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ABSTRACT

The mainstream federated learning algorithms only communicate the first-order
information across the local devices, i.e., FedAvg and FedProx. However, only
using first-order information, these methods are often inefficient and the impact
of heterogeneous data is yet not precisely understood. This paper proposes an
efficient federated Newton method (FedNewton), by sharing both first-order and
second-order knowledge over heterogeneous data. In general kernel ridge regres-
sion setting, we derive the generalization bounds for FedNewton and obtain the
minimax-optimal learning rates. For the first time, our results analytically quan-
tify the impact of the number of local examples, the data heterogeneity and the
model heterogeneity. Moreover, as long as the local sample size is not too small
and data heterogeneity is moderate, the federated error in FedNewton decreases
exponentially in terms of iterations. Extensive experimental results further vali-
date our theoretical findings and illustrate the advantages of FedNewton over the
first-order methods.

1 INTRODUCTION

Owing to the great potential in privacy preservation and in lowering the computational costs, feder-
ated learning (FL) McMahan et al. (2017); Li et al. (2020a); Zhang et al. (2021) becomes a promising
framework in processing large-scale tasks. However, federated learning is facing massive challenges
from the heterogeneous data Zhao et al. (2018); Zhou et al. (2023); Ye et al. (2023), including both
the data heterogeneity and the model heterogeneity. The data heterogeneity comes from that inputs
across devices are usually sampled from heterogeneous distributions, while the model heterogeneity
measures the response shift due to inconsistency between local models and the global model.

First-order approaches, including FedAvg McMahan et al. (2017) and FedProx Li et al. (2020a),
share the first-order information rather than the data across devices and tolerate the heterogeneity
in federated learning, while Newton-type FL methods Ghosh et al. (2020); Gupta et al. (2021); Sa-
faryan et al. (2022); Islamov et al. (2023); Liu et al. (2023); Dal Fabbro et al. (2024); Li et al. (2023)
utilized second-order information for updating federated model. To the best of our knowledge, most
of existing learning guarantees for FL methods are derived in the context of optimization and fo-
cused on in-sample predictive errors only, i.e., the convergence analysis (optimization) of first-order
FL Li et al. (2020b); Karimireddy et al. (2020); Pathak & Wainwright (2020); Glasgow et al. (2022)
and Newton-type FL Ghosh et al. (2020); Safaryan et al. (2022); Qian et al. (2022). However,
beyond the optimization, the generalization guarantees (out-sample predictive performance) are of
great practical and theoretical interests for FL. Despite recent efforts and progress on the general-
ization for first-order algorithms Mohri et al. (2019); Yagli et al. (2020); Su et al. (2021); Yuan et al.
(2022), the generalization guarantees for Newton-type FL algorithms remain elusive, especially on
heterogeneous data and localized models. Therefore, a challenging problem in FL is how to quantify
the impact of heterogeneity from the generalization perspective?

In this paper, motivated by sharing second-order information, we propose a second-order federated
optimization method, named FedNewton. It approximates the global predictor on the entire data
by utilizing the global gradient and local Hessians, improving the predictive accuracy in an efficient
communications framework. We then study the statistical properties of FedNewton, and derive the
generalization bounds with the minimax optimal rates. We conclude with experiments on simulated
data and publicly available tasks that complement our theoretical results, exhibiting the computa-
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tional and statistical benefits of our approach. Due to the length limit, we leave the experiment part
in the appendix. We summarize our contributions as below:

1) On the algorithmic front. We propose a fast second-order federated learning algorithm, which
improves the approximation of the centralized model while only requiring similar computational and
communication costs as the first-order methods. The convergence of FedNewton is exponentially
fast and a few communications, for example, t → 2, can approximate the global model well.

2) On the statistical front. To our best knowledge, in presence of both data heterogeneity and
model heterogeneity, we present the optimal generalization guarantees for the first time. Our results
further analytically quantify the impacts of the local sample size, the data heterogeneity, and the
model heterogeneity. Especially, the federated error decreases exponentially fast in benign cases,
i.e., a sufficient number of local examples and moderate data heterogeneity.

2 PROBLEM SETUP

In a standard framework of federated learning, there is a global parameter server and m local com-
putational clients. On the j-th local machine ↑j ↓ [m], the local data Dj = {(xij , yij)}|Dj |

i=1 is
drawn from a local distribution ωj on the joint space X ↔ Y . The total sample D =

⋃m
j=1 Dj is

the disjoint union of local data and corresponds to a global distribution ω. For any local devices
j, k ↓ [m] and j ↗= k, data distributions are identical ωj = ωk = ω in the homogeneous setting (iid
data), while data distributions are distinct ωj ↗= ωk in the heterogeneous case (non-iid data).

