872857.

Cormode, G. and Garofalakis, M. Streaming in a con-
nected world: Querying and tracking distributed data
streams. In Proceedings of the 11th International
Conference on Extending Database Technology: Ad-
vances in Database Technology, EDBT ’08, pp. 745,

10

https://doi.org/10.1145/3517804.3526228
https://doi.org/10.1145/3517804.3526228
https://doi.org/10.1145/237814.237823
https://doi.org/10.1145/872757.872857

Fast White-Box Adversarial Streaming Without a Random Oracle

New York, NY, USA, 2008. Association for Comput-
ing Machinery. ISBN 9781595939265. doi: 10.
1145/1353343.1353442. URL https://doi.org/
10.1145/1353343.1353442.

Cormode, G. and Jowhari, H. Lp samplers and their ap-
plications: A survey. ACM Comput. Surv., 52(1), feb
2019. ISSN 0360-0300. doi: 10.1145/3297715. URL
https://doi.org/10.1145/3297715.

Cormode, G. and Muthukrishnan, S. What’s new: find-
ing significant differences in network data streams.
IEEE/ACM Transactions on Networking, 13(6):1219–
1232, 2005. doi: 10.1109/TNET.2005.860096.

Cubuk, E. D., Zoph, B., Mané, D., Vasudevan, V., and Le,
Q. V. Autoaugment: Learning augmentation policies
from data. CoRR, abs/1805.09501, 2018.

Dasu, T., Johnson, T., Muthukrishnan, S., and Shkapenyuk,
V. Mining database structure; or, how to build a data qual-
ity browser. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, pp.
240–251, 2002.

Driscoll, J. R., Sarnak, N., Sleator, D. D., and Tarjan, R. E.
Making data structures persistent. J. Comput. Syst. Sci.,
38(1):86–124, 1989.

Feng, Y. and Woodruff, D. P. Improved algorithms for
white-box adversarial streams. In ICML, 2023.

Fiat, A. and Kaplan, H. Making data structures confluently
persistent. J. Algorithms, 48(1):16–58, 2003.

Flajolet, P. and Nigel Martin, G. Probabilistic
counting algorithms for data base applications.
Journal of Computer and System Sciences, 31
(2):182–209, 1985. ISSN 0022-0000. doi:
https://doi.org/10.1016/0022-0000(85)90041-8.
URL https://www.sciencedirect.com/
science/article/pii/0022000085900418.

Forbes, M. A. and Shpilka, A. On identity testing of ten-
sors, low-rank recovery and compressed sensing. In
Proceedings of the Forty-Fourth Annual ACM Sympo-
sium on Theory of Computing, STOC ’12, pp. 163–172,
New York, NY, USA, 2012. Association for Comput-
ing Machinery. ISBN 9781450312455. doi: 10.1145/
2213977.2213995. URL https://doi.org/10.
1145/2213977.2213995.

Gaber, M. M. Data Stream Processing in Sensor Net-
works, pp. 41–48. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007. ISBN 978-3-540-73679-0. doi:
10.1007/3-540-73679-4 4. URL https://doi.org/
10.1007/3-540-73679-4_4.

Gentry, C., Sahai, A., and Waters, B. Homomorphic en-
cryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based. In Canetti, R. and
Garay, J. A. (eds.), CRYPTO 2013, Part I, volume 8042
of LNCS, pp. 75–92. Springer, Heidelberg, August 2013.
doi: 10.1007/978-3-642-40041-4 5.

Gilbert, A. C., Li, Y., Porat, E., and Strauss, M. J.
For-all sparse recovery in near-optimal time. ACM
Trans. Algorithms, 13(3), mar 2017. ISSN 1549-6325.
doi: 10.1145/3039872. URL https://doi.org/10.
1145/3039872.

Goldreich, O. and Goldwasser, S. On the limits of nonap-
proximability of lattice problems. J. Comput. Syst. Sci.,
60(3):540–563, 2000. URL https://doi.org/10.
1006/jcss.1999.1686.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Ex-
plaining and harnessing adversarial examples. CoRR,
abs/1412.6572, 2014. URL http://arxiv.org/
abs/1412.6572.

Hassidim, A., Kaplan, H., Mansour, Y., Matias, Y., and
Stemmer, U. Adversarially robust streaming algorithms
via differential privacy. In Advances in Neural Infor-
mation Processing Systems 33: Annual Conference on
Neural Information Processing Systems, NeurIPS, 2020.

Haviv, I. and Regev, O. Tensor-based hardness of the
shortest vector problem to within almost polynomial
factors. In Johnson, D. S. and Feige, U. (eds.), 39th
ACM STOC, pp. 469–477. ACM Press, June 2007. doi:
10.1145/1250790.1250859.

Hu, Y., Qu, A., Wang, Y., and Work, D. B. Stream-
ing data preprocessing via online tensor recovery for
large environmental sensor networks. ACM Trans.
Knowl. Discov. Data, 16(6), jul 2022. ISSN 1556-4681.
doi: 10.1145/3532189. URL https://doi.org/10.
1145/3532189.

Ilyas, A., Engstrom, L., and Madry, A. Prior convictions:
Black-box adversarial attacks with bandits and priors.
CoRR, abs/1807.07978, 2018.

Indyk, P. Stable distributions, pseudorandom generators,
embeddings, and data stream computation. J. ACM, 53
(3):307–323, 2006.

Jafarpour, S. Deterministic Compressed Sensing. PhD thesis,
Princeton University, 2011.

Kacham, P., Pagh, R., Thorup, M., and Woodruff, D. P.
Pseudorandom hashing for space-bounded computation
with applications in streaming, 2023.

11

https://doi.org/10.1145/1353343.1353442
https://doi.org/10.1145/1353343.1353442
https://doi.org/10.1145/3297715
https://www.sciencedirect.com/science/article/pii/0022000085900418
https://www.sciencedirect.com/science/article/pii/0022000085900418
https://doi.org/10.1145/2213977.2213995
https://doi.org/10.1145/2213977.2213995
https://doi.org/10.1007/3-540-73679-4_4
https://doi.org/10.1007/3-540-73679-4_4
https://doi.org/10.1145/3039872
https://doi.org/10.1145/3039872
https://doi.org/10.1006/jcss.1999.1686
https://doi.org/10.1006/jcss.1999.1686
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://doi.org/10.1145/3532189
https://doi.org/10.1145/3532189

Fast White-Box Adversarial Streaming Without a Random Oracle

Kane, D. M., Nelson, J., and Woodruff, D. P. On the exact
space complexity of sketching and streaming small norms.
In Charikar, M. (ed.), Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19, 2010,
pp. 1161–1178. SIAM, 2010.

Kaplan, H. Persistent data structures. In Handbook of Data
Structures and Applications. Chapman and Hall/CRC,
2004.

Kaplan, H., Mansour, Y., Nissim, K., and Stemmer, U. Sepa-
rating adaptive streaming from oblivious streaming using
the bounded storage model. In Advances in Cryptology
- CRYPTO 2021 - 41st Annual International Cryptology
Conference, CRYPTO, Proceedings, Part III, pp. 94–121,
2021.

Khot, S. Hardness of approximating the shortest vector
problem in lattices. In 45th FOCS, pp. 126–135. IEEE
Computer Society Press, October 2004. doi: 10.1109/
FOCS.2004.31.

Kurakin, A., Goodfellow, I. J., and Bengio, S. Adversarial
machine learning at scale. In 5th International Confer-
ence on Learning Representations, ICLR, Conference
Track Proceedings, 2017.

Lall, A., Sekar, V., Ogihara, M., Xu, J., and Zhang, H.
Data streaming algorithms for estimating entropy of net-
work traffic. SIGMETRICS Perform. Eval. Rev., 34
(1):145–156, jun 2006. ISSN 0163-5999. doi: 10.
1145/1140103.1140295. URL https://doi.org/
10.1145/1140103.1140295.

