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Abstract

High-throughput phenotyping can accelerate001
the development of statistical analysis from co-002
horts of Electronic Health Records. Previous003
work has successfully used machine learning004
and natural language processing for the pheno-005
typing of Rheumatoid Arthritis (RA) patients in006
hospitals within the United States and France.007
Our goal is to evaluate the adaptability of RA008
phenotyping algorithms to a new hospital, both009
at the patient and encounter levels. Two algo-010
rithms are adapted to the context of the new011
hospital and evaluated with a newly developed012
RA gold standard corpus, including annotations013
at the encounter level. The adapted algorithms014
offer comparable performance for patient-level015
phenotyping on the new corpus (F1 0.71 to016
0.79), performance is lower for encounter-level017
phenotyping (F1 0.54 to 0.57), illustrating adap-018
tation feasibility and cost. The first algorithm019
incurred a heavier adaptation burden because020
it required manual feature engineering. How-021
ever, it is less computationally intensive than022
the second, semi-supervised, algorithm.023

1 Introduction024

Electronic Health Records (EHRs) enable sec-025

ondary use of hospital historical data, and in par-026

ticular the design and conduct of clinical studies.027

One of the first steps of such clinical studies is028

the definition of a cohort of patients who share a029

specific condition or outcome. This task is usually030

referred to as electronic phenotyping (or pheno-031

typing) and is often more complex than a simple032

one-word query (Newton et al., 2013; Weng et al.,033

2020). One difficulty of cohort definition comes034

from the complex nature of EHR data, which in-035

clude heterogeneous structured and unstructured036

data over long periods of time. This implies that037

searching a unique phenotypic trait may require a038

search both on structured fields and unstructured039

texts in a specific time frame. Another difficulty040

comes from the fact that phenotyping algorithms041

may not transfer well from one clinical setting to 042

another. Indeed, variations in data collection, clini- 043

cal practice, coding of medical acts, policies, lan- 044

guages cause that a locally-developed phenotyping 045

algorithm may require significant adaptation to be 046

transferred to a new clinical setting. In general, co- 047

hort definitions rely on phenotyping at the patient 048

level, but a finer granularity may be necessary when 049

physicians are interested in monitoring a specific, 050

especially chronic, disease. They may need not 051

only to know which patients have the phenotype, 052

but also which encounters are related to the pheno- 053

type. Here, we define an encounter as a patient’s 054

visit to the hospital, whether as a hospital stay or 055

an outpatient consult. 056

In this work, we particularly study the portability 057

of phenotyping algorithms for Rheumatoid Arthri- 058

tis (RA), a long-term autoimmune pathology that 059

primarily affects joints. We explore with RA be- 060

cause it is a frequent pathology, it is associated 061

with many current clinical questions that could be 062

answered with clinical investigations (e.g., predict- 063

ing patient’s prognosis, or best treatment options) 064

and because some phenotyping algorithms for RA 065

have been described in the literature (Carroll et al., 066

2015; Ferté et al., 2021). In particular we evaluate 067

whether previous RA phenotyping algorithms can 068

be easily and efficiently deployed in Anonymous 069

hospital (AH). We also evaluate the performance of 070

existing RA phenotyping algorithms to identify pa- 071

tients with RA, as well as specific encounters that 072

are primarily associated with RA in the patient’s 073

clinical history. 074

Phenotyping algorithms rely generally on two 075

steps (Alzoubi et al., 2019): First a data mart is cre- 076

ated, through feature extraction from a clinical data 077

warehouse and in turn classification algorithms are 078

defined. While structured data can be easily ana- 079

lyzed for extraction, phenotyping algorithms also 080

leverage Natural Language Processing (NLP) to 081

identify important information that may only be 082
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present in unstructured data. The NLP methods083