We base our analysis on the standard non-parametric regression setup and assume that the target
solution f→ belongs to a reproducing kernel Hilbert space (RKHS) induced by a Mercer kernel
K : X ↔ X ↘ R. Mercer’s theorem guarantees the kernel function admits an implicit feature
mapping K(x,x↑) = ≃ε(x),ε(x↑)⇐K and the norm by ⇒ · ⇒K . The predictor can be stated as
fD,ω(x) = ≃wD,ω,ε(x)⇐ where wD,ω minimizes the objective on the entire data D

argmin
w↓HK





1

2|D|

|D|∑

i=1

(f(xi)⇑ yi)
2 +

ϑ

2
⇒w⇒2K




 , (1)

where (xi, yi) ↓ D, and ϑ > 0 is the regularity parameter. The above regression problem, known
as Kernel Ridge Regression (KRR), admits a closed-form solution

wD,ω = (!↔

D
!D + ϑI)↗1!↔

D
yD, (2)

where !D = 1⇓
|D|

[
ε(x1), · · · ,ε(x|D|)

]T ↓ R|D| ↔HK are feature mappings on the training set

D and yD = 1⇓
|D|

(
y1, · · · , y|D|

)↔ are the corresponding labels.

By averaging the local models, the simplest federated method only communicates once, known as
Distributed Kernel Ridge Regression (DKRR) with the closed-form solution

w̄D,ω =
m∑

j=1

pj(!
↔

Dj
!Dj + ϑI)↗1!↔

Dj
yDj ,

where pj is the weight of the j-th local model, which is usually set pj = |Dj |/|D|. Note that,
!Dj = 1⇓

|Dj |

[
ε(x1), · · · ,ε(x|D|j

)
]T ↓ R|Dj | ↔ HK are local feature mappings and yDj =

1⇓
|Dj |

(
y1, · · · , y|Dj |

)↔ are labels on the j-th local train set Dj =
{
(xij , yij)

}|Dj |

i=1
, ↑j ↓ [m].

The solution of KRR equation 2 can be rewritten in the Newton’s method form

wD,ω = w ⇑H↗1
D,ωgD,ω. (3)

where the gradient and Hessian matrix are defined as

gD,ω := (!↔

D
!D + ϑI)w ⇑!↔

D
yD,

HD,ω := (!↔

D
!D + ϑI).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Algorithm 1 Federated Learning with Newton Method (FedNewton)

Input: Local training data subset Dj , ↑j ↓ [m]. Feature mapping ε : X ↘ RM .
Output: The global estimator w̄T

D,ω.
1: Local machines: Compute feature mapping !Dj , HDj ,ω = (!↔

Dj
!Dj + ϑI), H↗1

Dj ,ω
and

!↔

Dj
yDj for any j ↓ [m].

2: Local machines: Initialize the local estimators by w0
Dj ,ω

= H↗1
Dj ,ω

!↔

Dj
yDj and upload them

to the global server (⇔).
3: Global server: Initialize the solution by w̄0

D,ω =
∑m

j=1 pjw
0
Dj ,ω

, and send it to the local nodes
(↖).

4: for t = 1 to T do

5: Local machines: Compute local gradients gt↗1
Dj ,ω

= HDj ,ωw̄
t↗1
D,ω ⇑ !↔

Dj
yDj and upload

them to global server (⇔).
6: Global server: Compute the global gradient gt↗1

D,ω =
∑m

j=1 pjg
t↗1
Dj ,ω

and send it to local
nodes (↖).

7: Local machines: Compute the local updates H↗1
Dj ,ω

gt↗1
D,ω and upload it to the global server

(⇔).
8: Global server: Update the global estimator w̄t

D,ω = w̄t↗1
D,ω ⇑

∑m
j=1 pjH

↗1
Dj ,ω

gt↗1
D,ω and

communicate it to local machines (↖).
9: end for

From equation 3, the global gradient gD,ω and Hessian HD,ω is the key to achieving the cen-
tralized model wD,ω. Note that, since the fact !↔

D
!D =

∑m
j=1 pj!

↔

Dj
!Dj for data partition

D =
⋃m

j=1 Dj , one can easily obtain the following property for the global gradient and global
Hessian.
Proposition 1 (Partitonability). If the loss is squared loss, the global gradient and Hessian matrix
consist of the local ones, i.e. gD,ω =

∑m
j=1 pjgDj ,ω and HD,ω =

∑m
j=1 pjHDj ,ω.