Lightstone, S. Physical database design for relational
databases. In Encyclopedia of Database Systems, Second
Edition. Springer, 2018.

Liu, Y., Chen, X., Liu, C., and Song, D. Delving into trans-
ferable adversarial examples and black-box attacks. In 5th
International Conference on Learning Representations,
ICLR, Conference Track Proceedings, 2017.

Lyubashevsky, V., Peikert, C., and Regev, O. On ideal
lattices and learning with errors over rings. In Gilbert,
H. (ed.), EUROCRYPT 2010, volume 6110 of LNCS,
pp. 1–23. Springer, Heidelberg, May / June 2010. doi:
10.1007/978-3-642-13190-5 1.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In 6th International Conference on
Learning Representations, ICLR, Conference Track Pro-
ceedings, 2018.

Menuhin, B. and Naor, M. Keep that card in mind: Card
guessing with limited memory. CoRR, abs/2107.03885,
2021.

Muthukrishnan, S. Data streams: Algorithms and applica-
tions. Foundations and Trends® in Theoretical Computer
Science, 1(2):117–236, 2005. ISSN 1551-305X. doi:
10.1561/0400000002. URL http://dx.doi.org/
10.1561/0400000002.

Nisan, N. Pseudorandom generators for space-bounded
computation. Comb., 12(4):449–461, 1992.

Phillips, J. M., Verbin, E., and Zhang, Q. Lower bounds for
number-in-hand multiparty communication complexity,
made easy, 2015.

Roghani, M., Saberi, A., and Wajc, D. Beating the folklore
algorithm for dynamic matching. In 13th Innovations in
Theoretical Computer Science Conference, ITCS, 2022.
(to appear).

Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., and
Madry, A. Adversarially robust generalization requires
more data. In Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS., pp. 5019–5031,
2018.

Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lo-
rie, R. A., and Price, T. G. Access path selection in a
relational database management system. In Proceedings
of the 1979 ACM SIGMOD International Conference on
Management of Data, pp. 23–34. ACM, 1979.

Shoup, V. Fast construction of irreducible poly-
nomials over finite fields. Journal of Symbolic
Computation, 17(5):371–391, 1994. ISSN 0747-
7171. doi: https://doi.org/10.1006/jsco.1994.1025.
URL https://www.sciencedirect.com/
science/article/pii/S074771718471025X.

Shukla, A., Deshpande, P., Naughton, J. F., and Ramasamy,
K. Storage estimation for multidimensional aggregates in
the presence of hierarchies. In VLDB’96, Proceedings of
22th International Conference on Very Large Data Bases,
pp. 522–531, 1996.

Smart, N. and Vercauteren, F. Fully homomorphic SIMD
operations. Cryptology ePrint Archive, Report 2011/133,
2011. https://eprint.iacr.org/2011/133.

Sung, M., Kumar, A., Li, L., Wang, J., and Xu, J. Scalable
and efficient data streaming algorithms for detecting com-
mon content in internet traffic. In 22nd International Con-
ference on Data Engineering Workshops (ICDEW’06),
pp. 27–27, 2006. doi: 10.1109/ICDEW.2006.130.

Szalay, A., Gray, J., and VandenBerg, J. Petabyte scale data
mining: Dream or reality? Proceedings of SPIE - The
International Society for Optical Engineering, 08 2002.
doi: 10.1117/12.461427.

12

https://doi.org/10.1145/1140103.1140295
https://doi.org/10.1145/1140103.1140295
http://dx.doi.org/10.1561/0400000002
http://dx.doi.org/10.1561/0400000002
https://www.sciencedirect.com/science/article/pii/S074771718471025X
https://www.sciencedirect.com/science/article/pii/S074771718471025X
https://eprint.iacr.org/2011/133

Fast White-Box Adversarial Streaming Without a Random Oracle

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I. J., and Fergus, R. Intriguing prop-
erties of neural networks. International Conference on
Learning Representations, 2014.

Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I. J.,
Boneh, D., and McDaniel, P. D. Ensemble adversarial
training: Attacks and defenses. In 6th International Con-
ference on Learning Representations, ICLR, Conference
Track Proceedings, 2018.

Venkataraman, S., Song, D. X., Gibbons, P. B., and
Blum, A. New streaming algorithms for fast detec-
tion of superspreaders. In Network and Distributed Sys-
tem Security Symposium, 2005. URL https://api.
semanticscholar.org/CorpusID:538509.

von zur Gathen, J. and Gerhard, J. Fast polynomial evalu-
ation and interpolation. Cambridge University Press, 3
edition, 2013. doi: 10.1017/CBO9781139856065.013.

Wajc, D. Rounding dynamic matchings against an adap-
tive adversary. In Proccedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC, pp.
194–207, 2020.

Woodruff, D. P. and Zhang, Q. Tight bounds for distributed
functional monitoring. In Proceedings of the Forty-Fourth
Annual ACM Symposium on Theory of Computing, STOC
’12, pp. 941–960, New York, NY, USA, 2012. Associa-
tion for Computing Machinery. ISBN 9781450312455.
doi: 10.1145/2213977.2214063. URL https://doi.
org/10.1145/2213977.2214063.

Woodruff, D. P. and Zhou, S. Tight bounds for adversarially
robust streams and sliding windows via difference estima-
tors. In 62nd IEEE Annual Symposium on Foundations
of Computer Science, FOCS, pp. 1183–1196, 2021.

Zhao, Q. G., Kumar, A., Wang, J., and Xu, J. J. Data
streaming algorithms for accurate and efficient measure-
ment of traffic and flow matrices. SIGMETRICS Per-
form. Eval. Rev., 33(1):350–361, jun 2005. ISSN 0163-
5999. doi: 10.1145/1071690.1064258. URL https:
//doi.org/10.1145/1071690.1064258.

13

https://api.semanticscholar.org/CorpusID:538509
https://api.semanticscholar.org/CorpusID:538509
https://doi.org/10.1145/2213977.2214063
https://doi.org/10.1145/2213977.2214063
https://doi.org/10.1145/1071690.1064258
https://doi.org/10.1145/1071690.1064258

Fast White-Box Adversarial Streaming Without a Random Oracle

Appendix A contains additional preliminaries for lattices. Appendix B contains the compactness, correctness, and security
properties of FHE. In Appendix C, we recall the streaming model, the structure of a streaming algorithm, and the formal
definition of white-box adversarial robustness.

We prove the robustness of our streaming K-Sparse Recovery algorithm in Appendix D and show the efficiency of the
algorithm in Appendix E. Finally, in Appendix F and G, we describe our results for distributed protocols and low-rank
matrix and tensor recovery, respectively.

A. Additional Lattice Preliminaries
In this section we introduce more background on the lattice problems, which helps justify our hardness assumptions based
on LWE and Ring-LWE.

General definitions. A lattice L is a discrete subgroup of Rg, or equivalently the set L(b1, . . . , bm) =
{
∑g

i=1 xibi : xi ∈ Z} of all integer combinations of g vectors b1, . . . , bm ∈ Rg that are linearly independent. Such
bi’s form a basis of L. The lattice L is said to be full-rank if g = m. We denote by λ1(L) the so-called first minimum of L,
defined to be the length of a shortest non-zero vector of L.

Discrete Gaussian and Related Distributions For any s > 0, define ρs(x) = exp(−π∥x∥2/s2) for all x ∈ Rg . We write
ρ for ρ1. For a discrete set S, we extend ρ to sets by ρs(S) =

∑
x∈S ρs(x). Given a lattice L, the discrete Gaussian GL,s is

the distribution over L such that the probability of a vector y ∈ L is proportional to ρs(y): PrX←GL,s
[X = y] = ρs(y)

ρs(L) .

