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Abstract

High-throughput phenotyping can accelerate
the development of statistical analysis from co-
horts of Electronic Health Records. Previous
work has successfully used machine learning
and natural language processing for the pheno-
typing of Rheumatoid Arthritis (RA) patients in
hospitals within the United States and France.
Our goal is to evaluate the adaptability of RA
phenotyping algorithms to a new hospital, both
at the patient and encounter levels. Two algo-
rithms are adapted to the context of the new
hospital and evaluated with a newly developed
RA gold standard corpus, including annotations
at the encounter level. The adapted algorithms
offer comparable performance for patient-level
phenotyping on the new corpus (F1 0.71 to
0.79), performance is lower for encounter-level
phenotyping (F1 0.54 to 0.57), illustrating adap-
tation feasibility and cost. The first algorithm
incurred a heavier adaptation burden because
it required manual feature engineering. How-
ever, it is less computationally intensive than
the second, semi-supervised, algorithm.

1 Introduction

Electronic Health Records (EHRs) enable sec-
ondary use of hospital historical data, and in par-
ticular the design and conduct of clinical studies.
One of the first steps of such clinical studies is
the definition of a cohort of patients who share a
specific condition or outcome. This task is usually
referred to as electronic phenotyping (or pheno-
typing) and is often more complex than a simple
one-word query (Newton et al., 2013; Weng et al.,
2020). One difficulty of cohort definition comes
from the complex nature of EHR data, which in-
clude heterogeneous structured and unstructured
data over long periods of time. This implies that
searching a unique phenotypic trait may require a
search both on structured fields and unstructured
texts in a specific time frame. Another difficulty
comes from the fact that phenotyping algorithms

may not transfer well from one clinical setting to
another. Indeed, variations in data collection, clini-
cal practice, coding of medical acts, policies, lan-
guages cause that a locally-developed phenotyping
algorithm may require significant adaptation to be
transferred to a new clinical setting. In general, co-
hort definitions rely on phenotyping at the patient
level, but a finer granularity may be necessary when
physicians are interested in monitoring a specific,
especially chronic, disease. They may need not
only to know which patients have the phenotype,
but also which encounters are related to the pheno-
type. Here, we define an encounter as a patient’s
visit to the hospital, whether as a hospital stay or
an outpatient consult.

In this work, we particularly study the portability
of phenotyping algorithms for Rheumatoid Arthri-
tis (RA), a long-term autoimmune pathology that
primarily affects joints. We explore with RA be-
cause it is a frequent pathology, it is associated
with many current clinical questions that could be
answered with clinical investigations (e.g., predict-
ing patient’s prognosis, or best treatment options)
and because some phenotyping algorithms for RA
have been described in the literature (Carroll et al.,
2015; Ferté et al., 2021). In particular we evaluate
whether previous RA phenotyping algorithms can
be easily and efficiently deployed in Anonymous
hospital (AH). We also evaluate the performance of
existing RA phenotyping algorithms to identify pa-
tients with RA, as well as specific encounters that
are primarily associated with RA in the patient’s
clinical history.

Phenotyping algorithms rely generally on two
steps (Alzoubi et al., 2019): First a data mart is cre-
ated, through feature extraction from a clinical data
warehouse and in turn classification algorithms are
defined. While structured data can be easily ana-
lyzed for extraction, phenotyping algorithms also
leverage Natural Language Processing (NLP) to
identify important information that may only be



present in unstructured data. The NLP methods
in-use include symbolic methods such as regular
expressions (or regex) as well as statistical methods
such as pre-trained deep learning models.

For classification algorithms, two main families
of approaches can be distinguished (Shivade et al.,
2014; Banda et al., 2018): Rule-based and statis-
tical approaches. In the case of the rule-based ap-
proach, logical rules are applied to the EHRs to
define the patient phenotype. The rules can be
as simple as matching a simple pattern in narra-
tive data. But they can also consider a complex
combination of sources of information (ICD codes,
concepts extracted from text, laboratory results,
etc.)(Oake et al., 2017). The context of entities
detected in text such as negation or temporality
markers can also be used. Statistical approaches
are broadly speaking based on machine learning
methods, out of which two main categories can be
distinguished: supervised and unsupervised meth-
ods. Supervised methods require pre-labeled data
that is used to train a model. Unsupervised methods
use unlabeled data, such as clustering methods.