in-use include symbolic methods such as regular084

expressions (or regex) as well as statistical methods085

such as pre-trained deep learning models.086

For classification algorithms, two main families087

of approaches can be distinguished (Shivade et al.,088

2014; Banda et al., 2018): Rule-based and statis-089

tical approaches. In the case of the rule-based ap-090

proach, logical rules are applied to the EHRs to091

define the patient phenotype. The rules can be092

as simple as matching a simple pattern in narra-093

tive data. But they can also consider a complex094

combination of sources of information (ICD codes,095

concepts extracted from text, laboratory results,096

etc.)(Oake et al., 2017). The context of entities097

detected in text such as negation or temporality098

markers can also be used. Statistical approaches099

are broadly speaking based on machine learning100

methods, out of which two main categories can be101

distinguished: supervised and unsupervised meth-102

ods. Supervised methods require pre-labeled data103

that is used to train a model. Unsupervised methods104

use unlabeled data, such as clustering methods.105

Both types of approaches require, at some point,106

the incorporation of expert knowledge. In rule-107

based approaches, an expert classically defines the108

decision rules, whereas in statistical approaches the109

expert may manually label (or annotate) some data.110

Both tasks are time consuming. Lately, supervised111

methods appear to provide better results, but the112

time needed for establishing good quality labeled113

datasets can be huge. Rule-based approaches may114

seem easier to define, but are less accurate if too115

simple. Rule-based and statistical approaches can116

be combined to increase accuracy or limit annota-117

tion requirements. Semi-supervised learning is an118

example of such a hybrid approach. Rules are used119

to automatically pre-label a set of data, to constitute120

what is commonly named a silver standard (in com-121

parison with manually pre-labeled data named gold122

standard) and then a supervised machine learning123

algorithm is trained on this silver standard.124

Good phenotyping methods should offer good125

performance (they do not miss patients with the126

condition, and do not falsely identify patients with-127

out it) and they should be easy to adapt from one128

clinical setting to another (including settings where129

language or policies differ).130

In this work, we consider and compare three dif-131

ferent approaches that we tested on unseen EHR132

data. The first is a rule-based approach, hereafter133

referred as baseline algorithm, which relies only on 134

ICD-10 diagnostic codes already present in EHRs 135

and a Named Entity Recognition (NER) algorithm 136

to capture the condition name in clinical texts. It 137

is a standard baseline approach for phenotyping 138

that requires little new expert knowledge and can 139

be easily applied to a new clinical setting. In the 140

case of RA, this algorithm previously showed low 141

specificity and accuracy (Liao et al., 2010). The 142

second is a supervised algorithm, hereafter referred 143

as Carroll’s Algorithm. It was first described by 144

Liao et al. (Liao et al., 2010) and later tested for 145

portability on three other hospitals by Carroll et 146

al. (Carroll et al., 2012). The third algorithm, here- 147

after referred as PheVis Algorithm, is based on a 148

semi-supervised approach (Ferté et al., 2021). 149

These three different algorithms can be adapted 150

to new data. But these induce different human and 151

machine costs. We sought to address the following 152

research questions: Which algorithm is the most 153

efficient in terms of performance and time? Which 154

one is easier to adapt to a new hospital? Which 155

one is prone to performance decrease when moved? 156

Should the hospital encounter not be the granularity 157

level for phenotyping? In particular for chronic 158

diseases? 159

The portability study presented herein provides 160

insight on these issues, in the context of deploy- 161

ing RA phenotyping algorithms within a French 162

hospital. 163

The main contributions of this study are: 164

• a comparison of performance and necessary 165

efforts when adapting the state-of-the-art al- 166

gorithms for RA phenotyping, in the context 167

of a French hospital; 168

• an evaluation of these algorithms for RA phe- 169

notyping at the encounter level; and 170

• an adaptation of a state-of-the-art algorithm 171

for the detection of RA at the encounter level. 172

The next section presents the data, the different 173

phenotype algorithms, their adaptation to our local 174

setting and the method of evaluation. The Results 175

Section reports the outcomes of our comparative 176

portability study of phenotyping algorithms, at both 177

patient and encounter levels. The article ends on a 178

discussion about our results, the limits of the work, 179

and a conclusion. 180
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2 Materials and Methods181