The discrete Gaussian is not bounded but with overwhelming probability a sample from GL,s is bounded by s
√
g in ℓ2 norm.

We now define a worst-case lattice problem, the gap version of the shortest vector problem, and discuss its relation to the
average-case problems (LWE and Ring-LWE) that we used.

Definition A.1. For any function γ = γ(g) ≥ 1, the decision problem GapSVPγ (Gap Shortest Vector Problem) is defined
as follows: the input is a basis B for a lattice L ⊂ Rg and a real number d > 0 that satisfy the promise that λ1(L(B)) ≤ d,
or λ1(L(B)) ≥ γd. The goal is to decide whether λ1(L(B)) ≤ d, or λ1(L(B)) ≥ γd.

This problem is known to be NP hard for γ = go(1) (Khot, 2004; Haviv & Regev, 2007), and is known to be inside
NP ∩ coNP for γ = O(

√
g) (Aharonov & Regev, 2005; Goldreich & Goldwasser, 2000). The problem is believed to be

intractable by polynomial time adversaries even for γ = 2g
ϵ

for 0 < ϵ < 1.

Under quantum and classical reductions it can be shown that LWEg,h,q,χσ is harder to solve than Gap-SVPγ with γ = g q
σ .

On the other hand, The Ring-LWE problem is as hard as worst-case problems over ideal lattices (Lyubashevsky et al., 2010).

B. Properties of Fully Homomorphic Encryption
We elaborate the compactness, correctness, and security properties that we requires for an FHE scheme.

Definition B.1 (FHE Compactness). We say that a FHE scheme is compact if there exists a polynomial poly(·) such that for
all security parameters λ, circuits C : {0, 1}ℓ → {0, 1} of depth at most poly(λ), and µi ∈ {0, 1} for i ∈ [ℓ], the following
holds: Given (pk, sk) ← FHE.Setup(1λ), cti ← FHE.Enc(pk, µi) for i ∈ [ℓ], ĉt ← FHE.Eval(pk, C, ct1, · · · , ctℓ), we
always have |ĉt| ≤ poly(λ).

Definition B.2 (FHE Correctness). We say that a FHE scheme is correct if for all security parameters λ, circuit C : {0, 1}ℓ →
{0, 1} of depth at most poly(λ), and µi ∈ {0, 1} for i ∈ [ℓ], the following holds: Given (pk, sk) ← FHE.Setup(1λ),
cti ← FHE.Enc(pk, µi) for i ∈ [ℓ], ĉt← FHE.Eval(pk, C, ct1, · · · , ctℓ),

Pr[FHE.Dec(pk, sk, ĉt) = f(µ1, · · · , µℓ)] = 1.

Definition B.3 (FHE Security). We say that a FHE scheme satisfies security if for all security parameter λ, the following
holds: For any PPTλ adversary A, there exists a negligible function negl such that

advA,FHE := 2 · |1/2− Pr[ExptA,FHE(1
λ) = 1]| < negl(λ),

where the experiment ExptA,FHE is defined as follows:

14

Fast White-Box Adversarial Streaming Without a Random Oracle

ExptA,FHE(1
λ) :

1. On input the security parameter 1λ, the challenger runs (pk, sk) ← FHE.Setup(1λ), and ct ← FHE.Enc(pk, b) for

b
$←− {0, 1}. It provides (pk, ct) to A.

2. A outputs a guess b′. The experiment outputs 1 if and only if b = b′.

Remark B.1. The security definition above is in terms of PPTλ adversaries and negl advantage, but it can be lifted to a
(T , ϵ) setting similar to Remark 2.1 as follows: We say that a FHE scheme is (T , ϵ)-secure if there exists an integer λ0, such
that for all λ > λ0, for any non-uniform probabilistic T (λ) time adversary, the advantage advA,FHE of the above experiment
is at most ϵ(λ).

C. Streaming Model
Notation. Let 1(p) for some proposition p be an indicator variable, which equals 1 if p is true and 0 otherwise. We denote
the input dimension parameter of an algorithm by n. We write PPTλ to denote probabilistic poly-time in λ.

Streaming Model. The streaming model captures key resource requirements of algorithms for database, machine learning,
and network tasks, where the size of the data is significantly larger than the available storage. This model was formalized by
Alon, Matias, and Szegedy (Alon et al., 1996) as a vector undergoing additive updates to its coordinates. In this model, the
input data takes the form of a sequence of updates. These updates assume the existence of a fixed-length underlying vector
which represents the current dataset, and dynamically modify this vector one coordinate at a time.

Given a dimension parameter n ∈ N, the model behaves as follows:

• At the beginning of the stream, an underlying vector x is initialized to 0n.

• The input stream is a sequence of T ≤ poly(n) additive updates (x1, · · · , xT). Each update xt for t ∈ [T] is a tuple
xt := (it,∆t), where it ∈ [n] denotes a coordinate of x and ∆t is an arbitrary value.

xt := (it,∆t) is interpreted as updating xit ← xit + ∆t. Thus at any time t′ ∈ [T] during the stream, x is the
accumulation of all past updates, with its i-th coordinate for i ∈ [n]: xi =

∑
t≤t′ 1(it = it0) ·∆t.

A streaming algorithm receives the stream of updates and uses limited memory to compute a function of x. We stress that
during the stream, the underlying vector x is not explicitly available to the algorithm, but is instead implicitly defined by the
sequence of past updates.

In this work, we consider a bounded integer stream, which assumes that throughout the stream, x is promised to be in the
range {−N,−N + 1, · · · , N − 1, N}n for some integer N ∈ poly(n).

Streaming Algorithm. A streaming algorithm maintains some internal state during the stream, which evolves upon
receiving new updates. It takes one pass over all updates and then uses its maintained state to compute a function of the
underlying dataset x. In the streaming model, the dimension parameter n (the length of x) is typically large. Therefore,
a streaming algorithm usually optimizes the size of the state so that it takes a sublinear number of bits of space in n to
represent.

We define the general framework for streaming algorithms as follows:
Definition C.1 (Streaming Algorithm). Given a query function ensemble F = {fn : Zn → X}n∈N for some domain
X , a streaming algorithm StreamAlg that computes F contains a tuple of operations StreamAlg = (StreamAlg.Setup,
StreamAlg.Update,StreamAlg.Report), with the following properties:

• StreamAlg.Setup(n) : On input a dimension parameter n, the setup operation initializes an internal data structure
DS within the memory of StreamAlg.

• StreamAlg.Update(xt) : On input an additive update xt := (it,∆t), the update operation modifies DS.

• StreamAlg.Report()→ r: The report operation uses DS to compute a query response r ∈ X .

A response r is said to be correct if r = fn(x), where x ∈ Zn is the accumulation of all past updates such that
xi =

∑
t 1(it = i) ·∆t for i ∈ [n].

15

Fast White-Box Adversarial Streaming Without a Random Oracle

In this work, we only consider exact computations of query functions (r = fn(x)), though the above definition can also be
generalized to approximation problems (r ≈ fn(x)).

White-box Adversarial Stream. In the conventional oblivious stream model, the sequence of updates may be chosen
adversarially, but is assumed to be chosen independently of the randomness of a streaming algorithm StreamAlg. In contrast,
in the white-box adversarial streaming model, a sequence of stream updates (x1, · · · , xT) is adaptively generated by an
adversary who sees the full internal state of StreamAlg at all times, including DS and any other parameters and randomness
used by StreamAlg. We say that a streaming algorithm is white-box adversarially robust if it guarantees to output correct
responses even against such powerful adversaries. This is described as the following game:

Definition C.2 (White-Box Adversarially Robustness). We say a streaming algorithm StreamAlg is white-box adversarially
robust (WAR) if for all dimension parameters n ∈ N, the following holds: For any PPT adversary A, the following
experiment ExptA,StreamAlg(n) outputs 1 with probability at most negl(n):

ExptA,StreamAlg(n) :

1. The challenger and A agree on a query function ensemble F = {fn : Zn → X}n∈N for some domain X . On input a
dimension parameter n, let fn ∈ F be the query function of the experiment.