Remark 1 (Computation of local inverse Hessian). The compute of the inverse of local Hessians
H↗1

Dj ,ω
is time consuming O(|Dj |M2+M3), which is a common problem in second-order optimiza-

tion Bottou et al. (2018). There are many classic work to reduce the time complexity of the inverse of
Hessian, i.e. BFGS Broyden (1970), L-BFGS Liu & Nocedal (1989), inexact Newton Dembo et al.
(1982), Gauss-Newton Schraudolph (2002) and Newton sketch Pilanci & Wainwright (2017). Those
techniques can be used to improve the efficiency of FedNewton, but it is beyond the scope of this
paper. We focus on theoretical novelties and leave further computational improvements in the future.
Remark 2 (Feature mapping instead of kernel methods). Without loss of generality, we assume the
feature mappings are finite dimensional ε : X ↘ RM , which covers a wide range of generalized
linear models, for example neural networks Neal (1995); Jacot et al. (2018), kernel methods Vapnik
(2000), random features Rahimi & Recht (2007); Le et al. (2013); Yang et al. (2014), and random
sketching Woodruff et al. (2014); Yang et al. (2017).

3 FEDERATED LEARNING WITH NEWTON METHOD

Motivated by recent gradient-based distributed learning Wang et al. (2018); Lin et al. (2020), we
propose a Newton-type federated learning method to quantity the impact of data heterogeneity and
model heterogeneity. Using Proposition 1, the exact Federated Newton’s method communicate local
Hessians HDj ,ω for computing the global Hessian matrix equation 3 whose the communication
complexity is O(M2), which is infeasible in federated learning. To reduce communication costs,
we propose FedNewton that approximates the Newton’s updates with the global gradient and local
Hessian matrices, such that

H↗1
D,ωgD,ω ↙

m∑

j=1

pjH
↗1
Dj ,ω

gD,ω. (4)

3
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Figure 1: The computations and communications in the t-th iteration for FedNewton.

The global learner f̄ t
D,ω(x) = ≃w̄t

D,ω,ε(x)⇐ is updated by

w̄t
D,ω = w̄t↗1

D,ω ⇑
m∑

j=1

pjH
↗1
Dj ,ω

gt↗1
D,ω, (5)

where w̄t
D,ω is the model after t iterations and the global gradient is gt↗1

D,ω =
∑m

j=1 pjg
t↗1
Dj ,ω

from
Proposition 1. The approximation error between equation 3 and equation 5 is analyzed in Sec-
tion 4. Without loss of generality, we present the details of FedNewton in Algorithm 1 and Fig-
ure 1, which includes two times communications as the first-order methods in per round. Note that,
the algorithm uploads local Newton updates H↗1

Dj ,ω
gt↗1
D,ω ↓ RM instead of local inverse Hessians

H↗1
Dj ,ω

↓ RM↘M , reducing communication costs from O(M2) to O(M).

Computational complexity analysis. With finite-dimensional feature mappings ε : X ↘ RM , we
compute time complexity, space complexity, and communication complexity of FedNewton. The
space complexity on the j-th local machine is O(|Dj |M +M2) to store !Dj ,HDj ,ω and H↗1

Dj ,ω
,

while the global server requires O(mM) space to store gDj ,ω and H↗1
Dj ,ω

gD,ω. Before the iterations,
the computations of HDj ,ω and H↗1

Dj ,ω
costs O(|Dj |M2+M3) time. In each iteration, the local time

complexity is O(M2) to compute local gradient gDj ,ω and local Newton update H↗1
Dj ,ω

gD,ω, while
the time complexity on the global server is O(mM) to update the global gradient and estimator.
Therefore, the total time complexity is O

(
maxj↓[m] |Dj |M2 +M3 +M2t+mMt

)
.

Remark 3 (Communication burdens). The per iteration communication costs of the proposed
FedNewton are 2 times as compared to the first-order FL algorithms, e.g. FedAvg and FedProx,
but the number of iterations for FedNewton is much fewer. The total communication complex-
ity is O(Mt), the same as most first-order Federated algorithms. Notably, from Theorem 1 the
iteration complexity is a linear convergence t = !(log(1/ϖ)) where ϖ is the federated error, i.e.,
FedNewton converges exponentially to the global estimator equation 2, while first-order feder-
ated algorithms requires a large number of communication rounds t = !(1/ϖ) Su et al. (2021).
Therefore, FedNewton cannot reduce the communication complexity for once communication as
communication-efficient FL algorithms Sattler et al. (2019); Reisizadeh et al. (2020); Wu et al.
(2022), but it significantly reduces the number of communication rounds, e.g., FedNewton with
t → 2 achieves good predictive performance in Section 7.
Remark 4 (Beyond the squared loss). To quantify the impacts from local sample size, data het-
erogeneity and model heterogeneity, we apply the squared loss for FedNewton because it admits
closed-form solutions and is convenient for the theoretical analysis. Nevertheless, the proposed al-
gorithm FedNewton is not applies to a broad range of loss functions as long as they are twice
differentiable to compute the gradient gt↗1

Dj ,ω
and the Hessian matrix HDj ,ω. If the Hessian is in-

dependent from the weights, the compute of local Hessians can be out of the loop, e.g. ReLU and
the squared loss. However, if the Hessian is relevant to the weights, for example exponential loss
functions and trigonometric loss functions, we should compute the local Hessians for all iterations,
causing huge computational burdens. For other type loss functions, the weights can be initialized as
w̄0

D,ω = 0.