Both types of approaches require, at some point,
the incorporation of expert knowledge. In rule-
based approaches, an expert classically defines the
decision rules, whereas in statistical approaches the
expert may manually label (or annotate) some data.
Both tasks are time consuming. Lately, supervised
methods appear to provide better results, but the
time needed for establishing good quality labeled
datasets can be huge. Rule-based approaches may
seem easier to define, but are less accurate if too
simple. Rule-based and statistical approaches can
be combined to increase accuracy or limit annota-
tion requirements. Semi-supervised learning is an
example of such a hybrid approach. Rules are used
to automatically pre-label a set of data, to constitute
what is commonly named a silver standard (in com-
parison with manually pre-labeled data named gold
standard) and then a supervised machine learning
algorithm is trained on this silver standard.

Good phenotyping methods should offer good
performance (they do not miss patients with the
condition, and do not falsely identify patients with-
out it) and they should be easy to adapt from one
clinical setting to another (including settings where
language or policies differ).

In this work, we consider and compare three dif-
ferent approaches that we tested on unseen EHR
data. The first is a rule-based approach, hereafter

referred as baseline algorithm, which relies only on
ICD-10 diagnostic codes already present in EHRs
and a Named Entity Recognition (NER) algorithm
to capture the condition name in clinical texts. It
is a standard baseline approach for phenotyping
that requires little new expert knowledge and can
be easily applied to a new clinical setting. In the
case of RA, this algorithm previously showed low
specificity and accuracy (Liao et al., 2010). The
second is a supervised algorithm, hereafter referred
as Carroll’s Algorithm. It was first described by
Liao et al. (Liao et al., 2010) and later tested for
portability on three other hospitals by Carroll et
al. (Carroll et al., 2012). The third algorithm, here-
after referred as PheVis Algorithm, is based on a
semi-supervised approach (Ferté et al., 2021).

These three different algorithms can be adapted
to new data. But these induce different human and
machine costs. We sought to address the following
research questions: Which algorithm is the most
efficient in terms of performance and time? Which
one is easier to adapt to a new hospital? Which
one is prone to performance decrease when moved?
Should the hospital encounter not be the granularity
level for phenotyping? In particular for chronic
diseases?

The portability study presented herein provides
insight on these issues, in the context of deploy-
ing RA phenotyping algorithms within a French
hospital.

The main contributions of this study are:

* a comparison of performance and necessary
efforts when adapting the state-of-the-art al-
gorithms for RA phenotyping, in the context
of a French hospital;

* an evaluation of these algorithms for RA phe-
notyping at the encounter level; and

* an adaptation of a state-of-the-art algorithm
for the detection of RA at the encounter level.

The next section presents the data, the different
phenotype algorithms, their adaptation to our local
setting and the method of evaluation. The Results
Section reports the outcomes of our comparative
portability study of phenotyping algorithms, at both
patient and encounter levels. The article ends on a
discussion about our results, the limits of the work,
and a conclusion.



2 Materials and Methods

2.1 Data Collection

We use data from the Anonymous Hospital (AH)
in France. Records for patients with encounters
between 2015 and 2020 who may have RA are
extracted from the UHS health information sys-
tem. Specifically, we select patients with at least
one ICD-10 code related to RA and one reference
to RA in a clinical text in this time period. ICD-
10 codes for RA are MO60x, MO68x, MO69«,
M0O58%, M059%, MO53%, MO50=* and detec-
tion in free text is performed with the regex
pol(i|y)arth?rites? *?rh?umat for
the detection of RA in French (namely “polyarthrite
rhumatoide’) and its variations due to typos. All
available data for these patients are extracted, what
consists of: all clinical notes (discharge summaries,
progress reports, etc.), diagnoses encoded with
ICD-10 codes, drug prescriptions and laboratory re-
sults. We excluded encounters associated with only
ICD-10 codes or drug prescriptions. We excluded
narrative data where the label of the question, in
EHR, referred only to ICD-10 codes or history.
The data use and research projects are listed on
the hospital study register, according to the AH
policy for internal research projects conducted by
hospital staff for internal use. No nominative data
is used, except for those that may appear in clinical
texts. No pseudonymization tool is used as all the
work is performed inside the hospital network.