2. The challenger runs StreamAlg.Setup(n). It then provides all internal states of StreamAlg to A, including DS and
any other parameters and randomness previously used by StreamAlg.

3. For some T ∈ poly(n), at each time t ∈ [T]:

- A outputs an adaptive update xt := (it,∆t) for t ∈ [T]. Also, A may issue a query.
- The challenger runs StreamAlg.Update(xt), and outputs a response rt ← StreamAlg.Report() if it is queried.

The challenger then provides all internal states of StreamAlg to A, including DS and any other parameters and
randomness used by StreamAlg.

4. The experiment outputs 1 if and only if at some time t ∈ [T] in the stream, StreamAlg output an incorrect response
rt ̸= fn(x), where x is the underlying data vector with xi =

∑
j∈[t] 1(ij = i) ·∆j for i ∈ [n].

D. Proof of White-box Robustness of Construction 3.1
For the concreteness of our proof, we assume that the relaxed k-sparse recovery algorithm StreamAlg0 that is used in our
construction is deterministic and runs in polynomial time. Both conditions are satisfied by many existing sparse recovery
algorithms.

Also, recall that in the FHE preliminaries section, we define the (T , ϵ)-security of a FHE scheme, where T and ϵ are
functions in λ. Also, in Construction 3.1, we set the PFHE security parameter λ = S(n) for some function S.

In this section, we will show that if for all n ∈ N, functions T , ϵ, and S satisfy:

· T (S(n)) = Ω(poly n)

· ϵ(S(n)) ≤ negl(n) for some negligible functions negl.

then the StreamAlg scheme in Construction 3.1 is a WAR streaming algorithm that solves the k-Sparse Recovery problem.

Remark D.1. Roughly, we need poly(n) ⊆ T (S(n)) to convert between the runtime of a PFHE adversary and a StreamAlg
adversary. We also need ϵ(S(n)) ≤ negl(n) to convert between the advantage of a PFHE adversary and a StreamAlg
adversary.

Proof (of Theorem 3.1). We first show that at any time during the stream, if the underlying vector x is k-sparse, then the
query response of StreamAlg is correct.

Lemma D.1. Suppose PFHE satisfies Definition 2.4 and StreamAlg0 solves the Relaxed k-Sparse Recovery problem. Then
the following holds: at any time t ∈ [T], if the current underlying vector x satisfies ∥x∥0 ≤ k, then StreamAlg.Report
correctly outputs x.

16

Fast White-Box Adversarial Streaming Without a Random Oracle

Proof. By the correctness of the StreamAlg0 scheme, when ∥x∥0 ≤ k, StreamAlg0. Report outputs x′ = x. Since
Definition 2.4 restricts PFHE.Eval to be deterministic, we essentially have hash =

∑
i∈[n] ĉti · x′

i and sketch =∑
i∈[n] ĉti ·xi for the same set of ciphertexts ĉti. Thus hash = sketch follows from x′ = x. In this case, StreamAlg.Report

correctly outputs x as desired.

It remains to show the correctness of responses in the case when the underlying data vector is denser than k. Our proof
proceeds via a sequence of hybrid experiments between an adversary A and a challenger.

• Hybrid0: This is a real WAR experiment ExptA,StreamAlg(n) from Definition C.2, where the challenger runs the
StreamAlg scheme from Construction 3.1. On input a dimension parameter n, the challenger samples p̃k← Dp̃k(λ) and

c̃t1, c̃t2, · · · , ˜ct⌈logn⌉ ← Dc̃t(λ) from the distributions of pseudo-public key and pseudo-ciphertext (Definition 2.4) and
provides them to A.

A outputs T ∈ poly(n) -many adaptive updates xt := (it,∆t) upon seeing past internal states of StreamAlg. At any time
t ∈ [T], these updates implicitly define an underlying vector x, whose i-th coordinate xi =

∑
t 1(it = i) ·∆t for i ∈ [n].

• Hybrid1: This is the same experiment as Hybrid0, except that A now runs some additional extraction on itself:

- At each time t ∈ [T], A computes the underlying vector x defined by all of its past updates.
- A runs an additional instance of the StreamAlg0 scheme from Definition 3.2 (which solves the Relaxed k-Sparse

Recovery problem):
1. BeforeA generates its first update, it initializes its StreamAlg0 instance to be in the same state as the StreamAlg0

scheme run by the challenger. (i.e., A runs StreamAlg0.Setup(n) using the same set of randomness used by the
challenger.)

2. At each time t ∈ [T], after A generates an update xt, it calls
StreamAlg0.Update(xt) and then StreamAlg0.Report() to get a query response x′.

We note that if A runs in poly(n) time in Hybrid0, then it still runs in poly(n) time in Hybrid1 since computing x is
trivial and StreamAlg0 runs in poly-time.

For an adversary A, we write Hybi(A) to denote the output of Hybridi.

Lemma D.2. For any adversaries A, |Pr[Hyb0(A) = 1]− Pr[Hyb1(A) = 1]| = 0.

Proof. This just follows from the fact that the additional extractions run byA do not affect the output of the experiments.

• Hybrid2: Same as Hybrid1, except that at the beginning of the experiment, the challenger samples a random coordinate

m
$←− [n] which will be hidden from A. The experiment outputs 1 if at some time t ∈ [T] both of the following holds:

1. StreamAlg outputs an incorrect response rt ̸= fn(x) (i.e., the same condition for Hyb1(A) = 1),
2. The m-th coordinates of x and x′ extracted by A satisfy xm ̸= x′

m,

We show that with the additional success condition, the success probability of Hybrid2 drops by at most a 1/n multiplicative
factor compared to Hybrid1.

Lemma D.3. For any adversaries A, Pr[Hyb2(A) = 1] ≥ Pr[Hyb1(A) = 1]/n.

Before proving Lemma D.3, we make the following observation:

Claim D.1. At any time t ∈ [T] during the Hybrid2 experiment, if StreamAlg outputs an incorrect response rt ̸= fn(x),
and x and x′ are the vectors extracted by A at time t, then x′ ̸= x.

17

Fast White-Box Adversarial Streaming Without a Random Oracle

Proof. By Lemma D.1, rt ̸= fn(x) can occur only when ∥x∥0 > k and rt ̸= ⊥. In this case, by the construction of
StreamAlg.Report, rt should be a k-sparse vector, and thus different from x. Also, using deterministic StreamAlg0.Update
and StreamAlg0.Report, A exactly extracts x′ = rt, so x′ ̸= x.

Lemma D.3 then follows from Claim D.1:

Proof (of Lemma D.3). Claim D.1 states that x′ ̸= x, and in particular, x′ and x disagree on at least one coordinate. Recall
that the random coordinate m is hidden from A at all times, so with probability at least 1/n, m collides with a coordinate
where x′ and x disagree. In this case, both conditions in Hybrid2 are satisfied, so Pr[Hyb2(A) = 1 | Hyb1(A) = 1] ≥
1/n.

• Hybrid3: Same as Hybrid2, except that the challenger now generates an actual public key pk : (pk, sk) ←
PFHE.Setup(1λ) to replace p̃k.

• Hybrid4: Same as Hybrid3, except that the challenger now uses the random coordinate m
$←− [n] (whose bits are

denoted as m1m2 · · ·m⌈logn⌉) that was sampled privately as the message in the ciphertexts: It generates ⌈log n⌉ actual
ciphertexts cti ← PFHE.Enc(pk,mi) for i ∈ [⌈log n⌉] to replace (c̃t1, c̃t2, · · · , ˜ct⌈logn⌉). i.e., (ct1, ct2, · · · , ct⌈logn⌉)
encrypts the bit representation of m.