2.1 Data Collection182

We use data from the Anonymous Hospital (AH)183

in France. Records for patients with encounters184

between 2015 and 2020 who may have RA are185

extracted from the UHS health information sys-186

tem. Specifically, we select patients with at least187

one ICD-10 code related to RA and one reference188

to RA in a clinical text in this time period. ICD-189

10 codes for RA are M060*, M068*, M069*,190

M058*, M059*, M053*, M050* and detec-191

tion in free text is performed with the regex192

pol(i|y)arth?rites? *?rh?umat for193

the detection of RA in French (namely “polyarthrite194

rhumatoïde”) and its variations due to typos. All195

available data for these patients are extracted, what196

consists of: all clinical notes (discharge summaries,197

progress reports, etc.), diagnoses encoded with198

ICD-10 codes, drug prescriptions and laboratory re-199

sults. We excluded encounters associated with only200

ICD-10 codes or drug prescriptions. We excluded201

narrative data where the label of the question, in202

EHR, referred only to ICD-10 codes or history.203

The data use and research projects are listed on204

the hospital study register, according to the AH205

policy for internal research projects conducted by206

hospital staff for internal use. No nominative data207

is used, except for those that may appear in clinical208

texts. No pseudonymization tool is used as all the209

work is performed inside the hospital network.210

2.2 Exploration, train and test sets211

Data are split in three parts. 11% of patients are ran-212

domly selected to form the exploration set, which213

is used to evaluate a set of regex written for Car-214

roll’s algorithm. The remaining 89% of patients215

is not split randomly, but in a customized way so216

85% constitutes our train set and 4% our test set.217

The customized sampling strategy is performed218

to select patients for our test set. Those are in219

part (∼30%) randomly sampled from the patients220

with discordant classifications between baseline221

and Carroll’s algorithm and in part (∼70%) ran-222

domly selected with weights that force to respect223

proportions of Carroll’s algorithm classifications224

(i.e., 34% positive and 66% negative). This cus-225

tomized sampling is used to obtain more balanced226

groups of patients in the test set. Train and explo-227

ration sets are used to train PheVis Algorithm. Test228

set is annotated and used to evaluate all different229

methods.230

2.3 Gold standard 231

For the evaluation of phenotyping algorithms, we 232

manually annotated our test set, both at the patient 233

and encounter levels. For encounter-level, each 234

encounter is annotated twice. This double annota- 235

tion is performed by three distinct individuals: one 236

rheumatologist, specialist of RA, and two public- 237

health physicians. Each encounter is annotated 238

with one of the following four labels: 239

no text if no clinical text documents the hospital 240

encounter. Indeed, selected patients have at least 241

one clinical text that matches for RA, but some of 242

their encounters may not be associated with any 243

text; RA+ if the encounter is due to RA, particularly 244

by falling in one of these cases: diagnosis, assess- 245

ment of disease progression, therapeutic manage- 246

ment of the disease, management of complications 247

of the disease; RA- if the encounter is not related 248

to RA, even if the patient has an active RA. For 249

instance, if the patient is admitted for appendici- 250

tis; doubtful if the encounter cannot be confidently 251

classified in relation to RA. 252

To reach consensus, encounters annotated with 253

two distinct labels are identified and discussed dur- 254

ing a meeting. If no agreement can be reached 255

between annotators, the encounter is labeled as 256

doubtful. Encounters labeled as no text or doubtful 257

are ultimately labeled as RA- for method assess- 258

ments, as the classification task that is evaluated is 259

defined as binary. 260

For patient-level annotations, if a patient has 261

at least one encounter labeled as RA+, she/he is 262

labeled as RA+ at the patient-level, and as RA- 263

otherwise. 264

2.4 Baseline Algorithm 265

The baseline algorithm classifies RA patients as 266

positive or negative using ICD-10 codes and the 267

mention of RA in clinical texts. 268

More precisely, patients are classified RA+ if 269

they have at least one ICD-10 code for RA and at 270

least one mention of RA in a clinical text during the 271

same encounter. Matching with ICD-10 codes is 272

performed according to the list of ICD-10 codes de- 273

scribed in the Data Collection paragraph. Matching 274

with clinical texts is performed with a dictionary- 275

based NER tool, named IAMsystem (Cossin et al., 276

2018). 277

In addition to dictionary-based matching, we per- 278

formed two filtering based on the context of entities, 279

to avoid false positives. First filtering excludes clin- 280
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ical text in concern with medical history. To this281