2.2 Exploration, train and test sets

Data are split in three parts. 11% of patients are ran-
domly selected to form the exploration set, which
is used to evaluate a set of regex written for Car-
roll’s algorithm. The remaining 89% of patients
is not split randomly, but in a customized way so
85% constitutes our train set and 4% our test set.
The customized sampling strategy is performed
to select patients for our test set. Those are in
part (~30%) randomly sampled from the patients
with discordant classifications between baseline
and Carroll’s algorithm and in part (~70%) ran-
domly selected with weights that force to respect
proportions of Carroll’s algorithm classifications
(i.e., 34% positive and 66% negative). This cus-
tomized sampling is used to obtain more balanced
groups of patients in the test set. Train and explo-
ration sets are used to train PheVis Algorithm. Test
set is annotated and used to evaluate all different
methods.

2.3 Gold standard

For the evaluation of phenotyping algorithms, we
manually annotated our test set, both at the patient
and encounter levels. For encounter-level, each
encounter is annotated twice. This double annota-
tion is performed by three distinct individuals: one
rheumatologist, specialist of RA, and two public-
health physicians. Each encounter is annotated
with one of the following four labels:

no text if no clinical text documents the hospital
encounter. Indeed, selected patients have at least
one clinical text that matches for RA, but some of
their encounters may not be associated with any
text; RA+ if the encounter is due to RA, particularly
by falling in one of these cases: diagnosis, assess-
ment of disease progression, therapeutic manage-
ment of the disease, management of complications
of the disease; RA- if the encounter is not related
to RA, even if the patient has an active RA. For
instance, if the patient is admitted for appendici-
tis; doubtful if the encounter cannot be confidently
classified in relation to RA.

To reach consensus, encounters annotated with
two distinct labels are identified and discussed dur-
ing a meeting. If no agreement can be reached
between annotators, the encounter is labeled as
doubtful. Encounters labeled as no text or doubtful
are ultimately labeled as RA- for method assess-
ments, as the classification task that is evaluated is
defined as binary.

For patient-level annotations, if a patient has
at least one encounter labeled as RA+, she/he is
labeled as RA+ at the patient-level, and as RA-
otherwise.

2.4 Baseline Algorithm

The baseline algorithm classifies RA patients as
positive or negative using ICD-10 codes and the
mention of RA in clinical texts.

More precisely, patients are classified RA+ if
they have at least one ICD-10 code for RA and at
least one mention of RA in a clinical text during the
same encounter. Matching with ICD-10 codes is
performed according to the list of ICD-10 codes de-
scribed in the Data Collection paragraph. Matching
with clinical texts is performed with a dictionary-
based NER tool, named IAMsystem (Cossin et al.,
2018).

In addition to dictionary-based matching, we per-
formed two filtering based on the context of entities,
to avoid false positives. First filtering excludes clin-



ical text in concern with medical history. To this
aim, we defined a simple regex to detect and ex-
clude health questionnaires which labels contain a
notion of medical history and we use a house-made
algorithm, for section segmentation in complex
medical reports. This algorithm uses the semi stan-
dardized section heading templates and excludes
sections related to medical records. Second filter-
ing consists in taking into account the context of
RA mentions in clinical texts. To this aim, we
use FastContext (Chapman et al., 2013) and more
specifically its implementation named [AMFast-
Context available at https://github.com/
scossin/IAMsystemFastContext. With
this tool, mentions of RA which are negated, hy-
pothetical, historical or related to relatives or other
persons are filtered out. Both these filtering are
referred to as contextualization in the following.