4
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4 MAIN RESULTS

In this section, to explore the factors that affect performance, we derive the excess risk bounds for
FedNewton in homogeneous settings and heterogeneous settings, respectively.

4.1 NOTATIONS AND ASSUMPTIONS

We consider a broader scenario for federated learning, where the local training sets contain both het-
erogenous inputs (covariate shift) Dj ∝ ωj and different responses (concept shift) yDj ∝ ωj(y|x).
The concept shift is represented as

f→(x) =



Y

ydω(y|x), x ↓ X , f→

j (x) =



Y

ydωj(y|x), x ↓ X , j ↓ [m], (6)

where f→

j is the underlying mechanism governing the true responses on the j-th worker. Give a
x ↓ X and j, k,↓ [m], the responses may be different f→

j (x) ↗= f→

k (x) when j ↗= k.
Definition 1 (Operators with feature mapping ε). Using the feature mapping ε : X ↘ HK , ↑ ω ↓
HK , the covariance operators C,Cj , CD, CDj : HK ↘ HK are defined as

Cω =



X
≃ω,ε(x)⇐ε(x)dωX(x), CDω =

1

|D|

|D|∑

i=1

≃ω,ε(xi)⇐ε(xi), ↑ (xi, yi) ↓ D,

Cjω =



X
≃ω,ε(x)⇐ε(x)dωj(x), CDjω =

1

|Dj |

|Dj |∑

i=1

≃ω,ε(xi)⇐ε(xi), ↑ (xi, yi) ↓ Dj .

Note that, CD = !↔

D
!D, CDj = !↔

Dj
!Dj are the empirical covariance operators on D and Dj ,

while C = Eε[CD], Cj = Eεj [CDj ] are their expected counterparts.

For the sake of readability, we provide some notations

PDj ,ω := ⇒(CDj + ϑI)↗1(Cj + ϑI)⇒, RDj ,ω := ⇒(Cj + ϑ)↗1(Cj ⇑ CDj )⇒,
”Dj := ⇒C ⇑ Cj⇒, ”fj := ⇒f→ ⇑ f→

j ⇒.

The quantities PDj ,ω and RDj ,ω measure the similarity between the expected covariance operator
and its empirical counterpart. From contraction inequalities for self-adjoint operators, a larger num-
ber of local samples |Dj | leads to smaller PDj ,ω and RDj ,ω. Note that, ”Dj measures the data
heterogeneity on the expected covariance operator, while ”fj measures the model heterogeneity on
the true regressions.

We let ⇒f⇒2 =


≃f, f⇐ =


X |f(x)|2dP(x) denote the L2(P) norm and L2(P) = {f : X ↘
R | ⇒f⇒22 < ′}. Throughout this paper, we assume the outputs are bounded |y| → B almost surely
for some B > 0 and ϱ := ⇒ε(x)⇒K < ′ for any x ↓ X .
Assumption 1 (Federated capacity condition). For ϑ ↓ (0, 1), we define the effective dimensions on
the global distribution ω and local distributions ωj , ↑j ↓ [m] as

N (ϑ) = Tr(C(C + ϑI)↗1), Nj(ϑ) = Tr(Cj(Cj + ϑI)↗1).

Assume there exists Q > 0 and ς ↓ [0, 1], such that

max (N (ϑ),N1(ϑ), · · · ,Nm(ϑ)) → Q2ϑ↗ϑ .

Assumption 2 (Source condition). Define the integral operators L : L2(P) ↘ L2(P),

(Lg)(·) =


X
≃ε(·),ε(x)⇐g(x)dωX(x), ↑ g ↓ L2(P).

Assume there exists R > 0, r > 0, such that ⇒L↗rf→⇒ → R. where the operator Lr denotes the r-th
power of L as a compact and positive operator.

5
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Capacity condition and source condition are standard assumptions in the optimal statistical learning
for the KRR related literature Caponnetto & De Vito (2007); Smale & Zhou (2007); Rudi & Rosasco
(2017); Lin & Cevher (2020); Liu et al. (2021). The effective dimensions N (ϑ) and Nj(ϑ) measure
the capacities of the RKHS HK on the global distribution ω and the local distributions ωj , ↑j ↓ [m].