aim, we defined a simple regex to detect and ex-282

clude health questionnaires which labels contain a283

notion of medical history and we use a house-made284

algorithm, for section segmentation in complex285

medical reports. This algorithm uses the semi stan-286

dardized section heading templates and excludes287

sections related to medical records. Second filter-288

ing consists in taking into account the context of289

RA mentions in clinical texts. To this aim, we290

use FastContext (Chapman et al., 2013) and more291

specifically its implementation named IAMFast-292

Context available at https://github.com/293

scossin/IAMsystemFastContext. With294

this tool, mentions of RA which are negated, hy-295

pothetical, historical or related to relatives or other296

persons are filtered out. Both these filtering are297

referred to as contextualization in the following.298

2.5 Carroll’s Algorithm299

This algorithm was first described by Liao et300

al. (Liao et al., 2010) and later described in detail301

to enable reproducibility and portability in Carroll302

et al. (Carroll et al., 2012).303

This method is twofold. The first step is the304

definition by domain experts of a list of features305

associated with RA. These consist of both findable306

elements from structured data of EHRs (ICD-9307

codes, drug prescriptions, lab data) and named en-308

tities findable in clinical texts. To find entities in309

texts, authors propose to use existing NER tools,310

but also share a set of regex, which are easier to311

transfer from one hospital to another than NER312

tools.313

The second step is the use of pretrained penal-314

ized logistic regression. The authors provide pa-315

rameters of the regression, to enable the reuse of316

the classification model on new data. To adapt this317

algorithm to AH data, the ICD-9 codes are man-318

ually converted to ICD-10, drug prescription and319

laboratory data are adapted to be consistent with lo-320

cal AH data, and finally, the set of regex in English321

is adapted to French.322

This adaptation was conducted in two stages:323

the first stage is a basic translation from English324

to French, and the second stage is a modification325

of basic translations, driven by an exploration of326

how expressions match on a subset of the data. For327

the first stage, we translate English terms of regex328

into French using our own knowledge, the DeepL329

translator (https://www.deepl.com/) and330

Wikipedia. For specific medical terms, multilin- 331

gual ontologies of the SIFR BioPortal are used 332

(Jonquet, 2019). 333

For the second stage, we manually explored how 334

regex were matching with a random sample of el- 335

ements of text from our exploration set. To this 336

aim we randomly sampled paragraphs (pieces of 337

texts separated by two new lines), with a weighting 338

strategy for paragraphs that matched one regex, or 339

one medical term present in a regex. Higher weight 340

was given to paragraphs with the most matches in 341

order to increase the chance to find a paragraph that 342

matches partially or completely one of the regex. 343

Sampled paragraphs are in turn manually reviewed 344

and missing or incorrect matches lead to manual 345

modifications of the triggered regex. 346

The complete list of regex, translations and mod- 347

ifications is available on gitlab (URL not included 348

for anonymization). 349

Once regex are translated and modified, we apply 350

Carroll’s algorithm with coefficients provided in 351

the original article. We use a probability threshold 352

of 0.5 to classify RA patients. 353

2.6 PheVis Algorithm 354

The PheVis algorithm (Ferté et al., 2021) leverages 355

the method proposed in PheNorm (Yu et al., 2018) 356

to classify patients according to phenotypes a fol- 357

lowing semi-supervised approach. Accordingly, it 358

presents the advantage of not requiring a large set 359

of expert-labeled examples for training. PheVis 360

builds on PheNorm and enables classification not 361

only at the patient level, but also at the encounter 362

level. PheVis is a two-stage approach, as it relies 363

first on the definition of a silver standard of anno- 364

tated examples, that is used in a second stage to 365

train a supervised model. 366

PheVis uses ICD-10 codes and entities automati- 367

cally extracted from EHR narratives and mapped 368

to Concept Unique Identifiers (CUIs) from the Uni- 369

fied Medical Language System (UMLS) using NLP. 370

Accordingly, each patient encounter is associated 371

with a set of ICD-10 codes and CUIs. 372

Our adaptation of the PheVis algorithm relies 373

on the IAM system for entity extraction and nor- 374

malization; we used the same extraction method as 375

the original PheVis algorithm to increase compara- 376

bility with the original PheVis study (Ferté et al., 377

2021). 378

In order to test the portability of PheVis to our 379

hospital setting, we tested first the best hyperparam- 380
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eters reported by PheVis authors, but also tested381