Lemma D.4. Given that PFHE satisfies Definition 2.4, for any PPTn adversaries A, |Pr[Hyb2(A) = 1]− Pr[Hyb3(A) =
1]| ≤ negl(n) for some negiligble function negl.

Proof. The only difference in A’s views in Hybrid2 and Hybrid3 is the way the challenger generates p̃k or pk. In
Hybrid2, the challenger samples p̃k← Dp̃k(λ); and in Hybrid3, the challenger runs pk : (pk, sk)← PFHE.Setup(1λ).
Thus A distinguishing these two hybrids will distinguish the two distributions {pk : (pk, sk) ← FHE.Setup(1λ)} and
Dp̃k(λ) with the same advantage. Also by the (T , ϵ)-indistinguishability in Definition 2.4, for any poly(n) ≤ T (λ)-sized
adversaries, the latter two distributions can be distinguished with probability at most ϵ(λ) ≤ negl(n).

Lemma D.5. Given that PFHE satisfies Definition 2.4, for any PPTn adversaries A, |Pr[Hyb3(A) = 1]− Pr[Hyb4(A) =
1]| ≤ negl(n) for some negiligble function negl.

Proof. Similar to Lemma D.4, the only difference in A’s views in Hybrid3 and Hybrid4 is the way the challenger
generates (c̃t1, · · · , ˜ct⌈logn⌉) or (ct1, · · · ,
ct⌈logn⌉). Recall that we have: {ct} ≈(T ,ϵ) Dc̃t(λ) from Definition 2.4. Therefore for any PPTn adversary A, the advantage

of distinguishing (c̃t1, c̃t2, · · · , ˜ct⌈logn⌉) in Hybrid3 from a ciphertext sequence (ct1, ct2, · · · , ct⌈logn⌉) where each
cti ← PFHE.Enc(pk,mi) is at most ⌈log n⌉ · ϵ(λ) = negl(n). ThusA cannot distinguish between Hybrid3 and Hybrid4

with non-negligible advantage, as otherwise either the pseudorandom-ct property in Definition 2.4 would be broken.

Now that we have related the success probability between the above consecutive hybrid experiments, we will show next that
Pr[Hyb4(A) = 1] = 0.

Lemma D.6. Given that PFHE satisfies Definition 2.4, for any PPTn adversaries A, Pr[Hyb4(A) = 1] = 0.

Proof. As in the proof for Claim D.1, if Hyb4(A) = 1, at some time t we must have rt = x′ ̸= x. Additionally, we have:

· x′
m ̸= xm, which is among the condition of Hyb4(A) = 1, and

· hash = sketch, which is verified in StreamAlg.Report.

Recall the StreamAlg scheme computes hash :=
∑

i∈[n] ĉti · x′
i and sketch :=

∑
i∈[n] ĉti · xi, where ĉti ←

PFHE.Eval(pk, Ci, ct1, · · · , ct⌈logn⌉), for Ci(µ) = 1 iff µ = i. Therefore, given that (ct1, · · · , ct⌈logn⌉) encrypts m in
Hybrid4, ĉtm should encode 1, and ĉti encodes 0 for all i ̸= m. Thus by the linear homomorphism property of PFHE,

18

Fast White-Box Adversarial Streaming Without a Random Oracle

there exists a deterministic decoding algorithm such that hash decodes to x′m and sketch decodes to xm. However, since
x′
m ̸= xm, this essentially implies hash ̸= sketch, contradicting the condition in StreamAlg.Report.

Finally, summarizing Lemma D.2 to Lemma D.6:

1. |Pr[Hyb0(A) = 1]− Pr[Hyb1(A) = 1]| = 0

2. Pr[Hyb2(A) = 1] ≥ Pr[Hyb1(A) = 1]/n

3. |Pr[Hyb2(A) = 1]− Pr[Hyb3(A) = 1]| = negl(n)

4. |Pr[Hyb3(A) = 1]− Pr[Hyb4(A) = 1]| = negl(n)

5. Pr[Hyb4(A) = 1] = 0

We have that for any adversaries A, Pr[Hyb0(A) = 1] ≤ negl(n) · n = negl(n). i.e., The real WAR game between A and a
challenger running the StreamAlg scheme from Construction 3.1 outputs 1 with probability at most negl(n).

E. Efficiency
Notation. We use bi to denote the standard basis vector, whose i-th entry equals 1 and 0 anywhere else.

E.1. (Alternative) Deterministic Relaxed Sparse Recovery

The deterministic Relaxed k-Sparse Recovery algorithm in Theorem 4.1 achieves nearly optimal space and time. However,
the measurement is “constructed” non-explicitly using the probabilistic method. For explicit construction, we consider the
following result:

Theorem E.1 ((Jafarpour, 2011)). There exists a streaming algorithm StreamAlg0 for k-Sparse Recovery without Detection,
such that given an input parameter n, for an integer stream with entries bounded by poly(n):

· StreamAlg0.Setup,Update, and Report are all deterministic.

· StreamAlg0 takes Õ(k) bits of space.

· StreamAlg0.Update runs in (amortized) Õ(1).

· StreamAlg0.Report runs in Õ(k2).

The above theorem except the amortized runtime has been shown in (Jafarpour, 2011).

Proof (of the runtime in Theorem E.1). The measurement Φ in Theorem E.1 is a 2k × n Vandermonde matrix explicitly
defined 2 as Φi,j = ji−1 over Zp, where p > 2M is a large enough prime for M ∈ poly(n) being the bound on the
magnitude of the stream entries. The reconstruction algorithm uses the same idea as the algebraic algorithm for decoding
Reed-Solomon codes. It uses the sketch to construct an error-locator polynomial; the roots of this polynomial identify the
signals appearing in the sparse superposition.

We note that the Vandermonde matrix is dense but structured. Thus to achieve the claimed Õ(1) update time, we buffer
every 2k stream updates and then efficiently process them in one batch. We need the following result for fast multi-point
evaluation of polynomials and the Transposition Principle:

Theorem E.2 ((von zur Gathen & Gerhard, 2013)). Let R be a ring, and let q ∈ R[x] be a degree-d polynomial. Then given
at most d distinct points x1, · · · , xd ∈ R, all values q(x1), · · · , q(xd) can be computed using O(d log2 d log log d) total
operations over R.

2For our discussion, we choose a Vandermonde matrix that is easy to describe. Though many other Vandermonde matrices also satisfy
the specifications.

19

Fast White-Box Adversarial Streaming Without a Random Oracle

Theorem E.3 (Transposition Principle, (Shoup, 1994)). Let K be a field and A be an r × w matrix over K. Suppose there
exists an arithmetic circuit of size s that can compute Ay for arbitrary length-w vector y over K. Then there exists an
O(s)-time algorithm that transforms this circuit to compute A⊤x for arbitrary length-r vector x over K, with the size of
the new circuit in O(s).

Theorem E.2 and Theorem E.3 together show the following update time for Vandermonde measurements:

Proposition E.1. Suppose Φ is a 2k × n Vandermonde matrix as described above. Let x1, x2, · · · , x2k be a sequence of
updates with xt := (it,∆t) for each t ∈ [2k]. Define v =

∑
t∈[2k] bit ·∆t, then Φ(v) can be computed using Õ(k) time.

Proof (of Proposition E.1). Without loss of generality, we assume all updated coordinates i1, i2, · · · , i2k are distinct, as one
can always compress multiple updates to the same coordinate as a single update. Then i1, i2, · · · , i2k index 2k columns of
Φ and 2k coordinates of v (which are the only coordinates that can possibly be non-zero). Let A be the indexed 2k × 2k
column sub-matrix and v′ be the 2k-length vector containing only i1, i2, · · · , i2k-th entries of v in their original order. We
have Φv = Av′.