Here, we modify the conventional capacity condition for federated learning to impose
constraints on local estimators. Note that, for effective dimensions, it holds 1/2 →
max (N (ϑ),N1(ϑ), · · · ,Nm(ϑ)) → ϱ2ϑ↗1 Rudi et al. (2015). Assumption 1 reflects the vari-
ance of the estimator. A larger ς leads to a larger HK and ς = 1 corresponds to the capacity
independence case. Assumption 2 controls the bias of an estimator, which reflects the regularity of
the estimator. The bigger r leads to the stronger regularity of the regression and the easier learning
problem. The general settings (r = 1/2, ς = 1) lead to O(1/


|D|) convergence rates for KRR

related approaches.

4.2 ERROR DECOMPOSITION

Theorem 1. Let fD,ω, f̄ t
D,ω, f

→ be defined according to equation 2, equation 5 and equation 6.
Then, the following error decomposition holds

⇒f̄ t
D,ω ⇑ f→⇒ → ⇒f̄ t

D,ω ⇑ fD,ω⇒  
federated error

+ ⇒fD,ω ⇑ f→⇒
  

centralized excess risk

, (7)

and the federated error for FedNewton is bounded by:

⇒f̄ t
D,ω ⇑ fD,ω⇒2 →#t

(C + ϑI)1/2(w̄0
D,ω ⇑wD,ω)


K
,

where # =
∑m

j=1 pjPDj ,ω


2RDj ,ω +

!Dj

ω


1 +

!Dj

ω


.

In the above theorem, we decompose the excess risk for FedNewton into two parts: the federated
error ⇒f̄ t

D,ω ⇑ fD,ω⇒ and the excess risk for the centralized KRR ⇒fD,ω ⇑ f→⇒. Since the generaliza-
tion analysis for ⇒fD,ω ⇑ f→⇒ is standard Caponnetto & De Vito (2007); Smale & Zhou (2007), we
focus on the federated error ⇒f̄ t

D,ω ⇑ fD,ω⇒.

From Theorem 1, we find that the value of # determines the effectiveness of multiple iterations.
If # ∞ 1, FedNewton with multiple communications is worse than oneshot federated learning
(DKRR). However, when # < 1, the federated error decreases exponentially and the rate of con-
vergence is referred to as linear convergence in the optimization literature Bottou et al. (2018).
The quantities PDj ,ω and RDj ,ω measure the similarity between CDj and Cj where those quanti-
ties decrease as the local sample size |Dj | increases. Because # is proportional to PDj ,ω, PDj ,ω

and ”Dj , the linear convergence requires both a sufficient number of local examples |Dj | and
moderate data heterogeneity ”Dj . If t = 0, the above error bound degrades into that for DKRR

⇒f̄D,ω ⇑ fD,ω⇒2 →
(C + ϑI)1/2(w̄0

D,ω ⇑wD,ω)

K

.

Theorem 2. Under Assumption 2, with a high probability 1 ⇑ φ, ↑φ ↓ (0, 1), the federated error
can be bounded

⇒f̄ t
D,ω ⇑ fD,ω⇒2 ↭#t

m∑

j=1

pj


1 +

”Dj

ϑ


2RDj ,ω +

(1 +RDj ,ω)”Dj

ϑ


·


1

|Dj |
⇓
ϑ
+


N (ϑ)

|Dj |


log

2

φ
+

”Dj

ϑ
+”fj


.

Theorem 2 illustrates the key factors that affect the federated error: the discrepancy between ex-
pected and empirical covariance operators RDj ,ω, the covariate shift ”Dj , and the model hetero-
geneity ”fj . The smaller these factors, the smaller the federated error. The federated error results

from three parts: distributed error 1
≃

ω|Dj |
+


N (ω)
|Dj |

, covariate shift ”Dj/ϑ and concept shift ”fj .
Specifically, as the increase of local sample size, the distributed error decreases. However, the con-
cept shifts ”fj is a constant and it will dominate the federated error when model heterogeneity ”fj
is large. In the case # < 1, iterators can reduce the federated error, alleviating the entire federated
error term.

6
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4.3 HOMOGENEOUS SETTING

Theorem 3. Let φ ↓ (0, 1/3], ϑ = |D|
→1

2r+ω and 2r + ς ∞ 1. Under Assumptions 1, 2, if ”Dj = 0
and ”fj = 0, with the probability at least 1⇑ 3φ, it holds

⇒f̄ t
D,ω ⇑ f→⇒2 ↭ #t

m∑

j=1

pj∈j log2
2

φ
+ |D|

→r
2r+ω log

2

φ
.