different hyperparameters for optimization, follow-382

ing a grid search strategy. In particular, parameters383

named omega and half−life are optimized.384

Accordingly, PheVis is trained on our explo-385

ration and train sets and next evaluated on the test386

set. PheVis standard way of defining silver standard387

is based on a cumulative surrogate. This surrogate388

is a standardized sum of the number of ICD-10 and389

CUI codes found for each encounter. Over time, the390

surrogate is cumulated with previous encounters,391

with an exponentially decreasing accumulation de-392

pending on the half−life hyperparameter.393

Encounters with higher surrogate values are de-394

fined as positive in the silver standard, and those395

with lower values are negative. If the half−life is396

defined as infinite, the surrogate is a simple sum397

of the number of codes found over the encounters.398

We evaluate whether an alternative silver standard399

can be defined.400

2.7 Revised PheVis401

If the half−life is set to infinite, as Phevis article402

advises for chronic diseases, the last encounter is403

more likely to be used in the silver standard, even404

if this one is not directly due to RA. For this reason,405

we propose an improvement of the definition of the406

surrogate described in the following section.407

The quantitative value of the encounter stays de-408

fined the same way. But the encounter assignment409

to either positive or negative in the silver standard410

follows a different strategy. We classify all encoun-411

ters with the cumulative surrogate, but at the patient412

level, we reassign (to either positive or negative) en-413

counters that are more likely or unlikely to be due414

to RA, based on each encounter surrogate, instead415

of the cumulative surrogate. For example, if the416

last two encounters of a patient are considered the417

two most likely to be positive among all encoun-418

ters, the silver standard is defined as positive for419

the two encounters for this patient with the greater420

surrogate, regardless of cumulative surrogate.421

2.8 Evaluation metrics422

To evaluate the performance of the different pheno-423

typing algorithms, the following metrics are used:424

precision (or positive predictive value, PPV), nega-425

tive predictive value (NPV), specificity, recall (or426

sensitivity), balanced accuracy, accuracy, F1 score427

and Area Under the ROC Curve (AUC). Due to the428

unbalanced distribution of labels, the F1 score is429

used to determine the best algorithm. Confidence 430

intervals are computed using bootstrap. 431

2.9 Technical set-up 432

Experiments are done with R version 4.1, with the 433

PheVis package, Java IAMsystem and IAMsystem- 434

FastContext, and performed on a personal com- 435

puter under Windows 10, with 64Gb of memory 436

and an Intel(R) Xeon(R) CPU E3-1245 v5. 437

3 Results 438

3.1 Data collection 439

We found 4,100 patients with at least one ICD-10 440

code for RA and one reference to RA in narratives 441

of their EHRs, between 2015 and 2020 at AH. We 442

excluded 410 patients with the most recent first 443

encounter at the hospital to provide a validation 444

dataset for future work. 445

Remaining 3,690 patients were split in 410 446

(11%), 3140 (85%) and 140 (4%) patients to consti- 447

tute our exploration, train and test sets, respectively. 448

These include 3,826, 33,007 and 1,668 distinct en- 449

counters with at least one clinical text, respectively. 450

3.2 Gold standard 451

Of the 1,668 encounters selected for manual anno- 452

tation, 89 were classified as no text, and 1,579 were 453

found in the healthcare software with sufficient 454

narrative data. Of these, after consensus on the an- 455

notation, 1,172 were classified as RA-, 359 as RA+ 456

and 48 were classified as doubtful with the avail- 457

able data. Inter-annotator agreement (Viera and 458

Garrett, 2005) was substantial, as Cohen’s kappa 459

coefficient was 0.80. When considering doubtful 460

encounters as RA-, Cohen’s kappa is 0.83. At the 461

patient level, among the 140 annotated patients, 52 462

(37%) were classified as RA+ and 88 (63%) as RA-. 463

Table 1 and 2 summarize the results of our com- 464

parative evaluation of phenotyping algorithms. Fol- 465

lowing sections detail some of these results. 466

3.3 Baseline Algorithm 467

For the classification of hospital encounters, F1 468

score was 0.59 [0.55-0.64] for the baseline algo- 469

rithm without contextualization of the named en- 470

tities, and 0.60 [0.56-0.64] with contextualization. 471

For patient classification, F1 score was 0.67 [0.58- 472

0.76] and 0.68 [0.59-0.78] without and with contex- 473

tualization of the extracted name entities, respec- 474

tively. The contextualization of extracted entities 475
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Methods Prec. NPV Spe. Rec. bal Acc. Acc. F1∗ AUC∗

ICD-10 alone (≥1 code) 0.53 0.90 0.90 0.52 0.66 0.71 0.67 (0.58-0.77) N/A
Baseline algo. 0.55 0.89 0.88 0.58 0.69 0.73 0.67 (0.58-0.76) N/A
Baseline algo., plus context 0.64 0.76 0.58 0.81 0.72 0.69 0.68 (0.59-0.78) N/A
Carroll’s algo., non-modified regex 0.53 0.96 0.49 0.96 0.74 0.66 0.68 (0.60-0.77) 0.90 (0.84-0.95)
Carroll’s algo., modified regex 0.56 0.98 0.55 0.98 0.77 0.71 0.71 (0.64-0.80) 0.91 (0.86-0.95)
PheVis (setting a) 0.62 0.90 0.68 0.87 0.76 0.75 0.72 (0.63-0.82) 0.88 (0.82-0.93)
PheVis, revised (setting b) 0.68 0.88 0.77 0.83 0.78 0.79 0.75 (0.66-0.85) 0.85 (0.78-0.92)
Carroll’s algo.
(as reported in Carroll et al.(Carroll et al., 2012))