2.5 Carroll’s Algorithm

This algorithm was first described by Liao et
al. (Liao et al., 2010) and later described in detail
to enable reproducibility and portability in Carroll
et al. (Carroll et al., 2012).

This method is twofold. The first step is the
definition by domain experts of a list of features
associated with RA. These consist of both findable
elements from structured data of EHRs (ICD-9
codes, drug prescriptions, lab data) and named en-
tities findable in clinical texts. To find entities in
texts, authors propose to use existing NER tools,
but also share a set of regex, which are easier to
transfer from one hospital to another than NER
tools.

The second step is the use of pretrained penal-
ized logistic regression. The authors provide pa-
rameters of the regression, to enable the reuse of
the classification model on new data. To adapt this
algorithm to AH data, the ICD-9 codes are man-
ually converted to ICD-10, drug prescription and
laboratory data are adapted to be consistent with lo-
cal AH data, and finally, the set of regex in English
is adapted to French.

This adaptation was conducted in two stages:
the first stage is a basic translation from English
to French, and the second stage is a modification
of basic translations, driven by an exploration of
how expressions match on a subset of the data. For
the first stage, we translate English terms of regex
into French using our own knowledge, the DeepL
translator (https://www.deepl.com/) and

Wikipedia. For specific medical terms, multilin-
gual ontologies of the SIFR BioPortal are used
(Jonquet, 2019).

For the second stage, we manually explored how
regex were matching with a random sample of el-
ements of text from our exploration set. To this
aim we randomly sampled paragraphs (pieces of
texts separated by two new lines), with a weighting
strategy for paragraphs that matched one regex, or
one medical term present in a regex. Higher weight
was given to paragraphs with the most matches in
order to increase the chance to find a paragraph that
matches partially or completely one of the regex.
Sampled paragraphs are in turn manually reviewed
and missing or incorrect matches lead to manual
modifications of the triggered regex.

The complete list of regex, translations and mod-
ifications is available on gitlab (URL not included
for anonymization).

Once regex are translated and modified, we apply
Carroll’s algorithm with coefficients provided in
the original article. We use a probability threshold
of 0.5 to classify RA patients.

2.6 PheVis Algorithm

The PheVis algorithm (Ferté et al., 2021) leverages
the method proposed in PheNorm (Yu et al., 2018)
to classify patients according to phenotypes a fol-
lowing semi-supervised approach. Accordingly, it
presents the advantage of not requiring a large set
of expert-labeled examples for training. PheVis
builds on PheNorm and enables classification not
only at the patient level, but also at the encounter
level. PheVis is a two-stage approach, as it relies
first on the definition of a silver standard of anno-
tated examples, that is used in a second stage to
train a supervised model.

PheVis uses ICD-10 codes and entities automati-
cally extracted from EHR narratives and mapped
to Concept Unique Identifiers (CUIs) from the Uni-
fied Medical Language System (UMLS) using NLP.
Accordingly, each patient encounter is associated
with a set of ICD-10 codes and CUIs.

Our adaptation of the PheVis algorithm relies
on the IAM system for entity extraction and nor-
malization; we used the same extraction method as
the original PheVis algorithm to increase compara-
bility with the original PheVis study (Ferté et al.,
2021).

In order to test the portability of PheVis to our
hospital setting, we tested first the best hyperparam-
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eters reported by PheVis authors, but also tested
different hyperparameters for optimization, follow-
ing a grid search strategy. In particular, parameters
named omega and half—life are optimized.

Accordingly, PheVis is trained on our explo-
ration and train sets and next evaluated on the test
set. PheVis standard way of defining silver standard
is based on a cumulative surrogate. This surrogate
is a standardized sum of the number of ICD-10 and
CUI codes found for each encounter. Over time, the
surrogate is cumulated with previous encounters,
with an exponentially decreasing accumulation de-
pending on the half—life hyperparameter.

Encounters with higher surrogate values are de-
fined as positive in the silver standard, and those
with lower values are negative. If the half—life is
defined as infinite, the surrogate is a simple sum
of the number of codes found over the encounters.
We evaluate whether an alternative silver standard
can be defined.