Here, ∈j and # have different values w.r.t local sample size

∈j =






|Dj |↗2|D|
1.5

2r+ω , if |Dj | ↭ |D|
1→ω
2r+ω

|Dj |↗1.5|D|
1+0.5ω
2r+ω , if |D|

1→ω
2r+ω ↭ |Dj | ↭ |D|

1
2r+ω

|Dj |↗1|D|
1+ω

4r+2ω , if |D|
1

2r+ω ↭ |Dj | ↭ |D|
2r+ω+1
4r+2ω

|D|
→r

2r+ω , if |Dj | ↫ |D|
2r+ω+1
4r+2ω ,

and # = 2
∑m

j=1 pjPDj ,ωRDj ,ω holds




# ∞ 1, if |Dj | ↭ |D|

1
2r+ω

# ↭ |D|

1
2r+ω

|Dj |
< 1, otherwise.

Note that, the second term in the above bound is from the centralized model ⇒fD,ω ⇑ f→⇒2, where
the learning rate O(|D|

→r
2r+ω ) is optimal in a minimax sense Caponnetto & De Vito (2007). The

performance of FedNewton in the homogeneous setting is only affected by the local sample size.
We discuss the above result in three parts. First, when the number of local examples is limited |Dj | ↭
|D|

1
2r+ω , in another word the number of local machines is larger than m ↫ |D|

2r+ω→1
2r+ω , the federated

error dominates the excess risk and fails to achieve the optimal rate, where the convergence rates
are slower than O(|D|

ω→1
4r+2ω ). Meanwhile, when the number of local examples is limited, it leads

to # ∞ 1 and multiple communications hurt the performance. Second, when |D|
1

2r+ω ↭ |Dj | ↭
|D|

2r+ω+1
4r+2ω , although the convergence rates of federated error are still not the optimal, the iterator #

is smaller than one, leading to a linear convergence. As the increase of communications t ↘ ′, the
centralized excess risk will dominate the error bound that achieves the optimal rate. Third, with a
large number of local examples |Dj | ↫ |D|

2r+ω+1
4r+2ω , even with insufficient communications t ↘ 0,

the error bound still achieves the optimal rate O(|D|
→r

2r+ω ).

Theorem 3 can be further simplified in some special cases. For example, we consider the general
case (r = 1/2, ς = 1), where r = 1/2 is equivalent to assuming f→ ↓ HK and ς = 1 is the ca-
pacity independent case. The learning rate achieves O(1/


|D|) when |Dj | ↫ |D|0.5 with multiple

iterations or |Dj | ↫ |D|0.75 with only one communication.
Remark 5. The existing theoretical guarantees for DKRR Zhang et al. (2015); Guo et al. (2017); Lin
& Cevher (2020) focused on how to achieve the optimal rate by a sufficient number of local examples
(or lower the number of partitions), but they ignored the sub-optimal case that the local sample size
is fixed and insufficient. However, in federated learning, the number of partitions is fixed and local
examples are generated locally, such that sub-optimal cases are more general. Theorem 3 illustrate
that a sufficient number of local examples is crucial for both learning rates (in generalization) and
convergence rate (in optimization).
Remark 6 (Finite dimensional case). In the proofs of theoretical findings, we consider the estimator
in RKHS with w ↓ HK . However, the finite-dimensional cases are more general, i.e. w ↓ RM in
Algorithm 1, where the feature mappings are explicit and can be neural networks or random features
Rahimi & Recht (2007). With a simple modification of our proofs, one can derive similar results for
finite-dimensional cases. In particular, under same assumptions of Theorem 3 and (r = 1/2, ς = 0),
then with high probability, ⇒f̄ t

D,ω⇑f→⇒2 ↭ |Dj |↗2|D|1.5+


M/|D|, provided that |D| ↫ M logM .

As shown in Rudi & Rosasco (2017), a large number of random features M ↫ |D|
1+ω(2r→1)

2r+ω can
guarantee the optimal rates for ⇒f̄D,ω ⇑ f→⇒2, and thus we can also provide similar results as
Theorem 3.
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4.4 HETEROGENEOUS SETTING

Theorem 4. Let φ ↓ (0, 1/3], ϑ = |D|
→1

2r+ω and 2r + ς ∞ 1. Under Assumptions 1, 2, with the
probability at least 1⇑ 3φ, the excess risk bound for FedNewton holds

⇒f̄ t
D,ω ⇑ f→⇒2 ↭#t

m∑

j=1

pj


1 +

”Dj

ϑ
(∈j +↼j) log

2 2

φ
+ |D|

→r
2r+ω log

2

φ
.

Here, # =
∑m

j=1 pjPDj ,ω(2RDj ,ω +
!Dj

ω )(1 +
!Dj

ω ), ∈j is same to Theorem 3 and

↼j =





|D|

2
2r+ω

|Dj |
”Dj +

|D|

1
2r+ω

|Dj |
”fj , if |Dj | ↭ |D|

1
2r+ω

(1 + |D|
1

2r+ω ”Dj )(”fj + |D|
1

2r+ω ”Dj ), otherwise.