0.90 N/A 0.65 N/A N/A N/A N/A 0.95

PheVis
(as reported in Ferté et al.(Ferté et al., 2021))

0.65 0.96 0.94 0.74 N/A N/A N/A 0.943

Table 1: Performances for RA phenotyping at the patient level. PheVis setting a is ω = 10, half−life = 365; Revised
PheVis setting b is ω = 2, half−life = 60. ∗ confidence interval calculated with bootstrap.ICD-10 alone is a reference
to show patients who have at least one compatible ICD-10.

Methods Prec. NVP Spe. Rec. bal Acc. Acc. F1∗ AUC∗

ICD-10 alone (≥1 code) 0.59 0.88 0.60 0.88 0.82 0.74 0.59 (0.55-0.64) N/A
Baseline algo. 0.63 0.87 0.55 0.90 0.83 0.73 0.59 (0.55-0.64) N/A
Baseline algo., plus context 0.57 0.9 0.63 0.88 0.83 0.75 0.60 (0.56-0.64) N/A
PheVis (setting a) 0.43 0.90 0.72 0.72 0.67 0.72 0.54 (0.53-0.61) 0.82 (0.79-0.84)
PheVis, revised (setting b) 0.48 0.90 0.78 0.70 0.69 0.76 0.57 (0.54-0.62) 0.82 (0.79-0.84)

Table 2: Performances for RA phenotyping at the encounter level. PheVis setting a is ω = 10, half−life = 365;
Revised PheVis setting b is ω = 2, half−life = 60. ∗ confidence interval calculated with bootstrap. Carroll’s algorithm
is not applied at encounter level. ICD-10 alone is a reference to show which encounters have at least one compatible
ICD-10.

led to a better precision (0.64 vs. 0.55) but to a476

lower sensitivity (0.58 vs. 0.88).477

3.4 Carroll’s Algorithm478

From 67 English regex in Carroll et al., we gener-479

ated 66 regex in French, which were in turn tested480

on 1,509 paragraphs, randomly sampled from the481

exploration set, for modification. Before modifi-482

cation, regex performances were: F1=0.84, pre-483

cision=0.85 and recall=0.84. After modifications,484

performances went to: F1=0.89, precision=0.87485

and recall=0.90.486

For patient classification, Carroll’s algorithm re-487

sults are better with modified regex (F1 0.68 [0.60-488

0.77] vs 0.71 [0.64-0.80]). Results are lower than489

those reported in Carroll’s paper (Carroll et al.,490

2012) (AUC=0.91 vs. AUC=0.95), a lower speci-491

ficity (0.55 vs. 0.65) and a lower precision (0.56 vs.492

0.90).493

Carroll’s algorithm is not available for encounter-494

level phenotyping and accordingly was not adapted495

to finer granularity.496

3.5 Phevis Algorithm497

For patient classification, hyperparameter tuning498

with grid search technique on all narratives and499

ICD-10 data reveals different best parameters to500

those reported in PheVis article: ω = 10 and half - 501

life = 365 result in the best predictions ( F1 Score 502

=0.72 [0.63-0.82]) for patient-level classification. 503

For encounter-level classification, the best param- 504

eters are half -life = 365 and ω = 10. F1 score 505

was smaller for encounter-level classification 0.54 506

[0.53-0.61]. With the revised PheVis (to define an 507

alternative silver standard) we gain a little in per- 508

formance for patient-level classification (F1 score 509

= 0.75 [0.66-0.85]), and for encounter-level classi- 510

fication (F1 score = 0.57 [0.57-0.65]). 511

3.6 The cost of adaptation 512

The baseline algorithm is fairly easy to implement. 513

ICD-10 codes are easy to extract from structured 514

data. Searching for regex matching is also fast, 515

taking less than 20 minutes in our setting. Imple- 516

menting the Carroll’s algorithm took longer. About 517

two working days (8 hours each) were necessary 518

to translate regex from English to French. It took 519

one week to examine and modify regex with the 520

exploration set. Searching to match all regex on the 521

test set took about one hour. Implementing the lo- 522

gistic regression took half a day and the execution 523

time of the logistic regression is almost instanta- 524

neous. The implementation of PheVis algorithm 525

took more time. For data preparation, the NER 526
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with IAMsystem algorithm, took about two days527