Observe that the column submatrix A is still a Vandermonde matrix, and each row i of A⊤ takes the form
[1, αi, α

2
i , · · · , α

2k−1
i] for some αi ∈ [n]. For an arbitrary vector u ∈ Z2k

p , we interpret it as the coefficient vector
of a degree-2k polynomial in Z2k

p . Then A⊤u can be computed as evaluating the polynomial at 2k points α1, α2, · · ·α2k,
which takes Õ(k) time using the fast multi-point evaluation in Theorem 4.1. By the Transposition Principle, this implies
asymptotically the same runtime for evaluating Av′ thus Φv.

Therefore, once we buffer the updates into 2k-sized batches and amortize the cost of processing each batch to the future 2k
updates, we get Õ(1) amortized runtime for StreamAlg0.Update.

E.2. GSW Satisfies PFHE Properties

We check that GSW satisfies the additional properties required by PFHE:

- Eval is deterministic by the construction of GSW.

- (Pseudorandom pk, ct.) This is just the built-in security of GSW shown via the LWE hardness and the Left-over Hash
lemma. Assuming the (T , ϵ)-hardness of LWEg,h,q,χ, we have:(A,A ·R+ µ ·G) :

A← PublicKeyGen

R← {0, 1}h×h

µ ∈ {0, 1}

 ≈(T ,ϵ)

{
(U1,U2) :

U1 ← Z(g+1)×h
q

U2 ← Z(g+1)×h
q

}
.

- (Z Linear Homomorphism.) Consider the following arbitrary linear combination, where each ciphertext cti = A ·Ri +
µi ·G for i ∈ [k]:

M =
∑
i∈[k]

xi · cti = A · (
∑
i∈[k]

xiRi) + (
∑
i∈[k]

xiµi) ·G

For k ·maxi∈[k] xi ≪ q , it can be deterministically decrypted using the normal GSW decryption for integer messages.
For completeness, we briefly describe LinearDec as follows:

– LinearDec(pk, sk,M): Compute

sk · M = [−s⊤ | 1] ·A · (
∑
i∈[k]

xiRi) + (
∑
i∈[k]

xiµi) · [−s⊤ | 1] ·G

= e⊤ · (
∑
i∈[k]

xiRi) + (
∑
i∈[k]

xiµi) · [−s⊤ | 1] ·G

≈ (
∑
i∈[k]

xiµi) · [−s⊤ | 1] ·G

20

Fast White-Box Adversarial Streaming Without a Random Oracle

Since it is easy to solve LWE with respect to G, we can recover (
∑

i∈[k] xiµi) · [−s⊤ | 1] and hence
∑

i∈[k] xiµi

(modulo q).

E.3. Efficiency of PFHE Based on Subexponential LWE

We use GSW to implement PFHE and set the security parameter to be λ = logr n for some constant r > 1/β and r > 1/c.
We get the following proposition.

Proposition E.2. LetR(A) denote the runtime of an algorithm A. Assuming the above subexponential hardness of LWE,
we have the following complexity regarding StreamAlg in Construction 3.1:

1. (p̃k, c̃t1, · · · , ˜ct⌈logn⌉) and sketch can be stored using Õ(1) total bits of space.

2. R(StreamAlg.Update) = Õ(1) +R(StreamAlg0.Update).

3. R(StreamAlg.Report) = Õ(k) +R(StreamAlg0.Report).

Proof. Recall that computations in StreamAlg are modulo q with q ∈ poly(n) and q ≫ n ·N , where N ∈ poly(n) is the
bound of the stream. Thus all entries have bit complexity in O(log n).

1. p̃k, sketch, and c̃ti for i ∈ ⌈log n⌉ are allO(g)×O(h) matrices over Zq . For g = λ ∈ poly(log n) and h ∈ Θ(g · log q),
they can be stored using O(poly(log n)) = Õ(1) total bits of space.

2. The second bullet point considers the following operation:

• Evaluate ĉtit ← PFHE.Eval(p̃k, Cit , c̃t1, · · · , c̃tℓ). Then update sketch as sketch← sketch+∆t · ĉtit .

Updating sketch takes Õ(1) time. For evaluation, recall that Cit is a point function checking whether the input bits
equal it. This can be na¨

velyimplementedusingO(log n) arithmetic operations, each of which runs in poly log n time as described in Eval+ and
Eval× above. Thus the total runtime is Õ(1).

3.4.5. The third bullet point considers the following operation:

• (If ∥x′∥0 > k, output ⊥. Otherwise:) Evaluate ĉti ← PFHE.Eval(p̃k, Ci, c̃t1, · · · , c̃tℓ) for i ∈ [n]. Then compute
hash←

∑
i∈[n] ĉti · x′

i.

Observe that although the construction is described as evaluating n-many ĉti, one for each coordinate of x′, at this line
of the algorithm x′ is guaranteed to have at most k non-zero entries. Thus k evaluations (corresponding to non-zero
coordinates of x′) suffice for computing the linear combination hash. Each evaluation is Õ(1), so the total runtime is
Õ(k).

E.4. Efficiency of PFHE Based on Polynomial LWE

Under the polynomial LWE assumption, we set λ = nw for an arbitrarily small constant w > 0. The (T , ϵ)-security then
reduces to the standard definition in terms of PPT adversaries and negligible advantage. We again choose g = λ and
h ∈ Θ(g · log q). The complexity is:

Proposition E.3. LetR(A) denote the runtime of an algorithm A. Assuming the polynomial hardness of LWE, we have the
following complexity regarding StreamAlg in Construction 3.1:

1. (p̃k, c̃t1, · · · , ˜ct⌈logn⌉) and sketch can be stored in Õ(nw1) bits of space.

2. R(StreamAlg.Update) = Õ(nw2) +R(StreamAlg0.Update).

21

Fast White-Box Adversarial Streaming Without a Random Oracle

3. R(StreamAlg.Report) = Õ(k · nw3) +R(StreamAlg0.Report).

where w1, w2, and w3 are arbitrarily small positive constants.

Proof. The proof is exactly the same as the proof for Proposition E.2, except that now the dimension of the ciphertext
matrices blows up from poly log n to nw for an arbitrarily small w > 0.

E.5. Complexity of Construction 3.1

Corollary 4.1 that we include in the main body follows from Theorem 4.1 and Proposition E.2. We summarize all
combinations of instantiations in Table 2 below.

Table 2. A summary of the time and space complexities of the StreamAlg scheme in Construction 3.1, given different instantiations of
StreamAlg0 and PFHE. c denotes an arbitrarily small positive constant.

RELAXED REC. SCHEME LWE ASSUMPTION SPACE UPDATE TIME REPORT TIME

THEOREM 4.1 SUBEXP Õ(k) Õ(1) Õ(k1+c)

THEOREM E.1 SUBEXP Õ(k) Õ(1) Õ(k2)

THEOREM 4.1 POLY Õ(k + nc) Õ(nc) Õ(k · (kc + nc))

THEOREM E.1 POLY Õ(k + nc) Õ(nc) Õ(k · (k + nc))

F. Distributed K-Sparse Recovery from Ring LWE
F.1. Distributed Computation

In the distributed computation model, the dataset is split over multiple servers. The goal is to design a communication
protocol for servers to collectively compute a function on the aggregated dataset. In this work, we consider the message-
passing coordinator model (see, e.g., (Phillips et al., 2015)), where there are T servers and a single central coordinator. Each
server st : t ∈ [T] receives a partition of data in the form of an n-dimensional vector xt, and communicates with the central
coordinator through a two-way, single-round communication channel. At the end of the communication, the coordinator
needs to compute or approximate a function fn(x) of the aggregated vector x =

∑
t∈[T] xt. We aim to design protocols

that minimize the total amount of communication through the channel and speed up the computation at each server and the
coordinator. See also (Woodruff & Zhang, 2012) and the references therein on the distributed model.