2.7 Revised PheVis

If the half—life is set to infinite, as Phevis article
advises for chronic diseases, the last encounter is
more likely to be used in the silver standard, even
if this one is not directly due to RA. For this reason,
we propose an improvement of the definition of the
surrogate described in the following section.

The quantitative value of the encounter stays de-
fined the same way. But the encounter assignment
to either positive or negative in the silver standard
follows a different strategy. We classify all encoun-
ters with the cumulative surrogate, but at the patient
level, we reassign (to either positive or negative) en-
counters that are more likely or unlikely to be due
to RA, based on each encounter surrogate, instead
of the cumulative surrogate. For example, if the
last two encounters of a patient are considered the
two most likely to be positive among all encoun-
ters, the silver standard is defined as positive for
the two encounters for this patient with the greater
surrogate, regardless of cumulative surrogate.

2.8 Evaluation metrics

To evaluate the performance of the different pheno-
typing algorithms, the following metrics are used:
precision (or positive predictive value, PPV), nega-
tive predictive value (NPV), specificity, recall (or
sensitivity), balanced accuracy, accuracy, F1 score
and Area Under the ROC Curve (AUC). Due to the
unbalanced distribution of labels, the F1 score is

used to determine the best algorithm. Confidence
intervals are computed using bootstrap.

2.9 Technical set-up

Experiments are done with R version 4.1, with the
PheVis package, Java IAMsystem and IAMsystem-
FastContext, and performed on a personal com-
puter under Windows 10, with 64Gb of memory
and an Intel(R) Xeon(R) CPU E3-1245 v5.

3 Results

3.1 Data collection

We found 4,100 patients with at least one ICD-10
code for RA and one reference to RA in narratives
of their EHRs, between 2015 and 2020 at AH. We
excluded 410 patients with the most recent first
encounter at the hospital to provide a validation
dataset for future work.

Remaining 3,690 patients were split in 410
(11%), 3140 (85%) and 140 (4%) patients to consti-
tute our exploration, train and test sets, respectively.
These include 3,826, 33,007 and 1,668 distinct en-
counters with at least one clinical text, respectively.

3.2 Gold standard

Of the 1,668 encounters selected for manual anno-
tation, 89 were classified as no fext, and 1,579 were
found in the healthcare software with sufficient
narrative data. Of these, after consensus on the an-
notation, 1,172 were classified as RA-, 359 as RA+
and 48 were classified as doubtful with the avail-
able data. Inter-annotator agreement (Viera and
Garrett, 2005) was substantial, as Cohen’s kappa
coefficient was 0.80. When considering doubtful
encounters as RA-, Cohen’s kappa is 0.83. At the
patient level, among the 140 annotated patients, 52
(37%) were classified as RA+ and 88 (63%) as RA-.
Table 1 and 2 summarize the results of our com-
parative evaluation of phenotyping algorithms. Fol-
lowing sections detail some of these results.

3.3 Baseline Algorithm

For the classification of hospital encounters, F1
score was 0.59 [0.55-0.64] for the baseline algo-
rithm without contextualization of the named en-
tities, and 0.60 [0.56-0.64] with contextualization.
For patient classification, F1 score was 0.67 [0.58-
0.76] and 0.68 [0.59-0.78] without and with contex-
tualization of the extracted name entities, respec-
tively. The contextualization of extracted entities



Methods Prec. NPV Spe. Rec. bal Acc. Acc. F1* AUC*
ICD-10 alone (>1 code) 053 090 090 0.52 0.66 0.71  0.67 (0.58-0.77) N/A
Baseline algo. 0.55 089 0.88 0.58 0.69 0.73  0.67 (0.58-0.76) N/A
Baseline algo., plus context 0.64 0.76 0.58 0.81 0.72 0.69 0.68 (0.59-0.78) N/A
Carroll’s algo., non-modified regex 0.53 096 049 0.96 0.74 0.66 0.68 (0.60-0.77) 0.90 (0.84-0.95)
Carroll’s algo., modified regex 056 098 0.55 0.98 0.77 0.71 0.71 (0.64-0.80) 0.91 (0.86-0.95)
PheVis (setting a) 0.62 090 0.68 0.87 0.76 0.75 0.72 (0.63-0.82) 0.88 (0.82-0.93)
PheVis, revised (setting b) 0.68 0.88 0.77 0.83 0.78 0.79 0.75 (0.66-0.85) 0.85 (0.78-0.92)
Carroll’s algo.