We add some comments on the above theorem. First, when the local sample size is insufficient
|Dj | ↭ |D|

1
2r+ω or the data heterogeneity is considerable, we have # ∞ 1, and communications

hurt the performance. Meanwhile, since the federated error

1 +”Dj/ϑ(∈j + ↼j) depends on

|Dj |,”Dj , and ”fj , the learning rate is far from the optimal rate. Second, when the number of
local examples is sufficient |Dj | ↫ |D|

1
2r+ω and data heterogeneity is small, it holds # < 1 where

communications can improve the generalization ability of FedNewton. In this case, the federated
error ⇒f̄ t

D,ω ⇑ fD,ω⇒ converge exponentially fast. If t is large enough, the error bound in Theorem 4
depends on the centralized excess risk ⇒fD,ω ⇑ f→⇒2 and achieves the optimal learning rate.

The learning rate of generalization bound in Theorem 4 is determined by four factors: the local
sample size |Dj |, the covariate shift ”Dj , the response shift ”fj and the number of iterations t.
Furthermore, the iterator value # depends on |Dj | and ”Dj , such that these two values are important
factors for both fast convergences (in optimization) and the learning rates (in generalization).
Remark 7 (How to achieve the optimal rate in federated learning?). The value of # < 1 is key to
obtaining a linear convergence rate and the optimal learning rate, where it depends on both local
sample sizes # ∋ RDj ,ω ∋ |Dj | and data heterogeneity # ∋ ”Dj . Note that, ”Dj measures
the intrinsic discrepancy between local distributions and the global one, and thus it is a fixed value
independent from the local sample size. Therefore, since ”Dj is a constant, we can obtain # <
1 with a large number of local examples generated by local machines. And then, with a large
number of iterations when # < 1, the federated error, depending on both data heterogeneity and
model heterogeneity, can become small enough to be negligible. In this case, a large number of
local examples can guarantee both a linear convergence rate (for federated error) and the optimal
learning rate (from the centralized excess risk). A large number of local examples benefit both
optimization and generalization, rather than making tradeoffs between them.

5 COMPARED WITH RELATED WORK

We compare FedNewton with recent Newton-type methods, DKRR methods, and first-order FL
algorithms in both algorithmic and theoretical fronts. Table 1 reports the main factors that affect the
performance, the computational and generalization properties of related work.

Compared with Newton-type FL methods. Local Newton-type FL algorithms Yang et al. (2019);
Ghosh et al. (2020); Gupta et al. (2021) conducted Newton updates instead of SGD in local ma-
chines, which only utilized local information (local SGD & local Hessian). Recent studies Safaryan
et al. (2022); Qian et al. (2022) tried to use global information (global SGD & global Hessian) by
communicating local Hessian shifts, but it leads to high communication costs O(M2) per commu-
nication. Nevertheless, this work employs mixed information (global SGD & local Hessian) that
reduce the communication cost to O(M). More importantly, the existing Newton-type FL work
only provided the convergence analysis (optimization) Ghosh et al. (2020); Safaryan et al. (2022);
Qian et al. (2022) without out-sample (generalization) error bounds, while this work bridges the
optimization and generalization for FedNewton, which essentially guarantees its fast convergence
and good generalization ability.

Compared with DKRR. The time complexities of DKRR approaches solved in kernel space Zhang
et al. (2015); Guo et al. (2017) are much higher than that of stochastic optimization methods solved
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Table 1: Summary of computational and generalization properties for related work.

Related Work |Dj | ”Dj ”fj Training Time Testing
Time

Commun
ication Conditions Local Size |Dj | Iteration t Upper Bound

DKRR Zhang
et al. (2015)

⇓
↔ ↔ |Dj |3 |Dtest||D| |D| Specific kernels !(r2ϱ4 log |D|) O(1) O


1

|D|



DKRR Guo et al.
(2017)

⇓
↔ ↔ |Dj |3 |Dtest||D| |D| r ↓ [1/2, 1] !(|D|

1+ω
2r+ω ) O(1) O(|D|

→r
2r+ω )

DKRR-SGD Lin
& Cevher (2018)

⇓
↔ ↔ |D|t |Dtest||D| |D| r ↓ [1/2, 1] !(|D|

1
2r+ω ) O(|D|

2→ω
2r+ω ) O


|D|

→r
2r+ω



DKRR-CM Lin
et al. (2020)