Similar to the streaming model, we focus on designing a robust protocol in a white-box adversarial distributed setting, where
the dataset is generated and partitioned across each server by a white-box adversary who monitors the internal state of the
coordinator and the servers. We define the model as follows:

Definition F.1 (Distributed Protocol). Given a query function ensemble F = {fn : Zn → X}n∈N for some do-
main X , a distributed protocol DistProt that computes F contains a tuple of algorithms DistProt = (DistProt.Setup,
DistProt.Server,DistProt.Coordinator), with the following properties:

• DistProt.Setup(n, ρ0)→ ζ : On input a parameter n, the coordinator samples randomness ρ0 and uses ρ0 to compute
some state ζ. It sends ζ to all servers.

• DistProt.Server(ζ,xt, ρt)→ pt : On input a state ζ and a data partition xt ∈ Zn, the t-th server samples randomness
ρt and uses it to compute a packet pt. It sends pt back to the coordinator.

• DistProt.Coordinator(p1, · · · , pT , ρc)→ r: On input T packets p1, · · · , pT , the coordinator samples randomness ρc
and computes a query response r ∈ X .

A response r is said to be correct if r = fn(x) where x =
∑

t∈[T] xt.

As in the streaming setting, we again assume bounded integer inputs, such that an arbitrary subset sum of {xt : t ∈ [T]} is
in [−N,N]n for some N ∈ poly(n).

22

Fast White-Box Adversarial Streaming Without a Random Oracle

Definition F.2. We say that a distributed protocol DistProt is white-box adversarially robust if for all dimension parameters
n ∈ N, the following holds: For any PPT adversaryA, the following experiment ExptA,DistProt(n) outputs 1 with probability
at most negl(n):

ExptA,DistProt(n) :

1. The challenger and A agree on a query function ensemble F = {fn : Zn → X}n∈N for some domain X . On input a
dimension parameter n, let fn ∈ F be the query function of the experiment.

2. The challenger samples all randomness ρ0, ρt : t ∈ [T], and ρc for the servers and the coordinator. It then provides
ρ0, ρ1, · · · , ρT and ρc to A.

3. A generates T partitions of data x1, · · · ,xT ∈ Zn and provides them to the challenger.

4. The challenger executes the protocol to sequentially compute the following:

(i) ζ ← DistProt.Setup(n, ρ0).
(ii) pt ← DistProt.Server(ζ,xt, ρt) for all t ∈ [T].

(iii) r ← DistProt.Coordinator(p1, · · · , pT , ρc).

5. The experiment outputs 1 if and only if at some time r ̸= fn(x).

Remark F.1. We remark on the connection between the streaming model and the distributed model. There exists a
well-known reduction from a streaming algorithm to a distributed protocol under the oblivious setting: Each server
runs StreamAlg.Update on the same initial state ζ ← StreamAlg.Setup, using all entries of xt (its data partition) as
updates. It then sends the resulting sketch to the coordinator. As long as the sketches are linear, the coordinator can run
StreamAlg.Report on the sum of all sketches to compute a query response.

One may use the same recipe to construct a WAR distributed protocol from a WAR streaming algorithm. In general, the
robustness is retained by such a reduction if StreamAlg.Update and StreamAlg.Report are deterministic. (Otherwise, the
adversaries in the experiment ExptA,DistProt would have additional views to all “future” randomness, while adversaries in
the streaming experiment ExptA,StreamAlg only monitor the past randomness already used by StreamAlg.) Our Construction
3.1 satisfies this condition.

F.2. Distributed Protocol Construction

For completeness, we briefly describe the distributed protocol for k-Sparse Recovery as follows, which essentially follows
the same route as our streaming Construction 3.1.

Construction F.1. Similar to Construction 3.1, let PFHE be a pseudorandom FHE scheme. And let StreamAlg0 be a
streaming algorithm for the Relaxed k-Sparse Recovery problem. We assume that StreamAlg0 performs a deterministic
linear measurement Φn on an arbitrary length-n input vector, as described in the previous instantiation Section E.1.

• DistProt.Setup(n) : Let λ = S(n) be the security parameter of PFHE. Sample p̃k ← Dp̃k(λ) and

c̃t1, c̃t2, · · · , ˜ct⌈logn⌉ ← Dc̃t(λ). Send ζ := (p̃k, c̃t1, · · · , c̃tlogn) to all servers

• DistProt.Server(ζ,xt) : Given ζ := (p̃k, c̃t1, · · · , ˜ct⌈logn⌉), evaluate ĉti ← PFHE. Eval(p̃k, Ci, c̃t1, · · · , ˜ct⌈logn⌉) for
i ∈ [n], where Ci is the same point function as in Construction 3.1.

Compute Φn(xt) and sketcht ←
∑

i∈[n] ĉti · (xt)i, where (xt)i denotes the i-th coordinate of xt. Send pt :=

(sketcht,Φn(xt)) to the coordinator.

• DistProt.Coordinator(p1, · · · , pT): Let x′ ← StreamAlg0.Report(
∑

t∈[T] Φn(xt)), i.e., the output of running the
reconstruction algorithm of StreamAlg0 on the sum of all measurement results. If ∥x′∥0 > k, output ⊥.

Otherwise, evaluate ĉti ← PFHE.Eval(p̃k, Ci, c̃t1, · · · , ˜ct⌈logn⌉) for i ∈ [n]. Then compute hash ←
∑

i∈[n] ĉti · x′
i.

Output x′ if hash =
∑

t∈[T] sketcht, and output ⊥ otherwise.

23

Fast White-Box Adversarial Streaming Without a Random Oracle

F.3. Efficiency

In this section, we focus on showing that we can use BV (Brakerski & Vaikuntanathan, 2011), a Ring-LWE based FHE
scheme, to achieve near-linear processing time on DistProt.Server under the polynomial ring-LWE assumption.

As a warm-up, we state the complexity of Constrution F.1 using GSW to implement PFHE:
Proposition F.1. Let R(A) denote the runtime of an algorithm or an evaluation A, we have the following complexity
regarding DistProt in Construction F.1:

• Assuming the subexponential hardness of LWE:

1. The total bits of communication between an arbitrary server and the coordinator is Õ(1) + size(Φn(x)).
2. R(DistProt.Coordinator) = Õ(k) +R(StreamAlg0.Report).
3. R(DistProt.Server) = Õ(k) +R(Φn(x)).

• Assuming the polynomial hardness of LWE: :

1. The total bits of communication between an arbitrary server and the coordinator is Õ(nw1) + size(Φn(x)).
2. R(DistProt.Coordinator) = Õ(k · nw2) +R(StreamAlg0.Report).
3. R(DistProt.Server) = Õ(k · nw3) +R(Φn(x)).

where x ∈ [−N,N]n is arbitrary, and w1, w2, and w3 are arbitrarily small positive constants.

Proof. The communication complexity and the runtime of DistProt.Coordinator are the same as the bit complexity
and reporting time of StreamAlg in Construction 3.1 (except for some negligible addition operations). The runtime of
DistProt.Server is roughly n · R(StreamAlg.Update), because every server has to perform n evaluations, one for each
coordinate of its data partition.

Efficiency Based on Ring-LWE. Before discussing the efficiency advantage, we briefly review some important features
of BV to show that it satisfies a variant of the PFHE definition. See (Brakerski & Vaikuntanathan, 2011) for details of the
BV construction.

Consider a ring R := Z[x]
xg+1 where g is the degree parameter. Let Rq denote R/qR for a prime modulus q, and let Rt be the

message space for some prime t ∈ Z∗q and t≪ q/g:

• The public keys of BV are two-dimensional vectors in R2
q , which are computationally indistinguishable from uniformly

random samples from R2
q under the Ring-LWE assumption.

The ciphertexts are also vectors over Rq that are indistinguishable from uniform random.