(as reported in Carroll et al.(Carroll et al., 2012)) 090 N/A - 0.65 N/A N/A N/A N/A 0.95
PheVis 065 096 094 074 NA NA N/A 0.943

(as reported in Ferté er al.(Ferté et al., 2021))

Table 1: Performances for RA phenotyping at the patient level. PheVis setting a is w = 10, half—life = 365; Revised
PheVis setting b is w = 2, half—life = 60. * confidence interval calculated with bootstrap.ICD-10 alone is a reference

to show patients who have at least one compatible ICD-10.

Methods Prec. NVP Spe. Rec. bal Acc. Acc. F1* AUC*
ICD-10 alone (>1 code) 0.59 088 0.60 0.88 0.82 0.74 0.59 (0.55-0.64) N/A
Baseline algo. 0.63 087 055 090 0.83 0.73  0.59 (0.55-0.64) N/A
Baseline algo., plus context 0.57 0.9 0.63 0.88 0.83 0.75 0.60 (0.56-0.64) N/A
PheVis (setting a) 043 090 0.72 0.72 0.67 0.72  0.54 (0.53-0.61) 0.82 (0.79-0.84)
PheVis, revised (settingb) 048 090 0.78 0.70 0.69 0.76  0.57 (0.54-0.62) 0.82 (0.79-0.84)

Table 2: Performances for RA phenotyping at the encounter level. PheVis setting a is w = 10, half—life = 365;
Revised PheVis setting b is w = 2, half—life = 60. * confidence interval calculated with bootstrap. Carroll’s algorithm
is not applied at encounter level. ICD-10 alone is a reference to show which encounters have at least one compatible

ICD-10.

led to a better precision (0.64 vs. 0.55) but to a
lower sensitivity (0.58 vs. 0.88).

3.4 Carroll’s Algorithm

From 67 English regex in Carroll et al., we gener-
ated 66 regex in French, which were in turn tested
on 1,509 paragraphs, randomly sampled from the
exploration set, for modification. Before modifi-
cation, regex performances were: F1=0.84, pre-
cision=0.85 and recall=0.84. After modifications,
performances went to: F1=0.89, precision=0.87
and recall=0.90.

For patient classification, Carroll’s algorithm re-
sults are better with modified regex (F1 0.68 [0.60-
0.77] vs 0.71 [0.64-0.80]). Results are lower than
those reported in Carroll’s paper (Carroll et al.,
2012) (AUC=0.91 vs. AUC=0.95), a lower speci-
ficity (0.55 vs. 0.65) and a lower precision (0.56 vs.
0.90).

Carroll’s algorithm is not available for encounter-
level phenotyping and accordingly was not adapted
to finer granularity.

3.5 Phevis Algorithm

For patient classification, hyperparameter tuning
with grid search technique on all narratives and
ICD-10 data reveals different best parameters to

those reported in PheVis article: w = 10 and hal f-
li fe = 365 result in the best predictions ( F1 Score
=0.72 [0.63-0.82]) for patient-level classification.
For encounter-level classification, the best param-
eters are half-life = 365 and w = 10. F1 score
was smaller for encounter-level classification 0.54
[0.53-0.61]. With the revised PheVis (to define an
alternative silver standard) we gain a little in per-
formance for patient-level classification (F1 score
=0.75[0.66-0.85]), and for encounter-level classi-
fication (F1 score = 0.57 [0.57-0.65]).