to run on the exploration, train, and test datasets.528

Training a model took about 10 minutes. Once the529

classification algorithm is trained, application on530

new data is fast and take about one minute. The531

annotation of our test set by one person (1,668532

encounters) took about 27 hours.533

4 Discussion534

4.1 Phenotyping performance535

Porting phenotyping algorithms from one setting to536

another remains a challenge. On AH data, PheVis537

appears to have slightly superior performance to538

Carroll’s and baseline algorithm for patient pheno-539

typing. Our adaptations of Carroll’s and PheVis540

algorithms yield performance slightly lower than541

those reported in the literature (see the last two542

lines of Table 1). For Carroll’s algorithm, this may543

be due to the level of the probability threshold at544

the end of the regression that needs to be reached to545

classify an example as RA+. Carroll et al. chose a546

threshold that yields a specificity of 97%, whereas547

we set the threshold to 0.5. We tested this setting548

with our data, but to reach a specificity of 97%, all549

patients were classified as RA-. One other possible550

explanation for this difference is the definition of551

the starting cohort. We limited the starting cohort552

to patients with at least one ICD-10 code related553

to RA and a reference to RA in a clinical text, and554

they used all patients available in their EHRs.555

For PheVis, an explanation of the lower perfor-556

mance could be the duration of the follow-up.557

We limited our analysis to a period of five years,558

whereas a period of ten years is used in the original559

study. This longer follow-up period may lead to a560

richer silver-standard and to higher performance,561

due to the larger number of data per patient.562

One originality of our study is the evaluation563

of algorithms at the encounter level. Although564

the authors of PheVis considered phenotyping en-565

counters, their algorithm was evaluated only at the566

patient level. Our study suggests that PheVis is not567

superior to other algorithms at the encounter level.568

There are some possible explanations for this569

observation. In France, ICD-10 codes are used570

to code hospital stays (inpatient), but not to code571

medical appointments (outpatient). As a result,572

these appointments may be more difficult to clas-573

sify in the French setting since some of the features574

are missing. The rather good results we observed575

with the baseline algorithm, in regards to what is576

reported in the literature may be attributed to an 577

improvement of the coding in French hospitals. 578

ICD-10 coding in French hospitals is mainly used 579

to evaluate hospital activity and to adapt public 580

hospital funding. The use of these billing codes 581

in clinical research was initially criticized because 582

of the biases associated with the granularity and 583

methodology of coding (Boudemaghe and Belhadj, 584

2017). However, over time, hospitals have strived 585

to improve coding. In particular, the coding activity 586

at the AH is now submitted to a stringent quality 587

control process and has consequently improved. 588

4.2 Error analysis 589

For patient phenotyping, the majority of false posi- 590

tive predictions made by PheVis algorithm are due 591

to our definition of RA+ patients. We defined them 592

as having at least one RA-related encounter during 593

the follow-up period. PheVis algorithm tends to 594

classify patients with a history of RA as RA+, even 595

if there is no encounter directly related to the dis- 596

ease. For encounter level phenotyping, the main 597

weakness of the algorithms is the precision: many 598

encounters are falsely classified as RA+. Analysis 599

of the medical record shows that patient’s medi- 600

cal data often contain some text duplicated from 601

previous records, even if the encounter is not di- 602

rectly related to the chronic disease (Digan et al., 603

2019). Removing duplicated text coming from pre- 604

vious encounters should reduce the number of false 605

positives. 606

4.3 Choice of Algorithm 607

In this initial study of RA phenotyping in French 608

EHRs, our goal was to use state-of-the-art algo- 609

rithms validated in previous studies on new patient 610

data. This allowed us to characterize the adapta- 611

tion burden of a rule-based and machine learning 612

algorithms. The baseline shows relatively com- 613

petitive results in comparison with more complex 614

algorithms, in particular at the encounter level. In 615

the literature, a superiority of new and more com- 616

plex methods is often observed. But if studies com- 617

pare the new method they introduce with the lat- 618

est complex one, they do not necessarily compare 619

to baseline methods. This is an interesting direc- 620

tion for future work, which could assess whether 621

a deep learning algorithm such as transformers or 622

convolutional neural network would yield higher 623

performance. However, one of the major difficul- 624

ties remains the definition of the silver standard, 625

which is not solved by more recent methods. 626
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For Carroll’s algorithm, differences between lan-627