• BV satisfies an analogy of Z Linear Homomorphism, with coefficients of linear combinationsM =
∑

i∈[k] xi · cti being
small norm ring elements xi ∈ Rt as opposed to integer scalars. As long as the linear combination of corresponding
messages (Mmsg =

∑
i∈[k] xi ·mi, where mi ∈ Rt is the message encrypted by cti) still lies in Rt, running the standard

BV decoding algorithm onM output the correct message.

• Eval and Dec are deterministic by the construction of BV.

We choose parameters for our Ring-LWE based construction as follows: Let λ = nw for an arbitrarily small constant w > 0.
Let the dimension g = λ, the modulus of the message space t > n ·N , where N ∈ poly(n) is the bound of the input data.
The modulus q is chosen with subexponential modulus-to-noise ratio and q ≫ g · t the Ring-LWE assumption states that for
any h ∈ poly(λ), it holds that

{(ai, ai · s+ ei) : ei ← χ}i∈[h] ≈c

{
(ai, ui) : ui ← Rq

}
i∈[h]

where s is sampled from the noise distribution χ and ai are uniform in Rq .

We have the following complexity:

24

Fast White-Box Adversarial Streaming Without a Random Oracle

Proposition F.2. LetR(A) denote the runtime of an algorithm or an evaluation A. Assuming the polynomial hardness of
Ring-LWE, a variant of DistProt in Construction F.1 has the following complexity:

1. The total bits of communication between an arbitrary server and the coordinator is Õ(nw1) + size(Φn(x)).

2. R(DistProt.Coordinator) = Õ(n) +R(StreamAlg0.Report).

3. R(DistProt.Server) = Õ(k · nw
2) +R(Φn(x)).

where x ∈ [−N,N]n is arbitrary, and w1, w2 are arbitrarily small positive constants.

Proof. In comparison to the complexity under polytime standard LWE, we save a nΘ(1) factor in the runtime of
DistProt.Server. This is due to speeding up the following two steps:

1. Evaluate ĉti ← PFHE.Eval(p̃k, Ci, c̃t1, · · · , ˜ct⌈logn⌉) for all i ∈ [n]

2. Compute
∑

i∈[n] ĉti · xi

The idea is to represent the messages as ring elements over Rq as opposed to individual scalars, and apply fast Fourier
transforms to efficiently multiply them.

In a variant of Construction F.1, instead of performing n evaluations one for each coordinate i ∈ [n], we partition the
dimension n into n1−w chunks. Each chunk is of length nw, where g = nw is the degree parameter of the ring for an
arbitrarily small constant w > 0. Such that a length-n vector x is partitioned into n1−w consecutive segments, each can be
represented as a (small-normed in comparison to q) ring element xj ∈ Rq for j ∈ [n1−w].

We also define a new set of functions C ′j as follows:

C ′j(µ1, · · · , µ⌈logn⌉) ={
1 if (µ1, · · · , µ⌈logn⌉) represents a value in [jnw, (j + 1)nw)

0 otherwise.

We evaluate ĉt′j ← PFHE.Eval(p̃k, C ′j , c̃t1, · · · , ˜ct⌈logn⌉) for all j ∈ [n1−w] to replace the above step 1. The total evaluation
time is O(n1−w · nw poly log(nw)) = Õ(n), since two ring elements can be multiplied in O(nw poly log(nw)) time using
the FFT. Then the linear combination in the above step 2 is replaced by

∑
j∈[n1−w] ĉt

′
j · xj , which similarly takes Õ(n) time

to compute.

Lastly, we check that given two vectors x and x′ differ at a coordinate m, when ct1, · · · , ct⌈logn⌉ encrypt the bits of m, we
still have

sketch =
∑

j∈[n1−w]

ĉt′j · xj ̸=
∑

j∈[n1−w]

ĉt′j · x
′
j = hash.

because they can be decrypted into distinct ring elements. This concludes that the above variant of Construction F.1 remains
correct while achieving near-linear runtime of DistProt.Coordinator and DistProt.Server.

G. Low-Rank Matrix and Tensor Recovery
The low-rank matrix and tensor recovery problems are defined as follows:

Definition G.1 (Rank-k Matrix Recovery). Given a rank parameter k and an input matrix X ∈ Zn×m, output X if
rank(X) ≤ k and report ⊥ otherwise.

Let ⊗ denote the outer product of two vectors. We use the following definition for tensor rank:

25

Fast White-Box Adversarial Streaming Without a Random Oracle

Definition G.2 (CANDECOMP/PARAFAC (CP) rank). For a tensor X ∈ Rnd

, consider it to be the sum of k rank-1
tensors: X =

∑k
i=1(xi1 ⊗ xi2 ⊗ · · · ⊗ xid) where xij ∈ Rn. The smallest number of rank-1 tensors that can be used to

express a tensor X is then defined to be the rank of the tensor.

Definition G.3 (Rank-k Tensor Recovery). Given a rank parameter k and an input tensor X ∈ Znd

, output X if
CP − rank(X) ≤ k and report ⊥ otherwise.

The low-rank matrix and tensor recovery problems are natural generalizations of the k-sparse vector recovery problems.
Using the same framework as the vector case, they can be solved by maintaining two hashes: one recovers the matrix or
tensor but potentially produces garbage output, and the other uses a cryptographic tool to verify whether the output matches
the input data. These are natural generalizations of the k-sparse vector recovery problems.

In (Feng & Woodruff, 2023), the recovery hash is measured by a random Gaussian matrix, and the verification hash is
measured by an SIS matrix. Both measurements are assumed to be heuristically compressed by an idealized hash function.
We instead replace the former with a deterministic measurement, which can be explicitly constructed and decoded in
polynomial time (Forbes & Shpilka, 2012). The latter is replaced by the same FHE-based hashing as the one we used for the
vector case in Construction 3.1, which operates on the vectorization of the data matrix or tensor. Similar to the vector case,
our construction does not require using an idealized hash function or storing a separate large state.

In the streaming model, the complexities of our matrix and tensor recovery algorithms are as follows:

Proposition G.1. LetR(A) denote the runtime of an algorithm or an evaluation A. Assuming the polynomial hardness of
LWE,

• There exists a WAR streaming algorithm StreamAlg for the rank-k matrix recovery problem using Õ(nk) bits of space.

• There exists a WAR streaming algorithm StreamAlg for the rank-k tensor recovery problem using Õ(nk⌈log d⌉) bits of
space.

Proof. The recovery scheme for matrices and tensors takes Õ(nk) and Õ(nk⌈logn⌉) bits of space, respectively (Forbes &
Shpilka, 2012). Under the polynomial hardness assumption of LWE, we set λ = nc for an arbitrarily small positive constant
c. Taking the sum of the two terms produces the claimed complexities.

In addition, the above streaming algorithms can be converted into WAR distributed protocols for matrix and vector recovery,
following the same roadmap as in Section F.

Proposition G.2. LetR(A) denote the runtime of an algorithm or an evaluation A. Assuming the polynomial hardness of
LWE: :

• There exists a WAR distributed protocol DistProt for the rank-k matrix recovery problem, using Õ(nk) bits of
communication between each server and the coordinator, and Õ(n2k) processing time at each server.

• There exists a WAR streaming algorithm StreamAlg for the rank-k tensor recovery problem, using Õ(nk⌈log d⌉) bits of
communication between each server and the coordinator.

Proof. The total number of bits of communication between each server and the coordinator equals the size of the state in the
above streaming algorithms. For low-rank matrix recovery, the deterministic scheme performs Õ(nk) measurements using
n-sparse matrices, and the runtime for computing the FHE-based hash is comparably small. This gives Õ(n2k) processing
time at each server.

We remark that the rank-k matrix recovery algorithm in the previous work (Feng & Woodruff, 2023) requires Õ(n3k)
processing time in the distributed setting, which our construction improves upon.

26