3.6 The cost of adaptation

The baseline algorithm is fairly easy to implement.
ICD-10 codes are easy to extract from structured
data. Searching for regex matching is also fast,
taking less than 20 minutes in our setting. Imple-
menting the Carroll’s algorithm took longer. About
two working days (8 hours each) were necessary
to translate regex from English to French. It took
one week to examine and modify regex with the
exploration set. Searching to match all regex on the
test set took about one hour. Implementing the lo-
gistic regression took half a day and the execution
time of the logistic regression is almost instanta-
neous. The implementation of PheVis algorithm
took more time. For data preparation, the NER



with TAMsystem algorithm, took about two days
to run on the exploration, train, and test datasets.
Training a model took about 10 minutes. Once the
classification algorithm is trained, application on
new data is fast and take about one minute. The
annotation of our test set by one person (1,668
encounters) took about 27 hours.

4 Discussion

4.1 Phenotyping performance

Porting phenotyping algorithms from one setting to
another remains a challenge. On AH data, PheVis
appears to have slightly superior performance to
Carroll’s and baseline algorithm for patient pheno-
typing. Our adaptations of Carroll’s and PheVis
algorithms yield performance slightly lower than
those reported in the literature (see the last two
lines of Table 1). For Carroll’s algorithm, this may
be due to the level of the probability threshold at
the end of the regression that needs to be reached to
classify an example as RA+. Carroll et al. chose a
threshold that yields a specificity of 97%, whereas
we set the threshold to 0.5. We tested this setting
with our data, but to reach a specificity of 97%, all
patients were classified as RA-. One other possible
explanation for this difference is the definition of
the starting cohort. We limited the starting cohort
to patients with at least one ICD-10 code related
to RA and a reference to RA in a clinical text, and
they used all patients available in their EHRs.

For PheVis, an explanation of the lower perfor-
mance could be the duration of the follow-up.
We limited our analysis to a period of five years,
whereas a period of ten years is used in the original
study. This longer follow-up period may lead to a
richer silver-standard and to higher performance,
due to the larger number of data per patient.

One originality of our study is the evaluation
of algorithms at the encounter level. Although
the authors of PheVis considered phenotyping en-
counters, their algorithm was evaluated only at the
patient level. Our study suggests that PheVis is not
superior to other algorithms at the encounter level.

There are some possible explanations for this
observation. In France, ICD-10 codes are used
to code hospital stays (inpatient), but not to code
medical appointments (outpatient). As a result,
these appointments may be more difficult to clas-
sify in the French setting since some of the features
are missing. The rather good results we observed
with the baseline algorithm, in regards to what is

reported in the literature may be attributed to an
improvement of the coding in French hospitals.
ICD-10 coding in French hospitals is mainly used
to evaluate hospital activity and to adapt public
hospital funding. The use of these billing codes
in clinical research was initially criticized because
of the biases associated with the granularity and
methodology of coding (Boudemaghe and Belhadj,
2017). However, over time, hospitals have strived
to improve coding. In particular, the coding activity
at the AH is now submitted to a stringent quality
control process and has consequently improved.

4.2 Error analysis

For patient phenotyping, the majority of false posi-
tive predictions made by PheVis algorithm are due
to our definition of RA+ patients. We defined them
as having at least one RA-related encounter during
the follow-up period. PheVis algorithm tends to
classify patients with a history of RA as RA+, even
if there is no encounter directly related to the dis-
ease. For encounter level phenotyping, the main
weakness of the algorithms is the precision: many
encounters are falsely classified as RA+. Analysis
of the medical record shows that patient’s medi-
cal data often contain some text duplicated from
previous records, even if the encounter is not di-
rectly related to the chronic disease (Digan et al.,
2019). Removing duplicated text coming from pre-
vious encounters should reduce the number of false
positives.

4.3 Choice of Algorithm

In this initial study of RA phenotyping in French
EHRs, our goal was to use state-of-the-art algo-
rithms validated in previous studies on new patient
data. This allowed us to characterize the adapta-
tion burden of a rule-based and machine learning
algorithms. The baseline shows relatively com-
petitive results in comparison with more complex
algorithms, in particular at the encounter level. In
the literature, a superiority of new and more com-
plex methods is often observed. But if studies com-
pare the new method they introduce with the lat-
est complex one, they do not necessarily compare
to baseline methods. This is an interesting direc-
tion for future work, which could assess whether
a deep learning algorithm such as transformers or
convolutional neural network would yield higher
performance. However, one of the major difficul-
ties remains the definition of the silver standard,
which is not solved by more recent methods.