guages in terms of sentence construction make it628

difficult to translate complex regex from one lan-629

guage to another. We observed that the manual630

exploration and evaluation of regex and their sub-631

sequent modifications increased the performance632

of Carroll’s algorithm (F1=0.71 vs. 0.68). This re-633

sult suggests there is an added value in the manual634

regex engineering process.635

PheVis algorithm presents the best result for636

phenotyping at the patient level. Unsurprisingly,637

results at the encounter level are underwhelming.638

Phenotyping at the encounter level is a harder task639

than at patient level. In the PheVis study, authors640

illustrate this difficulty with their attempt i.e., to641

phenotype an acute disease (tuberculosis), which642

can be compared to phenotyping at the encounter643

level, since acute diseases may be associated with644

a single encounter. A key issue is that at the en-645

counter level, a large unbalance is usually observed646

between positive and negative, biasing classifica-647

tion tasks. To reduce this unbalance, a potential648

solution would be to split encounter-level phenotyp-649

ing in two: First, the patient-level phenotyping and650

second, for positive patients only, the encounter-651

level phenotyping.652

4.4 Named Entity Recognition653

Features extracted from narrative text are key for654

phenotyping. The methods considered in this study655

use NLP to extract information from clinical text.656

Regular expressions can be effective for extracting657

basic information but they lack the ability to inter-658

pret context (e.g., negations, history, hypotheses,659

etc.) adequately. Carroll’s algorithm includes com-660

plex regex to account for the structure of English661

sentences. For example, to detect the positive men-662

tion of anti-CCP antibodies, five different regex are663

defined.The French language is very different, and664

led in our case to even more complex regex. An al-665

ternative to take context into account is to combine666

NER with a context detection algorithm based on667

trigger terms before and after entity mentions, or668

with deep learning methods that consider sentence-669

level contexts. These methods are more adaptable670

from one country to another if resources (e.g., a list671

of trigger terms, a training set) are available for the672

language. Furthermore, these methods are generic673

enough to be transferable from one disease to an-674

other. For the baseline algorithm, adding context to675

NER did not impact the F1 score, but did increase676

the precision (0.64 vs. 0.55) and recall (0.81 vs. 677

0.58). 678

One challenge we faced is the widespread use 679

of abbreviations and ambiguity in clinical narra- 680

tives. One example is the use of “LES” stand- 681

ing for Lupus érythémateux systémique (Systemic 682

lupus erythematosus or SLE in French). But in 683

French, “les” is also the definite article “the” in 684

English. Extraction of these abbreviations remains 685

impossible with a simple regex or dictionary-based 686

NER. Disambiguation of these terms, in particular 687

with language representation learned with LSTM or 688

attention-based architectures is a valuable direction 689

for this task. 690

4.5 Portability 691

The Phevis method requires as little expert knowl- 692

edge as the rule-based algorithm, since the expert 693

only had to define main concepts from UMLS and 694

ICD-10 codes associated with the disease. With a 695

NER algorithm available, this method can be used 696

in all hospitals and is not language specific. Car- 697

roll’s algorithm is more difficult to adapt to another 698

phenotype. Although features can be extracted 699

with other tools than regex, the classifier is built 700

with annotated data. To transfer this method, a 701

pre-annotated dataset must be created. 702

4.6 Granularity 703

The choice of a method depends on the task at hand. 704

To build up a cohort of patients with a specific 705

chronic disease, a naive rule-based approach should 706

be sufficient. To provide follow-up care for patients 707

with a specific condition between two dates, the 708

classical PheVis method may be more accurate. For 709

encounter phenotyping, more complex algorithms 710

may achieve better result. 711

5 Conclusion 712

The two algorithms tested for RA phenotyping are 713

transferable to the context of the Anonymous Hospi- 714

tal. In both cases, adaptation required a significant 715

amount of time, whether for the translation of reg- 716

ular expressions or the implementation of a NER 717

algorithm. The performance gain compared to a 718

baseline algorithm relying solely on ICD-10 codes 719

is surprisingly low. Previous studies did not al- 720

ways considered the baseline in their evaluation 721

and encounter-level phenotyping needs to be better 722

considered. 723
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