⇓
↔ ↔ |Dj |3 + |D||Dj |t |Dtest||D| |D|t r ↓ [1/2, 1] !(|D|

2r+ω+1
4r+2ω ) O(log 1

ϖ ) O

|D|

→r
2r+ω



FedAvg Su et al.
(2021) ↔ ↔

⇓ |Dj |M2 +M2t+
mMt

|Dtest|M Mt Specific kernels / O( 1ϖ ) O


1
ϱt +

!2
f

|D|



FedProx Su et al.
(2021) ↔ ↔

⇓ |Dj |M2 + M3 +
M2t+mMt

|Dtest|M Mt Specific kernels / O( 1ϖ ) O


1
ϱt +

!2
f

|D|



Theorem 3
⇓

↔ ↔ |Dj |M2 + M3 +
M2t+mMt

|Dtest|M Mt r > 0, 2r + ς ∞ 1 !(|D|
1

2r+ω ) O(log 1
ϖ ) Theorem 3

Theorem 4
⇓ ⇓ ⇓ |Dj |M2 + M3 +

M2t+mMt
|Dtest|M Mt r > 0, 2r + ς ∞ 1 !(|D|

1
2r+ω ) O(log 1

ϖ ) Theorem 4

Note: The computational complexities are computed in terms of regularized least squared loss. We estimate the upper bounds for
⇐f ↗ f↑

⇐2 ⇒f ↓ L2(P). We denote Dtest the testing data, ϱ the step-size for SGD approaches, ϖ the federated error and
!2

f =
∑m

j=1 pj!
2
fj

. For Rademacher complexities based bounds Zhang et al. (2015); Su et al. (2021), specific kernels include kernels
with finite-rank or polynomial eigenvalues decay. Integral operator based bounds Guo et al. (2017); Lin & Cevher (2018); Lin et al. (2020)

also assume ϑ ↓ [0, 1]. We compute exact local solution for FedProx.

in feature space. Both our work and Guo et al. (2017); Lin & Cevher (2018); Lin et al. (2020) are
based on integral operator techniques, but DKRR literature assumes all local datasets are drawn
i.i.d. from an identical distribution, ignoring the data heterogeneity and model heterogeneity, which
makes the proofs much easier than ours. We emphasize the difference between this work and DKRR
theories as bellow: 1) DKRR work required a strict condition r ↓ [1/2, 1], while we relax the
condition to r > 0, 2r + ς ∞ 1. 2) This work pertains to NonIID data, covering both covariate shift
”Dj and response shift ”fj , DKRR only applied to IID data that is a special case in the homogenous
setting ”Dj = ”fj = 0 in Theorem 3. 3) Because of the existence of data heterogeneity and model
heterogeneity, we cannot directly estimate the difference between local estimators and global ones,
and thus we introduce novel error decompositions for the federated error. 4) This work explores the
excess risk bounds in terms of different local sample size (∈j in Theorem 3), covering both optimal
and sub-optimal rates, while DKRR work only studied the optimal learning rates with the restrict on
the number of partitions, i.e. m = O(|D|

(2r+ω→1)(t+1)
(2r+ω)(t+2) ) Lin et al. (2020).

Compared with first-order methods. Using the random matrix theory and the local Rademacher
complexity, Su et al. (2021) provided the optimal guarantees ⇒f ⇑ f→⇒22 = O(1/|D|). However, as
shown in Theorem 2 Su et al. (2021), it directly assumed all inputs are sampled i.i.d from an identical
distribution, ignore the local sample size and the data heterogeneity, while our theoretical results
illustrate both the local sample size and the data heterogeneity are crucial to federated learning. Su
et al. (2021) also imposed several strict assumptions: 1) the ideal model belongs to the hypothesis
space, corresponding to r ↓ [1/2, 1]; 2) small hypothesis space with local Rademacher complexity,
corresponding ς ↘ 0 in our work; 3) specific kernels maybe not suitable to the federated learning
tasks and lead to sub-optimal rates. In this work, we remove these three conditions based on the
integral operator approach, which makes our theoretical findings applicable to broader settings. Our
results illustrate that only a few iterations can guarantee the optimal rates O(|D|

→2r
2r+ω ) when the

number of local examples is sufficient and data heterogeneity is moderate, where the convergence
rate of federated error is linear, while in Su et al. (2021) the learning rate is always affected by

model heterogeneity O(
∑m

j=1 pj!
2
fj

|D|
) and the convergence rate is sublinear.

6 CONCLUSION AND FUTURE WORK

In this paper, we present an efficient second-order optimization method for FL. We derive gener-
alization bounds with the optimal rates, which quantify the impacts of local sample size, the data
heterogeneity, and the model heterogeneity. In benign cases, the federated error convergence expo-
nentially fast, and thus communications can be small. Our theoretical findings fill the gap between
optimization and generalization for federated learning, rather than focusing on one of them. Overall,
the techniques presented here highlight new ways for designing efficient algorithms and analyzing
both generalization and optimization for FL.
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