For Carroll’s algorithm, differences between lan-
guages in terms of sentence construction make it
difficult to translate complex regex from one lan-
guage to another. We observed that the manual
exploration and evaluation of regex and their sub-
sequent modifications increased the performance
of Carroll’s algorithm (F1=0.71 vs. 0.68). This re-
sult suggests there is an added value in the manual
regex engineering process.

PheVis algorithm presents the best result for
phenotyping at the patient level. Unsurprisingly,
results at the encounter level are underwhelming.
Phenotyping at the encounter level is a harder task
than at patient level. In the PheVis study, authors
illustrate this difficulty with their attempt i.e., to
phenotype an acute disease (tuberculosis), which
can be compared to phenotyping at the encounter
level, since acute diseases may be associated with
a single encounter. A key issue is that at the en-
counter level, a large unbalance is usually observed
between positive and negative, biasing classifica-
tion tasks. To reduce this unbalance, a potential
solution would be to split encounter-level phenotyp-
ing in two: First, the patient-level phenotyping and
second, for positive patients only, the encounter-
level phenotyping.

4.4 Named Entity Recognition

Features extracted from narrative text are key for
phenotyping. The methods considered in this study
use NLP to extract information from clinical text.
Regular expressions can be effective for extracting
basic information but they lack the ability to inter-
pret context (e.g., negations, history, hypotheses,
etc.) adequately. Carroll’s algorithm includes com-
plex regex to account for the structure of English
sentences. For example, to detect the positive men-
tion of anti-CCP antibodies, five different regex are
defined.The French language is very different, and
led in our case to even more complex regex. An al-
ternative to take context into account is to combine
NER with a context detection algorithm based on
trigger terms before and after entity mentions, or
with deep learning methods that consider sentence-
level contexts. These methods are more adaptable
from one country to another if resources (e.g., a list
of trigger terms, a training set) are available for the
language. Furthermore, these methods are generic
enough to be transferable from one disease to an-
other. For the baseline algorithm, adding context to
NER did not impact the F1 score, but did increase

the precision (0.64 vs. 0.55) and recall (0.81 vs.
0.58).

One challenge we faced is the widespread use
of abbreviations and ambiguity in clinical narra-
tives. One example is the use of “LES” stand-
ing for Lupus érythémateux systémique (Systemic
lupus erythematosus or SLE in French). But in
French, “les” is also the definite article “the” in
English. Extraction of these abbreviations remains
impossible with a simple regex or dictionary-based
NER. Disambiguation of these terms, in particular
with language representation learned with LSTM or
attention-based architectures is a valuable direction
for this task.

4.5 Portability

The Phevis method requires as little expert knowl-
edge as the rule-based algorithm, since the expert
only had to define main concepts from UMLS and
ICD-10 codes associated with the disease. With a
NER algorithm available, this method can be used
in all hospitals and is not language specific. Car-
roll’s algorithm is more difficult to adapt to another
phenotype. Although features can be extracted
with other tools than regex, the classifier is built
with annotated data. To transfer this method, a
pre-annotated dataset must be created.

4.6 Granularity

The choice of a method depends on the task at hand.
To build up a cohort of patients with a specific
chronic disease, a naive rule-based approach should
be sufficient. To provide follow-up care for patients
with a specific condition between two dates, the
classical PheVis method may be more accurate. For
encounter phenotyping, more complex algorithms
may achieve better result.

5 Conclusion

The two algorithms tested for RA phenotyping are
transferable to the context of the Anonymous Hospi-
tal. In both cases, adaptation required a significant
amount of time, whether for the translation of reg-
ular expressions or the implementation of a NER
algorithm. The performance gain compared to a
baseline algorithm relying solely on ICD-10 codes
is surprisingly low. Previous studies did not al-
ways considered the baseline in their evaluation
and encounter-level phenotyping needs to be better
considered.
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